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ABSTRACT

There has been considerable interest in leveraging GPUs’ compu-

tational power and high memory bandwidth for analytical data-

base workloads. However, their limited memory capacity remains

a fundamental limitation for databases whose sizes far exceed the

GPU memory size. This challenge is exacerbated by the slow PCIe

data transfer speed, that creates a bottleneck in overall system per-

formance. In this work, we introduce a hybrid CPU-GPU query

processing strategy that leverages the distinct strengths of CPU

and GPU to alleviate the data transfer bottleneck. Our approach

performs highly e�cient data �ltering on the CPU, which substan-

tially reduces the volume of data transferred to the GPU via PCIe,

and o�oads compute-intensive operators such as joins to the GPU

for further processing. Our evaluation on the TPC-H benchmark at

scale factors up to 1000 (1TB), using a single A100 GPU with 80GB

memory, demonstrates that our approach can e�ectively handle

datasets signi�cantly larger than the GPU memory size. Moreover,

it substantially outperforms a state-of-the-art CPU-only database

system in both performance and cost-e�ectiveness.
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1 INTRODUCTION

Graphics Processing Units (GPUs) have evolved rapidly, especially

in the last decade, largely driven by the demands of machine learn-

ing applications. Given their extraordinary computational power

and high-bandwidth memory (HBM), there has been a surge of in-

terest in leveraging GPUs for building analytical database engines

by caching data directly in the fast GPU memory [4, 5, 9, 13, 18,

29, 30, 33, 45, 53]. However, the limited capacity of HBM on GPUs

imposes a signi�cant impediment to making GPU accelerated an-

alytical database systems practical. For example, NVIDIA’s data

center GPUs, e.g., A100 and H100, have up to 80GB of HBM [7, 8].

Many analytical databases, however, have sizes well above the HBM

capacity of GPUs, often reaching hundreds of GBs or several TBs,

even in a single-node setting. When the database cannot be entirely

cached in GPU memory, data must be transferred on demand from
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the CPU to the GPU at query execution time. Unfortunately, the in-

terconnect between CPUs and GPUs is via a slow link, such as PCIe

4.0 at 24GB/s. Compared to the bandwidth of GPU memory, e.g.,

2TB/s for the NVIDIA A100, the limited data transfer bandwidth has

become a major bottleneck, severely restricting the performance

bene�ts of accelerating analytical database workloads with GPUs.

There have been several lines of prior work that address the per-

formance bottleneck arising from data transfer, including pipelined

execution between CPU and GPU [21], and techniques to allevi-

ate the slow interconnect with caching and prefetching [32, 62].

There have also been various e�orts on improving the placement

of query plans and operators on CPU and GPU with cost-based

scheduling [29, 41, 61, 62]. However, these techniques are not de-

signed to handle databases that signi�cantly exceed GPU memory

capacity, e.g., by 10×, and to our knowledge, no prior work has

demonstrated e�ective performance at such scales. Lastly, there

has been work on scaling GPU database systems using multiple

GPUs [5, 21, 44, 48, 56, 61], though such solutions can become very

expensive for practical adoption.

In this paper, we propose techniques for cost-e�ective GPU ac-

celeration of analytical database systems in a single-node setting,

enabling a single GPU to e�ciently process up to a few TBs of data.

We focus on the single-node setting for two reasons. First, recent

analysis [14] shows that over 95% of cloud data warehouse deploy-

ments manage databases smaller than 1TB, and the vast majority

of real-world analytical workloads fall well within the capacity of

a single node. Second, even in large-scale deployments that require

distributed execution, the per-node query engine remains a funda-

mental building block. Our techniques can also bene�t distributed

systems by increasing the amount of data each individual node can

process through GPU acceleration.

We address the PCIe bottleneck based on three key observations

(Section 2): 1) in modern column-store database engines, scan oper-

ators on the CPU, despite processing highly compressed data, can

achieve throughput close to main memory bandwidth, e.g., 80GB/s

on an A100 GPU VM, which far exceeds the PCIe bandwidth; 2)

in contrast, join operators on the CPU typically run signi�cantly

slower than the PCIe speed, making it bene�cial to o�oad their

execution to the GPU, despite the cost of data movement; 3) scans

serve as data-reduction operators, often �ltering out a large fraction

of rows, thereby reducing data processed by downstream operators.

Based on these observations, we propose performing aggressive

data �ltering on the CPU and transferring only the �ltered data to

the GPU for compute-intensive operators such as joins (Section 3).

CPU-side data �ltering can operate at or near memory speed, which

is faster than transferring the un�ltered data directly to the GPU.

With access to larger main memory, the CPU is well suited for scan-

ning large input data. The resulting �ltered data is typically much
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smaller in size, allowing the GPU to process only a subset of rows in

downstream operators, making e�ective use of its high-throughput

but limited-capacity memory. This design strategically leverages

the distinct architectural strengths of both the CPU and the GPU

to overcome the PCIe bottleneck and to reduce GPU memory us-

age. However, realizing e�cient data �ltering on the CPU presents

several technical challenges, as discussed below.

First, a key distinction in our approach lies in the design of the

scan operator, which deviates from the standard scan by producing

�ltered output in a compressed format. This design choice is critical

for conserving PCIe bandwidth, as it enables the transfer of com-

pressed data via PCIe. While prior work has explored how to evalu-

ate predicates directly over compressed data [10, 35, 40, 46, 57, 58],

our use case introduces an additional challenge: after �ltering, the

projected columns must be compacted by retaining only values

from matching rows, while preserving their compressed represen-

tation. To address this, we build on recent work [39] and develop

a highly e�cient operator that can compact compressed values

directly, without having to decompress and re-compress (Section 4).

Its e�ciency stems from the ability to simultaneously operate on

all compressed values that �t within a word by leveraging Bit Ma-

nipulation Instructions (BMI) [34] available in modern CPUs.

Second, sometimes the data reduction on large tables in a query

is only introduced by joins, e.g., when rows from a fact table are

discarded after failing to join with a �ltered dimension table. While

we o�oad the execution of joins to the GPU, we propose tech-

niques that take advantage of data reduction introduced by joins to

eliminate irrelevant rows during scans on base tables (Section 5),

inspired by prior work on bitvector �ltering [20, 23, 42, 59, 60, 65].

Since the overhead of building and applying bitvector �lters can

sometimes outweigh the savings in transfer time, we further pro-

pose algorithms to strike a balance between data reduction and the

cost of using bitvector �lters.

We have implemented our techniques in a custom build of Mi-

crosoft SQL Server with a GPU database engine connected via PCIe.

We evaluate our hybrid approach on an Azure VM with 24 CPU

cores and a single 80GB A100 GPU using the TPC-H benchmark

at scales up to 1TB (Section 6). To the best of our knowledge, this

represents the �rst evaluation of the TPC-H benchmark at the

1TB scale for GPU-accelerated database systems on a single server,

where a single CPU connected to a single GPU over a PCIe bus. We

demonstrate that our techniques can e�ectively handle datasets

signi�cantly larger than the GPU memory size, successfully accel-

erating all 22 queries at the 1TB scale. In contrast, existing GPU

database systems can execute only a limited number of queries at

this scale. Overall, our approach achieves a 3.5× performance im-

provement over SQL Server at the 1TB scale. Our cost-performance

analysis shows that our approach is highly cost-e�cient: it o�ers

a 3.4× speedup over SQL Server on a similarly priced VM, or it is

2.9× cheaper than SQL Server running on a high-end VM while

delivering a 1.4× performance gain.

