PAR2QO: Parametric Penalty-Aware Robust Query Optimization

Haibo Xiu, Yang Li, Qianyu Yang, Pankaj K. Agarwal, and Jun Yang
Duke University, Durham, NC, USA
{haibo.xiu,yang li,qianyu.yang}@duke.edu,{pankaj,junyang}@cs.duke.edu

ABSTRACT

Parametric Query Optimization (PQO) is an important problem in
database systems, yet existing approaches suffer from high train-
ing costs, sensitivity to estimation errors, and vulnerability to se-
vere performance regressions. This paper introduces PAR?QO
(PARametric Penalty-Aware Robust Query Optimization), a sys-
tem that integrates robust query optimization into PQO. PAR>QO
strategically obtains plans from a well-balanced set of probe loca-
tions informed by the workload, and caches them as plan-penalty
profiles. At runtime, PAR2QO selects the plan with the lowest
expected penalty, explicitly accounting for selectivity uncertain-
ties. Extensive experiments show that PAR?QO delivers significant
speedups over existing methods while ensuring robustness against
performance degradation. Additionally, we introduce CARVER,
a workload generator aimed at covering possible cardinalities of
subqueries. Not only does CARVER provide a more comprehensive
way to evaluate PQO methods, but when used for training learned
methods, it can also enhance their generalizability and stability.

PVLDB Reference Format:

Haibo Xiu, Yang Li, Qianyu Yang, Pankaj K. Agarwal, and Jun Yang.
PAR2QO: Parametric Penalty-Aware Robust Query Optimization. PVLDB,
18(11): 4532 - 4545, 2025.

doi:10.14778/3749646.3749711

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Hap-Hugh/PAR2QO.

1 INTRODUCTION

A long-standing challenge in databases is Robust Query Optimiza-
tion (RQO) [12]. Query optimizers rely on selectivity and cost esti-
mates to pick execution plans. When these estimates are inaccurate,
the chosen plan can perform far worse than the optimal. There are
various approaches towards robust query optimization; we focus
on finding a robust query plan in this work: Instead of minimizing
the plan cost given the estimated selectivities, which can be wrong,
we look for a plan that “performs well” despite uncertainties in the
estimates. In other words, when executed at the true selectivities,
the plan is expected to incur a low penalty with respect to the cost
of the true optimal plan. The resulting optimization problem is chal-
lenging because we must consider possible estimation errors and
compare with the real optimal plans at the corrected selectivities,
which amounts to exploring a neighborhood — rather than a single

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749711

4532

point — in the selectivity space. The optimization overhead can
thus be higher than that for traditional query optimization.

Parametric Query Optimization (PQO) is a technique originally
motivated by the desire to reduce optimization overhead for queries
that follow the same template but differ in their parameter settings,
which frequently arise in applications. Once PQO finds the optimal
plan for a given query instance, it caches the plan and reuses it for
future query instances whose estimated selectivities are close to
the cached plan. Pushing the idea further, Kepler [15], the latest
state of the art in PQO, employs deep learning to train a model that
selects the right plan among a set of cached candidates.

Combining PQO and RQO is natural, because PQO helps to amor-
tize query optimization overhead across multiple query instances.
The potential of this combination was demonstrated in the recent
RQO work of PARQO [46], which considered caching one robust
plan per query template. However, opportunities for such reuses
are limited because the choice of the robust plan varies across the
selectivity space. There are better ways to reuse the computation
in RQO: intuitively, RQO explores the neighborhood of each query
instance; even if two query instances are not close enough to justify
the same robust plan, the work of exploring their neighborhoods
can still be shared.

Existing PQO approaches, on the other hand, are not designed
to find robust plans. Some approaches have heuristics that favor
caching plans that tend to be robust, e.g., plans that are close to
being optimal at multiple points in the selectivity space. However,
these approaches do not consider robustness when selecting plans at
runtime. Furthermore, their ability to cache a robust plan depends
heavily on what candidates were considered for caching in the
first place. As a result, their candidate plans are either too focused
on training queries (e.g., [40]) without accounting for errors in
selectivity estimates, too spread across the entire selectivity space
(e.g., [13]), and/or very expensive to acquire (e.g., Kepler [15], or
[13] in high dimensions).

To overcome these limitations, we propose a new PQO system,
PAR?QO (PARametric Penalty-Aware Robust Query Optimization).
This work differs from classical PQO approaches, which primar-
ily aim to amortize optimization overhead by caching point-wise
optimal plans, without properly accounting for robustness. It also
distinguishes itself from traditional RQO approaches, which focus
on finding a single robust plan for a given query instance, with-
out considering reuse opportunities across the broader selectivity
space. PAR?QO combines both: it aims to produce robust plans
as RQO, but leveraging PQO to amortize optimization overhead.
Importantly, PAR>QO offers a systematic treatment of robustness,
guided by a formal definition and development of new PQO and
RQO techniques to enable their efficient integration. It is practical
to deploy, requiring only non-intrusive access to existing query
optimizers and reasonable training and setup time. It also makes its
decisions in a transparent manner, with no “black-boxing,” which is


https://doi.org/10.14778/3749646.3749711
https://github.com/Hap-Hugh/PAR2QO
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749711
https://www.acm.org/publications/policies/artifact-review-and-badging-current

easy to understand and debug. Specifically, we make the following
technical contributions in this paper:

o PAR2QO employs a novel method to sample the selectivity space
to acquire candidate plans. Leveraging the training workload
and a learned model of selectivity estimation errors, PAR2QO is
able to focus on the most relevant regions of the selectivity space
— not only points corresponding to the estimated selectivities
of training queries, but also in the neighborhoods induced by
uncertainty in these estimates.

o PAR?QO uses a novel caching strategy in the form of plan-
penalty profiles, for a carefully selected subset of candidate plans.
Instead of caching only the plans themselves, this data structure
also caches their cost profiles at sampled selectivities, which
allows the best robust plan to be computed at runtime, using a
rigorously defined robustness objective. Instead of relying on
a black box to predict the most robust plan, the optimization
decision is explainable using the error model, plan profiles, and
robustness objective.
By focusing its learning efforts on selectivity errors observed
from training queries, PAR?QO uses only a tiny fraction of the
training cost of Kepler. PAR?QO’s learned error model informs
the generation of candidate plans at preparation time and plan
selection at runtime, and is able to achieve better query perfor-
mance than Kepler despite shorter training time.

In the process of evaluating our approach and others, we ob-

served that standard benchmarks such as JOB [27] and DSB [11]

are lacking in the PQO setting, because they either offer no guid-

ance on how to generate parameter settings for a query template,
or generate them from simple distributions that fail to stress-test

PQO. Therefore, we propose a new query workload generator,

CARVER (CARdinality coVERage), aimed at generating queries

to provide good coverage of the range of possible subquery car-

dinalities that the optimizer might encounter. When used as
training workloads, CARVER also improves the robustness of

PQO and its ability to generalize to new workloads.

Overall, by defining the robust optimization objective clearly and
designing methods accordingly, PAR>QUO is able to guard against
query performance degradations due to selectivity errors and de-
liver better overall query performance than previous approaches.
Experiments show that PAR?QO consistently outperforms existing
methods across various benchmarks and workloads, achieving up
to 1.96x speedup over PostgreSQL and 1.83x over Kepler on JOB.
It avoids severe regressions, incurs acceptable training cost, and
supports fast inference times. Moreover, PAR2QO maintains robust
performance under shifting data and query distributions.

2 PRELIMINARIES AND BACKGROUND
2.1 Problem Statements

Prerequisites. Our solution is designed to work on existing data-
base systems without changing their plan space, execution engine,
or optimization procedure. We only assume that the system sup-
ports (or can be easily extended to support) the following calls.
First, given a query Q, Sel(Q) returns a vector of selectivity esti-
mates for subqueries of Q. Second, Opt(Q, s) returns the optimal
execution plan for query Q given the selectivity vector s. Third,
Cost(7, s) returns the estimated cost of execution plan 7 given the

4533

vector s of relevant selectivities. Typically, the cost of optimization
is dominated by Opt; individual Sel and Cost calls are far cheaper in
comparison [17]. For our PostgreSQL-based implementation, we
use EXPLAIN to obtain estimates of costs and relevant selectivities,
the same mechanism in earlier work [21, 46] for selectivity injection,
and pg_hint_plan [34] for specifying the plan.

Parametric Query Optimization (PQO). A query template I' has
a set params(T') of query parameters drawn from various domains.
A query (instance) Q following I', denoted by Q ~ T, assigns a
specific set params(Q) of values to the set of parameters in params(T).
To avoid repeating expensive Opt calls for workloads with many
instances of the same query template, PQO precomputes and/or
maintains information for T that enables it to efficiently find, for
a given query Q ~ T, an execution plan whose cost is not much
higher than that of Opt(Q, Sel(Q)), without making an Opt call.

Typically, PQO uses a per-template plan cache, which contains
a set of candidate plans for the template, and selects the best plan
from them for each incoming query at runtime.

Robust Query Optimization (RQO). In reality, when optimizing a
query Q, the system does not have the true selectivities s, but instead
their estimates 8. To quantify the penalty of making a wrong selec-
tion and to define a “robust” plan formally, we adopt the following
general framework of PARQO [46] based on stochastic optimiza-
tion, which is flexible enough to encode many notions of robustness
found in previous work and applications [1, 4, 44].

We assume a user-defined penalty function Penalty (1, s) specifying
the penalty incurred by executing a potentially non-optimal plan
under the true selectivities s. We use the same default as PARQO,
but note that our approach works for any choice of Penalty:

if Cost(rr,8) < (1+17) - Cost™(s),

otherwise.

Penalty(7r, s) = { (1

0

Cost(r,s) — Cost™ (s)
Here, Cost*(s) = Cost(Opt(Q, s), s) is the (surrogate) optimal cost,
approximated by the estimated cost of the best plan obtained by
the optimizer assuming the knowledge of the true selectivities s;
Cost(z, s) is the estimated cost of 7 when executing under s. Equa-
tion (1) defines penalty to be proportional to the amount of cost
exceeding the optimal, but only if it is beyond the prescribed toler-
ance (7 = 0.2 following the convention [1, 10, 13, 44, 46]).

Since selectivities are uncertain, we model them as a random
vector S. Assuming that S ~ f(s|$), the probability density func-
tion for the distribution of true selectivities s conditioned on the
estimates §, we can then define the most robust plan for Q as the
one that minimizes the expected penalty E[Penalty(7, S) | Sel(Q)].

Parametric Robust Query Optimization. The problem is defined
as follows. Given a query template T, a (training) database instance
D, and a (training) query workload W of queries following I':

o (Cache preparation) Compute a data structure from D and W.
e (Runtime plan selection) Given a query Q ~ T, use the cached
data structure to find a robust plan for Q.

