
Cents: A Flexible and Cost-E�ective Framework for LLM-Based
Table Understanding

Guorui Xiao
University of Washington

grxiao@cs.washington.edu

Dong He
University of Washington

donghe@cs.washington.edu

Jin Wang
Arizona State University

jinwang18@asu.edu

Magdalena Balazinska
University of Washington

magda@cs.washington.edu

ABSTRACT

Large Language Models (LLMs) have recently shown impressive

capabilities in a variety of applications including table understand-

ing tasks such as column type annotation. Existing LLM-based

solutions for table understanding, however, focus on developing

speci�c framework for each individual task, or do not consider

the cost-e�ectiveness tradeo�. In this paper, we present Cents, a

uni�ed and cost-e�ective framework for LLM-based solutions for

table understanding tasks. Cents’s key capability is an e�cient

and e�ective approach to compress the tabular LLM input in a

way that reduces input token cost while improving performance

compared with state-of-the-art methods. Experiment results show

that Cents outperforms other LLM-based baselines on a variety

of table understanding tasks at the same or lower cost.

PVLDB Reference Format:

Guorui Xiao, Dong He, Jin Wang, and Magdalena Balazinska. Cents: A

Flexible and Cost-E�ective Framework for LLM-Based Table

Understanding. PVLDB, 18(11): 4574 - 4587, 2025.

doi:10.14778/3749646.3749714

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/grxiao137/CENTS.

1 INTRODUCTION

Structured Web tables, which are relations extracted from the Web,

have long been recognized as an important data source. Many

approaches have been developed to construct large-scale table cor-

pora [3, 7, 15, 24, 51] and use Web tables in data management

tasks including data discovery [1, 10], data integration [21, 43] and

question answering [52].

Web tables, however, frequently lack headers describing their

semantic content, limiting or at least complicating their usefulness

for these tasks. To address this limitation, the �eld of Table Under-

standing has developed techniques to complete the missing header

information through approaches that include Column Type Annota-

tion [3, 7, 47, 50, 51] (a.k.a, labeling a column with its semantic type,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749714

Figure 1: Cost-e�ectiveness trade-o� for LLM-based table

understanding methods. Contextual information (e.g., table

vs single-column) enhances performance but increases costs.

Cents with GPT-3.5, outperforms random sampling with

GPT-4O, while incurring only 1.25% of its cost. Cents with

a limited budget also outperforms Cents (Max Context),

which uses the full context window. Dollar cost computed as

product of total token counts and per-token API price.

such as "ticketPrice" or "itemWeight"), Relation Extraction [7, 32, 39]

(a.k.a., annotating a pair of columns with their semantic relation

such as "ratingOf" or "employeeOf"), or Schema Augmentation [7]

(a.k.a., proposing additional columns for a table such as "Hall Capac-

ity"). Table Understanding has a long history with early approaches

using manually created feature-based solutions [16, 49, 51], more re-

cent methods �ne-tuning Pre-trained Language Models (PLMs) [7,

32, 39, 42], and most recent state-of-the-art methods leveraging

Large Language Models (LLMs) [11, 20, 22, 34, 45].

LLMs are auto-regressive models pre-trained on very large text

corpora that can generate a sequence of tokens as output based

on input to the model, which is also known as a prompt. Recent

approaches to LLM-based table understanding [11, 20, 22, 34, 45]

have developed e�ective prompting strategies to support various

table understanding tasks using LLMs: They construct prompts for

the LLM with the provided table or partial table (e.g., a column)

together with instructions that describe the task.

Existing LLM-based solutions, however, have important limita-

tions related to their cost-e�ectiveness and, in some instances, their

lack of generalizability: Some existing LLM-based methods provide

the entire table to an LLM in the prompt without considering the

associated cost [22], which can be substantial. For example, tables

in the SOTAB dataset [23] range in size from 200 tokens to over

14 million tokens. Submitting a single such table to an LLM like

GPT-4O in its prompt can thus cost up to $35 (USD). Executing

4574

https://doi.org/10.14778/3749646.3749714
https://github.com/grxiao137/CENTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749714
https://www.acm.org/publications/policies/artifact-review-and-badging-current

one table understanding query over the entire SOTAB benchmark

by including the entire table in the prompt each time costs over

$750 (USD). 1 Such a high cost impacts the practical application

of these approaches. Additionally, LLMs have a �xed context win-

dow limit [2] (e.g., 16,385 tokens for GPT-3.5-turbo). Tables larger

than this limit need to be reduced. To reduce costs, other LLM-

based methods assume that including only the target columns in

a prompt is su�cient [11, 20], but recent table understanding so-

lutions [10, 22] have shown that providing full table information

improves performance. These methods thus sacri�ce performance

to save on cost. Interestingly, as shown in other settings [25, 30]

and as we con�rm in this paper, judiciously selecting the context to

provide to an LLM, can increase F1 scores compared with using the

full context window (Figure 1). A second challenge of some LLM-

based methods is their lack of general applicability, when solutions

focus on task-speci�c frameworks [11, 22], which can only answer

one type of table understanding query.

In this paper, we design, implement, and evaluate Cents 2, a

cost-e�ective framework for table understanding tasks. Cents ad-

dresses the above challenges by reducing the cost of LLM-based

solutions for table understanding tasks compared to those that

submit entire tables in their prompts, while maintaining and even

exceeding the result quality of state-of-the-art methods. Cents

is designed primarily with hosted LLMs in mind, given their high

performance and high costs, but we also discuss Cents’s applica-

bility to locally-deployed LLMs. Cents is also generally applicable:

It is not specialized for any one table understanding task, but is

applicable to various such tasks. Figure 1 illustrates Cents’s cost-

e�ectiveness. Compared with the CHORUS [20] state-of-the-art

method or including randomly selected subsets of a table in the

prompt, Cents signi�cantly improves performance.

As discussed above, one main driver of cost in LLM-based table

understanding is the inclusion in the prompt of the table to be

annotated (also referred to as the Context Data, discussed in detail

in Section 3). Our approach, which applies to a variety of table un-

derstanding tasks, is to carefully select a subset of the Context Data

using a score-and-solve paradigm. In this paradigm, Cents �rst

assigns scores to elements in the Context Data and then carefully

selects a subset of these elements given a budget. As part of Cents,

we develop (1) e�ective element scoring strategies; (2) e�ective

and e�cient element selection strategies; and (3) e�ective budget

allocation strategies. Cents can consider tables at di�erent levels

of granularity (rows, cells, or words in a cell), and (4) we experi-

mentally evaluate which granularity leads to the best performance.

Developing these four strategies raises two important challenges:

(1) E�ectively reducing costs. One challenge is to reduce Context

Data, a main part of the prompt. An e�ective reduction requires

identifying the most important content in a table. Therefore, devel-

oping a scoring strategy that accounts for both the context within

target columns and their surrounding columns and integrates syn-

tactic and semantic information is essential yet challenging.

(2) Improving Execution Throughput. The other challenge is

e�ciently executing the data reduction. As we show in this paper,

1Cost calculated by multiplying the aggregated token counts for the entire benchmark
by the per-token price from https://openai.com/api/pricing/.
2C, E in Cents stands for Cost E�ective; the name together means doing table under-
standing with little cost.

high-quality data reduction can easily lead to slow execution speeds.

Even approximation techniques remain too slow. To address this

challenge and ensure Cents is a practical tool, we develop an

e�cient approximation solution that accelerates the data reduction

process with minimal impact on the end-to-end performance.

Another challenge arises when the number of labels that LLMs

must choose from (also referred to as the Task Data) is large, and

the search space—the set of possible labels—is randomly distributed

within the prompt. A large and scattered Task Data typically de-

grades the performance of LLM-based applications in general [30,

37]. Thus, we provide an optimization to reduce the search space

and rerank the reduced Task Data to address this challenge. An

additional bene�t this brings is also the reduced monetary cost.

Although there are some e�orts [4, 18, 53] in the machine learn-

ing �eld that aim to reduce inference costs of LLMs, they do not

directly bene�t table understanding tasks and thus are orthogonal

to our work. We further discuss related works in Section 7.

In summary, this paper makes the following main contributions:

(1) We identify the problem of reducing prompt content specif-

ically for LLM-based solutions to table understanding tasks

to lower costs while achieving high performance and pro-

pose our uni�ed and cost-e�ective framework, Cents that

works across a variety of such tasks.

(2) We design the context reduction component with score-

and-solve paradigm, which consists of an e�ective scoring

method and an e�cient solver method; we further design

the task data reduction component to e�ectively reduce a

possibly large search space as an optimization.

(3) We provide various options within the score-and-solve par-

adigm, namely di�erent scoring granularities and budget

allocation strategies. We discuss their trade-o�s and select

the best-performing combinations.

(4) We conduct experiments using Cents on popular bench-

marks and show that it outperforms LLM-based baselines

by up to 11.2Micro F1, 15Micro F1, and 17.5Mean Average

Precision across three table understanding tasks.

Overall Cents is an important step in making LLM-based table

understanding a practical and cost-e�ective approach.

2 BACKGROUND

Table Understanding Tasks.We consider three table understand-

ing tasks, illustrated in Figure 2. While we evaluate Cents on

these tasks, Cents can conceptually be applied to other tasks as

well. Column Type Annotation (CTA) [7, 32, 39] assigns one or

more semantic labels to a column (see example in Figure 2). Re-

lation Extraction (RE) [7, 32, 39] assigns one or more semantic

relationships between columns within the same table. Schema Aug-

mentation (SA) [3, 7, 47, 50, 51] aims to augment a partial table by

recommending new columns.

Large Language Models (LLMs). Recently, Large Language Mod-

els (LLMs) [40] have shown promising results for many data man-

agement tasks. For Table Understanding, state-of-the-art LLMprompts

have three parts: (1) Instruction � (e.g., "Annotate the column...")

that specify the task the LLM needs to complete; (2) A relational

table, Context Data) (�, �), with = columns and< rows. The bag

of all = ∗< cells is denoted with � = (411, . . . , 48 9 , . . . , 4=<). The

4575

https://openai.com/api/pricing/

Ans: Column D type: ticketPrice

Ans: Column B 's relationship
to Column A is: performerOf

Column Type Annotation

Schema Augmentation

Ans: New column labels
by relevance: {location, ..., ...}

set_of_labels: {...,weight,
ticketPrice, ...}

set_of_relations: {...,countryOf,
performerOf, ...}

schema_vocab: {...,weight,
location, ...}

...