In summary, this work makes the following contributions:

• We introduce a hybrid CPU-GPU coprocessing strategy that

applies aggressive data �ltering on the CPU to alleviate the PCIe

transfer bottleneck and to reduce GPU memory usage.

• We propose a scan operator that outputs compressed, �ltered

data, with an e�cient implementation based on recent work.

• We demonstrate the e�ectiveness of bitvector �ltering and pro-

pose an algorithm to apply it selectively for e�cient �ltering.

• We empirically demonstrate that our approach e�ciently handles

datasets an order of magnitude larger than GPU memory.

2 MOTIVATION

2.1 The PCIe Bottleneck

In general-purpose architectures, the CPU and GPU communicate

through the PCI Express (PCIe) interface. However, PCIe is sig-

ni�cantly slower than both GPU and CPU memory, making it a

performance bottleneck for analytical database workloads when

data needs to move between the CPU and GPU.

Table 1 compares the bandwidths of CPU and GPU memory,

and PCIe across two generations of data center GPU servers. On

the NVIDIA A100 VM, which uses PCIe 4.0 with a unidirectional

bandwidth of 24GB/s, PCIe is 80× slower than GPU memory. More

notably, its bandwidth is also 3.3× lower than the CPU memory

bandwidth of 80GB/s1. The NVIDIA H100 VM adopts PCIe 5.0,

which doubles the PCIe bandwidth compared to PCIe 4.0. However,

the memory bandwidths of both the GPU and the CPU also increase

accordingly. As a result, the ratio between PCIe and memory band-

widths remains nearly unchanged across the two con�gurations.

Prior research has shown that, given their immense compute

power and memory bandwidth, GPUs can substantially accelerate

query processing when the entire dataset �ts in GPU memory [13,

19, 29, 50]. However, it is well understood that once the dataset

exceeds GPU memory capacity, performance is often limited by the

high data movement cost between the CPU and GPU, diminishing

the bene�ts of GPU acceleration [55, 63]. The PCIe bottleneck is

arguably the primary reason why, despite being an active research

area, GPU-accelerated DBMSs have so far seen limited adoption

and deployment in real-world systems.

Azure VM SKU CPU memory PCIe GPU memory

NC24ads A100 v4 80 GB/s 24 GB/s 2 TB/s

(24 cores) (PCIe 4.0) (NVIDIA A100)

NC40ads H100 v5 180 GB/s 48 GB/s 3 TB/s

(40 cores) (PCIe 5.0) (NVIDIA H100)

Table 1: Bandwidth comparison: CPU vs. PCIe vs. GPU

2.2 Key Observations

In this work, we address the PCIe bottleneck by leveraging the

performance characteristics of key database operators and common

patterns in analytical workloads. Our approach is guided by three

key observations derived from a series of microbenchmark exper-

iments conducted on an Azure NC24ads VM (see Table 1) using

TPC-H at the 100GB scale. In our evaluation, we use Microsoft

SQL Server [6] as the CPU engine, con�gured to use 24 threads,

and TQP [31] as the GPU engine. While our evaluation focuses on

these systems, the �ndings are broadly applicable to other modern

analytical database engines.

Observation 1: CPU scans outperform GPU scans when data must

be transferred via PCIe.

Figure 1a compares the throughput of scan operators under

three scenarios: CPU scans, GPU scans with data pre-loaded in

1The server hosts four such VMs, with a total aggregate memory bandwidth of 320GB/s.
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Figure 1: Operator throughput comparison: CPU vs. GPU
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Figure 2: Operator input size comparison: scan vs. join

GPU memory (labeled as “GPU-hot”), and GPU scans where the

accessed columns are transferred via PCIe (labeled as “GPU-cold”).

The query applies a �lter on the l_shipdate column and projects

three additional columns: a foreign key column (l_orderkey), a

low-cardinality column (l_discount), and a high-cardinality col-

umn (l_extendedprice). We vary the selectivity of the query from

30% to 1%. Throughput is computed based on the scan operator’s

execution time and the size of the compressed input columns.

Despite the input data being compressed, CPU scans can e�-

ciently decompress and �lter data at speeds approaching the CPU

memory bandwidth, i.e., 80GB/s, especially when the �lters are

highly selective. This is largely due to the sequential access pat-

tern, the e�ective use of SIMD vectorization, and the advanced

techniques that enable �lter evaluation on compressed or partially-

compressed data [10, 35, 40, 46, 54, 57, 58]. Given the performance

gap between PCIe and CPU memory bandwidths on this VM, CPU

scans exceed the PCIe transfer rate by more than 3×. As a result,

while GPU scans in hot runs (GPU-hot) signi�cantly outperform

CPU scans, their advantage disappears in cold runs (GPU-cold),

where PCIe data transfer becomes the bottleneck and CPU scans

outperform GPU scans.

Observation 2: GPU joins are consistently faster than CPU joins,

regardless of whether the data is transferred over PCIe or not.

Figure 1b shows the throughput of four di�erent joins on both the

CPU and the GPU: lineitem ²³ orders (L ²³ O), lineitem ²³ part

(L ²³ P), lineitem ²³ supplier (L ²³ S), and orders ²³ customer

(O ²³ C). The throughput is calculated based on the compressed

size of the larger input table. In contrast to scans, CPU joins are

signi�cantly slower than the PCIe transfer speed, primarily due to

the inherently random memory access patterns of join operators.

Consequently, not only do GPU joins outperform CPU joins when

data is pre-loaded (hot runs), but they also remain substantially

faster even when data must be transferred over PCIe (cold runs).
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Figure 3: System architecture

Observation 3: Joins often process far fewer rows than scans, some-

times by orders of magnitude, especially when using bitvector �ltering.

Figure 2 shows the ratio of rows processed by the scan and join

operators on the largest table of each query in the TPC-H bench-

mark, executed on SQL Server. Queries Q1 and Q6 are excluded

from this �gure as they are scan-only queries. When bitvector �l-

tering is disabled, joins process fewer than 10% of the scanned rows

in only 4 out of the 20 queries. In contrast, when bitvector �ltering

is enabled and unmatched rows are eliminated prior to joins, the

number of rows processed by joins dramatically decreases. Com-

pared to scans, for approximately half of the queries, joins process

less than 1% of rows, and only Q13 and Q18 process more than 15%.

These results indicate that only a small fraction of the input data

needs to be processed by downstream operators, including joins.

Furthermore, a recent study of a large number of real-world work-

loads shows that real-world queries tend to be even more selective

than those in TPC-H [66], further supporting this observation.

3 SYSTEM OVERVIEW

This section presents an overview of the hybrid CPU-GPU copro-

cessing solution. Building on the three observations described in

Section 2.2, we propose a simple yet e�ective strategy to address

the PCIe bottleneck in GPU-accelerated DBMSs. First, scans are

executed on the CPU, which has been shown to be more e�cient

than transferring all data directly to the GPU (Observation 1). Since

scans often reduce data volume by more than an order of magnitude

(Observation 3), this approach signi�cantly lowers the amount of

data transferred over PCIe, thereby mitigating the PCIe bottleneck.