We first present two baseline solutions in Section 2.2 and then
discuss our main solution in Section 3.

Parametric Query Workload Generation. In a “cold-start” variant
of the above setup, the training query workload W is not given. This



variant requires addressing the following problem: given a query
template I' and a database instance D, generate query workload W
following T'. Informally, we would like the generated workload to
serve as a good workload for training and/or testing a parametric
robust query optimizer. To this end, the generated queries should
provide good coverage of the various selectivity scenarios that the
optimizer can potentially encounter, including situations when the
data distribution may change and the query distribution may be
different. We present our solution in Section 4.

2.2 Baselines: PARQO and PARQO’

PARQO [46], a state-of-the-art robust query optimization frame-
work, proposes caching one robust plan per template and reusing it
opportunistically at runtime. This approach serves as a rather weak
baseline for PQO; hence, we additionally propose a stronger base-
line called PARQO’, which elevates it into a full-fledged solution
for parametric robust query optimization. We first briefly review
the components of PARQO below and then describe PARQO’.

Error Profiling. PARQO uses the database instance D and the
query workload W to learn an error model € for query template
T that allows us to construct the conditional distribution of true
selectivities f(s|$) given the estimated selectivities § = Sel(Q) for
a query Q ~ TI'. In general, optimizing a complex query may in-
volve many selectivities, from single-table selections to multi-table
selection-join subqueries; it would be infeasible to acquire all possi-
ble selectivities and represent the full joint distribution of all their
errors. Therefore, PARQO chooses to model € using a collection
of error profiles, each capturing a querylet, i.e., a small subquery
template (up to a three-table selection-join) in I'. We collect these
profiles by comparing the optimizer estimates with the real sub-
queries cardinalities observed by executing W over D. Each error
profile contributes a factor to the joint distribution f(s|$).

Finding a Robust Plan. Givenaplan Q ~ T and § = Sel(Q), PARQO
computes a robust plan for Q per Equation (1) as follows. First, to
tame the complexity of subsequent optimization, PARQO identifies
a small number of sensitive dimensions among those of § whose
uncertainty impacts the penalty the most. This dimensionality re-
duction is guided by a careful sensitivity analysis that assesses
each dimension’s contribution to the overall variance in penalty,
using Monte-Carlo sampling from f(s|$). Second, PARQO draws a
number of selectivity samples from f(s|$) restricted to the sensitive
dimensions, and invokes Opt with sampled selectivities to obtain a
set of candidate plans. Finally, PARQO returns the candidate plan
with the least expected penalty, estimated by recosting the plan at
sampled selectivities and comparing its costs with the respective
optimal plans at these locations.

Parametric Robust Query Optimization with PARQO. The method
above is designed to find a robust plan for a single query instance.
Since the overhead of finding a robust plan is high, PARQO caches
a robust plan per query template. Let Q. denote the query that
the cached robust plan was optimized for, and let §; denote the
estimated selectivities for Q.. At runtime, given a new query Q
with the same template and estimated selectivities §, PARQO tests
if the Kullback-Leibler (KL) divergence of f(s|$) from f(s|s) is
below a prescribed threshold &;. If yes, Q and Q. will be almost

4534

indistinguishable from the perspective of a cardinality-based opti-
mizer, so PARQO simply returns the cached plan for Q. Otherwise,
PARQO falls back to calling Opt(Q, §) to obtain a plan for Q, with
no guarantee of robustness.

PARQO': A Stronger Baseline. We extend PARQO to obtain a
strong baseline for PQO as follows. To prepare the cache:

e Learn an error model € from D and W.

e Construct € = {({x;,s;)}, which consists of a set of candidate
robust plans (7;) along with the respective selectivities (s;) they
were obtained under. Starting with an empty €, we iterate through
each query Q € W with estimated selectivities §. We calcu-
late the KL divergence of f(s|$) from f(s|s;) for each candidate
(mi, si) € C.If the divergence is below ¢ for at least one existing
candidate, meaning that Q is already “covered” by C, we move
on. Otherwise, we find a robust plan 7 for Q and add (7, §) to C.

At runtime, given a query Q, we find the candidate (7, s;) € C
that minimizes the KL divergence of f(s|Sel(Q)) from f(s|$;), and
return s; as a robust plan for Q. No Opt or Cost calls are needed.

A main issue with PARQO’ is that in order for a query Q to reuse
a cached plan 7; reliably, f(s|Sel(Q)) must be very similar to f(s|s;),
so many (7;, s;) may be needed to cover the entire selectivity space.
However, finding each robust plan to add to the cache is expensive,
which makes the cache preparation cost high.

3 PARAMETRIC PENALTY-AWARE ROBUST
QUERY OPTIMIZATION

A key insight into beating the baseline in Section 2.2 is to reuse
the computation involved in finding a robust plan, rather than
reusing the result plans directly. We illustrate the opportunities
for reusing computation with a simple conceptual example. For
brevity, we will refer to Sel(Q) as the “location” of query Q in the
selectivity space. Intuitively, f(s|Sel(Q)) defines a “neighborhood”
around (but not necessarily centered at) Q, and finding a robust
plan for Q involves exploring this neighborhood. Suppose PARQO’
has cached two plans 1 and 72 whose neighborhoods are both near
Q’s, but neither is close enough for Q to justify reuse. Nonetheless,
the two neighborhoods together provide sufficient coverage for
Q’s neighborhood. Recall that finding 71 and 77 in the first place
required sampling plans in their neighborhoods. The same samples
should be useful for finding a robust plan for Q.

This insight leads us to our new solution PARZQO. It changes
the strategy of caching robust plans for previously seen queries of
a template to caching a data structure P called the plan-penalty
profiles. On a high level, P compactly represents how a set of ro-
bust plan candidates performs relative to the optimal plans (per
Equation (1)) over a set of probe locations in the selectivity space.
PAR?QQ intelligently samples probe locations and uses the optimal
plans to seed the set of candidate plans. This set may be too big,
so for efficiency, PARZQO further reduces this set to construct B.
At runtime, given a query Q, PAR2QO uses B to estimate the ex-
pected penalties of candidate plans over f(s|Sel(Q)), by reweighing
per-location penalties to remove sampling bias, and selects the best.

While the high-level idea is simple, interesting challenges lie in
how to design an effective sampling scheme for probe locations
and how to reduce the candidate plan set in order to facilitate the
identification of robust plans at runtime. In the remainder of this



Query (Q) &

Error
profiling AN

Error model (€)
Training Probe

|
¥
Plan-penalty Robust

queries (W) Probe location locations (L) Find & cost candidate  profiles (B) plan
sampling plans (P) at L;

perform reduction

Offline cache preparation Runtime plan selection

Figure 1: PAR2QO workflow.

section, we describe the details of PARZQO, whose workflow is
depicted in Figure 1. Cache preparation proceeds in three steps:

e Given D and query workload W, learn an error model €. This
step is the same as the error profiling step discussed in Section 2.2.

e Sample a set £ of probe locations (Section 3.1).

o Find and cost candidate plans at £, and reduce/summarize the
information into the plan-penalty profiles ‘B (Section 3.2).

Selection of a robust plan at runtime is covered in Section 3.3.
Finally, Section 3.4 presents an in-depth discussion of PAR2QO by
contrasting it with other state-of-the-art approaches, highlighting
the novelty of our solution and how it represents a more principled
approach to achieving plan robustness, whose advantages will also
be empirically demonstrated in Section 5.

3.1 Sampling Probe Locations

There are two natural ideas. First, sampling should be informed
by the query workload W because, intuitively, we do not want to
devote much effort to regions that do not matter to queries. Second,
for each query Q, we want to probe not only the location Sel(Q), but
also locations in the neighborhood defined by f(s|Sel(Q)), because
they might yield the true optimal plan for Q.

A naive approach is to randomly sample some locations in the
neighborhood of each Q, but there are two pitfalls. First, if the
workload W is skewed, some regions of the selectivity space will
be over-sampled. Such high concentrations of samples are wasteful
because they have diminishing returns on improving our under-
standing of these regions. Second, overemphasis on popular queries
diverts resources from handling less common queries that may turn
out to be costly and stand to benefit more from robust plans.

Our idea is to employ a check akin to the reuse check in PARQO’
(Section 2.2) to prevent over-sampling in a region: if a query “hits”
a region previously sampled, we do not sample more from this
region. We also track how often a region is hit by queries in W,
which empirically captures the query distribution and allows us to
estimate the sampling probabilities of probe locations, useful for
bias correction later (Section 3.3).

The algorithm proceeds as follows. We organize the set of sam-
pled probe locations into clusters {(L;, s;, h;) }, where £; denotes
the set of probe locations in cluster i, s; serves to remember the
distribution f(s|s;) from which £; was sampled, and h; tracks how
many queries in W hits this cluster. For each workload query Q € W,
we find the cluster (£;, s;, h;) that minimizes the KL divergence
of f(s|Sel(Q)) from f(s|s;). If this minimum divergence is below
the prescribed threshold &, we increment h; by one and move on.
Otherwise, we sample n locations from f(s|Sel(Q)), and create a
new cluster {(Lew, Sel(Q), 1)}, where Ly contains the newly sam-
pled locations. At the end of the process, let m < |W| denote the
final number of clusters. Overall, £ is the union of all £;’s, with
mn locations total. The lower-right quarter of Figure 2 graphically

4535

est. selectivities (§)

illustrates our probe location sampling approach, in comparison
with previous work, which is further discussed in Section 3.4.

3.2 Computing Plan-Penalty Profiles

With the set £ of probe locations, the next step is to invoke the
query optimizer to find and cost candidate plans at £, and then
post-process the resulting information into a plan-penalty profile
B. Conceptually, P is a matrix whose rows correspond to candidate
plans and columns correspond to the probe locations. The entry
B[, s] records the value of Penalty(r, s) defined by Equation (1),
and the row vector P [, -] represents the penalty profile for .

As the first step in building B, we obtain an initial set P of
candidate plans and construct a plan-cost matrix C, where each row
vector C|[, -] represents the cost profile of candidate plan = € P, i.e.,
its costs at all probe locations. To collect the set P, we call Opt(Q, s)
to obtain the optimal plan for each probe location s € £. Note that
|P| < |£] because it is possible for the optimizer to choose the same
plan for multiple locations. Then, for each distinct candidate 7 € P,
we call Cost(7, s) for each s € £, and store the result in entry C[ 7, s].
The overall running time of this step is dominated by |£| calls to
Opt and |P| - |£] calls to Cost.

