
OmniMatch: Joinability Discovery in Data Products
Christos Koutras∗

TU Delft
c.koutras@tudelf.nl

Jiani Zhang∗
Google

jianizhang@google.com

Xiao Qin
AWS

drxqin@amazon.com

Chuan Lei
AWS

chuanlei@amazon.com

Vasileios Ioannidis
AWS

ivasilei@amazon.com

Christos Faloutsos
AWS & CMU

faloutso@amazon.com

George Karypis
AWS

gkarypis@amazon.com

Asterios Katsifodimos
AWS & TU Delft

a.katsifodimos@tudelft.nl

ABSTRACT
We propose OmniMatch, a novel joinability discovery technique,
specifically tailored for the needs of data products: cohesive cu-
rated collections of tabular datasets. OmniMatch combines mul-
tiple column-pair similarity measures leveraging self-supervised
Graph Neural Networks (GNNs). OmniMatch’s GNN captures col-
umn relatedness by leveraging graph neighborhood information,
significantly improving the recall of joinability discovery tasks. At
the same time, OmniMatch increases its precision by augmenting
its training data with negative column join examples through an
automated negative example generation process. Compared to the
state-of-the-art, OmniMatch exhibits up to 14% higher effectiveness
in F1 score and AUC without relying on individual, user-provided
thresholds for each similarity metric.

PVLDB Reference Format:
Christos Koutras, Jiani Zhang, Xiao Qin, Chuan Lei, Vasileios Ioannidis,
Christos Faloutsos, George Karypis, and Asterios Katsifodimos.
OmniMatch: Joinability Discovery in Data Products. PVLDB, 18(11): 4588 -
4601, 2025.
doi:10.14778/3749646.3749715

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/amazon-science/omnimatch.

1 INTRODUCTION
A data product is a collection of data assets (e.g., tables) organized
under a business context to provide structured, accessible data for
specific use cases [14, 42]. It includes metadata, descriptions, gov-
ernance policies, and access rules to ensure seamless usage. Cloud
data management services like Microsoft Purview, Google Data-
plex, and AWS DataZone use data products to enable scalable data
discovery and governance. Specifically, in the context of tabular

∗Work done at AWS.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749715

[3, 12, 26, 54]
Table Semantics Extraction

Data Domains

Data Repository Accounting Domain

Dataset Search
[5, 14, 15, 19, 20, 29, 41, 60]

Sales

US Sales

US Taxes
Data Products

Data Product

Dataset Relationships

Sales

Sales

This work: Joinability Discovery in Data Products
Supplies Accounting

Figure 1: Existingmethods can be applied on large data repos-
itories to create coarser (data domains) or finer grained (data
products) clusters of datasets. OmniMatch takes place inside
data products to reveal joinability relationships between col-
umn pairs of corresponding datasets.

data repositories, data products represent cohesive, curated collec-
tions of tabular datasets, including database tables, CSV files, and
spreadsheets. They may also include metadata such as searchable
keywords, auto-generated descriptions, and user-friendly table or
attribute names [73].

Prior to data product creation, data processing procedures that
facilitate dataset refinement should take place. As shown in the left
part of Figure 1, there exists a multitude of table semantics extraction
methods [4, 16, 35, 72] that can be applied on datasets belonging to
a large repository to produce data domains, usually by leveraging
embeddings summarizing the information stored on a table level.
Essentially, data domains are clusters of datasets that contain enti-
ties and information belonging to coarser semantic categories (e.g.
Supplies and Accounting). To create more fine-grained collections
of datasets for specific business needs and use cases, i.e. data prod-
ucts, dataset search [6, 18, 19, 23, 24, 38, 54, 80] methods can provide
indications on potential dataset-level relationships in an existing
data domain. As we see in the middle part of Figure 1, information
extracted from search methods can help towards the formation of
data products containing datasets that store information with finer
grained semantics (e.g. Sales, US Sales and US Taxes).

A fundamental attribute of a well-organized data product is
metadata about joinability across datasets. Joinability metadata
plays a vital role in facilitating the exploration and exploitation of
datasets. Data scientists training machine learning (ML) models,
can leverage joinability metadata to identify related datasets that

4588

https://doi.org/10.14778/3749646.3749715
https://github.com/amazon-science/omnimatch
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749715
https://www.acm.org/publications/policies/artifact-review-and-badging-current

0.5 0.6 0.7 0.8 0.9 1.0

OmniMatch

Starmie (BERT)

DeepJoin (MPNet)

COMA (Matching)

DB (Matching)
Real World Join Benchmark

Best F1
PR-AUC

Figure 2: OmniMatch outperforms the state-of-the-art col-
umn matching and representation methods in terms of best
F1 and Precision-Recall AUC scores.

provide additional features, thereby improving the accuracy of an
ML model [11, 36, 79]. Joinability metadata can also help in data
cleaning by enabling the discovery of new sources of information
that serve as ground truth for error checking, inferring missing
values, or eliminating duplicates. In addition, joinability metadata is
used to automatically generate SQL queries from natural language
[40]. Specifically, the joins are retrieved from a catalog, and injected
as context to LLMs in order to achieve higher accuracy in NL2SQL
translation [64]. Joins can also enable and facilitate table-retrieval
[63, 76] and table QA tasks [43]. Finally, automated methods for
Tab2Graph [29] require high-quality joinability metadata in order
to convert relational tables into graphs automatically and train
Graph Neural Networks.
JoinabilityDiscovery inData Products. In this paperwe focus on
discovering all joinability relationships across datasets within data
products (right part of Figure 1). Unlike dataset search techniques
that focus on top-𝑘 relationships across datasets with the goal of
scaling to large data lakes [6, 13, 18, 23, 24, 33, 38, 52, 54, 80], in this
work we focus on finding joins between columns aiming at high
accuracy in smaller numbers of datasets – even at the expense of
increased computation cost. Joinability discovery, in this problem
setting, is considered an offline process that can be triggered after a
data engineer has already discovered and curated a set of datasets
from a large data lake.
Challenges. A join between two columns requires a non-zero
overlap among their value sets. However, it is hard to quantify the
usefulness of overlaps: fixed thresholds on set similarity metrics,
such as Jaccard Index, might increase false negative/positive rates
(due to high/low thresholds respectively). In addition, joins between
columns can exist even when their contents differ syntactically. In
the literature, those are termed fuzzy joins [2, 10, 47, 66, 67]. Fuzzy
joins require similarity metrics that capture relatedness beyond
value overlaps. This raises the question of which similarity metrics
should be used to ensure high effectiveness. Finally, without meta-
data, such as column names and descriptions, finding joins requires
understanding the column contents’ semantics.
OmniMatch: Effective Joinability Discovery. In this paper we
present OmniMatch, a novel self-supervised approach that targets
the problem of joinability discovery in data products. As depicted

CNTR

China

USA

Greece

India

France

Kenya

Country

Sweden

Norway

Finland

India

France

Kenya

Cntry

Sweden

Norway

Croatia

India

Italy

Mexico

JS = 0.33JS = 0.33

JS = 0.09

SC = 0.5

SC = 0.13

SC = 0.5

OmniMatch discovered join
Traditional similarity-based discovered join
Traditional similarity-based missed join

Figure 3: OmniMatch at work: (best viewed in color) tradi-
tional similarity-based methods vs. OmniMatch.

in Figure 2, OmniMatch effectively addresses issues associated with
existing joinability discovery methods. It does so, in the following
ways: i) Enhanced similarity metrics: OmniMatch leverages a diverse
suite of similarity metrics between column pairs from different
datasets, enabling a more comprehensive understanding of column
relatedness. ii) Flexible join detection: OmniMatch considers both
equi and fuzzy joins by consolidating and propagating various simi-
larity signals using a variant of Graph Neural Networks (GNNs) [61],
effectively handling diverse join conditions. iii) Robustness to data
noise: by incorporating a graph-based representation that captures
the inherent structure of column relationships, OmniMatch can
handle noise and perturbations in the input datasets, resulting in
more accurate joinability discovery outcomes. iv) Metadata inde-
pendence: OmniMatch focuses more on the column content data
and utilizes the column relatedness information captured in the
graph, allowing it to perform join discovery even when metadata
is noisy or unavailable. v) Data labeling free: OmniMatch employs
a self-supervised learning approach by generating join examples
from the original datasets, completely eliminating the need for
large amounts of labeled data. This makes OmniMatch practical
and applicable in data-scarce or labeling-challenged scenarios.
Intuition. Figure 3 depicts three datasets with different similarity
scores (Jaccard Similarity – JS and Set Containment – SC). The
column pairs (Country, CNTR) and (Cntry, CNTR) have high similar-
ities, while Cntry and CNTR have very low similarities. Traditional
similarity-based methods rely on a user-defined threshold, often
set at a low value (i.e., JS≥0.09) to discover those joins, negatively
affecting precision. In contrast, OmniMatch harnesses the power of
GNNs with message-passing mechanisms, utilizing graph neigh-
borhood information. This approach allows the discovery of joins
that remain undetectable when using threshold-based discovery
methods. By leveraging GNNs, OmniMatch enhances the precision
of join discovery without the need for a predefined threshold.
Contributions. This paper makes the following contributions:

• OmniMatch takes a self-supervised approach to find equi and
fuzzy joins among tabular datasets in data products. To this end,
this paper contributes a method for automatically generating
positive and negative examples for self-training, leveraging the

4589

(a) Original datasets in
a data product

 (b) Derive datasets w/ positive/
negative join examples

(c) Compute column
pairwise features

[0.6, 0.8, 0.5, 0.9, 0.9]

[0.9, 0.6, 0.7, 0.7, 0.6]
[0.1, 0.0, 0.2, 0.1, 0.3]

…

(d) Build similarity graph on
derived training data

… …

(e) Train model based on
positive/negative examples

… …
…

RGCN Model

(f) Infer joins on original
datasets

Model… …

Figure 4: OmniMatch’s steps to predict joins among datasets in a data product.

power of GNNs. As a result, the negative join examples used
during training make OmniMatch robust against false positives.