The �ltered data is then sent to the GPU, where compute-intensive

operators such as joins and aggregates are executed, taking ad-

vantage of the GPU’s superior performance for these operators

(Observation 2). For analytical workloads, the �nal query results

are typically small and can be transferred back to the CPU with

minimal overhead. Overall, this strategy e�ectively leverages the

complementary architectural strengths of the CPU and GPU to

optimize overall performance.

3.1 System Architecture

Figure 3 shows the high-level system architecture of our hybrid

approach. It integrates a host database engine on the CPU with an

execution engine on the GPU that is connected via the PCIe bus.

Data is stored in compressed columnar format in the host database.

Upon the arrival of a query, the query optimizer generates a query

plan that may include one or more subplans o�oaded to the GPU

engine. Each o�oaded subplan is rooted at a coprocessor operator,

which orchestrates data access and data movement between the

CPU and GPU. Based on the subplan, the required columns are read
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by scan operators and transferred to the GPU over PCIe. The GPU

engine decompresses the received data, executes the subplan, and

returns results back to the coprocessor operator. These results are

directly emitted as the output of the coprocessor operator and are

consumed by the downstream operators that were not o�oaded to

the GPU. The host database engine then executes these operators

on the CPU and returns the �nal query result to the user.

Based on observations in Section 2.2, we perform aggressive data

�ltering in the host database engine on the CPU. Instead of trans-

ferring entire columns, our hybrid approach �lters out irrelevant

data and transfers only �ltered data to the GPU execution engine.

Importantly, the �ltered data retains the same compressed format

as the original columns, which makes �ltering on the CPU trans-

parent to the GPU: the GPU engine does not need to distinguish

between original and �ltered data.

3.2 Overview of Data Filtering

In this subsection, we dive into the data �ltering process, high-

lighted in the dashed box in Figure 3, and present an overview of

its work�ow and the key techniques it employs. For the o�oaded

subplan, the coprocessor operator is connected to a set of scan

operators, one for each table, responsible for performing all data �l-

tering. These scan operators employ two key techniques: predicate

�ltering and bitvector �ltering. We use an example query, Q1, based

on the TPC-H schema, to illustrate this process. Figure 4 shows the

operator tree of Q1’s query plan on the CPU side, which is rooted

at a coprocessor operator and includes two scan operators.

Q1: SELECT SUM(l_extendedprice) FROM lineitem, part

WHERE p_partkey = l_partkey AND p_size < 10.

�����������
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Figure 4: Operator tree for data �ltering in Q1 (CPU-side)

Predicate �ltering (Section 4). With predicate �ltering, the

scan operator evaluates predicates and discards rows that do not

satisfy them. While this resembles the behavior of a standard scan

operator in CPU-only execution, the key di�erence lies in the out-

put format: the �ltered data remains in compressed form, identical

to the original columns. Transferring compressed data over PCIe

is a well-known technique for reducing data movement in GPU

database engines [12, 25, 51, 63]. Our approach retains the ben-

e�ts of compression even after �ltering, resulting in data that is

both �ltered and compressed before being transferred to the GPU,

thereby further mitigating the PCIe bottleneck. For example, in Q1,

applying the �lter p_size < 10 (20% selectivity) reduces the PCIe

transfer for the part table by 5×, by retaining only the matching

20% of rows while preserving the compression format and ratio.

Bitvector �ltering (Section 5). When a query lacks selective

predicates on larger tables, predicate �ltering alone is insu�cient

for e�ective data reduction. For instance, in Q1, the lineitem table

is substantially larger than the part table and lacks direct �lter

predicates. As a result, predicate �ltering fails to reduce its size,

providing limited bene�t to overall performance. To address this,

we adapt bitvector �ltering [20, 23, 42, 65], a well-known technique

for improving join e�ciency. The core idea is to propagate the

�lter from the smaller (build-side) table across the join to the larger

(probe-side) table by constructing a compact data structure, typi-

cally a simple bitmap or Bloom �lter [17], that encodes the join keys

of relevant rows on the build side. This bitvector is then used to pre-

�lter rows on the probe side during the scan, discarding those that

cannot match any join key. As previously shown in Figure 2, bitvec-

tor �ltering is highly e�ective in further reducing data volume for

many queries. In the context of the hybrid approach, bitvector �lters

are both constructed and applied within the scan operator running

on the CPU, before data is transferred over PCIe for join process-

ing. This early �ltering signi�cantly reduces the number of rows

produced by scans, thereby lowering PCIe tra�c, especially when

joins are selective. For example, in Q1, as shown in Figure 4, after

performing predicate �ltering on part, we build a bitvector over

p_partkey and use it to �lter lineitem on l_partkey, resulting

in a 5× reduction in data transfer from lineitem. Bitvector �lters

are applied using the same predicate �ltering technique described

above, by treating them as additional �ltering predicates.

Key challenge. The hybrid approach is only e�ective if data

�ltering on the CPU is faster than the PCIe transfer rate; otherwise

sending compressed but un�ltered data to the GPU is preferable.

While Figure 1a shows that standard scans on the CPU can exceed

PCIe throughput, our scan operator performs additional tasks such

as bitvector �ltering and preserving compression. The key challenge

lies in ensuring that the scan operator remains faster than the

PCIe transfer rate despite these extra operations. Sections 4 and 5

describe our techniques that address this challenge.

3.3 Streaming and Partitioning

In addition to data �ltering, we use two techniques, streaming

and partitioning, to further reduce GPU memory usage and to

enable processing of (�ltered) tables that exceed GPU memory

size. However, unlike data �ltering described in Section 3.2, these

techniques do not reduce PCIe transfer volume and therefore do

not alleviate the PCIe bottleneck.

Streaming. Streaming enables columns to be transferred and

processed in chunks rather than all at once. In streaming execution,

an operator can proceed as long as its internal state �ts within

GPU memory. For example, in a hash join, the hash table built from

the build table is kept in GPU memory, while the probe table is

streamed in chunks for probing. This approach requires the GPU to

store only the hash table and one chunk of the probe table at a time,

thereby signi�cantly reducing memory usage. This technique has

been adopted in prior work to reduce GPUmemory usage [4, 27, 52].

Partitioning. The partitioning technique described below is in-

spired by the classic repartitioning method [49] used in distributed

database systems. With repartitioning, both sides of a join are parti-

tioned using a common scheme, such as range or hash partitioning,

and corresponding partition pairs are shu�ed and joined in paral-

lel. In contrast, our approach processes partition pairs sequentially,

ensuring that each pair �ts entirely in GPU memory. Partitioning

is achieved by repeatedly scanning the input tables with partition-

speci�c predicates to extract one partition per scan. For example,

in Q1, we partition the input tables into two ranges using �lters

such as p_partkey BETWEEN x AND y and l_partkey BETWEEN x

AND y, requiring two scans per table. This approach leverages the
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(b) Scan for GPU-only execution
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(c) Scan for hybrid CPU-GPU execution

Figure 5: Comparison of scan operators

predicate �ltering technique (Section 4) to perform fast scans and is

particularly e�cient when the number of partitions is small. Hash

partitioning could also be used to mitigate data skew, although it

would introduce additional overhead due to hash computations.

Overall, this design allows us to process one partition pair at a time

on the GPU, further reducing GPU memory usage.

We will demonstrate how these techniques, combined with data

�ltering, e�ectively reduce memory usage in Section 6.4.

4 PREDICATE FILTERING

This section presents the design of our scan operator for predicate

�ltering. We �rst review the standard scan operator (Section 4.1),

then introduce our customized design for the hybrid approach (Sec-

tion 4.2 and 4.3), followed by additional optimizations (Section 4.4).