At this point, we can simply compute B from C by calculat-
ing each entry B[, -] using Equation (1), with Cost(7,s) = C[, s]
and Cost*(s) = min,cp C[n’,s]. However, the size of P can be
large because of the number of candidate plans. For example, in
our experiments in Section 5, templates 22 and 24 from the JOB
benchmark [27] produced more than 300 candidate plans. Hence,
we next focus on reducing the set P of candidate plans to a small
number k. After reduction, the size of § becomes O(k|L|). Besides
saving space and improving inference speed, a good plan reduc-
tion method can also help improve robustness (and hence query
performance), which we will validate empirically in Section 5.

We consider two plan reduction methods below. The first method
prefers choosing plans that are near-optimal at many probe loca-
tions, which heuristically reflects robustness. The second method is
more conservative: it chooses a set of representative plans that can
substitute for others, without second-guessing robustness at this
point (later, the runtime plan selection procedure will pick, among
these representatives, the best plan for the given query accord-
ing to the more precise robustness criterion). We give an example
comparing the results of these methods in the full version [47].

Reduction by t-Approximate Cover. The first method follows a
natural heuristic: we prefer plans that are near-optimal at a large
number of probe locations. The same heuristic and its variants have
been employed by various PQO methods including QueryLog [40]
and Kepler [15]. More precisely, we say that a plan 7 covers probe
location s if Cost(7,s) < (1 + 1) - Cost*(s), where 7 is the same as in
Equation (1). Given k, the target number of candidate plans after
reduction, we want to choose a subset of k plans in P that together
cover as many probe locations as possible.

This problem is an instance of the set cover problem [43], where a
simple greedy algorithm offers an approximation ratio of H(|£{|) <
In|£| + 1 (in terms of the number of candidates needed to cover all
probe locations). In each step, we greedily pick the candidate plan
that covers the most number of probe locations that have not been
covered yet. The running time is O(|P| - |£]), with no optimizer
calls, and is negligible compared with the time to acquire C.



We expect this method to work well in practice, because its
heuristic generally reflects robustness. However, it can miss robust
plans. The reason is that this heuristic, by considering the overall
number of probe locations covered, reflects a “global” measure of
robustness, but at runtime, robustness in fact depends on the “local”
neighborhood around the query of interest.

Reduction by Cost Profile Similarity. Our second, more conserva-
tive, method aims to choose representative plans that can generally
substitute for others. To capture the extent to which two plans 7 and
7’ can substitute for each other, we want a distance metric reflect-
ing the similarity between their cost profiles C[rx, -] and C[r, -].
To this end, we adopt the Jensen-Shannon distance between the
two discrete distributions P and P’ represented by the respective
profiles. More precisely, this distance is calculated as the square
root of the average between the KL divergence from P to M and the
KL divergence from P’ to M, where M = (P + P’)/2 is a mixture
distribution of P and P’. An alternative would be the Wasserstein
distance, which is better at capturing shape and location differences
between distributions, but we choose Jensen—Shannon because of
its low computational complexity.

Then, given the target number k, we want to choose a subset of
plans in P that minimizes the maximum distance between any plan
in P to its closest among the k chosen. This problem is an instance
of the metric k-center problem [43], and a range of clustering al-
gorithms are applicable. Our implementation uses a simple greedy
algorithm based on the farthest-first traversal, which gives an ap-
proximation ratio of 2. We choose the first candidate plan randomly
from P and place it in our solution set S. While |S| < k, we add to
S the plan 7 in P \ S that maximizes the distance between = and
plans already in S. We stop and return S once |S| = k. The running
time is O(k - |P| - |£]), where the |£| factor reflects the running
time of one distance computation. Again, there are no optimizer
calls, so the cost is negligible compared with constructing C.

3.3 Runtime Plan Selection

At runtime, PARZQO has access to the error model &, the plan-
penalty profiles P with k candidate plans (Section 3.2), as well as
additional information on the probe locations £ (Section 3.1). Given
a query Q, PARZQO uses & to derive f(s|Se(Q)), the distribution
of true selectivities conditioned on the estimates. Then, PARZQO
estimates the expected penalty (Section 2.1) for each of the k can-
didate plans, and returns the plan with the lowest estimate. To
estimate E[Penalty(r,S) | Sel(Q)] for candidate plan 7, we use its
penalty profile B[, -]. If the probe locations were sampled from
f(s|Sel(Q)), the average penalty would yield an unbiased estimate
of the expected penalty. However, since the probe locations were
sampled differently, we must reweigh the penalties to correct the
bias using the method of importance sampling.

The core idea is to reweigh the penalty at each probe location
based on how likely that location is sampled from the target distri-
bution f(s|Sel(Q)) and how likely that location is sampled from our
sampling distribution. Recall from Section 3.1 that probe locations
are organized into m clusters with n locations in each. For the i-
th cluster (£;, s;, h;), its n probe locations £; = {s;1,8:2,...,8in}
are sampled from f(s|s;). Since the i-th cluster was hit h; times
by training queries, we estimate the sampling probability of this
cluster as h;/ X2, h; = h;/|W|, which measures how frequently

4536

Sel,
Sel,

Sample uniformly in
selectivity space Sample and cost

only at query points

Plan diagram’s plans Sel, QueryLog Sel,

3 2 x x
88e0 N X x [

X x
38 <1 >Jt| x %

Ensure just enough xD( x
x
S L Sample around each samples in every X [ X
Over-concéntration

query region st around

query point using fixed
RCE strategy;
cost only at query points

of samples possible s according to

x
x %
X x
x B
x

Kepler Sel, PAR2QO Sel,

Figure 2: Illustration of locations in a 2-d selectivity space
where various PQO approaches obtain candidate plans (cir-
cles) and cost them (crosses), using training queries (squares)
when applicable.

a new query falls into cluster i based on how many times it was
encountered during training. Combining both components above,
we estimate the sampling probability of a specific location to be s;
as (hi/|W]) - f(si jlsi). Meanwhile, the likelihood of this location
under the target distribution is f(s; j|Sl(Q)). Hence, overall, the
expected penalty of 7 is estimated as:

Z Z f(szj|ﬂ(Q))
mn 24 24 (hifIW) - (si150)

Since we use expected penalties to rank plans, we can simplify the
above calculation into the following, by dropping terms that do not

affect the ranking:
f(5i,j156(Q))

;Z hi f(sl,]|sl

As an additional optimization, we can also cache the value of
f(sijlsi) when generating s; ;. Overall, the selection of the ro-
bust plan can be done by a single pass over B, so the running time
is O(k|£]). No optimizer calls are needed except the single Sel(Q)
call to obtain the estimated selectivities.

B, si 5]

RUEATEIR

3.4 Discussion

We contrast PAR2QO with other PQO approaches, including two
state-of-the-art systems, Kepler [15] and QueryLog [40]. Note that
while previous PQO approaches do not specifically optimize for find-
ing robust plans, many do have components whose heuristics favor
keeping robust plans as candidates. We first highlight differences
between PAR2QO and Kepler [15], illustrated by the lower-right
and lower-left quarters of Figure 2.

(1) Kepler executes plans for all training queries as well as alterna-
tive plans obtained via row-count evolution (RCE). Measuring
actual execution times makes Kepler robust against errors not
only in selectivity estimation but also in plan cost models. In
contrast, PAR2QO only executes (counting versions of) train-
ing queries (and no alternative plans) to learn an error model
for selectivities, and it “trusts” Cost(, s) given correct s. Hence,
PAR2QO spends significantly less time preparing its cache. In



Section 5, we will see that focusing on selectivity errors delivers
comparable or better query performance than Kepler despite a
much lower initial cost.

Kepler explores the “neighborhood” of a training query Q using
RCE, which perturbs subquery selectivities in order to discover
more candidate plans. This method hence improves robustness,
analogous to PAR?QO sampling from f(s|Sel(Q)) according
to the error model (Section 3.1). However, RCE uses a fixed
strategy for generating perturbations (exponentially spaced
in selectivity ranges), which we believe is not as effective as
PAR?QO’s perturbations informed by the error model.

The same r-approximate cover method in Section 3.2 is em-
ployed by Kepler to reduce the set of candidate plans. As dis-
cussed earlier, this method helps to improve “global” robust-
ness (over the training workload). However, unlike PAR2QO,
which has a built-in mechanism (Section 3.1) to avoid over-
representing popular queries, the effectiveness of Kepler’s plan
reduction is susceptible to an imbalanced query workload. More-
over, in determining coverage, Kepler does not consider the
costs of candidate plans at locations obtained by RCE; hence,
its notion of coverage is much narrower than ours.

Kepler makes its runtime plan selection using a neural net-
work, combined with a method to assess prediction uncertainty.
However, it is difficult to justify plan choices and interpret un-
certainty. In contrast, PAR?QQ’s plan selection is transparent;
the availability of the error model and the plan penalty profiles
makes the selection process easy to understand.

The last point above, on PAR?QQ’s advantage of interpretabil-
ity over Kepler, also applies to other black-box methods. While
effective in many scenarios, these methods obscure the rationale
behind plan choices, making it difficult to interpret model behavior,
diagnose the root causes of regressions, and implement corrections.
In contrast, PAR2QO’s decisions can be explained by the chosen
plan’s cost penalty profile and the error model of selectivity es-
timates, as our robustness objective is clearly defined. A recent
system demonstration based on PARQO [48] shows how, given any
two plans (e.g., robust vs. optimizer default), it can compare and
inspect their robustness by visualizing their costs over the region of
uncertainty surrounding the initial selectivity estimates. Users can
see potential selectivities for which the robust plan avoids severe
performance regressions. If, for any reason, robust plans frequently
underperform because actual selectivity errors do not follow the
error model, a clear corrective step would be to recalibrate the error
model. Such ease of interpretability and diagnosis would be difficult
if not impossible to achieve for black-box methods.

Next, we compare PAR?QO with PQO approaches that are not
based on deep learning. The most recent representative is Query-
Log [40], illustrated by the upper-right quarter of Figure 2. We also
touch on some earlier approaches, including plan diagrams [13],
illustrated by the upper-left quarter of Figure 2.

(1) To find candidate plans, previous work has generally used one
of the following two methods. The first method, used by earlier
approaches including the pioneering work of anorexic plan
diagrams [13], attempts to cover the entire selectivity space,
but quickly becomes intractable beyond 5-6 dimensions. The
second method, used by QueryLog, is to sample past queries

4537

for candidate plans. However, QueryLog has no mechanism
for further perturbing selectivities to obtain potentially better
plans, like PAR?QQ’s sampling (Section 3.1) or Kepler’s RCE.
To reduce the set of candidate plans, most PQO approaches,
like Kepler, use the T-approximate cover method in Section 3.2
or some variants. For example, anorexic plan diagrams use
the same method; QueryLog seeks a cover that minimizes an
“aggregate sub-optimality” measure, which is close in spirit to
this method. While this reduction naturally favors robust plans,
its benefit is limited here because of how the candidates were
generated in the first place: neither uniformly sampling the
entire selectivity space nor focusing on the locations of the
training queries alone comes close to PARZQO in the ability to
capture the effect of selectivity estimation errors on robustness.
To select among candidate plans at runtime, QueryLog employs
a model using contextual multi-armed bandit learning, which
can adapt dynamically over time, while earlier approaches gen-
erally perform no better than recosting all candidate plans for
the query and picking the cheapest. None aims at picking a
robust plan like PAR?QO does.