• OmniMatch is the first to combine multiple similarity signals into
a graph to represent relationships among columns of different
datasets. As a result, OmniMatch decreases the number of false
negatives by discovering indirect join relationships leveraging
the graph neighborhood information.

• OmniMatch’s graph modeling scheme can accommodate an ex-
pandable set of similarity signals between column pairs that
cover: 𝑖) semantics via column embeddings extracted from exist-
ing deep learning approaches, 𝑖𝑖) value distributions, as well as
𝑖𝑖𝑖) set similarities.
• On real-world data, OmniMatch achieves 14% higher F1 and AUC

scores, compared to the state-of-the-art column matching and
dataset search methods.

2 THE JOINABILITY DISCOVERY PROBLEM
In this work, we aim at capturing column pairs among datasets
in a data product that can be joined, i.e., joinable column pairs.
Noticeably, we care about capturing all such pairs, without assessing
the quality of the corresponding join [28] or ranking them based
on some defined joinability score, as done in search tasks [19, 80].
Based on these assumptions, we define column joinability and the
problem of joinability discovery in data products as follows.

Definition 2.1 (Joinability). Two columns 𝐴 and 𝐵, with corre-
sponding value setsA andB, are joinable if i) there exists a function
ℎ : A → B such that ℎ(A) ∩ B ≢ ∅ and ii) they store values from
the same domain, i.e., of the same semantic data type.

Based on the above definition, when ℎ(A) ≡ A, then the two
columns represent an equi-joinable pair; in Figure 3 we see cases of
such joinable column pairs. However, it is often difficult to strictly
define the function ℎ(·) that transforms the values of one column
to coincide with the ones of the other column syntactically; exam-
ples of such functions might drop, rearrange, or abbreviate tokens,
as shown in Figure 5. In these cases, the problem of joinability
discovery becomes more challenging.
Joinability Discovery in Data Products. A data product D
consists of a set of 𝑛 tabular datasets 𝑇𝑖 ∈ D, 1 ≤ 𝑖 ≤ |D|,
where each dataset stores a set of columns C𝑖 , 1 ≤ 𝑖 ≤ |D|. The
problem of joinability discovery is to capture all potential join-
able pairs among columns belonging to different datasets stored in
the data product, i.e., all quadruples of the form (𝑇𝑖 , 𝐴,𝑇𝑗 , 𝐵), with
𝑖 ≠ 𝑗, 𝐴 ∈ C𝑖 , 𝐵 ∈ C𝑗 , joinable(C𝑖 , C𝑗).

3 APPROACH OVERVIEW
Figure 4 summarizes OmniMatch’s steps towards building a predic-
tion model for joinability between columns of tabular datasets in a
repository.
– a,b) Creating training examples: OmniMatch utilizes a dedicated
dataset join-pair generator for the datasets that reside in a given
repository (Figure 4b) to establish the self-supervision. The created
positive and negative join examples from individual tables serve as
supervisions for training OmniMatch’s prediction model to discover
joinable relationships across tables.
– c) Pairwise column feature computation: At the core of OmniMatch
we featurize all column pairs among the generated joinable datasets
by computing several similarity signals that are widely used in the
literature for capturing column relatedness (Figure 4c).
– d) Column similarity graph construction: Using the features we
calculated earlier, we build a similarity graph where columns are
connected with different similarity types of edges, each correspond-
ing to a different feature (Figure 4d). To reduce the noise in graph
construction, we propose a filtering strategy.
– e) Training: Based on the similarity graph, OmniMatch leverages
the Relational Graph Convolutional Network (RGCN) architecture,
a variant of GNNs, in conjunction with the positive and negative
join examples from the first step, to train a prediction model for
joins (Figure 4e).
– f) Inference on original datasets: OmniMatch is an inductive model
and can adapt to new datasets. Specifically, OmniMatch repeats
the column pairwise feature computation and similarity graph con-
struction steps for the original testing repository datasets. Applying
the prediction model on this similarity graph, we can infer joins
among the tabular datasets residing in the repository (Figure 4f).
Why Graph Neural Networks (GNNs). The graph-based data
model over the columns creates opportunities for OmniMatch to
use similarity signals that go beyond the profiles of each column.
Specifically, OmniMatch constructs a multi-relational [7] graph
using columns as nodes1 and edges representing various types of
“relatedness” between the nodes. The fact that an edge connects two
columns indicates that they are similar according to a pairwise simi-
larity metric (e.g., Jaccard Index or embedding similarity). However,
using different signals to predict joinable relationships is non-trivial
in such a graph. GNNs can automatically extract signals from the
raw input graph through a message passing mechanism. This mech-
anism generates representations that aggregate diverse neighboring
signals via different relations. Specifically, OmniMatch adopts the
Relational Graph Convolutional Network (RGCN) model [61], a

1In the following, we use the terms columns and nodes, interchangeably.

4590

Addr

25 Jubilee St

25 Main St

13 Traders St

2 Maple St

Address

Jubilee Street, 25

3rd Street, 13

Traders Street, 13

Elm Street, 25

JS = 0

JS Infrequent Tokens = 0.33

Embedding Similarity = 1

Figure 5: Using Jaccard similarity on infrequent (blue) tokens
and embedding similarity on frequent (orange) tokens for
capturing fuzzy-joins.

type of GNN that can effectively handle multi-relational data. Intu-
itively, the joinable relationship discovery can be seen as a learning
problem over the constructed multi-relational similarity graph. The
RGCN model aims to construct a new graph that consists of the
same nodes (columns) but only contains edges that connect the
joinable columns. This view is partially observed based on Omni-
Match’s self-created joinable pairs. Through its learning process,
such a partial observation trains the RGCN to gradually learn how
to encode signals from a column’s profile and its 𝑘-hop neighboring
columns connected via different relatedness relations (i.e., similar-
ity metrics). Note that OmniMatch is inductive and can adapt to
unseen datasets.

4 COLUMN SIMILARITIES AS A GRAPH
This section discusses how OmniMatch builds a graph representing
column relatedness to train a joinability prediction model. We first
describe the similarity signals that OmniMatch considers. Then,
we show how these similarities constitute the basis for building a
similarity graph among columns of different tables and analyze the
construction process.

4.1 Pairwise Column Similarities
A main part of OmniMatch is figuring out how similar two columns
are to find possible joins. We picked these similarity signals after
many studies on column matching and related dataset search. Next,
we explain the set of similarity signals we used in our method and
why we use them.
Jaccard Similarity on All Tokens. Jaccard similarity is a widely
used similaritymetric to assess column relatedness. Specifically, this
similarity score is calculated as the size of the intersection divided
by the size of the union of the set of values included in two columns
(𝐴 and 𝐵), i.e., 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 ||𝐴∪𝐵 | . Note that for computing this metric,
we regard the entirety of the cell values that a column contains, i.e.,
we consider all tokens. Jaccard similarity is the most commonly
used metric to inspect whether two columns store a considerable
amount of overlapping values, which is a strong indicator of equi-
join relationships [6, 15, 24, 78].
Jaccard Similarity on Infrequent Tokens. Jaccard similarity
based on the complete formats of the values stored in columns

strongly indicates an equi-join, yet it might be ineffective in fuzzy-
joins. This is because even a slight change in the formats of values
in one of the columns (e.g., St instead of Street) might cause the
signal to be close to zero. Therefore, it is helpful to include a Jaccard
similarity signal based on individual tokens stored in a column
rather than on full values. To do so, OmniMatch includes a metric
used in a state-of-the-art dataset top-𝑘 search method [6], which
we call Jaccard similarity on infrequent tokens.

Specifically, we first tokenize the values of each column and
create a histogram of their occurrences. Then, for each value, with
possibly multiple tokens, we keep as its representative the token
that has the lowest frequency. This enables us to compute Jaccard
similarity on the sets of infrequent tokens stored in each column.
Intuitively, a high value for this similarity signal indicates a strong
relatedness between the corresponding columns since they overlap
on tokens that are hardly found in their value sets. Figure 5 depicts
an example of a fuzzy join between two columns storing addresses.
Using Jaccard similarity on infrequent tokens (i.e., street names),
we can capture relatedness between these two columns. On the
contrary, Jaccard similarity on full values is zero.
Set Containment. There are multiple cases where Jaccard simi-
larity might be a weak signal of column relatedness, even if the
size of overlapping values is relatively large for one of the columns.
Essentially, if a column with a small value set is completely cov-
ered by another one that stores thousands of discrete values, the
Jaccard similarity will be low; indeed, the size of the intersection
will be relatively much smaller than the size of the union of values
stored in the corresponding columns. To ameliorate this problem,
several methods [15, 71] employ set containment. Specifically, the
set containment from column 𝐴 to column 𝐵 is defined as |𝐴∩𝐵 ||𝐴 |
and indicates how many unique values from 𝐴 are included in the
intersection with 𝐵; a set containment of 1 indicates that those
of column 𝐵 fully cover values of column 𝐴. Since this similar-
ity measure is asymmetric, in OmniMatch, we choose to include
the maximum set containment for a pair of columns (from one to
another and vice versa). This way, we include the strongest similar-
ity signal between the two columns. Notably, set containment is
significantly effective for capturing inclusion dependencies among
columns, which is a significant step towards primary key - foreign
key (PK-FK) relationship discovery [74].
Embedding Similarity. OmniMatch is designed to rely on data in-
stances of the tables, when metadata, such as curated column/table
names or descriptions, is not available. Therefore, we compute
semantic relatedness for a pairs of columns by using embedding
similarity of their data instances. Value-based similarity based on
pre-trainedword embeddingmodels, such asGlove [57] and FastText
[37], has been widely used in related dataset search [6, 18, 39, 54]
to capture column semantics of tabular datasets.