4.1 Background on Scan

In modern column-store analytical database systems, a standard

scan operator performs two functions, predicate evaluation and

compaction, as shown in Figure 5a. Because the downstream op-

erators often cannot directly process compressed data, a standard

scan operator outputs �ltered values in an uncompressed format.

The typical work�ow of a scan operator is the following:

• Predicate evaluation. During this step, the operator evaluates

the predicates either directly on compressed values or on values

after decompression, and produces a selection bitmap to indicate

matching rows. This step has been extensively optimized in prior

work through various techniques [10, 35, 39, 40, 46, 57, 58, 64].

• Compaction. Using the selection bitmap from the previous step,

the next step compacts the projected columns, i.e., the subset of

columns needed by subsequent operators, by discarding values

from unselected rows. The projected columns are �rst decom-

pressed and then compacted by removing unselected values, with

both steps optimized using SIMD vectorization [46, 58].

Prior work has shown that GPUs can e�ciently perform decompres-

sion, and thus advocates transferring compressed columns to GPUs

to reduce PCIe overhead [12, 25, 51, 63]. In this design, a GPU scan

mirrors its CPU counterpart by executing both predicate evaluation

and compaction directly on the GPU, as shown in Figure 5b.

4.2 Scan for Hybrid Coprocessing

We propose a specialized scan operator for the hybrid approach,

as illustrated in Figure 5c. While it performs predicate evaluation

on the CPU similarly to a traditional CPU-only scan, it di�ers in

how it compacts data. Instead of outputting uncompressed values,

it produces �ltered data in compressed form. This combination of

early �ltering and compression is essential to mitigating the PCIe

bottleneck.

The key challenge is how to design a compaction operator that

can compact and output compressed values e�ciently?

In the standard scan operator, as described in Section 4.1, com-

pressed data cannot be directly processed by the compaction step

and must be partially or fully decompressed �rst. To produce com-

pressed output, a naïve solution is to apply a separate compression

step after compaction. However, this incurs signi�cant CPU over-

head and can substantially o�set the PCIe transfer savings achieved

through sending compressed data.

To address this challenge, we develop a compaction operator that

directly compacts compressed values, avoiding both decompression

and re-compression on the CPU. Unlike the naïve approach, which

introduces additional overhead, this method compacts compressed

values directly on the CPU and o�oads decompression of projected

columns to the GPU (as shown in Figure 5c), often resulting in

better performance than the standard scan operator. The details of

this technique are presented in the following subsection.

4.3 Direct Compaction on Compressed Values

Our compaction operator takes a byte array containing = com-

pressed values and an =-bit selection bitmap as input and outputs

a byte array that includes only the values selected by the bitmap

in their original compressed format. Below, we describe how to

implement this operator for three encoding schemes: bit-packing,

run-length encoding (RLE), and dictionary encoding.

4.3.1 Bit-packing. Bit-packing encoding uses only as many bits

as needed to represent each value, often resulting in values that

do not align with byte or word boundaries. This misalignment

poses challenges for e�ciently compacting these bit-packed values.

The example below shows the input and expected output of the

compaction operator (values are shown in binary representation;

we alternate background colors to di�erentiate bits from di�erent

values). According to the selection bitmap, three values (v1, v5, and

v6) are extracted from a sequence of eight 4-bit values and written

to the output in their original compressed form.

input v7 v6 v5 v4 v3 v2 v1 v0

bit-packed values: 10000001110100111001010111010010

selection bitmap: 0 1 1 0 0 0 1 0

output v6 v5 v1

000111011101

Given that each value occupies only 4 bits, the goal is to process

all values that �t within a 64-bit processor word simultaneously,

rather than iterating over and processing each value individually.

Achieving this with conventional CPU instructions is challenging,

if not impossible, due to the lack of �ne-grained bit-level manipu-

lation capabilities [37]. Recent work [39] addresses this challenge

using two special instructions, PEXT and PDEP [34], from the Bit
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Manipulation Instructions (BMI) set, an x86 extension supported

by both Intel and AMD processors2. These instructions have been

available in server processors for several years and are now widely

supported in today’s CPUs. Originally, this BMI-based compaction

operator was proposed to optimize the scan operator in CPU-only

execution [39]. In this paper, we extend its use to a new context:

the scan operator in hybrid execution, where compacted output in

compressed form is required. This setting aligns naturally with the

operator’s functionality. Below, we brie�y review the technique.

mask:

src:

dest:

0101000100111001

0100110110100101

0000000001011001

(a) PEXT (parallel bit extract)

src:

dest:

mask:

0000000001011001

0100000100100001

0101000100111001

(b) PDEP (parallel bit deposit)

Figure 6: Examples of BMI instructions

PEXT (Parallel Bit Extract) and PDEP (Parallel Bit Deposit) are

64-bit instructions designed to perform bit-level gather and scatter

operations, respectively. Figure 6 shows examples of the two in-

structions on 16-bit operands. PEXT selectively extracts bits from a

source operand based on a selection mask and copies them into the

continuous low-order bits of the destination operand. PDEP per-

forms the opposite operation: it places the contiguous low-order bits

from the source operand into positions in the destination operand

speci�ed by the selection mask.

Figure 7 demonstrates the use of PEXT and PDEP to compact the

bit-packed values in the example above. The process has two steps.

In the �rst step, the selection bitmap is transformed into an extended

bitmap by replicating each bit four times to match the bit-width of

the values. For a bit b ∈ {0, 1}, the replicated pattern bbbb can be

computed as b0000 - 0000b. This operation is applied in parallel

across all value lanes within a word, using two PDEP instructions

to place each bit into the correct positions for generating b0000 and

0000b, followed by a subtraction to produce the extended bitmap. In

the second step, with the extended bitmap, we can now simply use

PEXT to extract all the bits of the selected values, thus producing

the compacted bit-packed values.

The BMI-based compaction operator simultaneously processes

all values that �t into a 64-bit word by using only �ve instructions,

regardless of the bit width (e.g., 16 4-bit values, or 10 2
3
6-bit val-

ues). This data parallelism enables highly e�cient compaction that

directly produces bit-packed values.

Input v7 v6 v5 v4 v3 v2 v1 v0

bit-packed values: 10000001110100111001010111010010

selection bitmap: 0 1 1 0 0 0 1 0

constant mask: 00010001000100010001000100010001

step 1: transform the select bitmap to an extended bitmap

low = PDEP(bitmap, mask): 00000001000100000000000000010000

high=PDEP(bitmap,mask-1): 00010001000000000000000100000000

extended = high - low: 00001111111100000000000011110000

step 2: compact values based on the extended bitmap

output PEXT(values, v6 v5 v1

extended): 000111011101

Figure 7: BMI-based compaction on eight 4-bit values

2Arm supports similar functionality via vectorized instructions BDEP and BEXT [2].

4.3.2 RLE. An RLE run is represented by a value E and its repe-

tition count : . To compact an RLE run, we count the number of

1s within the next : bits of the selection bitmap, corresponding to

the occurrences of E . This can be implemented using the POPCNT

instruction, which is available in both x86 and Arm architectures.

The compacted RLE is then represented by the value E and the new

count, which re�ects how many times E is selected according to the

selection bitmap. In a column containing consecutive RLE runs, we

process each run individually, compacting them one at a time.