...

...

...

...

119

None

599.99

...

N/AGuitar Tour...

Morrissey40 Years of ...

Taylor SwiftEras Tour

......

06/03/24

Aug 3rd 2024

07/01/2024

...

A B D E

Absolutely beautiful! His voice...

Morrissey did not disappoint...

Of course this is 5 stars...

...

C

Relation Extraction

...

...

...

...

...

119

None

599.99

...

N/AGuitar Tour...

Morrissey40 Years of ...

Taylor SwiftEras Tour

......

06/03/24

Aug 3rd 2024

07/01/2024

...

A B D E

Absolutely beautiful! His voice...

Morrissey did not disappoint...

Of course this is 5 stars...

...

C

...

...

...

...

...

1902

1215

1600

...

VikingsBerry College

ColonelsCentre College

PanthersBirmingham...

......

1937

1215

1600

...

institution nickname founded enrollment

Private/Non-denominational

Private

Private/United Methodist

...

type

Figure 2: Table understanding tasks Cents supports. Col-

umn type annotation labels column D with type "ticketPrice"

from the given set of labels; relation extraction annotates

the relationship between columns B and A as "performerOf ";

schema augmentation ranks the given schema vocabulary

from most to least relevant to augment the existing table,

and in this case "location" is ranked �rst.

table may optionally have a header, � , with column labels, but not

necessarily the semantic types. For CTA and RE tasks, the header

is typically missing [23], while it’s available for SA tasks [7]. Thus

in this paper, the Context Data for CTA and RE is just the bag of

cells � while Context Data for SA contains both � and � , and we

further assume that no other metadata is given (e.g., no domain

information, no caption) [23]; (3) Task Data ! that consists of

task-speci�c labels that the LLM should choose from. In this paper,

! denotes di�erent sets of values for three tasks: In CTA, ! is the

set of possible semantic types (e.g., {. . . ,weight, ticketPrice, . . .} in
Figure 2); in RE it is the set of possible semantic relationships be-

tween columns (e.g., {. . . , contryOf, performerOf, . . .}); and in SA

it is the set of new column headers to recommend. Figure 4 shows

an example prompt for CTA. Table 1 summarizes the notation.

3 PROBLEM STATEMENT

Formal Table Understanding Task De�nitions.

Column Type Annotation. Given a table) without a header, a

column � in) to be annotated, and a set of semantic type labels

!, CTA aims to �nd a semantic type from ! such that all cells in �

have that type.

Relation Extraction. Given a table) without a header, a pair of

columns (and $ in) , and a set of semantic relationship labels !,

RE aims to �nd a semantic relationship label from ! such that ((,$)
have that semantic relationship.

Schema Augmentation. Given a table) and a schema vocabulary

list !, SA aims to recommend a ranked list of additional columns

from ! to augment) , in order of relevance.

PromptConstruction.Given a table) = (�, �),Cents aims to re-

duce the inference cost of LLM-based table understanding by apply-

ing a token budget � to the table cells � and, when needed, applying

a Top- threshold to the label set ! to improve performance when

! is large. Cents selects �′ ¦ � such that C>:4=�>D=C (�′) f �,
where C>:4=�>D=C returns the total number of tokens in a given bag

Symbol Description

� Task instructions in natural language.

) = (�, �) A relation comprising a bag of cell-values, �,

and optionally a header � .

� Bag of cells grouped into columns (Context Data).

�′ ¦ � Subset of cell values used in the prompt.

� Token budget for �′.
! Set of candidate labels (Task Data).

!′ ¦ ! Subset of candidate labels used in the prompt.

 Top- label threshold for !′.
% Final prompt (� ∪) ′ ∪ !′).

Table 1: Notation summary.

of values. Cents aims to select a representative sub-table indepen-

dently of a speci�c table understanding task, but ensures that each

column contains at least one cell after reduction. Similarly, Cents

computes a reduced label set !′ ¦ !, such that |!′ | f . Cents
generates the reduced table) ′ = (�′, �) and combines it with !′

and � to form the �nal prompt % = (� ∪) ′ ∪ !′). When sending the

prompt to the LLM, Cents serializes the bag of cell values in �′

column by column, with delimiters between columns and between

cells within columns. Note that although � is used to reduce � in a

single table instance, one may also de�ne a global token budget for

all instances in a benchmark and allocate an individual budget for

each instance accordingly.

4 CENTS FRAMEWORK

In this section, we present Cents’s architecture and the details

of its components. Cents consists of a Context Data Reducer and

a Task Data Reducer (Figure 3). The Context Data Reducer takes

as input Context Data,) (�, �) and a budget, � and generates a

reduced Context Data,) ′ (�′, �), as output; while the bottom Task

Data Reducer takes as input Context Data) (�, �), Task Data !,

and a threshold, , and generates a reduced Task Data !′. Cents
merges both outputs to form the prompt, % . An example % for CTA

is shown in Figure 4. Cents serializes the Context Data column

by column to prompt the LLM to interpret the table context on

a per-column basis, thereby minimizing semantic distortion after

Cents’s reduction. Finally, Cents sends the generated prompt to

the LLM and returns the LLM response.

4.1 Context Data Reduction - Processor

The Context Data Reducer has three sub-components: A Processor,

a Scorer, and a Solver. We discuss the Processor here and the Scorer

and Solver in the following sections.While we present the Processor

for completeness, the pre-processing it performs resembles that

done in prior work [11, 20], and we do not claim contribution here.

The input table) (�, �) for the Processor comprises various types

of columns, including numerical/datetime (e.g., column D and E

in table A in Figure 5), which we refer to as non-textual columns;

and textual columns (e.g., column A, B, C in table A in Figure 5).

The Processor identi�es, and samples non-textual columns, passing

only the textual columns to the Scorer for further processing in the

form of a re�ned table,) A (�A , �) (e.g., table B in Figure 5).

4576

Prom
pts

BERT

mm

Instruction: Column
Type Annotation

Context Data

Budget
<= 2000

Instruction:
Relation Extraction

Instruction: Schema
Augmentation

Instruction:

*Instruction

*Context Data

*Task Data

Scorer

lab_1 ...lab_4

TF-IDF

OM-Hyb

UDC

Processor

NA-Rmv

Col-Pru

UDCTask Data
lab_0 lab_1 ...

(Optional) User-
defined components

...

Selector

OM-CS

ILP

UDC

Context Data Reducer

Task Data Reducer
in parallel

Cut-off UDC

top-k

<= 2000

top-k

...

LLMs

lab_0 lab_1 lab_2
lab_3 lab_4 ...

CENTS Framework

Top-K k = 100

Figure 3: Overview of Cents. Cents consists of twomain components, namely the Context Data Reducer and Task Data Reducer,

which reduce the input Context Data, and the input set of task-speci�c Task Data, respectively. Cents then combines the two

outputs and the task instructions to create a prompt for the LLM. The output of the LLM is returned to the user/application.

*Instruction: You are an expert in the field of column type
annotation and understanding tabular data. Your instructions
are: 1. Look at the input given to you in a dataframe format ...

*Context Data: Given the following
table: pd.DataFrame({Column-0:['Guitar Tour...', '40 Years of
...', ...], \n Column-1:['Taylor Swift', 'Eric Clapton', ...], Column-2:
['This review is out of...', 'Of course this is 5 stars...'], ...})

*Task Data: ['tickePrice', 'weight', 'distance', 'productModel', ...]

Figure 4: An example �nal prompt % after reducing Context

Data and Task Data for CTA.

4.2 Context Data Reduction - Scorer

Motivated by Retrieval Augmented Generation (RAG)’s goal of

retrieving the most relevant documents from a large corpus [26],

Cents ’s score-and-select paradigm reduces a large table to a care-

fully chosen, semantically important and diverse sub-table. Non-

textual columns are simply sampled by the Processor. For textual

columns, Cents employs a �exible score-and-solve paradigm: it

assigns scores to the textual content and then selects a subset under

a given token budget. This paradigm enables Cents to optimize

some key decisions: (1) determining the basic unit to be scored (e.g.,

a row, a cell, or words within a cell), (2) selecting a suitable scoring

strategy, (3) distributing the token budget (e.g., varying budgets for

each column), and (4) devising an e�ective and e�cient selection

method. We discuss the �rst two aspects in this section and the

latter two in Section 4.3. While Cents provides implementations

for all the above, its �exible design conceptually allows a user to

substitute any of the above components.

Scoring granularities.We consider three granularities:

Row. Under this strategy, each row in) A is treated as an item,

and a single score is assigned to it. While this strategy reduces the

number of items for scoring and selection, it also limits �exibility.

For example, if rows are the basic scoring unit, a valuable piece

of information such as "Taylor Swift is an American artist" could

appear in a row that is otherwise considered unimportant. Thus

the entire row would receive a low score, and this important cell

could be overlooked during selection.

Sub-cell. At the other extreme, one could split a cell into lists of

words using heuristic methods such as whitespace splitting. Each

word is then treated as the basic unit to score. This granularity o�ers

maximum�exibility for scoring but has a signi�cant drawback: after

scoring each sub-cell word and reconstructing them into a list, the

sub-cell words lose their contextual meaning within the sentence.

For example, if a cell contains "Taylor Swift is an American artist",

after Centsmakes the selection, the reconstructed cell may appear

as "[Taylor, American]", loosing important context information.

Cell.We posit and experimentally show that treating each cell

as the item to score achieves a balance between �exibility and

contextual integrity, avoiding the drawbacks of the aforementioned

alternatives. Thus, for the discussion of scoring strategies below,

we assume that cell granularity is used. However, Cents provides

the other two options if needed. We show how scoring granularity

strategies a�ect the end-to-end performance in Table 5.

We omit column granularity because tables have often small

numbers of columns and removing entire columns would select

data at only a course granularity. It might also drop important task

information (e.g., dropping one column from a pair when prompting

the LLM for RE would make the task infeasible.)