In OmniMatch, we decided to employ value-based embedding
similarity between columns by adopting the approach introduced
in [6]. Specifically, for each cell value in a column, we keep the to-
ken with the highest occurrence frequency based on the histogram
created for computing Jaccard similarity on infrequent tokens. Next,
for each such frequent token, we compute a word embedding using
FastText, since it can produce representations of any given token,
regardless of whether it is included in its vocabulary. The column

4591

representation is then computed as the mean of all embeddings
of frequent tokens in the column, and the similarity between the
two columns is based on the cosine similarity of their correspond-
ing embeddings. Frequent tokens are usually representative of the
column’s domain. Hence, basing embedding similarity on them
can strongly indicate semantic relevance between columns. For
instance, in Figure 5 we see that embedding similarity on frequent
tokens (𝑆𝑡 and 𝑆𝑡𝑟𝑒𝑒𝑡) suggests that both columns store values from
the same domain (i.e., street addresses).
Distribution Similarity. The last signal thatOmniMatch considers
for a pair of columns is their distribution similarity. Virtually, this
type of similarity is often used to capture column relatedness when
their value intersection is low (i.e., Jaccard similarity is low) [55,
75], based on the observation that columns storing values from
similar domains usually have relevant distributions. Distribution
similarity can be beneficial when capturing synonymous terms
stored in different columns, which may differ syntactically since
we expect them to share similar contexts. Significantly, such a
similarity signal could facilitate the discovery of fuzzy joins in
OmniMatch. Consequently, in OmniMatch, we opted for Jensen-
Shanon (JS) divergence [51] as the distribution similarity measure
between two columns, adopting it from [55] where it was found to
be effective towards finding similar values for column matching.

Note that OmniMatch can be configured to compute other simi-
larity signals due to its flexible design. Essentially, adding similarity
signals in the method means adding new types of edges in the sim-
ilarity graph, as discussed in the following subsection. Therefore,
OmniMatch can easily be modified to tailor the characteristics of the
underlying datasets in a data repository by extending it to include
other pairwise column similarities.

4.2 Similarity Graph Construction
OmniMatch’s pairwise column similarities can provide strong in-
dicators of join relationships. However, relying solely on a single
similarity metric can negatively affect the effectiveness of a join-
ability discovery method. As we show in Figure 3, a column pair
with a low JS score can still be a valid join but will be missed out if
a high threshold is chosen. Moreover, value homographs [46] and
misleading semantic value matches (e.g., NY and NYC), suggest that
a combination of similarity metrics is a more appropriate choice
for the problem of joinability discovery.
Similarity Signals as a Graph. OmniMatch uses these similarity
signals to construct a similarity graph, which encodes important
column relatedness information and enables OmniMatch to dis-
cover indirect join relationships. Specifically, columns from differ-
ent datasets are transformed into nodes in a graph connected with
edges of different types. Each edge type corresponds to a different
similarity signal. Such a graph-based data model allows OmniMatch
to learn 𝑖) the characteristics of column profiles in join and non-join
cases, ii) whether different similarity signals contribute to a join
or non-join case and iii) whether there are graph patterns with
pairwise similarity signals and column profiles that constitute a
join/non-join case.

Nonetheless, including every type of edge for each pair of nodes
would result in a complete graph, which would be difficult to inter-
pret and leverage for joinability discovery. Therefore, we propose

two solutions for filtering out unnecessary edges: i) based on simi-
larity thresholds, and ii) based on top-k similarity ranking.
Edge Selection. Themost straightforward approach to filtering out
edges would be to choose similarity thresholds for each similarity
type. However, if we employ this graph construction technique, we
might lose important column relatedness information (and graph
connectivity), as it is hard to assess how suitable a value for a thresh-
old is. For example, in Figure 3, using a threshold above 0.5 would
filter out all possible edges between the corresponding columns,
whereas all column pairs represent a valid join relationship.

To ensure high graph connectivity while accounting for different
similarities, OmniMatch opts for a different approach: for each
node in the graph, it keeps only the top-k edges per node and
per type based on the value of the corresponding similarity signal.
Essentially, for each node (i.e., column),OmniMatch keeps the edges
that represent the most prominent join relationships with other
nodes. For instance, if we set 𝑘 = 1 in Figure 3, then the only
edges that will be kept are the ones between the Cntry-Country
and Country-CNTR pairs. As a result, the edges of the similarity
graph that OmniMatch constructs using the aforementioned top-𝑘
edges represent candidates of potential join relationships between
the corresponding columns. Yet, the graph is not guaranteed to
contain edges connecting every possible true column join pair
(e.g., Cntry and CNTR share no edges for 𝑘 = 1). As we see in the
following section,OmniMatch tackles this issue by taking advantage
of transitive paths in the similarity graph, to capture joins indirectly.

5 GRAPH MODEL TRAINING
We denote the constructed similarity graph as G = (V, E,R) with
nodes (columns) 𝑣𝑖 ∈ V and edges (𝑣𝑖 , 𝑟 , 𝑣 𝑗) ∈ E, where 𝑟 ∈ R
is a relation type indicating one of five similarity relation types
defined in Section 4.1. In this section, we discuss how OmniMatch
leverages the graph G to learn column representations with GNNs.
We begin by exploring the process of creating the initial column
features. Subsequently, we employ the message passing paradigm
of GNNs to calculate the aggregated column representations and
provide a detailed illustration of using RGCNs in OmniMatch. Then,
we explain how OmniMatch automatically creates positive and
negative column joins for training and how to use different loss
functions to guide training. Finally, we discuss how to do inference.

5.1 Initial Column Features
We describe a column with a collection of identified features that
better represent its characteristics [1]. We denote the initial feature
vector for a column 𝑖 as x𝑖 ∈ R𝑑𝑓 , where 𝑑𝑓 denotes the feature di-
mension. Specifically, for each column, we use a simple profiler that
summarizes statistical information about the values of a given col-
umn. We do so since more complex information about the column
contents is captured by different types of edges among the nodes
in the similarity graph. To this end, we make use of the column
profiling component from Sherlock [34] by computing statistics
falling into the following two categories:
– Global statistics. Those include aggregates on high-level charac-
teristics of a column, e.g., the number of numerical values.

4592

– Character-level distributions. For each of the 96 ASCII characters
that might be present in the corresponding values of the column,
we save character-level distributions.

5.2 Column Representation Learning
Next, we briefly introduce the message-passing architecture of
RGCNs, which captures necessary similarity signals within the
graph and refines the representation of columns by leveraging
neighborhood information.

5.2.1 The message passing paradigm for GNNs. The message pass-
ing paradigm follows an iterative scheme of updating node rep-
resentations based on the aggregation from neighboring nodes.
Suppose h(ℓ)

𝑖
represents the node representation for column 𝑖 at

iteration ℓ , then the paradigm composes four parts:

(1) Initialization: h(0)
𝑖

= 𝑓𝜃1 (x𝑖),∀𝑣𝑖 ∈ V . For each node 𝑖 , we
initialize its node representation h(0)

𝑖
as a function of the

feature vector defined in Section 5.1.
(2) Message computation:m(ℓ)

𝑖←𝑗
= 𝜙

𝜃
(ℓ)
2
(h(ℓ−1)

𝑗
, h(ℓ−1)

𝑖
, e(ℓ−1)

𝑖, 𝑗
).

Function 𝜙
𝜃
(ℓ)
2
(·) parameterized by 𝜃

(ℓ)
2 computes a mes-

sage from each neighboring node 𝑗 to the central node 𝑖 .
Here, e𝑖, 𝑗 denotes edge information between nodes 𝑖 and 𝑗 ,
which contains the information of a specific relation type.

(3) Neighbor aggregation: m(ℓ)
𝑖

= 𝜓
𝜃
(ℓ)
3
({m(ℓ)

𝑖←𝑗
| 𝑗 ∈ N𝑖 }). This

step aggregates themessages received from all the neighbor-
ing nodes defined by N𝑖 to form a comprehensive message
for node 𝑖 . 𝜓

𝜃
(ℓ)
3
(·) is the function parameterized by 𝜃

(ℓ)
3

that aggregates messages.
(4) Message transformation: h(ℓ)

𝑖
= 𝑓

𝜃
(ℓ)
4
(h(ℓ−1)

𝑖
,m(ℓ)

𝑖
). Func-

tion 𝑓
𝜃
(ℓ)
4
(·) parameterized by 𝜃

(ℓ)
4 transforms the aggre-

gated information into an updated representation for 𝑖 .

In summary, the GNNmessage-passing paradigm initializes node
representations, computes messages between neighboring nodes,
aggregates these messages, and transforms the aggregated infor-
mation to update node representations in an iterative manner. A
column gains the ability to receive a greater number of relevant
messages from its neighbors at the 𝐿th-hop. This enables us to delve
into high-order connectivity information and enhance our under-
standing of intricate relationships within the data. Such high-order
connectivities are crucial to encode the similarity signal to estimate
the joinability score between two columns. The parameters 𝜃1, 𝜃

(ℓ)
2 ,

𝜃
(ℓ)
3 , and 𝜃 (ℓ)4 are adjustable based on different GNN architectures
and can be learned during the training of GNN.