4.3.3 Dictionary encoding. With dictionary encoding, all unique

column values are stored in a dictionary, and the data column

contains only their corresponding dictionary indexes. These indexes

can be further compressed using either bit-packing or RLE. For

GPU execution, both the index column and the dictionary must

be transferred over PCIe. During compaction, the index column is

compacted using the samemethods described earlier for bit-packing

or RLE. When the dictionary is signi�cantly larger than the index

column, we further reduce the transfer cost through dictionary

compaction, which eliminates entries that are not referenced by any

selected rows. This is achieved without modifying the index column:

unused entries are replaced with empty values, preserving their

original positions and dictionary indexes. This method e�ectively

reduces the dictionary size—and consequently the PCIe transfer

tra�c—without incurring additional CPU overhead.

4.3.4 Pu�ing them together. Columns often interleave bit-packing

and RLE runs, so regions of repeated values are encoded with

RLE while other regions use bit-packing. When compacting such

columns, we apply the appropriate method to compact each in-

dividual run according to its speci�c encoding. Any empty runs

resulting from this compaction are removed. In addition, we also

merge consecutive runs using the same encoding after removing

the empty runs. These optimizations can reduce the number of runs,

potentially improving subsequent GPU decompression by lowering

the overhead associated with managing multiple runs.

4.4 Skipping Filters

Despite the highly e�cient scan operator, skipping certain �lters

on the CPU can sometimes be bene�cial when the cost of eval-

uating them outweighs the potential gains. For example, �lters

that are either insu�ciently selective or computationally expensive

(e.g., string matching or UDFs) may slow CPU execution enough

to negate the expected transfer savings. In such cases, it is more

e�cient to bypass CPU-side �ltering and instead o�oad the �lter

to the GPU. If all the predicate �lters are skipped, the system simply

transfers the original, un�ltered compressed columns to the GPU.

Section 5.2.2 describes our cost-based algorithm that jointly selects

both predicate and bitvector �lters.

5 BITVECTOR FILTERING

In this section, we present the bitvector �ltering technique tailored

for hybrid query processing.We begin by outlining the performance

requirements of our use case in Section 5.1, then describe how

bitvector �lters are selected in Section 5.2, and �nally discuss the

design and implementation of bitvector �lters in Section 5.3.
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5.1 Bitvector Filtering for Hybrid Coprocessing

Bitvector �ltering is a well-known technique for reducing the num-

ber of rows processed by join operators on the CPU. In this setting,

since join operators are computationally expensive, bitvector �l-

tering is designed to maximize data reduction, i.e., to eliminate

as many non-matching rows as possible. This goal often leads to

two design choices: 1) bitvector �lters are applied aggressively,

even when they yield only modest data reduction, and 2) the �lter

structure is optimized to minimize false positive rates.

However, in the hybrid approach, bitvector �ltering is used not to

reduce join input size, as in traditional use cases, but to reduce data

transferred over PCIe. This technique is e�ective only when the

CPU cost of constructing and probing the bitvector is outweighed

by the savings in transfer cost. As previously shown in Figure 1b,

PCIe bandwidth (the dashed line in Figure 1b) typically exceeds

CPU join throughput by an order of magnitude. This performance

gap imposes signi�cantly stricter performance requirements on

bitvector �ltering in our setting, compared to conventional use

cases. To meet these requirements, �lters must be applied selec-

tively—when the expected reduction in data transfer is marginal,

the added cost may outweigh the bene�t. In addition, bitvectors

must be carefully tuned to strike a balance between false positive

rate and probing performance. Our designs for these two aspects

are presented in Sections 5.2 and 5.3, respectively.

5.2 Selecting Bitvector Filters

For a given query, we construct a bitvector �ltering plan by �rst

identifying all the candidate bitvector �lters of a query plan and

then selecting only those that o�er substantial data reduction.

5.2.1 Deriving candidate bitvector filters. Given a query plan gen-

erated by the query optimizer, we derive the candidate bitvector

�lters by �nding all the bitvector �lters that can be constructed

from the plan by adapting the existing approaches [20, 23, 42, 65].

Intuitively, bitvector �lters can be constructed based on equi-join

conditions. In addition, they are required to be created from and

probed by columns from the base tables (i.e., no intermediate re-

sults) in hybrid coprocessing. We derive these candidate bitvector

�lters by tracing the lineage of the columns of the join conditions

in the query plan. We recursively traverse the query plan from top

to bottom, extract the columns from equi-join conditions, and trace

the create-from and probe-by columns of a bitvector �lter to the

corresponding columns from the base tables. If a join condition

involves equi-join of more than one column, we derive a candidate

bitvector �lter for each pair of join columns.

Figure 8a shows the join graph for TPC-H Q5, and the corre-

sponding join plan with bitvector �ltering is shown in Figure 8b.

To derive the candidate bitvector �lters, we start from the root

join �>8=1 with the join condition s_nationkey=c_nationkey AND

s_suppkey=l_suppkey. Since there are two columns in the join

condition, we derive one candidate bitvector �lter per column,

i.e., F1 : B_=0C8>=:4~ → 2_=0C8>=:4~ and F2 : B_BD??:4~ →

;_BD??:4~. Then we traverse to the left child of �>8=1, i.e., �>8=2
with the join condition n_nationkey=s_nationkey, and we derive

a candidate bitvector �lter F3 : =_=0C8>=:4~ → B_=0C8>=:4~. Simi-

larly, we derive the candidate bitvector �lter F4 : A_A468>=:4~ →

(a) Join graph

(b) Join plan with bitvector �ltering

(c) Derived candidate bitvector �lters

(d) Selected bitvector �lters

Figure 8: Example bitvector �ltering plan derived from the

join plan of TPC-H Q5. Arrows indicate where bitvector �l-

ters are created and probed, annotated with the column to

create the �lter. Tables with predicate �lters are colored gray.

=_A468>=:4~ with �>8=3, and we �nally traverse to the base ta-

ble region. Here, we map the column r_regionkey that creates

F4 to region table. Now we backtrack to nation table, where

we map both column n_regionkey that probes F4 and column

n_nationkey that creates F3 to nation table. After traversing the

plan shown in Figure 8b, we derive two additional bitvector �lters:

F5 : 2_2DBC:4~ → >_2DBC:4~ and F6 : >_>A34A:4~ → ;_>A34A:4~.

We end up with six candidate bitvector �lters as shown in Figure 8c.

5.2.2 Selecting candidate filters. Given a set of candidate bitvector

�lters, it is not always bene�cial to apply all the �lters for data

�ltering in hybrid coprocessing. Instead, we select both predicate

�lters (as discussed in Section 4.4) and bitvector �lters jointly, tak-

ing into account their combined e�ect on data reduction. When

multiple �lters apply to the same table, the marginal bene�t of each

additional �lter may diminish as the joint selectivity decreases.

Therefore, the �lter selection process must be cost-based, balancing

the overhead of applying �lters on the CPU against the expected

reduction in PCIe transfer.