@

®)

In summary, PARZQO offers a systematic treatment of robustness
— driven by a formal definition of robustness against errors in
selectivity estimates — from initial learning of the error model,
sampling of probe locations and candidate plans, construction of
the plan-penalty profiles, to plan selection at runtime.

4 CARVER: WORKLOAD GENERATION
GUIDED BY CARDINALITY

Training and testing query optimizers require a query workload,
whose choice is not always clear. Synthetic benchmarks (e.g., DSB [11])
typically use standard distributions (e.g., Gaussian) to generate pa-
rameter settings for given templates. Alternatively, if the database
has been operating for some time, past queries can be used for the
workload. In either case, there is no guarantee that such workloads
reflect future queries. If our goal is robust query optimization, it
is natural to make training and testing queries cover the possible
scenarios that a query optimizer may potentially encounter, as
comprehensively as possible. Indeed, recent work on Kepler [15]
generates parameter settings for a given query template by uni-
formly sampling rows from the full join result (with no selections
applied), ensuring that every join result row has a chance to be
covered by the generated query workload.

As argued in Section 1, however, we need a still better notion
of coverage. Recall that a cost-based optimizer makes its decisions
by estimating the selectivities of query predicates. Hence, it would
be useful for the workload to include queries that exhibit a diverse
range of selectivities. By randomly sampling final join result rows,
Kepler will tend to overrepresent popular column values in its query
parameters. Second, optimizer decisions are heavily influenced by
the cardinalities of subqueries. Therefore, we should also generate
scenarios that cover the range of possible subquery cardinalities,
instead of focusing only on the final join result as Kepler does.

CARVER meets the above requirements by providing a flexible
and powerful way for users to ensure that the generated queries pro-
vide good coverage of the optimization scenarios. Formally, given
a database instance D and a query template T’ with a set params(T")



of parameters, our goal is to generate a set of queries following the
template I', where each query assigns a specific value to each param-
eter in params(T). Overall, CARVER works as follows. It randomly
generates queries following template I' from a mixture distribution
{(Pg, wi) }, whose components (Py’s) and associated weights (wy’s)
are specified by the user. Each component Py, is specified by a set of
subquery templates {y ;} of I' whose parameters form a disjoint
partitioning of params(T'). Py is defined as the product distribution
[1; Pk j, where each Py ; is a distribution governing the generation
of values for params(yy ;) in the subquery template {yx ;}.

We now describe the procedure for generating from Py ; for
each params(y ;). We assume that y ; is a selection-join query
template, and that it can be rewritten as oy(q), where q is the
(parameterless) base query obtained from yy ; by “removing” all
atomic query predicates involving parameters,! and 6 is the re-
mainder predicate involving params(yy ;). The selectivity of a set-
ting in params(yy, ;) is defined as |og(q(D))|/Ig(D)| where 0 is in-
stantiated with the given setting. Users can specify a bucketiza-
tion B of the selectivity range (not necessarily equally spaced),
e.g., B ={[0,0.5%), [0.5%,1%), [1%, 2%), . . ., [90%, 1]}; CARVER will
generate an equal number of params(y ;) settings for each bucket
of B, up to the number of possible settings for this bucket.

Intuitively, including a subquery in the definition of mixture
component guides CARVER to ensure that its generated parame-
ters provide good coverage of the possible subquery cardinalities.
Additionally, including subqueries joining multiple tables and in-
volving multiple query parameters ensures that CARVER accounts
for dependencies among join and selection predicates.

Depending on the type and complexity of the remainder predi-
cate 0, the generation procedure varies. We present several common
cases below. Because of space constraints, we provide a detailed
example and discuss additional challenges in the full version [47].

Equality Selections. Here, 0 has the form A1 =01 A+ - ANAy = oy,
where each A; is a column of some input table in q. First, we group
the result rows of g by Ay, ..., A, and compute the row count for
each group. The selectivity of 8 for each group (using the group-by
values for parameter setting) is simply the group row count divided
by |q|, the total of all group row counts. Second, we sort the groups
by their counts and bucketize them according to B. Finally, we draw
an equal number of samples from each bucket (unless limited by
the number of groups available in the bucket). Note that the first
and second steps can be computed conveniently in SQL using a
SELECT-FROM-WHERE-GROUPBY-ORDERBY statement.

Note that the above procedure also handles the case of a single
“not-equal-to” selection, i.e., @ has the form A # v, by computing
the selectivity of v as one minus its group row count divided by |q|.

Inequality Selections. Suppose that 0 has the form A; < v A---A
Ap < vy As with the case of equality selections, we first group
the result rows of g by Ay, ..., A, and compute the row count for
each group. We then sort the groups by Ay, ..., Ap; the result is
conceptually a n-dimensional array A representing a discrete prob-
ability density function. Let A[vy, ..., v,] denotes the array entry
for (v1,...,0n). Next, we compute the cumulative density function
(CDF) over A in-place (details to be presented shortly). We then sort

The general procedure needs to handle subtleties that arise because of OR and NOT,
which we omit here.

4538

A by the CDF values and bucketize them according to B. Finally, we
draw an equal number of samples from each bucket (again, subject
to availability). All processing before the CDF computation can be
done easily in SQL.

In more detail, the CDF can be computed as follows, by accu-
mulating A over one additional dimension at a time. In the first
step, for each setting of Aj,...,Ay—1 tov1,...,0p—1, we update the
subarray Aoy, ...,v,-1, *] to be the conditional CDF over A, by
computing the prefix sum over its elements. In general, the step ac-
cumulating over A; updates each subarray A[vy,...,0j-1,%,...] to
be the conditional CDF over A;, ..., A, while setting Ay, ..., Aj_1
to v1,...,0;—1; each such subarray is updated in-place as the prefix
sum over its constituent subarrays updated in the previous step.
The last step updates A to be the overall CDF.

The above procedure can be easily extended to support other
inequality predicates: A; < v; can be supported by handling the
bucket boundaries slightly differently; A; > v; and A; > v; can be
handled by reversing A; (from ascending to descending) in the sort
order of the groups. It is also possible to support range predicates
in the form of A; BETWEEN [; AND u; by conceptually duplicating the
column A; in input data as columns Ag and AY, and handling the
predicate as Aé 2L ANAY <y

LIKE Selection. Suppose that 0 has the form A LIKE v. The design
space for the generation procedure is large. We describe below the
token-based approach currently employed by CARVER. Exploration
of alternative approaches, such as using language models to further
classify different types of LIKE-operators [3], is left for future work.
First, we make one pass over the result rows of g to tokenize all
A values. If A in general contains multi-word strings, we tokenize
each A value into words. Otherwise, we tokenize each A value into
characters. During the pass, we maintain the set of tokens along
with the number of g result rows whose A value contains this token.
Second, we sort the tokens by their counts and bucketize them
according to B. Finally, the same sampling procedure is carried out
over the buckets. Each token token sampled corresponds to the
predicate A LIKE ’%token%’.

The above procedure can be extended to a conjunction of LIKE
selections. For example, to handle A1 LIKE v1 A Az LIKE vy, for each
result row g, we will tokenize both A; and A; values and consider
all pairs of tokens, one from A; and the other from Az. We maintain
the set of token pairs along with the number of g result rows whose
A1 and Ay contain the tokens in the pair, respectively.

5 EXPERIMENTS

Databases and benchmarks. Here, we focus on experiments
using JOB (Join Order Benchmark) [29], based on real-world IMDB
data, consisting of 33 query templates. It is designed to challenge
optimizers with skewed/correlated data distributions and intricate
join relationships. We have also performed evaluation using DSB
[11], a recently introduced industrial benchmark built on synthetic
data, extending TPC-DS [35] with more sophisticated data distribu-
tions and correlations. Due to space constraints, however, its results
are discussed only in the full version [47].

Workload synthesis. For JOB, we generate three different work-
loads: CARVER, Uniform, and Historical. For CARVER, we con-
sider the one-component scenario by default, regarding all 2-table



querylets as the set of subquery templates {y ;} in our genera-
tor, and the selectivity bucketing for each params(yy ;) is performed
by partitioning the GROUP BY results into ten equally spaced se-
lectivity ranges, i.e., B = {[0,10%), [10%, 20%), . .., [90%, 1] }. For
Uniform, we first perform a full join across all tables based on
the join conditions specified in the query templates. We then sam-
ple params(T") uniformly from the join result, same as the synthetic
method in Kepler [15]. For Historical, we follow the methodology
in PARQO [46]; additional workload details are available in the
full version [47]. For all workload generation methods, after initial
synthesis, we further ensure only queries that return nonempty re-
sults are included. We synthesize 250 queries for each params(T’): 50
queries are used to initialize and train PQO models; the remaining
200 queries serve as the testing workload for evaluation.

PAR?QO setup. We implement PAR?QO on top of PostgreSQL
V16.2, leveraging plan and selectivity injection tools from prior
work [21, 34, 46]. For each T, we learn the error model f(s|$) using
relevant querylets containing up to 3-table subqueries, following
the same procedure in PARQO [46]. Unless otherwise specified,
we set n = 50 as the number of probe locations per cluster and
& = In(200) as the prescribed KL divergence threshold. The sam-
ple size is user-configurable, and we demonstrate that even with
this relatively small number of probe locations, PARZQO achieves
strong performance. The target upper bound on the number of can-
didate plans after reduction is max (0.2 - |P|, 10), where 10 ensures
sufficient diversity when the initial |P| is small. For plan reduc-
tion, we use r-approximate cover (r-Cover in short) by default.
Section 5.3 further examines the impact of these choices.

The remainder of this section is structured as follows: First,
we compare PAR?QQ’s query performance against others in Sec-
tion 5.1. Next, Section 5.2 compares their overhead (training and in-
ference). Section 5.3 evaluates the contributions of components and
parameter settings in PAR?QO through a series of ablation studies.
Then, Section 5.4 assesses plan robustness under data distribution
shifts. Finally, Section 5.5 evaluates how CARVER outperforms
other synthetic workloads in training optimizers.