Scoring functions. The Scorer assigns a utility score to each item

to re�ect its importance within the table. The input to the scoring

function is the re�ned table) A (�A , �), and the output is the score

table)2 (�2 , �), where each cell 428 9 ∈ �2 contains a score. We

consider three scoring strategies.

TF-IDF Scoring. Following Starmie [10], we develop a TF-IDF-

based scoring function to assign scores. It �rst splits each cell into

a list of tokens. Then it treats each column of) A as a document to

compute the Term Frequency (TF) of tokens within that column

and the entire set of columns within the table as the collection of

documents for calculating the Inverse Document Frequency (IDF).

The �nal score for cell 428 9 is the average of the TF-IDF scores of its

tokens. A limitation is that it focuses solely on syntactic importance

and does not account for the semantic importance.

Clustering Scoring. As an alternative approach, to take semantic

information into account, we propose to cluster cell values in an

embedding space, and select medoids as representative cells. We

4577

119

None

599.99

...

D

...

...

...

...

...

N/AGuitar Tour...

Morrissey40 Years of ...

Taylor SwiftEras Tour ...

......

06/03/2024

08/03/2024

07/01/2024

...

A B E

Absolutely beautiful...

Morrissey did not disappoint...

Of course this is 5 stars...

...

C

...

...

...

...

MorrisseyGuitar Tour...

Taylor Swift40 Years of ...

Eras Tour
...

A B

Absolutely beautiful...

Morrissey did not disappoint...

Of course this is 5 stars...

...

C
...

...

...

...

...

0.140.392

0.9720.581

0.23 ...

...

A B

0.448

0.857

0.283

...

C

119

599.99

D

...

...

...

...

Taylor SwiftGuitar Tour...

Eric Clapton40 Years of ...

06/03/2024

08/03/2024

07/01/2024

A B E

This review is out of...

Of course this is 5 stars...

C

Born Pink ... Kanye West

Black Pink

...

...

A: input raw table T(E, H) B: refined table Tr(Er, H) C: score table Tc(Ec, H)

F: reduced table T'(E', H)

...

...

...

...

...
...

A B

...

C

...

D: cell is (score, cost) tuple

(0.392, 21)

(0.581, 31)

(0.23, 13)

(0.14, 1)

(0.972, 2)

(0.448, 15)

(0.857, 84)

(0.283, 34)

...

...

...

...

...

01

11

0 ...

...

A B

0

0

1

...

C

E: cell is 0/1 selection value
non-textual
columns
are processed
by the
Processor

Figure 5: Example of Context Data Reducer work�ow. Column D, E, containing only numerical and datetime values, are sampled

by the Processor directly and inserted back into the �nal table T’(E’, H)

compute cell embeddings using FastText3 with a dimension of

1004. Alternatively, BERT-based table understanding models [7,

39] can also be used to compute cell embeddings. However, these

models share a 512 token context window and cannot process

entire tables at once. Although serializing each row avoids this

limit, it has substantial overhead: for a token budget of 2000 for

CTAwithout GPU, FastText generates embeddings in 129s, whereas

Doduo [39] requires 12,724s—roughly 100× slower. TomakeCents

lightweight, we therefore use FastText for embeddings. Considering

each textual column separately, we cluster cell values using KMeans.

To determine the number of clusters, we follow approaches such

as [19] and set :8 for each column 8 as +√<8 ,, where <8 is the

number of non-empty cells in column 8 . For each cluster, we then

select the medoid, which is the cell whose embedding vector is

closest to the cluster centroid. We assign a score of 1.0 to that cell

and a score of 0 to all other cells in the same cluster. Next, during

the selecton phase, those scores will be combined with cell weights

such that the most cost-e�ective cells are selected. After selecting

:8 medoids for column 8 , if we still have budget for that column,

the clustering scoring adopts an iterative approach to gradually

increase :8 and re-run the KMeans to select new medoids from cells

and calculate their costs until reaching the budget.

OM-Hyb. Because the TF-IDF and clustering methods have com-

plementary bene�ts, we further propose a hybrid method. In this

method, OM-Hyb, shown in Algorithm 1, considers medoids within

columns and TF-IDF across columns. The intuition is that its output

captures both syntactic importance and semantic importance. Cells

with rare terms are emphasized through TF-IDF, while medoids

identify representative and contextually meaningful cells. OM-Hyb

�rst computes the TF-IDF score of each cell 428 9 as in the pure TF-IDF

scoring method, as shown from Line 1 to Line 13. The TF-IDF score

of a cell is computed as the average of its per-token scores. Starting

from Line 14, the algorithm computes medoids by generating cell

embeddings. In our prototype implementation, we use the same

library (FastText), vector dimension (100), and the number of clus-

ters (+√<8 ,) as in the clustering scoring method. Finally, Cents

multiplies the medoid TF-IDF scores by a scale factor,� , to make the

medoids more likely to be selected, although other approaches are

possible. OM-Hyb empirically sets � = 2. Finally, we re-normalize

all scores within the column, resulting in changes to the scores of

3https://fasttext.cc/docs/en/python-module.html
4We tested both 300 and 100 dimensions, the di�erence was minimal, so we chose 100.

Algorithm 1: OM-Hyb

Input: Re�ned table) Ĩ (�Ĩ , �) with = columns and< rows; Scale factor�
Output: Score table) ę (�ę , �) with score for each cell

1 begin
2 for 8 ← 1 to = do
3 Vğ ← ∅;
4 for 9 ← 1 to< do
5 Vğ ← Vğ ∪ Tokenize(4Ĩğ Ġ) ;
6 TFğ (C) ← TF(C,Vğ) for all C ∈ Vğ ;

7 V ←
Ĥ
⋃

ğ=1
Vğ ;

8 IDF(C) ← IDF(C,V) for all C ∈ V;
9 for 8 ← 1 to = do
10 for 9 ← 1 to< do
11 foreach token C ∈ 3ğ Ġ do
12 TF-IDFğ Ġ (C) ← TFğ (C) × IDF(C) ;

13 4ęğ Ġ ←
1

|3ğ Ġ |
∑

Ī ∈Ěğ Ġ
TF-IDFğ Ġ (C) ;

14 for 8 ← 1 to = do
15 <ğ ← number of non-empty cells in colğ ;
16 :ğ ← +

√
<ğ ,;

17 Mğ ← ComputeColMedoids(:ğ , 4Ĩğ1, 4Ĩğ2, . . . , 4Ĩğģğ
) ;

18 for 8 ← 1 to = do
19 for 9 ← 1 to< do
20 if 4Ĩğ Ġ ∈ Mğ then

21 4ęğ Ġ ← � × 4ęğ Ġ ;

22 return) ę (�ę , �) ;

non-medoids as well as the medoids, and ensuring all scores are

in [0, 1]. With this approach, medoids are most likely going to be

selected, unless they have a very low TF-IDF score. Furthermore,

medoids with higher TF-IDF scores will be favored over those with

lower scores. However, the selection algorithm presented in the

next section also takes into account the weight of each cell (i.e., its

token count) when selecting.

4.3 Context Data Reduction - Solver

The role of the Solver is to select a subset of scored items to maxi-

mizes the total score subject to staying within budget constraints.

The Solver needs to do this in a way that leads to a good solution

and that is computationally e�cient. The Solver takes as input the

scored table,)2 (�2 , �), and a budget �. It uses the tokenization

function C>:4=�>D=C (see Section 3) to measure the token cost of

each cell thus obtaining a (score, cost) tuple for each cell. I.e., each

element 428 9 ∈ �
2 becomes a tuple consisting of a score and a weight,

4578

https://fasttext.cc/docs/en/python-module.html

428 9 = (B8 9 ,F8 9), where B8 9 is the score and theF8 9 the token cost of

cell at 8th column and 9th row. An example of such table is shown

as table D in Figure 5. Given the structure of tabular data, we have

two sub-problems: how to allocate the budget and how to �nd the

optimal or near-optimal combination of scored items.

Budget allocation. One budget allocation method is to use the

budget for the entire table)2 (�2 , �). However, this approach can

lead to over-selection of cells in certain columns while neglecting

others, as shown in Table 6. An alternative way is to divide the

budget equally among all columns, but this fails to account for the

varying distribution of content within and across columns.

To address these challenges, we leverage the concept of empir-

ical entropy for column values from [5] to develop an adaptive

budget allocation strategy. The intuition is that columns with a

more "spread-out" distribution of content require a larger budget to

select relevant information. The empirical entropy � 8
�
for column

8 is calculated by mapping each non-empty cell into tokens and

computing the probabilities % (C) of each unique token C based on

its frequency relative to the total number of tokens in the column:

� 8
� = −

∑

C ∈)ğ
% (C) log2 % (C), (1)

where)8 is the set of unique tokens in column 8 . Given the total

budget �, we then compute the allocation �8 for each column 8

using the empirical entropy � 8
�
of the column as:

�8 = � ·
� 8
�

∑=
9=1 �

9
�

, (2)

where
∑=

9=1 �
9
�
is the total entropy across all = columns. This en-

sures that the budget allocated to each column is proportional to

its entropy, allowing columns with more diverse distributions to

receive a higher fraction of the budget. For the remainder of this

section, we assume that we have individual budgets �1, . . . , �= for

each of the = columns, with the total budget � =

∑=
8=1 �8 . However,

Solvers in Cents also support other budget options discussed. We

show how budget allocation a�ects performance in Table 5.

Scored content selection To �nd the best cell combination under

a budget, Cents formalizes it as an optimization problem.