We propose a greedy algorithm to holistically select a subset

of predicate �lters and bitvector �lters in a cost-based manner

as shown in Algorithm 1. We �rst remove equivalent or redun-

dant bitvector �lters based on their dependency and selectivity
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Algorithm 1 Cost-based �lter selection using a greedy algorithm

1: function GetDataFilterPlan(?;0=, 5 8;C4AB, CℎA4Bℎ>;3)

2: 5 8;C4AB ← '4<>E4'43D=30=C�8CE42C>A�8;C4AB (5 8;C4AB )

3: C01;4B ← �4C)01;4B�5 B (?;0=)

4: A4BD;C ← ∅

5: for C ∈ C01;4B do

6: 15 B ← �4C�8CE42C>A�8;C4AB)>%A>14 (C, 5 8;C4AB )

7: ?5 B ← �4C%A43820C4�8;C4AB (C )

8: C1;�8;C4AB ← 15 B ∪ ?5 B

9: B>AC43�8;C4AB ← (>AC�~�BC8<0C43�4=45 8C�4B2 (C1;�8;C4AB )

10: B4;42C43�8;C4AB ← ∅

11: for 5 ∈ B>AC43�8;C4AB do

12: B4;42C43�8;C4AB.�33 (5 )

13: B ← �4C(4;42C8E8C~ (C01;4B, C, A4BD;C ∪ B4;42C43�8;C4AB )

14: if B < CℎA4Bℎ>;3 then

15: A4BD;C ← A4BD;C ∪ B4;42C43�8;C4AB

16: 1A40:

17: return �4A8E4�8CE42C>A�8;C4A8=6%;0= (C01;4B, A4BD;C )

(line 2). For the example of TPC-H Q5 shown in Figure 8c, be-

cause there is no predicate �lter on supplier table and all val-

ues in n_nationkey appear in supplier table, the bitvector �lter

F1 created from s_nationkey is equivalent to F3 created from

n_nationkey. Thus, F1 can be replaced by F3 and removed. Next,

we decide which �lters to apply on each table in their traversal

order (line 3), i.e., respecting the dependency of the bitvector �lter

creation and application. For each table, we sort the �lters based on

their estimated cost bene�t in descending order (line 6-9) and then

select a subset of the �lters until the selectivity on the table drops

below a threshold (line 10-16). For example, while the bitvector

�lter F5 : 2_2DBC:4~ → >_>A34A:4~ can be applied to the orders

table, because the predicate �lter on orders is already selective

enough with 15% selectivity, F5 is not selected for the plan. Note

that the estimated cost bene�t of a �lter considers both the over-

head of using the �lter and its reduction of data transfer cost (line

9). If the �lter is a predicate �lter, we estimate the cost of evaluating

the predicate and reduction on data transfer cost; if the �lter is a

bitvector �lter, we estimate the cost of creating and probing the

bitvector �lter and reduction on data transfer cost. For example,

although the bitvector �lter F2 : B_BD??:4~ → ;_BD??:4~ is less

selective than F6 : >_>A34A:4~ → ;_>A34A:4~ on lineitem table,

creating F2 from supplier table has much lower overhead and

thus its estimated cost bene�t is higher. The resulting bitvector

�ltering plan of TPC-H Q5 is shown in Figure 8d.

Note that the cost bene�t estimation neglects the correlations

between �lters applied to the same table, i.e., assuming indepen-

dence. Additionally, the greedy algorithm does not account for the

cascading e�ect, i.e., how the selectivity of the current table impacts

the e�ectiveness of bitvector �lters created from it. However, we

observe empirically that the resulting bitvector �ltering plan is

often good enough for hybrid coprocessing.

5.3 Bitvector Filter Design and Implementation

Various exact and approximate data structures [17, 23, 24] have been

proposed to perform bitvector �ltering, including simple bitmaps

(i.e., one bit per value for values in the domain), hash-based bitvec-

tors, and Bloom �lters [17]. In the context of hybrid coprocessing,

where performance requirements are stringent, throughput is often

prioritized over false positive rate in bitvector �ltering. For domains

of relatively small cardinality, a simple bitmap is often preferred due

to its lookup performance. In contrast, for larger domains where

a simple bitmap exceeds CPU cache size, a hash-based bitvector

with a lightweight hash function is used. The size of the bitvector

is also carefully con�gured to favor lookup throughput, even at

the expense of a higher false positive rate. In particular, smaller

bitvectors may be chosen to ensure CPU cache e�ciency, trading

o� accuracy for faster accesses.

In our implementation, the scan operator is responsible for both

constructing and applying bitvector �lters. In particular, probing

a bitvector is treated as an additional predicate and evaluated in

the scan operator described in Section 4. To improve performance,

bitvector probing is further optimized using SIMD vectorization.

6 EVALUATION

We implemented a prototype system by integrating the proposed

techniques into the query execution engine of a custom build of

Microsoft SQL Server [6], coupled with the TQP GPU database

engine [31]. We evaluate this prototype using the industry-standard

TPC-H benchmark to answer the following questions:

• E�ciency: What is the performance of the hybrid approach

compared to CPU-only and GPU-only approaches, and to what

extent does it mitigate the PCIe bottleneck? (Sections 6.2 and 6.3)

• Scalability: How well does our approach scale compared to

existing approaches in both performance and workload coverage

when the dataset exceeds GPU memory capacity? (Section 6.4)

• Cost-e�ectiveness: How does our approach compare to the

CPU-only approach in terms of perf/$? (Sections 6.5)

6.1 Setup

Our experiments are conducted on an Azure NC24ads A100 V4

VM, equipped with 24 physical cores, 220GB of main memory,

and an 80GB NVIDIA A100 GPU connected through PCIe 4.0. The

bandwidths for the main memory, GPUmemory, and PCIe are listed

in Table 1 (see Section 2). The physical server hosts four such VMs

and has two AMD EPYC 7V13 (Milan) processors, 880GB of main

memory, and four A100 GPUs.

We run all 22 queries from the TPC-H benchmark [1] at three

scale factors: 100GB, 300GB, and 1TB. The 100GB dataset represents

the setting where the working set of the workload �ts entirely in

GPUmemory. In contrast, the 1TB dataset exceeds the GPUmemory

size by an order of magnitude, making data transfers over PCIe

necessary during query execution (see Section 2.1).

Each query is executed with warm main memory caches, i.e., the

data accessed by the query is loaded from CPU memory. We report

the average execution time over 10 warm runs. The CPU database

engine uses 24 threads, matching the number of cores in the VM.

For the GPU-only baselines, we evaluate the queries in both hot

and cold runs. In hot runs, data is preloaded into GPU memory,

requiring that the entire dataset �ts within GPU memory. In cold

runs, all required data is transferred on demand from the CPU to

the GPU via PCIe.

In our experiments, we always o�oad the full query plan to

the GPU (while our hybrid approach, by design, still performs
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data �ltering on the CPU). When datasets exceed GPU memory

capacity, queries may trigger out-of-memory (OOM) exceptions.

Our prototype handles such cases by catching the exceptions and

falling back to CPU execution. However, for evaluation purposes,

we expose the OOM exceptions encountered by each approach.

We evaluate the following approaches in our experiments:

• Hybrid. Our prototype integrates the proposed techniques into

Microsoft SQL Server as the CPU database engine and uses TQP

as the GPU database engine. Our current implementation uses

synchronous PCIe transfers, which prevents the overlap of CPU

execution and PCIe transfers within a single thread but still

allows inter-thread overlap.

• Microsoft SQL Server (SQL). We use Microsoft SQL Server [6]

as the CPU-only baseline, and create column-store indexes on

all the tables, as is expected for an analytical database.