5.1 Comparison of Query Performance
We compare PARZ2QO with the following methods:

o PostgreSQL: Here, we simply rely on PostgreSQL’s default be-
havior, invoking its optimizer separately for each query instance.
While this method serves as a useful comparison point, our goal
goes beyond matching the optimizer’s performance — we aim
to enhance plan robustness and reduce optimization time in a
parametric setting. To provide a more comprehensive evaluation,
Section 5.3 further introduces stronger baselines.

Kepler: Kepler [15] is a state-of-the-art PQO method that learns
from real query executions to predict the fastest plan. We use
RCE to obtain candidate plans, prune candidates using its default
greedy algorithm with a near-latency-optimal threshold of 1.2,
and train a model for each template.

PARQO and PARQO’: PARQO refers to the one-robust-plan-
per-template approach previously proposed for PARQO [46],
while PARQO’ is the extension introduced in Section 2.2 that
considers caching multiple robust plans obtained from training

4539

queries. Both methods use the same error profiles and expected-
penalty-based metric for robust plan selection as PARZQO.
QueryLog’: Following the plan population method [40], this
baseline obtains its initial candidate set from optimal plans ob-
served in the training workload, and then applies 7-Cover plan
reduction. At runtime, it selects the plan with the lowest recost,
Cost(7r, Sel(Q)).

Bao: Bao [33] is a learned query optimizer that leverages rein-
forcement learning to generate hints for input queries. It serves
as a baseline representing general-purpose learned optimizers
that are not specifically tailored for the PQO setting.

For a fair comparison, all methods use the same set of training
queries. Configuration of Bao is more involved; we followed the
guidelines in its tutorial [32] to obtain a reasonable setting. All
configuration details are available in the full version [47]. To re-
duce execution noise and simulate a warm-cache environment, we
execute each selected plan 5 times and report the median latency as
the final result. All experiments were conducted on a Linux server
with 16 Intel(R) Core(TM) 19-11900 @ 2.50GHz processors.

Table 1 (ignore the Other Variants section for now) summarizes
the results on JOB. PAR?QO outperforms other methods in terms
of average execution latency and delivers the highest improvement
on CARVER, achieving a 1.96x speedup over PostgreSQL. Recall
that CARVER is a “harder” workload than Uniform and Historical,
because it seeks to cover the full range of possible selectivities
(Section 4). Kepler shows strong speedups on Uniform and His-
torical, but it achieves only a 1.07X speedup on CARVER. On His-
torical, both Kepler and PAR?QO reach approximately a speedup
of 1.95x over PostgreSQL, higher than other baselines. PARQO’,
PARQO, and Bao all achieve speedups, with PARQO’ outperform-
ing the other two, but it still underperforms PAR2QO. Meanwhile,
QueryLog’ shows slight regressions below PostgreSQL across all
workloads, with the largest observed on CARVER at —1.10x.

Beyond average latency, our results show that PAR?QO achieves
a superior balance between efficiency and robustness. To quantify,
Table 1 shows the number of templates exhibiting either significant
speedup/regression or severe regression, defined as follows:

e Significant speedup/regression: A change in query latency ex-
ceeding 1.2X/—1.2X compared with the PostgreSQL baseline.
o Severe regression: A performance degradation worse than —2Xx.

Significant speedup highlights a method’s ability to find more
efficient plans; however, equally critical is the ability to avoid signif-
icant/severe regressions. While Kepler achieves the largest number
of significant speedups (even outperforming PAR?QQ in this re-
gard), it is fragile — it frequently encounters severe regressions
that significantly degrade its overall average latency. In contrast,
PAR?QO avoids such extreme cases and maintains stable perfor-
mance. On the other hand, while other baselines also rarely ex-
hibit severe regressions, they are too conservative — most achieve
much fewer significant speedups compared with PARZ2QO (with
the exception of PARQO’, which gets closer to PARZQO but still
underperforms). Bao fares very well in avoiding both significant
and severe regressions, partly because it relies on hinting rather
than direct plan injection, allowing PostgreSQL to moderate its
behavior; however, it also achieves far fewer significant speedups.



Table 1: Average execution latency (ms) and counts of significant speedup (T) / regression (]) cases, by different PQO methods
and their variants, across three workloads of JOB. Latencies within 5% of the best in respective columns are highlighted.

CARVER Uniform Historical
Latency (ms) T>1.2x |>12x |>2Xx Latency(ms) T>1.2x |>12x |>2x Latency(ms) T>1.2x |>12x |>2X
PostgreSQL 536 ms - - - 410 ms - - - 637 ms - - -
PAR2QO 273 (1.96X) 15 3 0 254(161x) 14 2 0 326 (1.95x) 15 7 0
Kepler 499 (1.07x) 19 5 4 306 (1.34%) 15 5 2 328(1.94x) 19 2 1
PARQO’ 305 (1.76X) 14 7 0 305(1.34x) 13 5 0 348(1.83X) 16 4 0
PARQO 350 (1.53) 9 2 0 383(107X) 3 2 0 433(1.47x) 9 5 0
QueryLog’ 587 (-1.10x) 4 6 0 428(-1.04x) 5 4 1 668 (-1.05x) 2 7 0
Bao 443 (1.21x) 5 1 0 325(1.26X) 6 1 0 613(1.04x) 8 2 1
Other Variants:
Uni-BestCost 658 (-1.23) 3 10 3 426 (-1.04X) 4 9 5 725 (-1.14x) 3 9 3
BestCost 344 (1.56X) 12 3 0 355(115%) 12 3 0 400(1.59) 12 1 0
BestCost-bound 513 (1.04x) 10 2 0 362 (113%) 11 3 0 591(1.08x) 9 1 0
Nearest 401 (1.34x) 13 9 2 422 (-1.03%) 9 6 1 377 (1.69%) 15 6 1
PAR2QO-sim 287 (1.87X) 14 4 0 270(1.52%) 14 1 0 330(193x) 17 5 0
PAR?2QO-no-reduce 285 (1.88x) 14 4 0 255(1.61X) 14 2 0 339(1.88X) 13 8 1
BestCost-sim 420 (1.28) 11 9 1 402(1.02x) 9 2 1 446 (143%) 8 3 0
BestCost-no-reduce 366 (1.46X) 8 3 0 390 (1.05%) 9 3 0 444 (1.43%) 7 4 0
To further analyze the performance at template-level, we focus 5 = a0
on PAR?2QQO and Kepler, presenting detailed execution latency and E 10? D Todtanes
speedup results in Figure 3. For clarity and simplicity, each tem- 5102
plate is labeled with the workload’s initial letter plus its ID (e.g., Z iﬂ IH |-H|ﬂ ul il
C2 represents template 2 in CARVER, and H1 is template 1 in His- ¥ o TR —
torical). We exclude templates in Figure 3 where neither PAR2QO £y L ﬂ r L ﬂ L.sl
s .. . T = P nl m a2 I
nor Kepler exhibits significant speedup or regression. Results show §3; T1 u . T |
that, OVerall’ Kepler can achieve markedly higher speedups in cer- @ Cl1 C2 C3 C4 C6 C7 C8 Cg-é1UXC11C12C13C14C15C16C17C18C19C20CZ1C23C24C26C27CZEC30C31C32
tain scenarios. For instance, on C7 and C19, it attains 5.17X and (a) CARVER Workload
4.03x speedups, respectively, whereas PARZQO only reaches 1.96x o = rarao
and 1.10X. Moreover, there are templates where Kepler provides gy = rorges
a speedup but PAR2QO does not, such as H4, H8, H19, U22, and glo2
U26. However, Figure 3 also highlights that PAR2QO effectively 5
- . . 10 dl il &
mitigates severe regressions: the worst performance degradation T o o
for PAR?QO occurs in H4 (~1.81x), while Kepler’s largest regres- : h ﬂ .
sion, observed in C10, exceeds —5X. These findings indicate that g = SR L E— = Ml ) B
. . . . . -3X » --- Baseline
Kepler, by learnlng from real executions, can sometimes 1dent1fy & U1 U2 U3 4U40Xu5 U7 Us UL0UI2 UI3 UI5 Ule UI8 U22 U323 U24 U26 U27 U28 U30 U31 U32 U33
faster plans. However, these plans lack robustness and may fail to (b) Uniform Workload
deliver consistent performance in practice. In contrast, PARZQO e
effectively mitigates extreme performance degradations, leading to £107] 2= hosigres
better overall execution latency. 2 0 I_H
Q
| 20 R M
5.2 Comparison of Overhead = - m
+10X ez e TLORiL0X T
Besides the execution latencies of query plans, other types of over- g sx H ﬂ
head — notably the one-time (or periodic) per-workload model 8 o Meom 14 1 alle 0.
a-3x

preparation cost and the runtime per-query optimization cost — are
also important practical considerations. After all, PQO was initially
motivated by the desire to reduce the per-query optimization cost,
which increases the query latencies observed by users. This subsec-
tion examines the overhead of various methods in comparison with
PostgreSQL. Additional details are available in the full version [47].

Model preparation time. By model preparation time, we mean
the period from receiving the training workload to completing the
model setup and being ready to generate plans for new queries.
For PAR2QO, the first step is profiling errors using the training
workload, which takes less than 13 minutes on average per query
template. Then, preparing the plan-cost matrix takes about 8.5 min-
utes per template on average (with the default setting of n = 50,

4540

H1 H2 H3 H4 H5 H6 H7 H8 H9 H11HI2H13HISH17HI18HIOH20H21H22H25H26H27H28H30H31H32H33

(c) Historical Workload

Figure 3: Template-level execution latency and speedup compari-
son on three workloads for JOB. The top panel of each figure com-
pares the average latency (ms) on a log scale, and the bottom shows
the average speedup or regression over PostgreSQL (baseline).

which results in [£| = 300 and |P| = 88). Subsequent plan reduc-
tion is very fast, completing under 500ms per template. Thus, the
total preparation time for PAR?QO averages 21.5 minutes per JOB
template. In contrast, Kepler requires a large number of query ex-
ecutions for training, where every query incurs many executions.
Overall, Kepler’s preparation time is over 6.5 hours per JOB tem-
plate — more than 18x slower than PAR?QO. As a comparison



point, PARQO’, without PAR?QQ’s smart method of sharing com-
putation, suffers from the high cost of finding the robust plan for
each anchor independently; it takes an average of 2.4 hours per
JOB template, 6.7X slower than PAR2QO. Both Bao and QueryLog
incur lower model preparation overhead, but it comes at the cost
of reduced performance.