ILP. Content selection can be formalized as an Integer Linear

Programming (ILP) as follows:

Maximize

=
∑

8=1

<
∑

9=1

B8 9~8 9

subject to

<
∑

9=1

F8 9~8 9 f �8 ∀8 ∈ {1, . . . , =},

~8 9 ∈ {0, 1} ∀8, 9,

(3)

where ~8 9 is a binary variable indicating whether cell 48 9 is selected,

B8 9 is the score of the cell, and F8 9 is its token cost. We have =

columns, each with a budget �8 . Directly inputting this formulation

into an o�-the-shelf solver5 yields the best content selection as

shown in Table 7. However, it has a high execution time as shown

in Figure 9, due to the large search space(one variable per cell and

many cells being selected), limiting its practicality. Alternatively, a

5https://github.com/mosek

Algorithm 2: Convert

Input: An optimal solution ~∗
ÿ
for column� for relaxed LP problem

Output: A feasible solution ~∗∗
ÿ

for column� to Equation 3

1 begin
2 ' ← FormCellSets(~∗)
3 while | {2B ∈ ' | cs is non-0/1} | > 1 do
4 2BĂ , 2Bÿ ← GetTwoCellSets(') ; // V > U

5 ' ← ReduceCellSets(', 2BĂ , 2Bÿ) ;
6 ~∗∗

ÿ
← RoundCellSets(') ;

7 return ~∗∗
ÿ
;

Algorithm 3: RoundCellSets

Input: Current set of cell-sets ', Current two cell-sets 2BĂ , 2Bÿ
Output: A new set of cell-sets '∗ with exactly one fewer cell-set

1 begin
2 , ęĩ

Ă ,, ęĩ
ÿ
← GetCost(2BĂ , 2Bÿ) ;

3 (ęĩĂ , (ęĩ
ÿ
← GetValue(2BĂ , 2Bÿ) ;

4 2Bĥ , 2BĦ , 2Bġ , 2BĢ ← GetNeighborCellSets(2BĂ , 2Bÿ , ') ;
5 A ← ďęĩĂ

ďęĩ
ÿ

;

6 5 ;06←, ęĩ
Ă −

ďęĩĂ ēęĩ
ÿ

ďęĩ
ÿ

;

7 if 5 ;06 g 0 then

8 nĂ ← min

(

U − >,
ďęĩ
ÿ

ďęĩĂ
(; − V)

)

;

9 U ′ ← U − nĂ ;
10 V ′ ← V + AnĂ ;
11 else

12 nĂ ← min

(

? − U,
ďęĩ
ÿ

ďęĩĂ
(V − :),

ďęĩ
ÿ

ďęĩĂ +ďęĩÿ
(V − U)

)

;

13 U ′ ← U + nĂ ;
14 V ′ ← V − AnĂ ;
15 2BĂ ′ , 2Bÿ′ ← ChangeValue(2BĂ , 2Bÿ , U ′, V ′) ;
16 '∗ ← RemoveCellSets(', 2BĂ , 2Bÿ) ;
17 '∗ ← InsertCellSets('∗, 2BĂ ′ , 2Bÿ′) ;
18 return '∗ ;

dynamic programming-based solver yields similarly good selections

but also slow execution times due to its $ (=<�) time complexity.

OM-CS.We observe that the slow execution time of an ILP solver

is due to its use of the branch-and-bound method, which repeatedly

solves the Linear Programming (LP) relaxation of the problem. This

LP relaxation gives fractional selection values (e.g., 0.43) between 0

and 1 for each cell instead of binary values. Simply rounding the

fractional solutions from the LP solver can lead to either infeasible

solutions that violate constraints or sub-optimal outcomes. To ad-

dress this challenge, we propose a solver, OM-CS, specialized for

our setting. OM-CS runs LP once to ensure fast execution. Unlike

naive rounding, once OM-CS has the optimal solution generated by

LP, it iteratively groups cells together and rounds their selection

values toward 0 or 1. The key intuition for OM-CS to be e�ective for

our problem is that it eventually returns binary but not fractional

solutions for cell selection while carefully maintaining the best total

score without violating budget constraints by adjusting two groups

of selection values simultaneously.

4.3.1 Step 1: Relax and solve the LP Problem. OM-CS begins by

relaxing the ILP in Equation 3 from ~8 9 ∈ {0, 1} to ~8 9 ∈ [0, 1].
Using an LP solver, OM-CS solves the relaxed IP problem to obtain

the optimal fractional solution ~∗.

4579

4.3.2 Step 2: Convert LP solution. Given the optimal fractional

solution ~∗, OM-CS converts ~∗ to ~∗∗, a feasible solution to Equa-

tion 3. Given that each column has its own budget, OM-CS rounds

its per-column LP solution, ~∗
�
, independently. Each cell in ~∗

�
is of

the form 4∗8 9 = (~8 9 , B8 9 ,F8 9).
Algorithm 2 shows the approach. Within ~∗

�
, OM-CS aggregates

cells with the same selection value~8 9 = U into a cell-set 2BU (Line 2).

This is to reduce the search space. For example, as shown in Fig-

ure 6, OM-CS groups the tuples in the leftmost column by their ~8 9
values into cell-sets shown in the middle state D-A. We de�ne the

f operator for cell-sets as: 2BU f 2BV if U f V . After construction,
we have the following cell-sets in ', where E = 0 and D = 1:

2BE f ... f 2B> < 2BU f 2B? ... f 2B: < 2BV < 2B; f ... f 2BD (4)

We further de�ne a few more symbols for convenience. We call

neighbors, cell sets that are consecutively ordered in '. We use, 2B
U

to denote the total cost of cells in cell-set 2BU and (2BU the total

score of cells in cell-set 2BU . For example, in state D-A in Figure 6,

, 2B
U=0.42 = 6+ 4+ 4+ 6 = 20, (2BU=0.42 = 0.7+ 0.61+ 0.55+ 0.45 = 2.31.

After constructing cell-sets following Equation 4, within the for

loop of Algorithm 2, OM-CS slowly adjusts the selection values of

cell sets to gradually move to a solution with only three cell-sets

and selection values {0, 1, U}. For this, OM-CS randomly samples

two non-0/1 cell-sets that satisfy the constraint V > U . The OM-CS

then does three things: (1) It merges one of the two selected cell-

sets with its neighbor by adjusting its selection value, U or V , thus

reducing the total number of cell sets; (2) It adjusts the selection

value of the other selected cell-set in the opposite direction and by

an amount that ensures the total score remains the same and the

total cost does not increase. At the end, only cells with selection

value 1 are returned. Algorithm 3 summarizes the approach.

We now explain the intuition behind Algorithm 3 using Figure 6

as an example: We begin by getting the total scores and total costs

of 2BU and 2BV (e.g., in Figure 6, we randomly pick U = 0.42, V =

0.52, and thus we have, 2B
U = 20, (2BU = 2.31, , 2B

V
= 21, (2B

V
=

1.23). Then on Line 4, we get the neighbor cell-sets for 2BU=0.42 and

2BV=0.52 as de�ned in Equation 4 (e.g., in the example, the neighbors

of 2BU are 2B> , 2B? with selection value > = 0.39, ? = 0.468, and the

neighbors of 2BV are 2B: , 2B; with selection value : = 0.47, ; = 0.83).

OM-CS will increase the selection value of one of the two cell-sets

(either 2BU or 2BV) and decrease the selection value of the other, such

that it eventually merges one of the two cell-sets with a neighbor.

OM-CS cannot simply move the selection values of the two cell-sets

by the same amounts. It needs to take their costs and scores into

account to remain within budget and maximize the total score of

the �nal solution. OM-CS proceeds as follows. We �rst de�ne A in

Line 5 as the score ratio of 2BU and 2BV (e.g., in the example, A = 2.31
1.23).

OM-CS then needs to decide whether to increase U and decrease V

or vice-versa. To do so, it computes a �ag value, shown in Line 6.

Let nU and nV be the amounts by which OM-CS will update U and V .

We set nV =

(ęĩĂ
(ęĩ
ÿ
nU , which ensures that the total score remains �xed

as OM-CS updates selection values. In the �rst scenario (increasing

U , decreasing V), the change in total cost is, 2B
U nU −, 2B

V
nV =

nU
(

, 2B
U −

(ęĩĂ , ęĩ
ÿ

(ęĩ
ÿ

)

. In the second scenario (decreasing U , increasing

...

(0.39, 4)
(0.58, 13)

CellSet(0.47)

CellSet(0.468)

...

CellSet(0.83)

Value: 38.42 Cost:127.48

...

(0.27, 4)CellSet(0.39)

CellSet(0.446)

...

CellSet(0.52)

(0.39, 4)
(0.58, 13)

CellSet(0.47)

CellSet(0.468)

...

CellSet(0.83)

Value: 38.42 Cost: 128

...

(0.27, 4)CellSet(0.39)

CellSet(0.42)

(0.52, 0.42, 7)
(0.52, 0.29, 8)

(0.47, 0.39, 4)
(0.47, 0.58, 13)
(0.468, 0.66, 5)
(0.468, 0.81, 5)

(0.83, 0.9, 18)

(0.52, 0.33, 4)
(0.52, 0.19, 2)

(0.39, 0.27, 4)

(0.42, 0.7, 6)
(0.42, 0.61, 4)
(0.42, 0.55, 4)
(0.42, 0.45, 6)

...

...

Budget: 129

(0.7, 6)
(0.61, 4)
(0.55, 4)
(0.45, 6)

(0.66, 5)
(0.81, 5)

(0.42, 7)
(0.29, 8)

(0.9, 18)

(0.33, 4)
(0.19, 2)

(0.7, 6)
(0.61, 4)
(0.55, 4)
(0.45, 6)

(0.66, 5)
(0.81, 5)

(0.42, 7)
(0.29, 8)

(0.9, 18)

(0.33, 4)
(0.19, 2)

D-A D-B

...

...

...

Figure 6: Work�ow of OM-CS on a single column. Leftmost

column is solution from relaxed LP problem, middle column

shows process of forming cell-set, and rightmost column

shows result after one iteration of Algorithm 3.

V), the change in total cost is −nU
(

, 2B
U −

(ęĩĂ , ęĩ
ÿ

(ęĩ
ÿ

)

. Here, since

the total cost changes in these two scenarios are inverse of each

other, we can pick the scenario in which the total cost does not

increase. To make such a decision, we de�ne �ag =, 2B
U −

(ęĩĂ , ęĩ
ÿ

(ęĩ
ÿ

.

(e.g., in the example, �ag = 20 − 2.31×21
1.23 ≈ −19 < 0, we would

increase U by nU and decrease V by nV .) Algorithm 3 decides how

much to adjust selection value of each cell-set on Line 12 based

on the constraint that the total score shall not be changed. For

example, when adjusting one of the cell-set selection values to its

neighboring cell-sets (e.g., subtract A × 1.23
2.31 × 0.05 = 0.05 from

V = 0.52 down to 0.47 in the state D-B), we adjust the other cell-set

correspondingly (e.g., add 1.23
2.31 × 0.05 to U = 0.42 up to 0.4466 in

the state D-B). Adjusting the two cell-sets lowers the total cost to

127.48, and maintains the total score, thereby successfully moving

from state D-A to state D-B in Figure 6 and eliminating one cell-set.