5.2.2 Relational Graph Convolutional Networks (RGCNs). In Omni-
Match, we use the RGCN model [61] to capture multi-relational and
multi-hop features effectively. An RGCN explicitly models differ-
ent relation types, which is critical for handling diverse similarity
relationships. The shared weight matrices for each relation reduce
overfitting and ensure consistent transformation across relations.
Thus, the RGCN model is the right choice to capture nuanced sig-
nals of joinability.

Node feature initialization. We set the initial value of h(0)
𝑖

as x𝑖
in R𝑑𝑓 defined in Section 5.1, with an empty parameter set 𝜃1.
Message Computation. Intuitively, the neighboring columns in
a similar graph can give more clues about the semantic meaning
of a column. We build upon this basis to encourage message fea-
ture propagation between linked columns under different types of
similarity relations as follows. Relation-specific transformations
capture distinct types of similarity, enabling the model to differ-
entiate between various relations. In OmniMatch, we use linear
transformations as the encoding function:

m𝑟
𝑖←𝑗

(ℓ)
=

1
|N𝑟

𝑖
| (W

(ℓ)
𝑟 h(ℓ−1)

𝑗
+ b(ℓ)𝑟) +

1∑︁
𝑟∈R |N𝑟

𝑖
| (W

(ℓ)
0 h(ℓ−1)

𝑖
+ b(ℓ)0),

(1)

where W(ℓ)𝑟 ∈ R𝑑
(ℓ)
ℎ
×𝑑 (ℓ−1)

ℎ is a weight matrix for relation 𝑟 , which
transforms a column feature vector of dimension 𝑑

(ℓ−1)
ℎ

to a hid-

den dimension 𝑑 (ℓ)
ℎ

. There is also a different weight matrixW0 ∈

R𝑑
(ℓ)
ℎ
×𝑑 (ℓ−1)

ℎ that helps preserve some of the original information
(residual connection). So, we have 𝜃 (ℓ)2 = {W(ℓ)𝑟 , b(ℓ)𝑟 ,W(ℓ)0 , b(ℓ)0 }.
b(ℓ)𝑟 and b(ℓ)0 are the bias vectors.N𝑟

𝑖
stands for the set of neighbor-

ing columns of 𝑖 under relation 𝑟 ∈ R and
∑︁
𝑟 ∈R |N𝑟

𝑖
| indicates the

total number of neighbors under all types of similarities. Thus, the
coefficient scalar controls the number of messages being propagated
based on the degrees of the node under each relation.
Neighbor Aggregation. In the aggregation stage, messages from
neighboring columns are passed to the target column via different
types. This helps refine the understanding of our target column 𝑖:

m(ℓ)
𝑖

= 𝜎 (
∑︂
𝑟 ∈R

∑︂
𝑗 ∈N𝑟

𝑖

m𝑟
𝑖←𝑗
(ℓ)), (2)

After computing the aggregated specific messages, we sum the
messages from all types and pass the output to a non-linear func-
tion 𝜎 (·). Here m(ℓ)

𝑖
denotes the representation of column 𝑖 after

aggregating ℓ column propagation layers. We use sigmoid as the
activation function 𝜎 (·), since it allows messages to encode positive
signals and filter the negative ones. Summation allows proportional
representation of high-degree nodes, and the activation filters out
irrelevant signals while retaining critical ones.
Message Transformation.We use the residual connection with-
out any additional parameters to update the node representaion.
This residual connection helps preserve original feature informa-
tion while incorporating learned neighborhood signals. In addition
to the messages propagated from the neighbors under different
similarity channels, we consider the self-connection of 𝑖 , which
retains the information of the original column features:

h(ℓ)
𝑖

= h(ℓ−1)
𝑖

+m(ℓ)
𝑖

. (3)

At the 𝐿-th layer, the node representations are h(𝐿)
𝑖

,∀𝑣𝑖 ∈ V .

5.3 Generating Training Examples
Training our prediction model requires join (positive) and non-
join (negative) labels. To do so, OmniMatch takes a self-supervised
approach, leveraging positive and negative join examples that are
automatically generated from the tabular data in the repository. Self-
supervised generation of training examples avoids manual labeling

4593

and ensures scalability across large repositories. Specifically, for
each table in the input, OmniMatch adopts a join pair fabrication
process , similar to the ones described in [45, 54, 80]:

• We randomly pick some columns from the input table that the
derived pair of datasets will share.

• Then, we split the original dataset’s rows into two randomly
overlapping sets. Consequently, we create a pair of datasets with
a random number of columns and rows.

• To simulate fuzzy-joins, we randomly perturb the data values
of one of the two created datasets. We do so only for instances
belonging to columns that are shared among the generated tables.
To perturb the data values, we either i) insert random typos based
on keyboard proximity (e.g., science becomes scienxe) or ii) use
common alternative values formats for specific column cases
(e.g., dates, money amounts, street addresses, etc.).

Based on the above join generation process, we create a pair of
joinable tables for each original dataset in the repository (Figure 4b).
The columns that join in these pairs are used as positive training
examples, while the rest of the column combinations between the
two tables are regarded as negative join examples. Note that with
this generation process, the derived pairs will share joins of various
overlaps and fuzziness, enhancing the robustness of our model.

5.4 Loss Functions
To refine the column representations produced from the RGCN,Om-
niMatch leverages the automatically created positive and negative
join examples to train a prediction model. Notably, the choice of loss
function can have a considerable impact on the effectiveness of the
produced representations. Therefore, in what follows, we describe
how to employ two different loss functions towards joinability dis-
covery: i) cross-entropy loss, which creates a representation space
for linearly separating joins from non-joins, and ii) triplet margin
loss which optimizes representations for a given metric distance, to
bring joinable columns close and separate non-joinable ones.
Training with cross-entropy loss. The cross-entropy loss encour-
ages the model to assign high similarity scores to positive joinable
column pairs and low scores to negative non-joinable pairs. This ap-
proach balances positive and negative examples using a weighting
factor. In this training procedure, the model’s goal is to optimize
the following cross-entropy loss function:

L = −
∑︂

(𝐴,𝐵) ∈J
𝑤𝑝 · log𝜎 (𝑠𝑖𝑚(h(𝐿)𝐴

, h(𝐿)
𝐵
))

−
∑︂

(𝐴,𝐵) ∈NJ
log(1 − 𝜎 (𝑠𝑖𝑚(h(𝐿)

𝐴
, h(𝐿)

𝐵
))),

(4)

where 𝜎 (·) is the sigmoid function, while J and NJ are the sets
of positive and negative column join examples. Notably, the pa-
rameter 𝑤𝑝 is the weight we use to balance the positive and the
negative examples, which we set as the ratio of negative to positive
join examples in training. The similarity scores are computed by
feeding pairs of RGCN-produced column representations to aMulti-
layer Perceptron (MLP), whose parameters are also learned during
training to give correct predictions. With this model training, we
aim to compute column representations (using RGCN), so we can

Repository of Original Datasets

Derive Joinable Pairs
Per Original Dataset

Build Similarity
Graph of Columns

from Original Datasets

Build Similarity Graph of Columns from Derived Pairs and
Fetch Joinable/Non-Joinable Columns for Training

= Joinable Columns per Pair

= Non-Joinable Columns per Pair

Train Join
Prediction Model

Use Trained Model
For Inference

T1

T2

T3

I1

I2

Figure 6: OmniMatch’s training and inference procedures.

build a similarity function (through MLP) that scores join examples
higher than non-join ones.
Training with triplet margin loss. An alternative for proceeding
with training is using the triplet margin loss function. The triplet
margin loss ensures that positive joinable column pairs are closer in
representation space than negative non-joinable pairs, with a mar-
gin. The triplet loss explicitly optimizes relative distances, making
it robust for ranking-based tasks.

L =
∑︂

(𝐴,𝐵+,𝐶−)
max{𝑑 (h(𝐿)

𝐴
, h(𝐿)

𝐵+) −𝑑 (h
(𝐿)
𝐴

, h(𝐿)
𝐶−) +margin, 0} (5)

where 𝑑 (·, ·) is a vector distance function, and𝑚𝑎𝑟𝑔𝑖𝑛 is a positive
value. For each column, we consider one column that joins (denoted
by +) and all others that do not join (denoted by −) based on the
generated dataset pairs. Intuitively, training to minimize the triplet
margin loss helps the RGCN learn to bring the representations of
columns that join, closer than the ones that do not.

5.5 Training and Inference of Join Predictions
Figure 6 summarizes OmniMatch’s training and inference proce-
dures. We derive a pair of joinable pairs for each original dataset
in the repository, as discussed in Section 5.3. Based on the derived
tables, our method first computes all pairwise column similarities
and constructs the similarity graph. Then, the joinability prediction
model training process is applied to the constructed graph, where
learning is guided by one of the two loss functions (Section 5.4).

While model training occurs on the derived dataset pairs, our
objective is to discover joins among the columns of the original
datasets in the data repository. To this end, OmniMatch builds the
similarity graph based on the pairwise similarities of columns be-
longing to the original tabular datasets (right part in Figure 6). Based
on the connectivity information of this graph, the trained RGCN
model can be directly applied to retrieve the representations of
columns: message aggregation takes place once to infer the column
embeddings based on the weight matrices learned during training.
As a last step, OmniMatch uses the column representations to pro-
duce a joinability score between each pair of columns coming from
different datasets in the repository; the joinability score depends on
the loss function used to guide the learning process (Section 5.4).