Inference time and model size. As a baseline, PostgreSQL’s
optimizers adds on average 67ms optimization overhead per JOB
query. In comparison, Kepler is the fastest, under 1ms per query,
thanks to its model directly outputting the query plan; PAR2QO’s
runtime overhead is 26ms, still considerably faster than PostgreSQL;
Bao is the slowest, with 376ms per query, because it does not have
the benefit of PQO. While PAR?QQ’s inference time is longer than
Kepler because it still needs to carry out robustness-based plan
selection at runtime, this overhead is a good trade-off in order to
secure more robust and generally more efficient plans than Kepler,
as shown in Section 5.1. As another comparison point, QueryLog’,
despite its much simpler objective requiring no robustness evalua-
tion, has a higher overhead (35.4ms) than PAR2QO, because merely
recosting plan candidates adds considerable cost. This observation
further demonstrates the effectiveness of computation caching in
PARZ2QO. Finally, all methods have practically acceptable model
sizes: PAR2QO has a 0.2MB error model plus a 1.8MB cache (2.6MB
before plan reduction), totaling no more than 2.1MB at runtime;
Kepler and Bao’s models use very compact neural networks, which
take less than 1MB space at runtime.

5.3 Ablation Study of PAR?QO

To gain deeper insights, we design a series of experiments to eval-
uate the impact of various components and parameter settings in
PAR?QO. Because of space constraints, we discuss only a subset of
the results below and show an even smaller subset in Table 1, under
the Other Variants section. Other results can be found in [47].

Impact of sample locations. First, we examine how PQO
performance is affected by the locations from which we obtain
candidate plans. To this end, we create a new variant called Uni-
BestCost, which probes for its candidate plans using the same num-
ber of locations as PAR?2QO, and similarly uses 7-Cover to reduce
this set. However, instead of PAR2QO’s workload- and error-aware
sampling-by-cluster strategy, Uni-BestCost samples locations uni-
formly at random within a hyperrectangle bounding all selectivities
observed during training. Finally, when selecting plans at runtime,
instead of optimizing for penalty-based robustness like PAR>QO,
Uni-BestCost picks the candidate plan whose cost is the lowest
given the estimated selectivities, just like QueryLog’. To isolate the
effect of candidate plans for comparison, we create a second variant
called BestCost, which is identical to Uni-BestCost except that it
uses the same reduced set of candidate plans as PAR2QO.

Results for Uni-BestCost in Table 1 show that using more uni-
form samples from the observed selectivity range is not effective
— not only does it perform far worse than PAR2QO, but it also un-
derperforms QueryLog’ despite examining more locations. On the
other hand, BestCost performs significantly better and reverses Uni-
BestCost’s slowdown: for CARVER, the —1.23x slowdown improves
to a 1.56% speedup, surpassing Kepler’s 1.07x; for Uniform and His-
torical, while BestCost remains behind Kepler, it now achieves

4541

speedups over the PostgreSQL baseline. The dramatic improve-
ment from Uni-BestCost to BestCost highlights the effectiveness of
PAR2QO’s sampling strategy in Section 3.1.

Impact of # of probe locations per cluster. We further exam-
ine the impact of n, the number of probe locations per sampling
cluster, which influences |£|, the total number of sample locations.
A larger n can improve plan quality, but also increases training
and inference costs. When increasing n from 50 to 200, we observe
improvements in some specific templates — for instance, H4, which
showed the largest regression in Figure 3, improves from a —1.90x
regression to a 1.41X speedup. However, the overall performance
across workloads remains largely unchanged, indicating that a
larger n provides diminishing returns in most cases. Since n influ-
ences |£] directly and |P| indirectly, it can, in the worst case, blow
up overhead quadratically. In practice, increases in overhead are
milder but still significant: 3.3X training time and 2.1X inference
time compared with n = 50. On the other hand, when decreasing
n from 50 to 10, we observe a clear degradation in plan quality,
but even in this case, PAR2QO (n = 10) is still better than Kepler
for CARVER and comparable for Uniform and Historical, and con-
sistently beats PostgreSQL, Bao, and PARQO. Further details are
available in [47]. Overall, we find the setting of n = 50 to be a good
default, although smarter sampling strategies that increases n adap-
tively on a per-template basis might be a fruitful future direction.

Impact of runtime plan selection criteria. Next, we study the
impact of plan selection criteria on PQO performance. Note that
the BestCost variant considered above differs from PAR?QO only
in how it selects a plan at runtime. Since BestCost significantly
underperforms PAR2QO as shown in Table 1, we can conclude that
PAR?QO’s penalty-based robustness objective is far superior to sim-
ply picking the plan with the lowest cost at estimated selectivities
§. Here, for further comparison, we create two additional variants
that consider alternative plan selection criteria used in previous
work. First, BestCost-bound extends BestCost by incorporating
a safety check, similar to the “cost check” in SRC [17]: it checks
whether the cost of a candidate plan 7 at § remains within a bound
(1+ 1) of the cost of 7 at the location where 7 was optimized (we
set A = 2, as suggested by SRC [17]); if not, the system falls back to
invoking the optimizer. Second, Nearest picks the candidate plan
whose location in the selectivity space is closest to § in £, distance,
following the idea of “selectivity check” in SRC [17].

From Table 1, we observe that applying the (1 + A) safety check
degrades BestCost’s performance, indicating that the fallback mech-
anism does not guarantee a plan with truly optimal execution per-
formance. The root cause is that the estimated selectivities § for
the given query may be wrong to begin with; using § for the safety
check and falling back to the optimal plan at § may not be safe
in reality. From Table 1, we also see that Nearest fares no better
than BestCost and remains far behind PAR2QO. To conclude, with
proper accounting for uncertainty in § in its plan selection strategy,
PAR?QO has a clear performance advantage over approaches that
ignore uncertainty and/or are heuristic in nature.

Impact of plan reduction. By default, PAR?QO employs 7-

Cover for plan reduction. Recall that PARZQO sets the upper bound
on the number of plans (after reduction) to be max(0.2- |P|, 10). For



JOB, the average number of candidate plans obtained per template
via sampling, |P|, is 88. We found that, on average, 9 candidate plans
per template were sufficient to r-cover all candidates, justifying
our choice of the default upper bound. In the end, PAR2QO kept on
average 8 candidate plans per template. A smarter, template-specific
selection of this upper bound and a theoretical justification of what
is needed for complete coverage are interesting future directions.

To evaluate other options, we create two variants: PAR2QO-
sim, which reduces the candidate plan set by cost profile similarity
(Section 3.3), and PAR2QO-no-reduce, which does not reduce the
set at all. Results, shown in Table 1, indicate that both PAR2QO-sim
and PAR?QO-no-reduce offer comparable performance as PAR2QO
overall. In other words, effective plan reduction, which reduces
runtime overhead, does not sacrifice plan performance. In fact,
despite plan reduction, PARZQO is able to slightly but consistently
outperform PAR?QO-no-reduce, indicating that r-Cover may also
help improve robustness — a point that we examine further below.
A closer look at the resulting plans under both reduction methods
is provided in the full version [47].

We also extend this ablation study to BestCost, which employs
7-Cover for plan reduction but does not consider robustness ex-
plicitly when picking plans at runtime. We call the corresponding
variants BestCost-sim and BestCost-no-reduce. Interestingly,
from Table 1, we see that BestCost, with 7-Cover plan reduction, no-
ticeably outperforms BestCost-no-reduce, with no reduction. This
improvement, more significant than that of PARZQO over PAR2QO-
no-reduce, confirms the benefit of 7-Cover in improving robustness,
especially in the setting of BestCost where runtime plan selection
is not robustness-based. In contrast, BestCost-sim does not offer
such a benefit because its reduction method favors preserving plan
diversity over robustness.

5.4 Robustness Against Data Shifts

Previous experiments were conducted on a static database state.
However, true robustness requires plans to maintain good per-
formance even when data and their distributions evolve. In this
experiment, we simulate real-world scenarios with shifting data dis-
tributions, which can introduce unforeseen variations in selectivity
errors and plan performance.

We create multiple database instances from the original IMDB
dataset using three “slicing” methods to get varying degrees of
data distribution shifts. First, category-slicing [46] splits data by
item categories (kind_type.kind), which produces the most dramatic
distribution shifts.? Second, time-slicing [46] applies a 20% slid-
ing window on production_year, generating 9 instances. Adjacent
instances share overlapping data, while distant ones exhibit larger
differences, producing smooth transitions and gradual shifts. Third,
random-slicing randomly samples 20% of title along with asso-
ciated data from other tables; it largely maintains the overall data
distribution, representing the least challenging scenario.

For each dataset-slicing method, we synthesize three workloads
(CARVER, Uniform, and Historical) by the same procedures in Sec-
tion 5.1. PAR?QO and Kepler select plans based on one instance
alone (called the “base” instance), which are then evaluated on the
remaining instances. Note that PARZQO’s error model & is also

%Table sizes can vary up to 51X (e.g. title in “Movie” vs. “Video game”), and template
execution times may fluctuate up to 176X (e.g. C17 on “Movie” vs. “Video game”).

4542

Table 2: Performance of models trained under different work-
loads for JOB, tested under the mixed workload.

CARVER Uniform Historical
PostgreSQL  Avg latency 552 ms 552 ms 552 ms

Avglatency  315(1.75X) 407 (1.35X) 400 (1.38X)
2 T>1.2x 15 12 15
PAR®QO 1 >1.2x 2 8 7
1 >2x 1 1 3

Avg latency 555 (-1.01X) 553 (-1.00X) 909 (-1.65X)
Kepler T>1.2x 15 8 9
P 1> 1.2x 8 14 10
| >2x 3 5 5

Avg latency 562 (-1.02X) 626 (-1.14X) 626 (-1.14X)
Bao 1> 1.2x 1 3 4
1 >1.2x 14 17 17
| >2x 0 1 4

derived from the base instance alone. As the baseline, we consider
PostgreSQL’s plan, which is optimized using statistics refreshed for
each instance (i.e., not subject to the same handicap as PARZ2QO and
Kepler). We select four representative templates to evaluate — 4, 14,
17, and 19 — such that they cover various query complexities and dif-
ferent performance characteristics observed in earlier experiments.
The detailed selection criteria are described in the full version [47],
along with additional experimental results. In summary, we find
PAR?QO plans to be more robust than Kepler’s across different
data drift scenarios. For example, even under the most challenging
category-slicing, the largest regression experienced by PAR?QO on
non-base instances is no more than —2Xx. Interestingly, while we do
not expect to beat PostgreSQL’s plans (which have access to correct
statistics on these instances), PAR2QO in fact performs better than
PostgreSQL in quite a few cases, demonstrating that robust plans
can offer protection against selectivity errors regardless of their
causes. In contrast, Kepler suffers severe regression in some cases,
with slowdowns of up to —6Xx compared to the baseline.