Lemma 4.1. Given an optimal solution~∗
�
to the relaxed LP problem

for column � , Algorithm 2 and Algorithm 3 can always reduce the

solution to cell-sets that contain only one of the three values {0, 1, U},
while maintaining it as the optimal solution.

Proof sketch (by induction). If at most one fractional cell-set

remains with U , we are done. Otherwise, Algorithm 2 picks two

di�erent fractional sets 2BU and 2BV and runs Algorithm 3 to adjust

their selection values in opposite directions by nU and nV . By doing

so, it eliminates one cell-set, retains the same total score, and does

not increase the total cost. Since each round reduces the number of

fractional values by one, after �nitely many steps only the three

values {0, 1, U} remain. □

We refer interested readers to the full proof details 6.

At the end, for each column � , OM-CS is left with exactly one

non-0/1 cell-set. It discards this to obtain ~∗∗
�

because including it

would increases the total score of the solution the LP solver already

gives the optimal solution ~∗, and thus by contradiction we know

that including this last cell-set yields an infeasible solution.

6http://drive.google.com/drive/folders/1pEuK01i0hAp7mI1xQ0GSwjRW4Cuo40eT

4580

http://drive.google.com/drive/folders/1pEuK01i0hAp7mI1xQ0GSwjRW4Cuo40eT

4.4 Task Data Reduction

There are twomotivations for Task Data Reducer : �rst, a larger num-

ber of classes generally leads to more complex problems; second,

the ordering of classes in prompts can a�ect LLM performance [37].

Consequently, Task Data Reducer processes the originalĐ (ā, Ą) and
the set of original Task Data Ĉ (e.g., the schema_vocab LLM needs

to choose from at the bottom of Figure 2) to generate a reduced

label set Ĉ′, ranked by likelihood. Task Data Reducer reduces the

label space for LLMs, thereby enhancing their performance over a

variety of table understanding tasks.

A naive way is to truncate Ĉ to a shorter, Ĉ′, with ć elements,

which is not e�ective when Task Data is a list of labels, since the

correct label may not be in Ĉ′, as shown in Section 5. Instead,

following the idea in Doduo [39], we leverage a pre-trained BERT

Language Model (LM) [8] with frozen weights and only �ne-tune a

linear layer on top of it to reduce Ĉ in a lightweight way.

Speci�cally, Task Data Reducer �rst serializes the input table Đ

by concatenating all cell values, inserting a dummy token [CLS]

before each column, and appending a �nal [SEP] token at the end.

The serialization process is de�ned as:

ser(Đ) = [CLS] + ser(ě11) + . . .+ [CLS] + ser(ě21) + . . .+ [SEP] (5)
where ser(ěğ Ġ) denotes the serialization of the cell ěğ Ġ . The Task Data
Reducer feeds ser(Đ) into BERT to get context-aware embeddings

for each token. Then it extracts the embedding of the �nal [SEP]

token and apply a dense linear layer.

For training, the Task Data Reducer treats this task as amulti-class

multi-label classi�cation problem since each table can be associated

with multiple labels (i.e., multiple headers to recommend) and use

the binary cross-entropy loss function. During inference, the Task

Data Reducer ranks the logits generatedx from highest to lowest

and selects top ć labels based on this ranking.

5 EVALUATION

In this section, we evaluate Cents on popular table understanding

benchmarks and show that Cents successfully lowers the token

cost, while improving F1 scores compared with vanilla LLM-based

baselines. We then study the detailed components of Cents and

their impact on the framework’s performance. We evaluate the

Context Data Reducer on CTA and RE due to their large Context

Data sizes whereas we evaluate the Task Data Reducer on SA due

to its large Task Data size, as shown in Table 2.

Implementation: We implement Cents using Python and

Pytorch.7 We use GPT-3.5-turbo and GPT-4O to evaluate the end-

to-end performance of three tables understanding tasks: CTA, RE,

and SA. We use TikToken8 as the ĪĥġěĤÿĥīĤĪ function to count

token cost in this paper as it is the standard tokenizer used by

OpenAI. We conduct our experiments on a server with a single

L40S GPU with 24 cores and 128GB RAM.

Datasets: For CTA and RE, we evaluateCents over the SOTAB9

dataset [23], a popular benchmark used by recent table understand-

ing related research [6, 11, 22]. For SA, we evaluate Cents over

the TURL dataset [7], another popular benchmark used by [32, 39,

7https://pytorch.org/
8https://github.com/openai/tiktoken
9Note that there is another dataset with a similar name SOTAB V2, but the dataset
used in this paper is adopted from [11, 23].

45], which consists of web tables from Wikipedia. For these these

datasets, we follow ArcheType [11]’s approach and reduce the

semantic overlap among labels to let LLMs discriminate between

semantically di�erent labels. The statistics are shown in Table 2.

Evaluation Metrics: When evaluating CTA and RE, we follow

existing work [7, 11, 20, 39] and use Micro F1. For SA, we follow

TURL’s setting [7] and use mean Average Precision (MAP).

Baselines: For CTA, we compare Cents with �ve baselines.

The �rst is CHORUS [20], an LLM-based system designed for tasks

such as table-class detection, CTA, and join-column prediction.

The second is ArcheType [11], a method speci�cally tailored for

CTA. To the best of our knowledge, these are the state-of-the-art

LLM-based methods for CTA. As it has already been evaluated on

SOTAB27CTA, we directly take the confusion matrix provided by

the authors and calculate the corresponding Micro F1. Third, we use

the Context Data Reduction Random Sample as a baseline method,

in which we sample rows up to the given budget. For our fourth

baseline,Cents (Max Context), we include as much table context as

possible until the �nal LLM’s context window is close to full. We set

the token budget to 15,000, slightly below the GPT-3.5-turbo limit

of 16,38510 to leave room for Instruction, Task Data, and output

tokens. We then run Cents to evaluate its performance when

budget is not tightly constrained, and understand whether table

reduction at a low budget using Cents remains useful in such case.

This leads to $54.5 (USD), as shown in Figure 1. Finally, we apply

the state-of-the-art prompt compression method LLMLingua [18]

that requires using LLM Phi-2 [17] for compression. This method

requires signi�cantly more computing resources than Cents as an

LLM needs to be deployed locally.

For RE, since CHORUS and ArcheType do not support RE, we

compare Cents with three baselines: Context Data Reduction Ran-

dom Sample, Cents (Max Context), and LLMLingua [18].

Lastly, for SA, which neither CHORUS nor ArcheType support,

we compare Cents with the following baseline: given that the

average number of tokens per table, as shown in Table 2, is small

but the number of labels is large, we serialize the full table and

populate the prompt with ć labels selected at random. We discuss

the choice of ć later in this section.

5.1 Main Results

The main results are shown in Table 3 and Table 4 and we highlight

the best-performing methods in bold. ArcheType and CHORUS

both use a single column as the context provided to the LLM. How-

ever, they do not share the same budget, and ArcheType outper-

forms CHORUS due to its carefully designed CTA-speci�c frame-

work that includes components such as rule-based label �ltering

(e.g., provides only numerical-related labels for numerical columns)

and label re-sampling (e.g., call the LLM multiple times to get di-

verse answers), which also makes it also hard to count the tokens

used by this method. We report the best result for all methods for

fair comparison and discuss the budget impact in Section 5.2.6.

CTA: For CTA, we provide the full Task Data given its relatively

small size. Compared with CHORUS andArcheType, both of which

uses a single column as context, Cents achieves higher Micro F1

with additional contextual data. It outperforms ArcheType by 11.2

10https://platform.openai.com/docs/models/gpt-3.5-turbo

4581

Table 2: Dataset statistics for three table understanding tasks: CTA, RE, and SA.

Dataset # of tables # of test instances avg. columns avg. rows avg. tokens per table # of labels

SOTAB27CTA [11, 23] 7026 15040 8.4 200 40863 27

SOTAB41RE [23] 6480 23155 9.3 249 46360 41

TURL1748SA [7] 4646 4646 5.8 20 2106 1748

Table 3: Main result for SOTAB27CTA and SOTAB41RE.

Benchmark Method Micro F1

SOTAB27CTA

ArcheType 65.2

CHORUS GPT-3.5-turbo 46.7

Random Sample GPT-3.5-turbo 58.8

Cents (Max Context) GPT-3.5-turbo 70.9

LLMLingua GPT-3.5-turbo 60.2

Cents GPT-3.5-turbo 76.4

CHORUS GPT-4O 59.4

Random Sample GPT-4O 65.8

Cents GPT-4O 80.4

SOTAB41RE

Random Sample GPT-3.5-turbo 53.4

Cents (Max Context) GPT-3.5-turbo 57.6

LLMLingua GPT-3.5-turbo 46.9

Cents GPT-3.5-turbo 68.4

Random Sample GPT-4O 72.4

Cents GPT-4O 79.1

Table 4: Main result for TURL1748SA.

Benchmark Method MAP

TURL1749SA

Max Labels GPT-3.5-turbo 38.4

Cents GPT-3.5-turbo 55.9

Max Labels GPT-4O 39.9

Cents GPT-4O 61

Micro F1 and CHORUS by 29.7 when using GPT-3.5-turbo. Cents

outperforms Random Sampling by 17.6 by selecting context data

at the granularity of cells. Cents also outperforms Cents (Max

Context) by 5.5Micro F1, showing that including excessive context

leads to performance drop, in line with recent �ndings [25, 30].

This shows that even when the budget is not constrained, Cents

is useful with a lower budget as it �lters out excessive information

to increase performance. Moreover, despite using signi�cantly less

computing resources, Cents outperforms LLMLingua by 16.2

Micro F1 because LLMLingua is not speci�cally designed for tables.