4594

Benchmark #Tab. #Col. #Equi-
Joins

#Fuzzy-
Joins

City Government 110 703 1451 128
Culture Recreation 120 687 1254 256
Freyja [52] 58 180 736 124
GDC [49, 60] 10 136 137 157

Table 1: Statistics of the evaluation benchmarks. ‘Tab.’ stands
for ‘Table’ and ‘Col.’ stands for ‘Column’.

6 EXPERIMENTAL EVALUATION
In this section, we present a comprehensive set of experiments that
showcase the effectiveness of OmniMatch. First, we describe the
joinability discovery benchmarks and baseline methods against
which we evaluate our method. Then we provide the experimental
results that demonstrate i) the gains in effectiveness with respect
to state-of-the-art methods when using OmniMatch, ii) how Omni-
Match’s prediction model compares to using other models, iii) how
the model of OmniMatch and other self-supervised methods per-
form when tested on datasets not seen during training, and iv) how
different similarity signals are related to the model’s effectiveness.
In addition, we provide execution times for the different steps of
our method. We summarize our main results as follows.
• OmniMatch is considerably more effective than state-of-the-art

column matching and column representation methods.
• We showcase that utilizing only one similarity signal reduces

OmniMatch’s effectiveness. The degree of reduction depends on
the characteristics of the underlying datasets.

• The prediction model of OmniMatch is highly effective even
when tested on data not seen during training, while it outper-
forms other self-supervised methods.

• OmniMatch’s choice of using RGCNs for leveraging the set of
similarity signals is superior to using alternative ML models.

6.1 Experiment Setup
Datasets & Ground Truth. We curate two realistic joinability
discovery benchmarks, and make use of another two, recently pro-
posed benchmarks [49, 52]. Table 1 summarizes the statistics of all
benchmarks.

We explored the New York City OpenData2, and created two
benchmark data products: City Government (11 base tables) and
Culture Recreation (12 base tables). Within each data product, we
manually annotated all the joins between columns across the base
tables. The captured join pairs have been cross-checked by three an-
notators who also verified whether there is a value overlap (Def. 2.1)
between the ground truth column pairs.

To increase the data volume, and to make the data products more
challenging, we derived 10 tables from each base table in the bench-
mark, using techniques similar to [45, 54], i.e., horizontal/vertical
partitions and instance value typos. In particular, for each base
table we constructed 5 pairs of joinable tables, sharing a number of
columns (1-3) with randomly injected typos, similar to the example
generation process in Section 5.3, to simulate fuzzy-joins. Similarly,
the Culture Recreation data product consists of 120 tables derived

2https://opendata.cityofnewyork.us/

from the 12 base tables. The ground truth of joins for datasets de-
rived from the same base table, is captured automatically [45, 54].
For the datasets derived from different base tables, we make use
of the join pairs that we annotated manually as described above.
Most columns in both benchmarks store mainly categorical and
text data.

In addition, we also conduct experiments on two benchmarks
that were introduced in other works, with datasets from different
domains. The Freyja benchmark [52] consists of datasets found
in open repositories, such as Kaggle and OpenML, for which the
authors have manually annotated equi-joins and fuzzy-joins. On
the other hand, the GDC benchmark [60] was developed in [49]
for matching datasets from tumor analysis studies to the Genomics
Data Commons (GDC) schema. To evaluate our method and the
other baselines on this benchmark. The ground truth of the GDC
benchmark is based on annotations by medical experts.
Measuring Effectiveness.We use Precision-Recall (PR) curves to
evaluate the effectiveness of OmniMatch and the other baseline
methods based on the final joinability prediction scores for each
column pair among different datasets in the benchmarks. PR curves
are suitable for illustrating effectiveness results when there is an im-
balanced distribution of labels in the test set. Indeed, in our case, the
number of non-joinable column pairs is significantly higher than
the number of joinable ones for both benchmarks. A significant
advantage of using PR curves is that we can observe effectiveness
for varying similarity thresholds, thus making the presentation
non-biased. PR curves can help us observe how different similar-
ity thresholds affect a method’s performance; stable precision for
increasing recall values means that the method’s effectiveness is
robust to different similarity thresholds. We also report the best F1
and PR-AUC scores to summarize the results shown in PR curves.
State-of-the-art Baselines.We compare OmniMatch against the
two best-performing column matching methods, according to [45],
and the state-of-the-art column representation methods for captur-
ing relatedness among columns, desribed below.
– COMA [17] is a seminal matching method that takes into con-
sideration multiple similarity scores, from both metadata and data
instances [22]. COMA’s effectiveness relies on processing these
similarity signals from simple metrics to decide on possible column
matches. We make use of the COMA 3.0 Community Edition.
–Distribution-Based (DB)Matching [75] is an instance-based column
matching method. The method constructs clusters using the Earth
Mover’s Distance (EMD) to capture relatedness among columns of
different tabular datasets. During cluster refinement, the method
considers exact value overlaps between column pairs to avoid false
positives. To include the DB matching method in our experiments,
we use the implementation provided by Valentine [45].
– Starmie [23] leverages a pre-trained Language Model (LM), specifi-
cally RoBERTa [48], and contrastive learning [9] to produce column
representations towards unionable dataset search. In our evaluation,
we use Starmie, as shared in a public repository 3, to produce con-
textualized column representations for the datasets in the input.
We then compute the pairwise cosine similarity of the column
embeddings among different datasets.

3https://github.com/megagonlabs/starmie

4595

https://opendata.cityofnewyork.us/
https://github.com/megagonlabs/starmie

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on OmniMatch

DeepJoin (MPNet)
Starmie (BERT)
COMA (Matching)
DB (Matching)

(a) City Government

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

(b) Culture Recreation

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

(c) Freyja

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

(d) GDC

Figure 7: Effectiveness comparison of OmniMatch with other methods for various similarity thresholds.

Best F1 Scores
Benchmark OmniMatch Starmie DeepJoin COMA DB

City Government 0.857 0.781 0.838 0.720 0.803
Culture Recreation 0.894 0.759 0.681 0.744 0.708
Freyja 0.695 0.509 0.574 0.484 0.576
GDC 0.735 0.278 0.541 0.662 0.370

PR-AUC Scores
Benchmark OmniMatch Starmie DeepJoin COMA DB

City Government 0.920 0.798 0.851 0.733 0.760
Culture Recreation 0.921 0.765 0.763 0.786 0.680
Freyja 0.589 0.370 0.446 0.347 0.305
GDC 0.679 0.156 0.414 0.560 0.210

Table 2: Metrics comparison to other methods.

– DeepJoin [19] also uses pre-trained LMs, to produce column repre-
sentations for joinable table search in data lakes. Specifically, it fine-
tunes initial column embeddings from a sentence transformer [59],
by training a model based on a set of positive join pairs. The latter
derives from a similarity join method of choice and a high threshold
to ensure lower numbers of false positives. For the needs of our eval-
uation, we train the DeepJoin model based on the Sentence-BERT4
library, to produce column representations. Again, we use pairwise
cosine similarity as the joinability score between two columns.
Other ML Predictive Methods. We also evaluate the strength of
OmniMatch’s graph model and RGCN architecture by comparing it
to other straightforward column joinability prediction models:
– Random Forest considers only the column pairwise similarities and
the positive and negative join training examples that our method
computes to train a binary classification method, similar to [5]. For
our experiments, we use the random forest implementation from
sklearn [56] Python toolkit, for both training and inference, with
100 decision tree classifiers.
– MLP uses the same information as the Random Forest baseline
but feeds them to a shallow Multi-Layer Perceptron (MLP) binary
classification model (one hidden layer).
Tuning OmniMatch. We configure OmniMatch by running ex-
periments when varying the model’s parameters. By doing so, we
came to the following conclusions.
–Graph Construction:We trainedOmniMatch’s joinability prediction
model for different values of top-𝑘 edges that we consider in the
graph for each node and similarity signal to assess changes in
effectiveness. Our results showed that using values greater than 5
did not improve our model’s effectiveness, hence we proceed with
a range search for 1 ≤ 𝑘 ≤ 5 for each of the benchmarks evaluated.

4https://www.sbert.net/

In the absence of test-data ground-truth, common heuristic-based
strategies can be employed to choose the value of 𝑘 , such as relying
on minimum validation loss during training. We have empirically
verified that tuning 𝑘 based on validation loss results into near-
optimal test-data performance for our benchmarks.
– Number of RGCN Layers: We evaluated how the number of layers
(i.e., range [1, 3]) used for training the RGCN affects OmniMatch’s
performance. Our results showed that using two layers provides
the highest effectiveness gains, meaning that OmniMatch’s model
benefits from looking one hop away from each node (column). This
verifies our intuition that leveraging transitivity in the similarity
graph improves the quality of the joinability predictions.
– Number of Epochs: We trained OmniMatch for several epochs
and used loss curves with a 90:10 training/validation data split.
Notably, using more than 30 epochs does not incur considerable
changes in the training/validation losses. Therefore, for the rest
of the experiments, we train OmniMatch for 30 epochs; the same
stands for the Random Forest and MLP baselines.
– Dimension of Embeddings: We assessed the influence on Omni-
Match’s effectiveness when producing column representations of
varying dimensionality through the RGCN model. We ran experi-
ments with {32, 64, 128, 256, 512} dimensions and found that
column embeddings of 256 dimensions produce the best results.
– Initial Node Features: We evaluated how the initial node features
we use for training the RGCN affect the performance of OmniMatch.
Instead of using the proposed node features, we generated random
feature vectors for each node of the same length as the RGCN’s
dimension of embeddings. Results verified the effectiveness of our
node feature initialization process, as we observed a decrease of
more than 10% in terms of PR-AUC scores when using randomized
initial node features.
– Loss Function: As we discussed in Section 5, our training process
can be guided using two different loss functions: i) cross-entropy
loss and ii) triplet margin loss. Notably, the results show that using
triplet margin loss can greatly improve the effectiveness as opposed
to the cross entropy loss; its ability to bring closer column represen-
tations of joinable pairs while setting apart the ones of non-joinable
pairs helps OmniMatch to better distinguish between the two cases.
Implementation details. For training, we use Adam [41] with a
learning rate of 0.001, while we use an MLP of one hidden layer
when employing OmniMatchwith a cross-entropy loss. OmniMatch
is implemented in Python; for implementing the RGCN model we
used the Deep Graph Library (DGL) [68] on top of PyTorch.