5.5 Unforeseen Query Workloads and
Effectiveness of CARVER for Training

We design the following experiment to see how different learned
methods perform when presented with unforeseen query work-
loads, and to evaluate how effective CARVER is as a training work-
load (in comparison with Uniform and Historical). First, we train
each method exclusively on each one of these workloads; then,
we test the method on a mixed workload, which samples queries
with equal probability from all three workloads. This mixed testing
workload simulates a setting where the testing queries are drawn
from a distribution from the training one, which commonly arise in
practice. We want to evaluate how PAR?QO, Kepler, and Bao per-
form this setting, and determine which training workload generally
leads to models with best performance.

The results are shown in Table 2. First, we see that PAR2QO
adapts to the unforeseen testing workload much better than Kepler
and Bao, regardless of the training workload used. PAR2QO still out-
performs the PostgreSQL baseline significantly: 1.75X when trained
with CARVER and > 1.35X% otherwise. On the other hand, Kepler
and Bao experience overall slowdown, with far more templates
experiencing significant regression. When trained using Historical,
Kepler’s —1.65x slowdown — a stark reversal of its 1.94X speedup in
Table 1 — can be explained by the fact that Historical queries have



’3104 - B PAR2QO
E I =
b ol

0 I || N 1 | | P TR

1 2 3 45 6 7 8 9 101112131516 17 18 19 21 22 23 24 25 26 27 28 30 31 32 33

Figure 4: Workload effectiveness evaluation on JOB. Each query template shows three bars (left to right: CARVER, Uniform, Historical),
representing different workloads used for training. Each bar shows three overlapping segments, corresponding to PAR?QO, Kepler and
PostgreSQL. The top panel compares execution latency; the lower shows the speedup/regression of PARZQO and Kepler relative to PostgreSQL.

less diverse parameter values, which makes it harder for Kepler’s
model to generalize. We also provide detailed template-level perfor-
mance in Figure 4.3 Similar to Figure 3, while Kepler achieves strong
performance on some templates (e.g., C19 and C30), it also suffers
severe degradation in others (e.g., H3-4, H23, and C31). In contrast,
PAR?QO again avoids such extreme regressions effectively, even
over this unforeseen query workload.

Second, training using CARVER generally gives better perfor-
mance than training using Uniform or Historical, regardless of the
learned method tested. For PARZQO and Bao, the advantages are
clear (>25% and >11%, respectively). For Kepler, while CARVER’s ad-
vantage over Historical is clear, its advantage over Uniform is more
subtle but still evident from the fewer number of significant/severe
regressions. Overall, these experiments confirm the superiority of
CARVER over others for training learned optimizers.

6 RELATED WORK

Parametric Query Optimization. PQO has been extensively
studied over the years [23, 24]. The primary focus of traditional
PQO methods is minimizing the optimizer’s invocation through
plan caching and reuse strategies, ensuring the plan’s cost remains
acceptable while avoiding unnecessary re-optimization [2, 7, 17].
Different approaches have been explored to address this challenge,
including caching only one plan with the lowest expected cost
for the entire selectivity space [1, 7, 8], caching a set of plans [17,
20, 25], or progressively caching multiple plans over time [2, 6,
26]. Some works propose to build density maps through query
clustering to better capture selectivity variations [2, 20], or building
a “plan diagram” as a color-code visualization [13, 37] to provide
a structured view of the selectivity space and how different plans
dominate various regions. For a more comprehensive review of
traditional PQO techniques, we direct readers to [12]. Recent work,
SCR [17] applies an online selectivity and cost check to evaluate if
a cached plan can be reused guaranteeing the bound on cost sub-
optimality, and if a new plan needs to be added into the cache. Most
recent efforts, including QueryLog [40] and Kepler [15], extend PQO
by incorporating execution performance optimization and learning
from query executions. QueryLog formalizes PQO problem as a
two-step decision process, generating candidate plans and selecting
the most suitable one. Kepler and PAR2QO adhere to this structure.

3Templates 14, 20, and 29 are excluded in Figure 4, as both PAR2QO and Kepler’s results
show no significant speedup/regression beyond 1.2X.

4543

Since Kepler and QueryLog have been thoroughly discussed and
compared with PARZQO in Section 3.4, we omit further details here.

Robust query optimization. Traditional query optimizers of-
ten select plans that perform poorly in practice, with cardinality es-
timation errors being a primary cause of such degradations [27, 28].
RQO aims to select robust plans that remain stable despite inaccura-
cies in cardinality estimates [31, 49]. To quantify these uncertainties
and guide robust plan selection, prior research assumes cardinal-
ity as a probability density function [4, 9], a uniform distribution
over the entire space [1], or within a bounding box [5, 19]. More
recent work has developed advanced plan selection techniques:
Some approaches consider worst-case sub-optimality [16, 36, 41],
define robustness metrics based on cost slope and integral [44], or
compute optimality or near-optimality ranges as robustness indica-
tors [14, 45]. More recent work selects plans based on learned exe-
cution time distribution [30], and prioritizes plans using expected
penalty [46]. Another line of research explores adaptive process-
ing, where runtime observations guide dynamic plan switching to
avoid poor plan executions [16, 18, 39, 42, 44]. For a comprehensive
overview of techniques in robust query processing, we refer readers
to this survey [22]. Previous work [10, 13-15, 37, 38, 40, 45] implic-
itly considers robustness when pruning plans, while PAR>QO takes
a step further by directly integrating plan robustness into PQO.

7 CONCLUSION AND FUTURE WORK

Selecting a PQO method in practice involves a trade-off. Kepler can
sometimes find the fastest plans with low inference latency but
requires expensive model training and is prone to severe regres-
sions. QueryLog is easy to set up but may fail to improve execution
performance beyond the optimizer. By integrating penalty-aware
robustness into PQO, PAR2QO achieves a better balance between
efficiency, stability, and practicality. Future work includes further
expanding the search space of robust plans; sharing computation
across templates; and adapting the error model/cache dynamically
for evolving database states and workloads.

ACKNOWLEDGMENTS
This paper is supported by NSF grant IIS-2402823. Work by Agar-
wal is also supported by NSF grant CCF-2223870 and by US-Israel

Binational Science Foundation Grant 2022131. Work by Yang is also
supported by NSF grants IIS-2008107 and 1I-2211526.



REFERENCES

(1]

(2]

(3

=

[4

=

[10

[11]

[12]

[13]

[15]

[16]

[17]

(18]

M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, and Jayant R.
Haritsa. 2010. On the Stability of Plan Costs and the Costs of Plan Stability. Proc.
VLDB Endow. 3,1 (2010), 1137-1148. https://doi.org/10.14778/1920841.1920983
Giines Alug, David DeHaan, and Ivan T. Bowman. 2012. Parametric Plan Caching
Using Density-Based Clustering. In IEEE 28th International Conference on Data
Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,
2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). IEEE
Computer Society, 402-413. https://doi.org/10.1109/ICDE.2012.57

Mehmet Aytimur, Silvan Reiner, Leonard Woérteler, Theodoros Chondrogiannis,
and Michael Grossniklaus. 2024. LPLM: A Neural Language Model for Cardinality
Estimation of LIKE-Queries. Proc. ACM Manag. Data 2, 1, Article 54 (March
2024), 25 pages. https://doi.org/10.1145/3639309

Brian Babcock and Surajit Chaudhuri. 2005. Towards a Robust Query Optimizer:
A Principled and Practical Approach. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore, Maryland, USA, June 14-16,
2005, Fatma Ozcan (Ed.). ACM, 119-130. https://doi.org/10.1145/1066157.1066172
Shivnath Babu, Pedro Bizarro, and David J. DeWitt. 2005. Proactive Re-
optimization. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, Fatma Ozcan
(Ed.). ACM, 107-118. https://doi.org/10.1145/1066157.1066171

Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. 2009. Progressive Parametric
Query Optimization. IEEE Trans. Knowl. Data Eng. 21, 4 (2009), 582-594. https:
//doi.org/10.1109/TKDE.2008.160

Surajit Chaudhuri, Hongrae Lee, and Vivek R. Narasayya. 2010. Variance aware
optimization of parameterized queries. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010, Ahmed K. Elmagarmid and Divyakant Agrawal (Eds.). ACM,
531-542. https://doi.org/10.1145/1807167.1807226

Francis C. Chu, Joseph Y. Halpern, and Johannes Gehrke. 2002. Least Expected
Cost Query Optimization: What Can We Expect?. In Proceedings of the Twenty-
first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 3-5, Madison, Wisconsin, USA, Lucian Popa, Serge Abiteboul, and Phokion G.
Kolaitis (Eds.). ACM, 293-302. https://doi.org/10.1145/543613.543651

Francis C. Chu, Joseph Y. Halpern, and Praveen Seshadri. 1999. Least Ex-
pected Cost Query Optimization: An Exercise in Utility. In Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, Victor
Vianu and Christos H. Papadimitriou (Eds.). ACM Press, 138-147.  https:
//doi.org/10.1145/303976.303990

Atreyee Dey, Sourjya Bhaumik, Harish Doraiswamy, and Jayant R. Haritsa. 2008.
Efficiently approximating query optimizer plan diagrams. Proc. VLDB Endow. 1,
2(2008), 1325-1336. https://doi.org/10.14778/1454159.1454173

Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya. 2021.
DSB: A Decision Support Benchmark for Workload-Driven and Traditional
Database Systems. Proc. VLDB Endow. 14, 13 (2021), 3376-3388. https://doi.org/
10.14778/3484224.3484234

Bailu Ding, Vivek Narasayya, and Surajit Chaudhuri. 2024. Extensible Query
Optimizers in Practice. Foundations and Trends® in Databases 14, 3-4 (2024),
186-402. https://doi.org/10.1561/1900000077

Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2007. On the
Production of Anorexic Plan Diagrams. In Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria, September
23-27, 2007, Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh
Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold
(Eds.). ACM, 1081-1092. http://www.vldb.org/conf/2007/papers/research/p1081-
d.pdf

Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying
robust plans through plan diagram reduction. Proc. VLDB Endow. 1, 1 (2008),
1124-1140. https://doi.org/10.14778/1453856.1453976

Lyric Doshi, Vincent Zhuang, Gaurav Jain, Ryan Marcus, Haoyu Huang, Deniz
Altinbiiken, Eugene Brevdo, and Campbell Fraser. 2023. Kepler: Robust Learning
for Parametric Query Optimization. Proc. ACM Manag. Data 1, 1 (2023), 109:1—
109:25. https://doi.org/10.1145/3588963

Anshuman Dutt and Jayant R Haritsa. 2014. Plan bouquets: query processing
without selectivity estimation. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data. 1039-1050.

Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2017. Leveraging
Re-costing for Online Optimization of Parameterized Queries with Guarantees.
In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu,
Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1539-1554.
https://doi.org/10.1145/3035918.3064040

Anshuman Dutt, Sumit Neelam, and Jayant R Haritsa. 2014. QUEST: An ex-
ploratory approach to robust query processing. Proceedings of the VLDB Endow-
ment 7, 13 (2014), 1585-1588.