A larger model such as GPT-4O [35] improves all results, while

yielding the same cost-e�ectiveness trade-o�. Figure 1 compares

the methods across a range of budgets. CHORUS randomly samples

four values from a column as context. We thus estimate its per-table

token cost to be the total number of tokens used for the benchmark

divided by the number of tables in the benchmark, which is 358

tokens per instance. As Figure 1 shows, even if we reduce Cents’s

budget to match CHORUS’, Cents achieves a higher F1 score

thanks to its more careful selection of the context to include and its

inclusion of more context. We do not estimate ArcheType budget

11722s 12237s
13564s 13314s

15161s 14977s 15276s 15705s

CTA Runtime % 2000 4000 6000 8000
22.5%18.4%15.6%14.6%CENTS
77.5%81.6%84.4%85.4%GPT-3.5-Turbo

RE Runtime % 2000 4000 6000 8000
14.6%13.3%12.4% 11.6%CENTS
85.4%86.7%87.6%88.4%GPT-3.5-Turbo

Figure 7: Execution Time Analysis. Numbers above bars are

totals. Table below shows execution time percentages.

for the reasons described at the start of this section. Interestingly,

Cents signi�cantly outperforms Random Sampling even when the

latter uses a better model and a higher budget.

RE: For RE, the full Task Data is also given to all methods due

to its relatively small size. The results are similar to CTA: when

compared against Random Row sampling, Cents shows an im-

provement of 15Micro F1, further demonstrating the importance

of carefully selecting the context for table understanding tasks. Fur-

thermore, Cents also outperforms Cents (Max Context) by 10.8

Micro F1 and LLMLingua by 21.5 Micro F1. These gains are due

to Cents’s �ltering of redundant and excessive context and its

tailored approach for handling tabular data, as discussed earlier in

the results for CTA. As mentioned in the baseline setting, we do

not include CHORUS nor ArcheType as they do not support RE.

SA: For SA, on the other hand, we give all methods the full

Context Data since the average token cost is only 2106 for each

table instance. We compare Task Data Reducer against providing all

labels to the LLM. As shown in Table 4, our Task Data Reducer is

e�ective at reducing the Task Data in a way that not only achieves

the same MAP, but increases it by 17.5. We also notice that in the

SA task, using a more advanced model with the Max Labels setting

does not increase the performance signi�cantly. This is possibly

due to two reasons: Task Data Reducer reduces the search space and

crafts shorter prompts [30], and it ranks labels by likelihood [37].

5.2 Detailed Results

We discuss the e�ects of design choices for Cents components.

5.2.1 Runtime Analysis. We evaluate Cents’s execution time, run-

ning OM-CS and OM-Hyb. As shown in Figure 7, the LLM inference

time dominates. Cents contributes up to 22.5% for SOTAB27CTA

and 14.6% for SOTAB41RE to the total execution time. Additionally,

while Cents’s primary goal is to reduce the dollar cost of API

calls, it also reduces the LLM inference time, and is su�ciently

lightweight that the total time also goes down.

4582

SOTAB27CTA SOTAB41RE

Con�gurations B2000 B4000 B6000 B8000 B2000 B4000 B6000 B8000

E�ect of Scoring Strategy

Random Sample + GPT-3.5-turbo 58.1 58.6 58.8 58.7 51.5 52.2 53.2 53.4

TF-IDF + OM-CS + GPT-3.5-turbo 72.3 72.5 73.2 73.1 63.6 63.8 64.5 65.3

Clustering + OM-CS + GPT-3.5-turbo 67.9 70.2 71.1 71.3 60 61.7 62.3 62.3

OM-Hyb + OM-CS + GPT-3.5-turbo 75.4 76.1 76.4 76.4 66.8 67 68.2 68.4

E�ect of Scoring Granularity

OM-Hyb (Row) + OM-CS (Row) + GPT-3.5-turbo 71.3 72.1 72.9 73.8 62.6 63.8 64.0 64.7

OM-Hyb (Word) + OM-CS (Word) + GPT-3.5-turbo 52.6 51.9 51.8 50.9 41.5 39.7 39.2 38.5

OM-Hyb (Cell) + OM-CS (Cell) + GPT-3.5-turbo 75.4 76.1 76.4 76.4 66.8 67 68.2 68.4

E�ect of Budget Allocation Strategy

OM-Hyb + OM-CS (Table Budget) + GPT-3.5-turbo 72.2 73.6 73.9 74.4 62.8 63.4 63.9 64.7

OM-Hyb + OM-CS (Equal Budget) + GPT-3.5-turbo 73.7 74.6 74.9 75.6 63.2 65.8 66.2 66.4

OM-Hyb + OM-CS (Entropy Budget) + GPT-3.5-turbo 75.4 76.1 76.4 76.4 66.8 67 68.2 68.4

E�ect of Budget þ with Di�erent Model

OM-Hyb + OM-CS + GPT-3.5-turbo 75.4 76.1 76.4 76.4 66.8 67 68.2 68.4

OM-Hyb + OM-CS + GPT-4O 80 80 80.3 80.4 78.5 79.1 79.1 79.1

OM-Hyb + OM-CS + DeepSeek-R1-Distill-Llama-8B 49.6 49.8 50 49.8 48.2 48.8 48.9 48.3

OM-Hyb + OM-CS + TableGPT2 50.7 51.4 50.5 50.6 50.2 50.4 51.8 51.5

Table 5: Analysis of di�erent design choices in Cents for SOTAB27CTA and SOTAB41RE. For each budget þ (i.e., count of

tokens for reduced Context Data is f þ, the best result is highlighted in bold. Units are Micro F1.

Benchmark B2000 B4000 B6000 B8000

SOTAB27CTA 2889 1498 990 745

SOTAB41RE 3527 1960 1320 980

Table 6: Number of columns that Cents fails to sample at all

if Cents keeps a budget for the whole table.

5.2.2 E�ectiveness of budget allocation. The impact of the budget

allocation in the Context Data Reducer on Cents’s end-to-end

performance is shown in Table 5. We evaluate three strategies: OM-

CS (Table Budget), which assigns a single budget to the entire table;

OM-CS (Equal Budget), which splits the budget equally among all

columns; and our proposed OM-CS (Entropy Budget). Our results

indicate that the OM-CS (Entropy Budget) consistently achieves the

best performance across all budgets. Although the OM-CS (Equal

Budget) performs better than the OM-CS (Table Budget), it is still

worse than the OM-CS (Entropy Budget), particularly at lower

budget settings becauseOM-CS (Entropy Budget) adaptively assigns

budgets to columns based on their content.

5.2.3 E�ectiveness of di�erent scoring granularities. We evaluate

how di�erent scoring granularities a�ect Cents’s end-to-end per-

formance. We modify our OM-CS such that it works for each data

granularity (i.e.,OM-CS (Word) records word locations, selects indi-

vidual words, and reconstructs cell values from those words; OM-CS

(Row) computes a score for each cell, aggregates those scores at

the row level, and selects row-wise). The results in Table 5 indicate

that OM-Hyb (Cell) achieves the best performance across various

budget settings. OM-Hyb (Row) does not perform as well because

of its in�exibility. On the other hand, OM-Hyb (Word) performs the

worst likely due to the ill-formed context it introduces for LLMs

when cells are reconstructed from lists of words.

2000 4000 6000 8000
Token Budget

0

20

40

60

80

100

M
icr

o
F1

 S
co

re

SOTAB27CTA Scoring Performance

2000 4000 6000 8000
Token Budget

SOTAB41RE Scoring Performance

Medoids (Medium Cases)
Medoids (Hard Cases)

TF-IDF (Medium Cases)
TF-IDF (Hard Cases)

OM-Hyb (Medium Cases)
OM-Hyb (Hard Cases)

Figure 8: Analysis of di�erent scoring function design

choices in Cents for SOTAB27CTA and SOTAB41RE.

5.2.4 E�ectiveness of di�erent scorers. We evaluate the e�ective-

ness of scoring strategies, speci�cally Random Sampling, TF-IDF,

Clustering, and our proposed OM-Hyb. As the results in Table 5

show, our OM-Hyb outperforms all baseline methods, showing that

OM-Hyb’s robust performance across di�erent tasks. We dig deeper

into the di�erences between scorers by distinguishing their perfor-

mance on tables that pose di�erent levels of di�culty. We consider

MediumCases, those instances where the Random Samplingmethod

fails and Hard Cases, those where both the Random Sampling and

Clustering methods make errors. We ignore easy cases where even

Random Sampling su�ces. Figure 8 shows the performance of our

OM-Hyb on these cases. For Medium Cases, we compare the solid

lines of OM-Hyb with those of the other methods. For Hard Cases,

we compare the dotted lines. Our results demonstrate that OM-Hyb

consistently outperforms the other two methods in both scenar-

ios and by a signi�cant margin, showcasing its ability to correctly

handle challenging instances where other approaches fail.

4583

2000 4000 6000 8000
Token Budget

102

103

104

Sa
m

pl
in

g
Ti

m
e

(s
ec

on
ds

)

SOTAB27CTA Solver Time

2000 4000 6000 8000
Token Budget

SOTAB41RE Solver Time

OM-CS Sampling Time
DP No Quantization Sampling Time

DP (0~10) Quantization Sampling Time
ILP Sampling Time

Figure 9: Analysis of execution time of di�erent solver

choices in Cents for SOTAB27CTA and SOTAB41RE.

Con�gurations SOTAB27CTA SOTAB41RE

OM-Hyb + ILP 77.1 68

OM-Hyb + DP 76.6 67.8

OM-Hyb + DP (0 ∼ 10) 73.8 64.5

OM-Hyb + OM-CS 76.1 67.6

Table 7: Analysis of performance, averaged over all

budgets, of di�erent solver choices in Cents for

SOTAB27CTA and SOTAB41RE with GPT-3.5-turbo.

Token Budget SOTAB27CTA SOTAB41RE

B2000 4956 (95.1%) 4581 (95.7%)

B4000 3821 (90.2%) 3576 (91.3%)

B6000 3094 (85.3%) 2984 (87.1%)

B8000 2625 (80.4%) 2600 (82.7%)

Table 8: Number of tables reduced per budget, with the

average percentage of token reduction in parentheses.