4596

https://www.sbert.net/

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OmniMatch
Random Forest
MLP

(a) City Government

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

(b) Culture Recreation

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

(c) Freyja

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

(d) GDC

Figure 8: Effectiveness comparison of OmniMatch with other ML-models for various similarity thresholds.

Best F1 Scores
Benchmark OmniMatch Random Forest MLP

City Government 0.857 0.827 0.813
Culture Recreation 0.894 0.862 0.755
Freyja 0.695 0.671 0.290
GDC 0.735 0.621 0.069

PR-AUC Scores
Benchmark OmniMatch Random Forest MLP

City Government 0.920 0.805 0.788
Culture Recreation 0.921 0.835 0.618
Freyja 0.589 0.563 0.134
GDC 0.679 0.593 0.032

Table 3: Metrics comparison to other ML models.

6.2 Comparison to State-of-the-Art Baselines
In Figure 7, we show how OmniMatch compares against the state-
of-the-art methods (Section 6.1) in terms of effectiveness using
Precision-Recall curves. First, our method significantly outperforms
the baselines since it can consistently provide high precision values
even for recall values close to 0.8, for the City Government and Cul-
ture Recreation benchmarks. Essentially, our method achieves high
precision no matter the similarity threshold (except for very low
ones), thus securing the quality of the returned joins. OmniMatch’s
performance is consistently better than the rest of the methods also
in the Freyja and GDC benchmarks; yet, we see a drop in precision
since some of the fuzzy join cases in these benchmarks require
domain knowledge. Interestingly, the column matching methods
(COMA and DB) give low precision even for recall values that are
not high, i.e., when the similarity thresholds are high. The reason
is that these methods rely on a limited set of similarity signals
based on data instances, which do not account for value semantics
and syntactic differences, leading to false joinability predictions.
Their results get worse in the Culture Recreation, Freyja and GDC
benchmarks due to their more difficult join cases.

On the other hand, Starmie, with its contextualized column rep-
resentations, does not deliver high precision for recall values above
0.6. This mainly happens due to the counter-intuition behind con-
textualized column representations and join discovery: columns
that join do not necessarily share similar contexts. In addition, the
training examples produced by Starmie do not account for value
discrepancies (i.e., fuzzy joins). Similarly, DeepJoin embeddings
entail low precision for high recall, mainly due to the positive and

negative pairs on which the model is trained, which are not guar-
anteed to be accurate. On the contrary, OmniMatch avoids this
issue by relying on a training example generation that ensures true
positive and negative pairs (Section 5.3). Furthermore, challenging
join cases, where value overlaps are relatively small, are difficult
to be captured by DeepJoin, since it cannot propagate similarity
signals as our graph model. Both Starmie and DeepJoin show low
performance when evaluated on the GDC benchmark, which we
believe is mainly because their models cannot generalize in smaller
repositories, with fewer training examples to leverage.

Best F1 and PR-AUC scores in Table 2 verify that OmniMatch
is the most effective method across all benchmarks and similarity
thresholds. It is also the most consistent one, as the performance of
other methods fluctuates depending on the underlying datasets.

Takeaways: i) OmniMatch is consistently more effective than the
state-of-the-art baselines, and ii) other methods exhibit low precision
for high recall, while OmniMatch provides better predictions.

6.3 Comparison to Other ML Models
Figure 8 shows the Precision-Recall of our method compared to the
Random-Forest (RF) and MLP models for all join benchmarks. We
observe thatOmniMatch’s joinability predictionmodel is superior to
the other two, as it achieves considerably higher precision for higher
recall values; the RFmodel achieves higher precision for lower recall
values in both Freyja and GDC datasets, since it manages to capture
simple join cases, while theMLPmodel considerably underperforms
due to the low volume of training data. This result highlights the
effectiveness of our graph modeling: OmniMatch’s RGCN column
representations better capture column join relationships and avoid
false positive predictions of models that rely only on the column
pairwise similarities.

Results in Table 3 verify OmniMatch’s improvements in overall
effectiveness as opposed to using less sophisticated ML models.
Specifically, our method produces the highest overall F1-score, i.e.,
it can predict more accurate join relationships than pairwise simi-
larities in conjunction with either an RF or MLP model. In addition,
the high PR-AUC scores further showcase that OmniMatch consis-
tently achieves high precision regardless of the similarity threshold
used to decide whether a column pair represents a valid join. In
contrast, using only the column pairwise similarities cannot help
the RF and MLP models to capture less direct join relationships,
while it can critically increase false-positive rates.

4597

OmniMatch Starmie DeepJoin0.6

0.7

0.8

0.9

1.0 Best-F1

OmniMatch Starmie DeepJoin0.6

0.7

0.8

0.9

1.0 PR-AUC

Train on Culture Recreation Train on City Government

(a) Testing on City Government

OmniMatch Starmie DeepJoin0.6

0.7

0.8

0.9

1.0 Best-F1

OmniMatch Starmie DeepJoin0.6

0.7

0.8

0.9

1.0 PR-AUC

Train on Culture Recreation Train on City Government

(b) Testing on Culture Recreation

Figure 9: Effects on Best F1 and PR-AUC scores when the
models of OmniMatch and other self-supervised methods
are trained on different datasets than the ones tested on.

Takeaway: OmniMatch’s prediction RGCN-based model leverages
column pairwise similarities to result in significantly better effec-
tiveness than less sophisticated prediction models.

6.4 Model Effectiveness on Unseen Data
In Figure 9 we show the best F1 and PR-AUC scores achieved by
OmniMatch, Starmie and DeepJoin when their models are trained
on datasets different than the testing ones, to evaluate their learning
capacity and robustness.We also show their scores when themodels
are trained on the same datasets they are tested on, to observe
whether and how they are affected. To begin with, we see that
OmniMatch provides with predictions that are the most accurate
across all methods and test datasets. Moreover, its best F1 and
PR-AUC scores are very slightly, if not, affected when trained on
different datasets that the test ones. Essentially, OmniMatch can
considerably preserve its high effectiveness, since during inference
the model considers not only the profiles of a column pair but
also the similarity signals between them. Therefore, we notice
the importance of leveraging information from column pairwise
similarity metrics, towards building joinability prediction models
that can be robust to deviations between training and test data.

On the contrary, we observe that Starmie considerably under-
performs when its model is applied on unseen data, since the train-
ing samples it fabricates are tightly tailored to the datasets in its
input; hence, they do not help the model to abstract knowledge
and effectively apply it on unseen data. Surprisingly, DeepJoin’s
results when tested on unseen data seem to slightly improve. We
believe this to happen due to the false positives and negatives in-
cluded in the training examples that might be propagated to testing.
Specifically, when testing on the same datasets that the model was
trained, column pairs that were falsely regarded as joins or non-
joins during training will be inaccurately classified. Therefore, we
see that DeepJoin’s debatable training example generation process
can cause the model to be inconsistent in terms of effectiveness.

Jac
car

d

 Similar
ity

Set

 Contain
ment

Jac
car

d

 Infre
quent

Embedding

 Similar
ity

Distr
ibution

 Similar
ity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 D

ec
re

as
e

(%
)

City Government
Culture Recreation

Figure 10: Reduction (in Percentage Decrease) of best F1-
scores when OmniMatch considers a single similarity signal.

Takeaway: OmniMatch can exhibit high effectiveness and consis-
tent results even when tested on datasets unseen during training,
due to the column profiles and similarity signals it employs.

6.5 Ablation Study: Effect of Similarity Signals
We evaluate the power of using multiple similarity signals to con-
struct our graph, in contrast to considering single ones. In Figure 10,
we show the percentage decrease in the best F1-score achieved by
OmniMatch when considering only one similarity signal per run.
First, we see that the results support our intuition: using only one
signal to build the similarity graph considerably affects the ability of
our model to decide correctly on whether a column pair represents
a join. Indeed, relying on single similarities incurs drops in the best
F1 scores achieved due to increasing false positive rates. Moreover,
many valid column join cases are not captured when employing
single similarity signals due to information loss of transitive paths
in the constructed similarity graph. For instance, using only Jaccard
similarity can severely harm the effectiveness of capturing fuzzy
joins since it checks only for exact value overlaps.