4544

[19

[20

[22

[23

[24

™~
2

[26

[27]

(28]

[29]

[30

(31]

(34

[35

[36

(37

Belgin Ergenc, Franck Morvan, and Abdelkader Hameurlain. 2007. Robust
Placement of Mobile Relational Operators for Large Scale Distributed Query
Optimization. In Eighth International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (PDCAT 2007), 3-6 December 2007, Adelaide,
Australia, David S. Munro, Hong Shen, Quan Z. Sheng, Henry Detmold, Katrina
Falkner, Cruz Izu, Paul D. Coddington, Bradley Alexander, and Si-Qing Zheng
(Eds.). IEEE Computer Society, 227-235. https://doi.org/10.1109/PDCAT.2007.53
Antara Ghosh, Jignashu Parikh, Vibhuti S. Sengar, and Jayant R. Haritsa. 2002.
Plan Selection Based on Query Clustering. In Proceedings of 28th International
Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002.
Morgan Kaufmann, 179-190. https://doi.org/10.1016/B978-155860869-6/50024-X
Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752-765.
https://doi.org/10.14778/3503585.3503586

Jayant R. Haritsa. 2024. Robust Query Processing: A Survey. Found. Trends
Databases 15, 1 (2024), 1-114. https://doi.org/10.1561/1900000089

Arvind Hulgeri and S. Sudarshan. 2002. Parametric Query Optimization for
Linear and Piecewise Linear Cost Functions. In Proceedings of 28th International
Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002.
Morgan Kaufmann, 167-178. https://doi.org/10.1016/B978-155860869-6/50023-8
Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1992.
Parametric Query Optimization. In 18th International Conference on Very Large
Data Bases, August 23-27, 1992, Vancouver, Canada, Proceedings, Li-Yan Yuan (Ed.).
Morgan Kaufmann, 103-114. http://www.vldb.org/conf/1992/P103.PDF
Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1997.
Parametric Query Optimization. VLDB ¥. 6, 2 (1997), 132-151. https://doi.org/
10.1007/S007780050037

Allison W. Lee and Mohamed Zait. 2008. Closing the query processing loop in
Oracle 11g. Proc. VLDB Endow. 1, 2 (2008), 1368-1378. https://doi.org/10.14778/
1454159.1454178

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204-215. https://doi.org/10.14778/2850583.2850594
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204-215. https://doi.org/10.14778/2850583.2850594
Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB 7.
27,5 (2018), 643-668. https://doi.org/10.1007/S00778-017-0480-7

Yifan Li, Xiaohui Yu, Nick Koudas, Shu Lin, Calvin Sun, and Chong Chen. 2023.
dbET: Execution Time Distribution-based Plan Selection. Proceedings of the ACM
on Management of Data 1, 1 (2023), 1-26.

Guy M. Lohman. 2017. Query Optimization - Are We There Yet?. In Daten-
banksysteme fiir Business, Technologie und Web (BTW 2017), 17. Fachtagung
des GI-Fachbereichs ,,Datenbanken und Informationssysteme" (DBIS), 6.-10. Mdrz
2017, Stuttgart, Germany, Proceedings (LNI), Bernhard Mitschang, Daniela Nick-
las, Frank Leymann, Harald Schéning, Melanie Herschel, Jens Teubner, Theo
Hérder, Oliver Kopp, and Matthias Wieland (Eds.), Vol. P-265. GI, 25-26. https:
//dl.gi.de/handle/20.500.12116/646

Ryan Marcus. 2020. https://github.com/learnedsystems/BaoForPostgreSQL.
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical.
In SIGMOD °21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 1275-1288. https://doi.org/10.1145/3448016.3452838
Satoshi Nagayasu. 2023. pg_hint_plan. https://github.com/ossc-db/pg_hint_
plan.

Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang, David B.
Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha,
and Young-Kuk Kim (Eds.). ACM, 1049-1058. http://dl.acm.org/citation.cfm?id=
1164217

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case
optimal join algorithms: [extended abstract]. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2012, Scottsdale, AZ, USA, May 20-24, 2012, Michael Benedikt, Markus Krétzsch,
and Maurizio Lenzerini (Eds.). ACM, 37-48. https://doi.org/10.1145/2213556.
2213565

Naveen Reddy and Jayant R. Haritsa. 2005. Analyzing Plan Diagrams of Database
Query Optimizers. In Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, Klemens
Bohm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Ake Larson,
and Beng Chin Ooi (Eds.). ACM, 1228-1240. http://www.vldb.org/archives/


https://doi.org/10.14778/1920841.1920983
https://doi.org/10.1109/ICDE.2012.57
https://doi.org/10.1145/3639309
https://doi.org/10.1145/1066157.1066172
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1109/TKDE.2008.160
https://doi.org/10.1109/TKDE.2008.160
https://doi.org/10.1145/1807167.1807226
https://doi.org/10.1145/543613.543651
https://doi.org/10.1145/303976.303990
https://doi.org/10.1145/303976.303990
https://doi.org/10.14778/1454159.1454173
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.1561/1900000077
http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf
http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf
https://doi.org/10.14778/1453856.1453976
https://doi.org/10.1145/3588963
https://doi.org/10.1145/3035918.3064040
https://doi.org/10.1109/PDCAT.2007.53
https://doi.org/10.1016/B978-155860869-6/50024-X
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.1561/1900000089
https://doi.org/10.1016/B978-155860869-6/50023-8
http://www.vldb.org/conf/1992/P103.PDF
https://doi.org/10.1007/S007780050037
https://doi.org/10.1007/S007780050037
https://doi.org/10.14778/1454159.1454178
https://doi.org/10.14778/1454159.1454178
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/S00778-017-0480-7
https://dl.gi.de/handle/20.500.12116/646
https://dl.gi.de/handle/20.500.12116/646
https://github.com/learnedsystems/BaoForPostgreSQL
https://doi.org/10.1145/3448016.3452838
https://github.com/ossc-db/pg_hint_plan
https://github.com/ossc-db/pg_hint_plan
http://dl.acm.org/citation.cfm?id=1164217
http://dl.acm.org/citation.cfm?id=1164217
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/2213556.2213565
http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf

[38]

[39]

[40]

[41]

[42]

[43]

website/2005/program/paper/fri/p1228-reddy.pdf

Naveen Reddy and Jayant R. Haritsa. 2005. Analyzing Plan Diagrams of Database
Query Optimizers. In Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, Klemens
Bohm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Ake Larson,
and Beng Chin Ooi (Eds.). ACM, 1228-1240. http://www.vldb.org/archives/
website/2005/program/paper/fri/p1228-reddy.pdf

Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Mose-
ley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. Skinnerdb:
Regret-bounded query evaluation via reinforcement learning. ACM Transactions
on Database Systems (TODS) 46, 3 (2021), 1-45.

Kapil Vaidya, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2021.
Leveraging Query Logs and Machine Learning for Parametric Query Optimiza-
tion. Proc. VLDB Endow. 15, 3 (2021), 401-413. https://doi.org/10.14778/3494124.
3494126

Srinivas Karthik Venkatesh, Jayant R. Haritsa, Sreyash Kenkre, and Vinayaka
Pandit. 2018. A Concave Path to Low-overhead Robust Query Processing. Proc.
VLDB Endow. 11, 13 (2018), 2183-2195. https://doi.org/10.14778/3275366.3275368
Ziyun Wei and Immanuel Trummer. 2024. ROME: Robust Query Optimization
via Parallel Multi-Plan Execution. Proc. ACM Manag. Data 2, 3 (2024), 170.
https://doi.org/10.1145/3654973

David P Williamson and David B Shmoys. 2011. The design of approximation
algorithms. Cambridge university press.

4545

[44

[45

(47

(48]

[49]

Florian Wolf, Michael Brendle, Norman May, Paul R. Willems, Kai-Uwe Sattler,
and Michael Grossniklaus. 2018. Robustness Metrics for Relational Query Exe-
cution Plans. Proc. VLDB Endow. 11, 11 (2018), 1360-1372. https://doi.org/10.
14778/3236187.3236191

Florian Wolf, Norman May, Paul R. Willems, and Kai-Uwe Sattler. 2018. On
the Calculation of Optimality Ranges for Relational Query Execution Plans. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein (Eds.). ACM, 663-675. https://doi.org/10.1145/
3183713.3183742

Haibo Xiu, Pankaj K. Agarwal, and Jun Yang. 2024. PARQO: Penalty-Aware
Robust Plan Selection in Query Optimization. Proc. VLDB Endow. 17, 13 (2024),
4627-4640. https://doi.org/10.14778/3704965.3704971

Haibo Xiu, Yang Li, Qianyu Yang, Pankaj K. Agarwal, and Jun Yang. 2025. (Full
Version Paper). https://github.com/Hap-Hugh/PAR2QO/blob/main/par2qo.pdf
Haibo Xiu, Yang Li, Qianyu Yang, Weihang Guo, Yuxi Liu, Pankaj K. Agarwal,
Sudeepa Roy, and Jun Yang. 2025. Hint-QPT: Hints for Robust Query Performance
Tuning. Proc. VLDB Endow. 18, 12 (2025).

Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. 2015. Robust query
optimization methods with respect to estimation errors: A survey. ACM Sigmod
Record 44, 3 (2015), 25-36.


http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf
https://doi.org/10.14778/3494124.3494126
https://doi.org/10.14778/3494124.3494126
https://doi.org/10.14778/3275366.3275368
https://doi.org/10.1145/3654973
https://doi.org/10.14778/3236187.3236191
https://doi.org/10.14778/3236187.3236191
https://doi.org/10.1145/3183713.3183742
https://doi.org/10.1145/3183713.3183742
https://doi.org/10.14778/3704965.3704971
https://github.com/Hap-Hugh/PAR2QO/blob/main/par2qo.pdf

	Abstract
	1 Introduction
	2 Preliminaries and Background
	2.1 Problem Statements
	2.2 Baselines: PARQO and PARQO'

	3 Parametric Penalty-Aware Robust Query Optimization
	3.1 Sampling Probe Locations
	3.2 Computing Plan-Penalty Profiles
	3.3 Runtime Plan Selection
	3.4 Discussion

	4 CARVER: Workload Generation Guided by Cardinality
	5 Experiments
	5.1 Comparison of Query Performance
	5.2 blackComparison of Overhead
	5.3 Ablation Study of PAR2QO
	5.4 Robustness Against Data Shifts
	5.5 Unforeseen Query Workloads and Effectiveness of CARVER for Training

	6 Related Work
	7 Conclusion and future work
	Acknowledgments
	References