5.2.5 E�ectiveness and execution time of di�erent Solvers. We now

evaluate the e�ciency (i.e., execution time) of each solver: we com-

pare OM-CS against an ILP solver, a DP solver, and a DP solver with

quantization (DP (0 ∼ 10)). For quantization, we employ the most

aggressive granularity by converting scores to integers ranging

from 0 to 10, resulting in the fastest DP solver available for compar-

ison. Figure 9 shows the execution time. (note the log-scale on the

y-axis). If the total token cost for a table is below the budget, the

table is included without reduction. Table 8 shows the number of

tables reduced for each budget. The results show that the ILP solver

requires much higher execution time for both tasks. In contrast,

OM-CS shows a decreasing execution time as the budget increases.

This is because of the reduced number of tables that need to be sam-

pled and the fact that OM-CS only requires running the LP solution

once per table. In the SOTAB27CTA task, OM-CS achieves up to

a 94× speedup compared to the ILP solver and a 9× speedup over

DP (0 ∼ 10). Similarly, for SOTAB41RE, OM-CS attains up to a 131×
speedup over ILP and an 11× speedup compared to DP (0 ∼ 10).

Table 7 shows the Micro F1 performance comparison for these

solvers, averaged over all budgets. While Cents with OM-CS leads

to a small drop in performance compared with using an ILP-based

solver, the drop is rather minimal, and thus justi�es the two orders

of magnitude improvement in execution time. The drop is even less

signi�cant compared with the DP solver.

10 Labels 50 Labels 100 Labels 1000 Labels
Number of Labels given to LLM (K)

0

20

40

60

80

100

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

TURL1749SA
Cutoff label
Maximum label
CENTS: Task Data Reduction
CENTS: Task Data Reduction + GPT4o

Figure 10: Analysis of di�erent choices of Task Data Reducer

and ć in Cents for TURL1749SA.

5.2.6 Impact of budget and model. We discuss the impact of vary-

ing the budget þ and the LLM on Cents’s performance. We re-

port our �ndings at the bottom of Table 5. We gradually reduce

the token budget from 8000 to 2000, decreasing it by 2000 each

time. As shown in Table 8, each 2000 token decrease corresponds

to reducing approximately 5% more tokens on average per table

for both SOTAB27CTA and SOTAB41RE. The results show that

reducing the budget from 8000 to 2000 does not lead to a signif-

icant performance drop for either the CTA or RE. For CTA with

GPT-3.5-turbo, decreasing the budget to 2000 results in a Micro

F-1 drop of 1, while for RE, the drop is only 1.6. In contrast, with

GPT-4O, reducing the budget to 2000 causes a Micro F-1 drop of

only 0.4 for CTA and 0.6 for RE. With Deepseek-R1-Distill-Llama-

8B [12], reducing the budget to 2000 causes a Micro F-1 drop of

only 0.4 for CTA and 0.6 for RE. For TableGPT2 [38], we use its

standalone decoder without its special table encoder since it is

not released, but it still outperforms Deepseek-R1-Distill-Llama-8B

with a smaller model size.Interestingly, both Deepseek-R1-Distill-

Llama-8B and TableGPT2 show large performance drops for both

CTA and RE across all budgets compared to the OpenAI models.

We further evaluate Cents’s e�ectiveness under very small token

budgets on SOTAB27CTA, and present our �ndings in Figure 1.

Our results show when the token budget is extremely small (e.g.,

100 token budget), Cents’s performance eventually drops. These

�ndings demonstrate three things: First, using a more advanced

model improves end-to-end performance across all tasks Second,

Cents e�ectively selects the most representative information for

any given budget. By contrast, random sampling and CHORUS

consistently underperform at the same budget, demonstrating that

Cents is more cost-e�ective. Finally, while locally deployable LLM

exist, larger hosted LLMs provide better performance on these tasks,

highlighting the cost-saving bene�ts of Cents.

5.2.7 Performance of the Task Data Reducer. We now discuss how

Task Data Reducer strategies a�ect Cents’s performance on the

SA task in Figure 10. We observe that using Cuto� (i.e., selecting

the �rst ć labels given in a random order) as our Task Data Re-

ducer results in suboptimal performance. This is because the actual

ground-truth labels may not be included in the reduced Task Data

provided to the LLM. Even the �nal point at ć = 1000 labels per-

forms worse than our method. We further increaseć above 1000 for

the Cuto� baseline until the context-window limit is reached. We

plot this as a straight line, labeled Maximum label and the results

are not much better than Cuto� with ć = 1000. This is because the

labels are not sorted. Our Task Data Reducer method, as shown in

4584

the �gure, e�ectively reduces and ranks the more likely labels at

the front of the prompt, achieving signi�cant improvements over

the Cuto� and Maximum labels methods. The issue of the LLM

becoming confused still exists as we increase ć , leading to a slight

decline in performance for both Cents with all models.

6 DISCUSSION

In this section, we discuss alternative solutions to table understand-

ing, and how to extend Cents to other problem settings.

Pre-trained Language Models (PLM) for table understanding.

LLMs are known to perform well even on tasks they have not been

trained for [2, 36, 44]. On the other hand, PLMs rely on task-speci�c

�ne-tuning, which gives strong performance on the same task but

limits their generalizability to new tasks or data distributions [8].

For this reason, they outperform purely LLM-prompting-based so-

lutions on in-distribution data using extra training data [11, 20, 34].

In line with these prior �ndings, �ne-tuning Doduo [39], a recent

state-of-the-art PLM-based method, on our benchmarks gives a Mi-

cro F1 of 87.3, a Micro F1 of 86.6, and a MAP of 87 on SOTAB27CTA,

SOTAB41RE, and TURL1748SA, respectively, outperforming the

LLM-based approach. Trying to use Doduo without pre-training

does not work: Using Doduo o�-the-shelf without �ne-tuning only

produces embeddings [39]. O�-the-shelf Doduo, �ne-tuned on the

TURL [7] dataset, produces labels for the TURL benchmark. Using

exact string match, there is no overlap with the labels needed for

our benchmarks. CHORUS [20] further showed that by manually

mapping labels to a new dataset, these PLM-based methods exhibit

signi�cant performance drops on new target sets. Moreover, PLM

methods require well-labeled datasets and task-speci�c architec-

tures for each benchmark [7]. Thus, while PLMs achieve higher

performance on in-distribution data, LLM-based approaches can

be more practical when task-speci�c training data is not available.

Locally deployable small LMs for table understanding We

designed Cents with hosted LMs in mind, as those systems o�er

excellent performance. Our experiments in Table 5 with Deepseek-

R1-llama-8B [12] and TableGPT2 [38] show that their performance

fall short compared to closed-source models like GPT-3.5-turbo.

Nevertheless, Cents can still be useful with locally deployable

small LMs [9, 12, 17] because reducing the prompt length improves

query throughput given the ċ (Ĥ2) time complexity of attention

mechanisms, whereĤ is the input sequence length [41]. And, indeed,

we also saw reduction in LLM inference times in Figure 7.

Extending Cents to other tasks. Cents’s main contribution is

a method to reduce tables. Such a method can be helpful in tasks

beyond table understanding. For example, LLM-basedmethods have

been proposed for schema matching [27, 31], in which an LLM is

used to judge the similarity between query columns and candidate

table columns. Cents could be applied to this setting by reducing

the size of the candidate table in the input prompt sent to the LLM

to save costs. However, for LLM-based TableQA [27], where an

answer can appear anywhere in a table and the full context of the

table is required, Cents’s reduction method may not be useful.

Few-Shot Learning. Few-shot learning with LLMs—by including

task-speci�c demonstrations in the prompt—can enhance perfor-

mance [2]. Extending Cents to support few-shot learning is also

feasible by processing the demonstration examples with Cents.

Due to space constraints, we leave this extension for future work.

7 RELATED WORK

Table understanding. Table understanding has been a popular

topic in the data management community. Limaye et al. [29] pro-

posed to annotate tables at di�erent granularities (i.e., cell, column,

and pairs of columns). Early approaches [16, 49] used features

from tables or leveraged topic model and use machine learning-for

CTA. Later studies [7, 13, 32, 39, 48] used PLMs to improve the

performance of table understanding tasks. These solutions could be

divided into two categories: Some approaches [7, 13, 48] pre-train

a language model for tabular data that can be applied to several

downstream tasks, while others [32, 39] �ne-tune a pre-trained

model with task speci�c training data. Speci�cally, Doduo [39]

devises a multi-task learning framework to support di�erent table

annotation tasks with a shared encoder; Watchog [32] focuses on

the semi-supervised where there are much fewer labeled training

instances. These approaches all require separated training data for

each speci�c task. In contrast, Cents prompts over LLM-based

solutions and thus does not require labeled data for �ne-tuning.

Recently, some early trials proposed to use LLMs for table under-

standing tasks. Some approaches [11, 23, 45] explored prompting

strategies and optimizations speci�cally for CTA. CHORUS [20] de-

veloped a �exible framework that enables the synthesis of multiple

table related tasks but not consider the issues of cost reduction for

prompts. TableGPT [27] conducted extensive �ne-tuning over GPT

to accommodate for the tabular structure and support a multiple

table related tasks. Our work is orthogonal to them and could be

integrated with them to further improve their performance.

There has also been progress in creating table understanding

benchmarks. Viznet [14] constructs a corpus with ground truth for

di�erent table-related tasks including CTA. WDC [24] is a large

table corpus for dataset search and entity matching. TURL [7] pro-

vides dataset for seven downstream table understanding tasks. Git-

table [15] is a Github-based large table corpus. SOTAB [23] provides

annotated benchmarking tasks for CTA and RE. ArcheType [11]

customized existing datasets for LLM-based solutions with label

mapping mechanisms.

LLM Cost-e�ectiveness. There are e�orts in machine learning

to provide cost-e�ective LLM solutions. For prompt compression,

some approaches [18, 28] use a smaller LM to remove tokens in

natural language prompts. Others [33, 46] use task-speci�c datasets

to train models to reduce prompts. FrugalGPT [4] provides high-

level guidance and requires task-speci�c datasets for training to

decide whether to use a cheaper LLM. PromptIntern [53] �ne-tunes

LLM to internalize prompt knowledge. In contrast, Cents does not

train model to reduce input tables (our proposed label reduction is a

side optimization), and focuses speci�cally on tabular data for table

understanding tasks. Cents is thus orthogonal to these approaches.