• TQP. We use the TQP GPU database engine [31] as a GPU-

only baseline. TQP is integrated with SQL Server following the

architecture shown in Figure 3. Data is either pre-loaded to the

GPU or transferred on demand (but without data �ltering).

• HeavyDB. HeavyDB [5] is a leading open-source database en-

gine built for GPUs and serves as an additional GPU-only base-

line. We performed best-e�ort tuning to enhance its performance.

Additionally, since the evaluation focuses on query execution,

we also tried to alleviate any performance ine�ciencies that

result from suboptimal plans by unnesting some queries (Q2, Q4,

Q16-Q18, Q20, and Q22) with manual rewriting.

6.2 Microbenchmark

We �rst evaluate Hybrid using a microbenchmark, comparing it

against the CPU-only (SQL Server) andGPU-only (TQP) approaches.

The microbenchmark runs a join query on the �ltered Lineitem

and Part tables from the TPC-H 100GB dataset, where Lineitem

is 30× larger than Part. We vary the �lter selectivity on each table

from 1% to 99% individually and measure cold-run performance.

The benchmark query is shown below:

SELECT SUM(p_retailprice - l_extendedprice * (1 - l_discount)

FROM lineitem, part

WHERE l_partkey = p_partkey AND l_shipdate < X AND p_size < Y.

Figure 9a shows the execution time of all approaches as we

vary the selectivity on the larger table (lineitem), while �xing the

selectivity on the smaller table (part) at 99%. The execution time is

broken down into CPU time, GPU time, and PCIe transfer time. For

Hybrid, we report two variants: one using only predicate �ltering

(P) and the other using both predicate and bitvector �ltering (H).

In the CPU-only approach, execution time increases substantially

as as the scan become less selective, since more rows are produced

by the scan and subsequently processed by the more expensive

join operator. In the GPU-only approach, GPU execution time is

substantially lower, nearly an order of magnitude less than the

CPU execution time in the CPU-only approach, demonstrating the

performance advantage of GPUs. However, total execution time is

bottlenecked by PCIe transfer, which remains unchanged regardless

of selectivity, since TQP always transfers full columns. When the

�lter is highly selective and the query is scan-heavy, the GPU-only

approach becomes slower than CPU-only due to PCIe bandwidth

limits, consistent with Observation 1 described in Section 2.2. As
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Figure 9: Micro-benchmark comparison: C = CPU-only (SQL)

vs. G = GPU-only (TQP-cold) vs. P = Hybrid w/ predicate �l-

tering vs. H =Hybrid w/ both predicate and bitvector �ltering

selectivity increases and the join dominates execution, GPU-only

outperforms CPU-only, in line with Observation 2.

Unlike GPU-only, the Hybrid approaches consistently outper-

form CPU-only across all selectivities, with speedups ranging from

2.1× to 3.5×. Compared to GPU-only, Hybrid performs predicate

�ltering on the CPU to reduce PCIe transfer volume. Although this

incurs additional CPU time, the added cost is more than o�set by

the reduction in PCIe transfer time, thanks to the e�cient predicate

�ltering technique (see Section 4). This trade-o� is especially e�ec-

tive when the �lter is selective, where Hybrid achieves up to a 3.5×

speedup. As selectivity increases and fewer rows are �ltered out,

the bene�t diminishes. When nearly all rows are selected, Hybrid

disables CPU-side �ltering and reverts to GPU-only execution (Sec-

tion 5.2). Since the �lter on the smaller table is �xed at 99% and is

not su�ciently selective, Hybrid does not apply bitvector �ltering,

resulting in identical performance for both P and H variants.

Figure 9b compares the approaches as we vary the selectivity

on the smaller table, while keeping the larger table �xed at 99%

selectivity. In this setting, predicate �ltering alone o�ers limited

bene�t, as it does not substantially reduce total transfer volume.

In contrast, bitvector �ltering in Hybrid e�ectively propagates the

selective �lter from the smaller to the larger table, signi�cantly

reducing the data transfer volume of the larger table. Although

this introduces additional CPU overhead for building and probing

the bitvector, the savings in transfer time outweigh the overhead.

Overall, Hybrid achieves up to a 2.4× speedup over the best of the

CPU-only and GPU-only baselines in this scenario.

6.3 TPC-H 100GB

We next evaluate the e�ciency of various approaches using the

TPC-H benchmark at the 100GB scale. At this scale, the working

set �ts entirely in GPU memory, allowing all baselines to complete

every query without triggering out-of-memory (OOM) exceptions3.

While our hybrid approach is not speci�cally designed for this

scenario, it provides a useful setting to compare the execution

times of all approaches and to assess the overhead of cold runs.

Figure 10 shows the execution times for all the queries across

the evaluated approaches, with total execution times summarized

in Table 2. Among all approaches, TQP-hot is the fastest, which is

3As of the writing of this paper, HeavyDB does not support Q21 due to limitations of
its query optimizer.
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Figure 10: TPC-H 100GB comparison: CPU-only (SQL) vs. GPU-only (HeavyDB and TQP) vs. Hybrid (SQL + TQP)
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expected given that no PCIe transfer is required in hot runs. Com-

pared to the other GPU-only approach, TQP outperforms HeavyDB

by 1.5× in hot runs.

In cold runs, Hybrid achieves a 3.5× speedup over SQL Server, an

improvement from the 2.4× speedup of TQP-cold. It also narrows

the performance gap between hot and cold runs from 4.7 to 1.9

seconds, yielding a 2.3× reduction compared to TQP-cold. With

this reduced overhead, Hybrid is only 45% slower than TQP-hot,

despite data being transferred over the slow PCIe bus.

Figure 11 breaks down the execution time into three compo-

nents: CPU, GPU, and PCIe time. Although TQP transfers com-

pressed columns and decompresses them on the GPU, similar to

prior work [12, 25, 51, 63], PCIe remains the primary bottleneck

for nearly all queries. As a result, TQP shows mixed performance:

it achieves substantial speedups on long-running queries but is

slower than SQL Server on 6 out of 22 queries, with a maximum

slowdown of 3.4× due to the PCIe overhead. In contrast, Hybrid

matches or exceeds SQL Server on all queries.

By pushing data �ltering to the CPU, Hybrid signi�cantly re-

duces PCIe transfer time at the expense of increased CPU time. This

trade-o� is generally favorable, as the reduction in PCIe time out-

weighs the additional CPU cost. Moreover, CPU-side �ltering also

lowers GPU execution time by reducing the input size to the GPU

engine. However, this bene�t is less substantial, as GPU execution

time is typically not the primary performance bottleneck.

There are a few exceptions. For 5 queries, Hybrid gains no bene�t

from data �ltering compared to GPU-only: Q18 and Q21 lack selec-

tive predicates, while Q9, Q13, and Q22 include expensive �lters

that are better suited for GPU execution (see Section 4.4). In these

SQL HeavyDB (excluding Q21) TQP Hybrid

-hot -cold -hot -cold -cold

22.4 s 6.8 s 18.8 s 4.5 s 9.2 s 6.4 s

Table 2: Total execution time on 100GB TPC-H

cases, Hybrid sends full compressed columns to the GPU, identical

to GPU-only. Conversely, Q1 and Q6 are scan-only queries that run

faster on the CPU (Observation 1). As a result, Hybrid executes

them fully on the CPU without sending any data to the GPU.