In addition, a crucial observation here is that the percentage
decrease vastly relies on the underlying datasets and column joins
to be captured. As we see in Figure 10, the drop in best F1-scores is
significantly higher on the Culture Recreation benchmark with per-
centage decrease values of at least 10%. This is due to the following
two reasons: i) there are column pairs in this benchmark that share
(partial) value overlaps (e.g., dates), whereas they do not represent
join relationships and ii) most column joins in the City Government
benchmark are more distinguishable, i.e., a potential (partial) value
overlap strongly indicates a valid join. Finally, no similarity signal
consistently incurs larger/smaller effectiveness drops across the
two join benchmarks. This observation reinforces our claim that
no similarity signal can be fully trusted when isolated from the
rest since its effectiveness depends on the characteristics of the
underlying datasets. Only the complete set of similarity signals
used in OmniMatch can provide the best join discovery results.

Takeaways: i) using a single similarity signal incurs a notable
decrease in effectiveness, and ii) OmniMatch’s consistency strongly
depends on using all proposed similarity signals.

4598

Benchmark T1 + T2 T3 I1 I2 Total

City Government 48.8 7 53.6 0.5 109.9
Culture Recreation 23 8.4 8.7 0.5 40.6

Table 4:OmniMatch execution times inminutes (CPU). T1-T3
and I1,I2 refer to different steps as shown in Figure 6.

6.6 OmniMatch Execution Times
While we consider joinability discovery as an offline procedure in
data products, for the sake of completeness we report in Table 4 the
execution times of OmniMatch for both join benchmarks. Specifi-
cally, we note down the time for the steps we show in Figure 6, i)
generating joinable pairs and transforming them into a similarity
graph (T1 + T2), ii) training OmniMatch’s joinability prediction
model (T3), iii) building the similarity graph based on the original
datasets (I1), and iv) using the trained model for inference on it
(I2). As expected, we see that the main bottleneck of our method is
the similarity graph construction both for training and inference:
computing the set of similarity signals and the initial node fea-
tures for all column pair combinations for different datasets entails
numerous column pairwise operations; yet, accelerating these com-
putations is a trivial issue that is not in the scope of this work. On
the other hand, we see that training times in both benchmarks are
relatively small, especially when we consider that training takes
place on a CPU; notably, training of state-of-the-art column em-
bedding methods [19, 23] requires access to a GPU. Finally, the
discrepancies we observe between the two benchmarks are due to
the different number of columns and values stored in them.

7 RELATEDWORK
In this section, we discuss related work relevant to joinability dis-
covery, including schema matching, dataset search/discovery and
other graph-based solutions for data integration.

7.1 Schema Matching
Schema matching on tabular data includes automated methods for
capturing relevance between columns of dataset pairs [58]. Such
approaches might use metadata at the schema level [50, 53], rely
on column instances to compute pairwise similarities [22, 75], or
even leverage query logs [21]; in addition, there exist methods
using ensembles of similarity measures [17, 62]. While effective on
clean and homogeneous data, these methods struggle when there
is discrepancy in the formats of values that two related columns
store [45]. Multiple matching methods have emerged that leverage
embeddings. To this end, some methods have directly employed pre-
trained models to embed column names [26], schema metadata [77],
and/or cell-values [20, 54], whereas others add pre-processing steps
to adjust to input datasets [8, 25, 44]. However, both approaches
seem to be insufficiently effective when used for matching related
columns [45]. Magneto [49] leverages LLMs for pre-training smaller
language models and re-ranking towards pairwise matching.

7.2 Related Dataset Search/Discovery
Related-dataset search methods focus on finding relevant tables
with respect to a given/query table. Typically, such methods use col-
umn similarity signals (as used in schema matching methods [45])

between column pairs to generalize relatedness scores between
datasets. Several works in this area attempt to capture unionable
tables, i.e., tables that considerably overlap schema-wise to the one
in the input. Table unionability works include methods that employ
ensembles of various column-pairwise similarity measures among
tables [6, 54], knowledge-bases [38] and pre-trained language mod-
els to capture column semantics [13, 23, 33]. More relevant to our
work are the dataset search methods focusing on joinability, i.e.,
finding tables that can be joined with a given one. Earlier methods
rely on simple metrics [15, 24, 27, 80], such as Jaccard similarity, to
compute column-pairwise relevance; using similar measures, Freyja
[52] attempts to quantify the quality of discovered joins. Recent
dataset search methods towards joinability, rely on pre-trained lan-
guage models [12, 18], or even try to build their own join prediction
models based on them [19].

Contrary to top-𝑘 dataset search that focuses on returning the
top-𝑘 datasets, given a query dataset, OmniMatch returns pairs of
joinable columns. Yet, we draw inspiration from pairwise column
similarities that have been used in related literature (Section 4.1).

7.3 Graph-Based Data Integration
Several graph-based solutions for different data integration prob-
lems have been introduced [3, 8, 24, 38, 44], with works employing
GNNs showing promising results in tasks similar to schema match-
ing and joinability discovery [30–32, 65, 69, 70]. GCNAlign [69]
leverages GCNs for cross-lingual knowledge graph alignment. Entity
alignments are discovered based on the distances between entities
in the embedding space. NMN [70] introduces an entity alignment
framework for tackling the structural heterogeneity challenge by
estimating the similarities between entities to capture both the
topological structure and the neighborhood difference. MEDTO
[31] utilizes a hybrid GNN (i.e., RGCN and hyperbolic GNN) for
data to ontology matching. KGLac [32] leverages GNNs to enable
automatic graph learning for advanced and semantic data discovery.
The authors in [65] apply GNNs towards medical entity disam-
biguation. On the other hand, FlexER [30] employs GNNs towards
multi-intent entity resolution. Similar to the above approaches, Om-
niMatch models column relationships as a graph. To the best of our
knowledge, OmniMatch is the first approach to model the problem
of joinability discovery employing GNNs, and offering an improved
solution to the problem compared to the current state of the art.

8 CONCLUSION
In this paper, we introduced OmniMatch, a novel self-supervised
method that captures joinability relationships among tabular data
in a data product. OmniMatch leverages a comprehensive set of
similarity signals and the transitive power of a graph model to learn
column representations based on an RGCN. Notably, our method
can automatically generate positive and negative join examples
to guide the learning process. Our experimental evaluation shows
that OmniMatch is considerably more effective than state-of-the-art
column matching and representation methods. In addition, Omn-
iMatch’s model is substantially more accurate and generalizable
than other joinability prediciton models. We also justify the gains
of using the comprehensive set of similarity signals we propose.

4599

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. The VLDB Journal 24 (2015), 557–581.
[2] Foto N Afrati, Anish Das Sarma, David Menestrina, Aditya Parameswaran, and

Jeffrey D Ullman. 2012. Fuzzy joins using mapreduce. In 2012 IEEE 28th Interna-
tional Conference on Data Engineering. IEEE, 498–509.

[3] Naser Ahmadi, Hansjörg Sand, and Paolo Papotti. 2022. Unsupervised matching
of data and text. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 1058–1070.

[4] Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Transformers for
tabular data representation: A survey of models and applications. Transactions
of the Association for Computational Linguistics 11 (2023), 227–249.

[5] Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha. 2021.
Discovering related data at scale. Proceedings of the VLDB Endowment 14, 8
(2021), 1392–1400.

[6] Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos Konstanti-
nou. 2020. Dataset Discovery in Data Lakes. In IEEE ICDE.

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[8] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating embeddings of heterogeneous relational datasets for data integration
tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. 1335–1349.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[10] Zhimin Chen, Yue Wang, Vivek Narasayya, and Surajit Chaudhuri. 2019. Cus-
tomizable and scalable fuzzy join for big data. Proceedings of the VLDB Endowment
12, 12 (2019), 2106–2117.

[11] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2021. ARDA: Automatic Relational Data Augmentation
for Machine Learning. Proceedings of the VLDB Endowment 13, 9 (2021).

[12] Tianji Cong, James Gale, Jason Frantz, H. V. Jagadish, and Çagatay Demiralp.
2023. WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses.
In CIDR.

[13] Tianji Cong, Fatemeh Nargesian, and HV Jagadish. 2023. Pylon: Semantic Table
Union Search in Data Lakes. arXiv preprint arXiv:2301.04901 (2023).

[14] Zhamak Dehghani. 2022. Data mesh: Delivering Data-Driven Value at Scale. O’
Reilly Media.

[15] Dong Deng, Albert Kim, Samuel Madden, and Michael Stonebraker. 2017. Silk-
Moth: an efficient method for finding related sets with maximum matching
constraints. Proceedings of the VLDB Endowment 10, 10 (2017), 1082–1093.

[16] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table
understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[17] Hong-Hai Do and Erhard Rahm. 2002. COMA—a system for flexible combination
of schema matching approaches. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases. Elsevier, 610–621.

[18] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient joinable table discovery in data lakes: A high-dimensional similarity-
based approach. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 456–467.

[19] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi
Oyamada. 2023. DeepJoin: Joinable Table Discovery with Pre-Trained Language
Models. Proc. VLDB Endow. 16, 10 (jun 2023), 2458–2470. https://doi.org/10.
14778/3603581.3603587

[20] Xingyu Du, Gongsheng Yuan, Sai Wu, Gang Chen, and Peng Lu. 2024. In Situ
Neural Relational Schema Matcher. In 2024 IEEE 40th International Conference on
Data Engineering (ICDE). IEEE, 138–150.

[21] Hazem Elmeleegy, Mourad Ouzzani, and Ahmed Elmagarmid. 2008. Usage-based
schema matching. In 2008 IEEE 24th International Conference on Data Engineering.
IEEE, 20–29.

[22] Daniel Engmann and SabineMassmann. 2007. InstanceMatching with COMA++..
In BTW workshops, Vol. 7. 28–37.

[23] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-
Aware Dataset Discovery from Data Lakes with Contextualized Column-Based
Representation Learning. Proceedings of the VLDB Endowment 16, 7 (2023),
1726–1739.