8 CONCLUSION

In this paper, we developed Cents, a �exible, uni�ed, and cost-

e�ective framework for LLM-based table understanding solutions.

Cents strategically reduces input tables in prompts through a

novel scoring method and an e�cient selector, resulting in high

F1 scores at a lower cost, and with a rapid execution time. Cents

also provide label sets reduction as an optimization to improve per-

formance of LLM-based solutions. Experiments show that Cents

outperforms existing methods at the same or lower cost.

4585

REFERENCES
[1] Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset

Search: Building a search engine for datasets in an open Web ecosystem. In The
World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. ACM, 1365–1375.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[3] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. 2008. WebTables: exploring the power of tables on the web. Proc. VLDB
Endow. 1, 1 (2008), 538–549.

[4] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. FrugalGPT: How to Use
Large Language Models While Reducing Cost and Improving Performance. CoRR
abs/2305.05176 (2023).

[5] Xingguang Chen and Sibo Wang. 2021. E�cient Approximate Algorithms for
Empirical Entropy and Mutual Information. In SIGMOD ’21: International Con-
ference on Management of Data, Virtual Event, China, June 20-25, 2021. ACM,
274–286.

[6] Tianji Cong, Madelon Hulsebos, Zhenjie Sun, Paul Groth, and H. V. Jagadish.
2023. Observatory: Characterizing Embeddings of Relational Tables. Proc. VLDB
Endow. 17, 4 (2023), 849–862.

[7] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307–319.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, 4171–4186.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sra-
vankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor
Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta
Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,
Jan Ge�ert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Hea�eld, Kevin Stone, and et
al. 2024. The Llama 3 Herd of Models. CoRR abs/2407.21783 (2024).

[10] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. Proc. VLDB Endow. 16, 7 (2023), 1726–1739.

[11] Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire. 2024.
ArcheType: A Novel Framework for Open-Source Column Type Annotation
using Large Language Models. Proc. VLDB Endow. 17, 9 (2024), 2279–2292.

[12] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[13] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing
via Pre-training. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Association for
Computational Linguistics, 4320–4333.

[14] Kevin Zeng Hu, Snehalkumar (Neil) S. Gaikwad, Madelon Hulsebos, Michiel A.
Bakker, Emanuel Zgraggen, César A. Hidalgo, Tim Kraska, Guoliang Li, Arvind
Satyanarayan, and Çagatay Demiralp. 2019. VizNet: Towards A Large-Scale
Visualization Learning and Benchmarking Repository. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, CHI 2019, Glasgow,

Scotland, UK, May 04-09, 2019. ACM, 662.
[15] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-

Scale Corpus of Relational Tables. Proc. ACMManag. Data 1, 1 (2023), 30:1–30:17.
[16] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen,

Arvind Satyanarayan, Tim Kraska, Çagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM,
1500–1508.

[17] Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck,
Caio César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan,
Sivakanth Gopi, et al. 2023. Phi-2: The surprising power of small language
models. Microsoft Research Blog (2023).

[18] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
LLMLingua: Compressing Prompts for Accelerated Inference of Large Language
Models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor,
Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,
13358–13376. https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825

[19] Je� Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547. https://doi.org/10.
1109/TBDATA.2019.2921572

[20] Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan Olteanu, and
Dan Suciu. 2024. CHORUS: Foundation Models for Uni�ed Data Discovery and
Exploration. Proc. VLDB Endow. 17, 8 (2024), 2104–2114.

[21] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022.
Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932–945.

[22] Keti Korini and Christian Bizer. 2023. Column Type Annotation using ChatGPT.
In Joint Proceedings of Workshops at the 49th International Conference on Very
Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023
(CEUR Workshop Proceedings), Vol. 3462. CEUR-WS.org.

[23] Keti Korini, Ralph Peeters, and Christian Bizer. 2022. SOTAB: The WDC
Schema.org Table Annotation Benchmark. In SemTab@ISWC. https://api.
semanticscholar.org/CorpusID:255943681

[24] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A
Large Public Corpus of Web Tables containing Time and Context Metadata. In
Proceedings of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada, April 11-15, 2016, Companion Volume. ACM, 75–76.

[25] Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, and Michael Carbin.
2024. Long context rag performance of large language models. arXiv preprint
arXiv:2411.03538 (2024).

[26] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In NeurIPS.

[27] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,
Danielle Ri�nski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2024. Table-
GPT: Table Fine-tuned GPT for Diverse Table Tasks. Proc. ACM Manag. Data 2,
3 (2024), 176.

[28] Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. 2023. Compressing
Context to Enhance Inference E�ciency of Large Language Models. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). Association for Computational Linguistics, 6342–6353.
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.391

[29] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and Searching Web Tables Using Entities, Types and Relationships. Proc. VLDB
Endow. 3, 1 (2010), 1338–1347.

[30] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Trans. Assoc. Comput. Linguistics 12 (2024), 157–173.

[31] Yurong Liu, Eduardo Pena, Aecio Santos, Eden Wu, and Juliana Freire. 2024.
Magneto: Combining Small and Large Language Models for Schema Matching.
arXiv preprint arXiv:2412.08194 (2024).

[32] Zhengjie Miao and Jin Wang. 2023. Watchog: A Light-weight Contrastive Learn-
ing based Framework for Column Annotation. Proc. ACM Manag. Data 1, 4
(2023), 272:1–272:24.

[33] Jesse Mu, Xiang Li, and Noah D. Goodman. 2023. Learning to Com-
press Prompts with Gist Tokens. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_�les/paper/2023/hash/
3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html

[34] Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? Proc. VLDB Endow. 16, 4 (2022), 738–
746.

[35] OpenAI. 2023. GPT-4. Available at https://openai.com.

4586

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://api.semanticscholar.org/CorpusID:255943681
https://api.semanticscholar.org/CorpusID:255943681
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.391
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
https://openai.com

[36] Long Ouyang, Je� Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training
language models to follow instructions with human feedback. In Proceedings
of the 36th International Conference on Neural Information Processing Systems
(New Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA,
Article 2011, 15 pages.

[37] Pouya Pezeshkpour and Estevam Hruschka. 2024. Large Language Models
Sensitivity to The Order of Options in Multiple-Choice Questions. In Findings of
the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (Eds.).
Association for Computational Linguistics, 2006–2017. https://doi.org/10.18653/
V1/2024.FINDINGS-NAACL.130

[38] Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, Ga Zhang, Guangcheng Zhu,
Haobo Wang, Haokai Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming Tian, Jing
Yuan, Junbo Zhao, Junlin Zhou, Kaizhe Shou, Liangyu Zha, Lin Long, Liyao
Li, Pengzuo Wu, Qi Zhang, Qingyi Huang, Saisai Yang, Tao Zhang, Wentao Ye,
Wufang Zhu, Xiaomeng Hu, Xijun Gu, Xinjie Sun, Xiang Li, Yuhang Yang, and
Zhiqing Xiao. 2024. TableGPT2: A Large Multimodal Model with Tabular Data
Integration. arXiv:2411.02059 [cs.LG] https://arxiv.org/abs/2411.02059

[39] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çagatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained Lan-
guage Models. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1493–1503.

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and E�cient Foundation Language Models. CoRR
abs/2302.13971 (2023).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[42] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna
Dong, and Meng Jiang. 2021. TCN: Table Convolutional Network for Web Table
Interpretation. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021. ACM / IW3C2, 4020–4032.

[43] Runhui Wang, Yuliang Li, and Jin Wang. 2023. Sudowoodo: Contrastive Self-
supervised Learning for Multi-purpose Data Integration and Preparation. In 39th
IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA,
April 3-7, 2023. IEEE, 1502–1515.

[44] Jason Wei, Yi Tay, Rishi Bommasani, Colin Ra�el, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.

Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Je� Dean, and William
Fedus. 2022. Emergent Abilities of Large Language Models. Trans. Mach. Learn.
Res. 2022 (2022).

[45] Lindsey Linxi Wei, Guorui Xiao, and Magdalena Balazinska. 2024. RACOON:
An LLM-based Framework for Retrieval-Augmented Column Type Annotation
with a Knowledge Graph. In NeurIPS 2024 Third Table Representation Learning
Workshop. https://openreview.net/forum?id=unlufkzs7v

[46] Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RECOMP: Improving Retrieval-
Augmented LMs with Context Compression and Selective Augmentation. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?id=
mlJLVigNHp

[47] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. InfoGather: entity augmentation and attribute discovery by holistic match-
ing with web tables. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012.
ACM, 97–108.

[48] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020. Association for Computational
Linguistics, 8413–8426.

[49] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,
and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.
Proc. VLDB Endow. 13, 11 (2020), 1835–1848.

[50] Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Table2Vec: Neural Word and
Entity Embeddings for Table Population and Retrieval. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019. ACM, 1029–1032.

[51] Shuo Zhang and Krisztian Balog. 2017. EntiTables: Smart Assistance for Entity-
Focused Tables. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan,
August 7-11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P.
de Vries, and Ryen W. White (Eds.). ACM, 255–264.

[52] Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep,
and Jignesh M. Patel. 2024. ReAcTable: Enhancing ReAct for Table Question
Answering. Proc. VLDB Endow. 17, 8 (2024), 1981–1994.

[53] Jiaru Zou, Mengyu Zhou, Tao Li, Shi Han, and Dongmei Zhang. 2024. PromptIn-
tern: Saving Inference Costs by Internalizing Recurrent Prompt during Large
Language Model Fine-tuning. In Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024. Association
for Computational Linguistics, 10288–10305.

4587

https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.130
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.130
https://arxiv.org/abs/2411.02059
https://arxiv.org/abs/2411.02059
https://openreview.net/forum?id=unlufkzs7v
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp

	Abstract
	1 Introduction
	2 Background
	3 Problem Statement
	4 Cents Framework
	4.1 Context Data Reduction - Processor
	4.2 Context Data Reduction - Scorer
	4.3 Context Data Reduction - Solver
	4.4 Task Data Reduction

	5 Evaluation
	5.1 Main Results
	5.2 Detailed Results

	6 Discussion
	7 Related Work
	8 Conclusion
	References