[24] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, andMichael Stonebraker. 2018. Aurum: A data discovery system. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1001–1012.

[25] Raul Castro Fernandez and SamuelMadden. 2019. Termite: a system for tunneling
through heterogeneous data. In Proceedings of the Second International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management. 1–8.

[26] Raul Castro Fernandez, Essam Mansour, Abdulhakim A Qahtan, Ahmed Elma-
garmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and
Nan Tang. 2018. Seeping semantics: Linking datasets using word embeddings for

data discovery. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, 989–1000.

[27] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019.
Lazo: A cardinality-based method for coupled estimation of jaccard similarity
and containment. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1190–1201.

[28] Javier de Jesús Flores Herrera, Sergi Nadal Francesch, and Óscar Romero Moral.
2021. Towards scalable data discovery. In Advances in Database Technology: EDBT
2021, 24th International Conference on Extending Database Technology: Nicosia,
Cyprus, March 23-26, 2021: proceedings. OpenProceedings, 433–438.

[29] Quan Gan, Minjie Wang, David Wipf, and Christos Faloutsos. 2024. Graph
Machine Learning Meets Multi-Table Relational Data. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 6502–6512.

[30] Bar Genossar, Roee Shraga, and Avigdor Gal. 2023. Flexer: Flexible entity resolu-
tion for multiple intents. Proceedings of the ACM on Management of Data 1, 1
(2023), 1–27.

[31] Junheng Hao, Chuan Lei, Vasilis Efthymiou, Abdul Quamar, Fatma Özcan, Yizhou
Sun, and Wei Wang. 2021. MEDTO: Medical Data to Ontology Matching Using
Hybrid Graph Neural Networks. In ACM SIGKDD. 2946–2954.

[32] Ahmed Helal, Mossad Helali, Khaled Ammar, and Essam Mansour. 2021. A
Demonstration of KGLac: A Data Discovery and Enrichment Platform for Data
Science. Proc. VLDB Endow. 14, 12 (2021), 2675–2678.

[33] Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos Falout-
sos, Asterios Katsifodimos, George Karypis, Lijie Wen, and Philip S Yu. 2023.
Automatic table union search with tabular representation learning. In Findings
of the Association for Computational Linguistics: ACL 2023. 3786–3800.

[34] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-
narayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. 2019. Sherlock: A
deep learning approach to semantic data type detection. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1500–1508.

[35] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 3446–3456.

[36] Andra Ionescu, Kiril Vasilev, Florena Buse, Rihan Hai, and Asterios Katsifodimos.
2024. AutoFeat: Transitive Feature Discovery over Join Paths. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE, 1861–1873.

[37] Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. 427–431.

[38] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer,
Renée J Miller, and Mirek Riedewald. 2023. Santos: Relationship-based semantic
table union search. Proceedings of the ACM on Management of Data 1, 1 (2023),
1–25.

[39] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J Miller. 2022.
Integrating Data Lake Tables. Proceedings of the VLDB Endowment 16, 4 (2022),
932–945.

[40] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737–1750.

[41] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[42] Sachin Konan, Larry Rudolph, and Scott Affens. 2024. Automating the Gener-
ation of a Functional Semantic Types Ontology with Foundational Models. In
Proceedings of the 2024 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track). 248–265.

[43] Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Chuan
Lei, Christos Faloutsos, Huzefa Rangwala, and George Karypis. 2024. OpenTab:
Advancing Large Language Models as Open-domain Table Reasoners. In The
Twelfth International Conference on Learning Representations.

[44] Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, and Christoph Lofi.
2020. REMA: Graph Embeddings-based Relational Schema Matching.

[45] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating matching techniques for dataset discovery.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
468–479.

[46] Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J Miller,
and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. EDBT 2021 (2021).

[47] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples. In
Proceedings of the 2021 International Conference on Management of Data. 1064–
1076.

4600

https://doi.org/10.14778/3603581.3603587
https://doi.org/10.14778/3603581.3603587

[48] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[49] Yurong Liu, Eduardo Pena, Aecio Santos, Eden Wu, and Juliana Freire. 2024.
Magneto: Combining Small and Large Language Models for Schema Matching.
arXiv preprint arXiv:2412.08194 (2024).

[50] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. 2001. Generic schema
matching with cupid. In VLDB, Vol. 1. Citeseer, 49–58.

[51] ChristopherManning andHinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

[52] Marc Maynou, Sergi Nadal, Raquel Panadero, Javier Flores, Oscar Romero, and
Anna Queralt. 2024. FREYJA: Efficient Join Discovery in Data Lakes. arXiv
preprint arXiv:2412.06637 (2024).

[53] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity flood-
ing: A versatile graphmatching algorithm and its application to schemamatching.
In Proceedings 18th international conference on data engineering. IEEE, 117–128.

[54] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table union
search on open data. In VLDB.

[55] Hoa Nguyen, Ariel Fuxman, Stelios Paparizos, Juliana Freire, and Rakesh Agrawal.
2011. Synthesizing Products for Online Catalogs. Proceedings of the VLDB
Endowment 4, 7 (2011), 409–418.

[56] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[57] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[58] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic
schema matching. the VLDB Journal 10, 4 (2001), 334–350.

[59] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[60] Aecio Santos, Eden Wu, Roque Lopez, Sarah Keegan, Eduardo Pena, Wenke Liu,
Yurong Liu, David Fenyo, and Juliana Freire. 2025. GDC-SM: The GDC Schema
Matching Benchmark (1.0) [Dataset]. Zenodo (2025). https://doi.org/10.5281/
zenodo.14963588

[61] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[62] Roee Shraga, Avigdor Gal, and Haggai Roitman. 2020. Adnev: Cross-domain
schema matching using deep similarity matrix adjustment and evaluation. Pro-
ceedings of the VLDB Endowment 13, 9 (2020), 1401–1415.

[63] Roee Shraga, Haggai Roitman, Guy Feigenblat, and Mustafa Cannim. 2020. Web
table retrieval using multimodal deep learning. In Proceedings of the 43rd interna-
tional ACM SIGIR conference on research and development in information retrieval.
1399–1408.

[64] Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini,
and Amin Saberi. 2024. Chess: Contextual harnessing for efficient sql synthesis.

arXiv preprint arXiv:2405.16755 (2024).
[65] Alina Vretinaris, Chuan Lei, Vasilis Efthymiou, Xiao Qin, and Fatma Özcan. 2021.

Medical entity disambiguation using graph neural networks. In Proceedings of
the 2021 international conference on management of data. 2310–2318.

[66] Jiannan Wang, Guoliang Li, and Jianhua Fe. 2011. Fast-join: An efficient method
for fuzzy token matching based string similarity join. In 2011 IEEE 27th Interna-
tional Conference on Data Engineering. IEEE, 458–469.

[67] Jin Wang, Chunbin Lin, and Carlo Zaniolo. 2019. Mf-join: Efficient fuzzy string
similarity joinwithmulti-level filtering. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 386–397.

[68] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[69] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual
Knowledge Graph Alignment via Graph Convolutional Networks. In EMNLP.
349–357.

[70] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and Dongyan Zhao. 2020.
Neighborhood Matching Network for Entity Alignment. In ACL. 6477–6487.

[71] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. Infogather: entity augmentation and attribute discovery by holistic match-
ing with web tables. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 97–108.

[72] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 8413–8426.

[73] Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Shen Wang, Huzefa
Rangwala, and George Karypis. 2023. NameGuess: Column Name Expansion
for Tabular Data. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. 13276–13290.

[74] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc,
and Divesh Srivastava. 2010. On multi-column foreign key discovery. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 805–814.

[75] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc,
and Divesh Srivastava. 2011. Automatic discovery of attributes in relational
databases. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. 109–120.

[76] Shuo Zhang and Krisztian Balog. 2018. Ad hoc table retrieval using semantic
similarity. In Proceedings of the 2018 world wide web conference. 1553–1562.

[77] Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas CMüller,
Dalitso Banda, Fotis Psallidas, and Jignesh M Patel. 2023. Schema matching using
pre-trained language models. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). IEEE, 1558–1571.

[78] Yi Zhang and Zachary G Ives. 2020. Finding related tables in data lakes for
interactive data science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1951–1966.

[79] Zixuan Zhao and Raul Castro Fernandez. 2022. Leva: Boosting Machine Learning
Performance with Relational Embedding Data Augmentation. (2022).

[80] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. Josie:
Overlap set similarity search for finding joinable tables in data lakes. In Proceed-
ings of the 2019 International Conference on Management of Data. 847–864.

4601

https://arxiv.org/abs/1908.10084
https://doi.org/10.5281/zenodo.14963588
https://doi.org/10.5281/zenodo.14963588

	Abstract
	1 Introduction
	2 The Joinability Discovery Problem
	3 Approach Overview
	4 Column Similarities as a Graph
	4.1 Pairwise Column Similarities
	4.2 Similarity Graph Construction

	5 Graph Model Training
	5.1 Initial Column Features
	5.2 Column Representation Learning
	5.3 Generating Training Examples
	5.4 Loss Functions
	5.5 Training and Inference of Join Predictions

	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Comparison to State-of-the-Art Baselines
	6.3 Comparison to Other ML Models
	6.4 Model Effectiveness on Unseen Data
	6.5 Ablation Study: Effect of Similarity Signals
	6.6 OmniMatch Execution Times

	7 Related Work
	7.1 Schema Matching
	7.2 Related Dataset Search/Discovery
	7.3 Graph-Based Data Integration

	8 Conclusion
	References