6.4 TPC-H 1TB

In this set of experiments, we use the TPC-H 1TB benchmark to

assess how the various solutions perform when the datasets sig-

ni�cantly exceeds the GPU memory size. Since, at this scale,the

working set of most queries cannot �t into GPU memory, we focus

only on cold runs. We evaluate each approach in terms of perfor-

mance and query coverage by reporting the execution time and

the number of queries executable without OOM exceptions. These

metrics directly expose the two main limitations of GPUs: the PCIe

bottleneck and limited memory capacity.

6.4.1 Overall Comparison. Figure 12 shows the execution times

for the CPU-only (SQL), GPU-only (TQP and HeavyDB), and hy-

brid (Hybrid) approaches, where “x” denotes queries that do not

successfully run on the GPU due to OOM exceptions.

Given that the dataset substantially exceeds the GPU memory

capacity, unsurprisingly, the GPU-only TQP approach executes

merely 4 out of 22 queries without OOM exceptions. Three of

the four runnable queries involve joins among smaller tables. The

fourth one, Q22, accesses a single column of the second largest

table (orders) in the database, which is small enough to �t into

GPU memory. These results demonstrate that limited GPU memory

capacity is a major challenge for scalable GPU database systems.

Similarly, the other GPU-only approach, HeavyDB, successfully

executes 9 queries on the GPU without falling back to the CPU.

However, despite our tuning e�orts, 6 of these 9 queries are in fact

signi�cantly slower than the CPU-only approach, likely due to the

PCIe bottleneck.

In contrast, our hybrid approach successfully executes all 22

queries at the 1TB scale, providing signi�cant improvements over

other approaches. The speedup over CPU-only is shown above

each bar group in Figure 12. Overall, the speedups range from

0.8× to 9.1×, with an overall speedup of 3.5× across all queries. It

outperforms CPU-only on 21 out of 22 queries.

6.4.2 Impact of Key Techniques. We next investigate the impact of

each technique on execution time and the number of executable

queries without OOM exceptions. We begin with the basic TQP

approach, and incrementally enable additional techniques, one at

a time, in the following order: streaming (Section 3.3), predicate
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�ltering (Section 4), bitvector �ltering (Section 5), and partitioning

(Section 3.3). The results are shown in Figure 13.

Streaming. Enabling streaming allows us to execute 10 addi-

tional queries without OOM exceptions. For these queries, the

largest table is streamed to the GPU. Since, for the largest table,

only the currently processed chunks need to be kept in GPU mem-

ory, the peak GPU memory usage reduces signi�cantly. However,

streaming alone does not bring signi�cant performance bene�ts: 7

out of these 10 queries are either slower or only marginally faster

than the CPU-only baseline. This is because streaming does not

reduce the amount of data transferred via PCIe, which remains a

bottleneck for many queries.

Predicate �ltering. With predicate �ltering enabled, we are

able to run an additional query, Q12, compared to the streaming

approach. Moreover, we �nd that predicate �ltering eliminates the

need for streaming of the largest tables in all but two queries, Q7

and Q20, as the reduction in table size from predicate �ltering on

the CPU enables these �ltered tables to �t entirely in GPU memory.

More importantly, predicate �ltering brings signi�cant performance

gains by reducing the amount of data that needs to be transferred

through PCIe. Compared to the streaming approach, we observe

notable speedups in seven queries (Q1, Q6, Q7, Q14, Q15, Q19, and

Q20). Most of these queries have highly selective �lters on the

largest table.

Bitvector �ltering. Bitvector �ltering enables three additional

queries (Q4, Q10, and Q17) to run successfully and improves the

performance of three other queries (Q2, Q5, and Q8). These six

queries share a common pattern: the selective predicate �lters are

on the smaller tables, and the data �ltering on the largest table can

only be achieved through join conditions. In such cases, predicate

�ltering alone is insu�cient. Bitvector �ltering is essential for push-

ing �lters across the join to the largest table, which reduces PCIe

data transfer and lowers GPU memory consumption.

Partitioning. Enabling partitioning allows us to execute all

four remaining queries (Q9, Q13, Q18, and Q21) without OOM

exceptions. Although Q9 has a highly selective predicate �lter, the

�lter is a string matching expression that is expensive to evaluate

on the CPU and is therefore o�oaded to the GPU (see Section 4.4).

Similarly, the predicate �lter in Q18, which applies to the result

of group-by aggregates, is also o�oaded to the GPU. As a result,

these queries require transferring the full columns to the GPU.

With partitioning, we add �lters on the join keys on both sides of

the largest join, allowing us to generate partitions with predicate

�ltering and to execute the query on each partition pair in sequence.

This makes all four queries runnable without OOM exceptions and

results in signi�cant performance improvements over CPU-only

execution: 3.4×, 3.7×, 9.0×, and 3.3× for Q9, Q13, Q18, and Q21,

respectively. Note that while partitioning is necessary, it alone is

not su�cient; the generated �lters must still be applied to produce

a �ltered table via predicate �ltering.

6.5 Cost-E�ectiveness

In the next experiment, we evaluate the cost-e�ectiveness of the

hybrid approach on two GPU VMs, comparing it against SQL Server

running on CPU-only VMs. In addition to the NC24ads A100 v4

VM (GPU-VM-A100), we also evaluate the hybrid approach on the

NC40ads H100 v5 VM with 40 cores and 320GB memory (GPU-VM-

H100), which is equipped with a single NVIDIA H100 GPU [8], the

successor to the A100, with the same 80GB of GPU memory. As

shown in Table 1, the H100 VM o�ers 2.3× higher main memory

bandwidth, 1.5× higher GPU memory bandwidth, and 2.0× higher

PCIe bandwidth compared to the A100 VM.

For the CPU-only baselines, we run SQL Server on three VMs

representing di�erent price-performance points: an E32bds v5 VM

with 16 CPU cores and 256GB memory (CPU-VM-S), an E64bds

v5 VM with 32 cores and 512GB memory (CPU-VM-M), and an

E112ibds v5 VM with 56 cores and 672GB memory (CPU-VM-L) [3].

Figure 14 plots the total execution time for all TPC-H queries versus

VM cost at the 300GB and 1TB scales.
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Figure 14: Cost-e�ectiveness of CPU-only vs. Hybrid

We �rst compare the hybrid approach running on the GPU-

VM-A100 against the CPU-only baselines. At the 300GB scale, the

hybrid approach achieves a speedup of 2.1× over the most powerful

VM (E112ibds) at only 35% of the cost. This translates to a 6.0×

improvement in perf/$. When compared to the most economical

VM (E32bds), the hybrid approach achieves a 3.6× speedup at 1.4×

the cost, which results in 2.6× better cost-e�ciency. At the 1TB

scale, the hybrid approach achieves a 1.4× speedup over the most

powerful VM (E112ibds) at just 35% of the cost, resulting in a 4.0×

improvement in perf/$. Compared to the more economical VM

(E32bds), the hybrid approach is 37% more costly but delivers a

speedup of 3.4×. Overall, the hybrid approach on A100 achieves

higher performance than the most powerful CPU-only VM, at a

cost that is comparable to the most economical option.

We further evaluate the hybrid approach using the GPU-VM-

H100, which delivers the best performance among all con�gurations

tested. Compared to SQL Server running on the most powerful CPU

VM (CPU-VM-L), it achieves a 3.7× speedup at the 300GB scale and a

2.3× speedup at the 1TB scale, while costing only 67% as much. This

translates to 5.5× and 3.4× improvements in perf/$ at the 300GB and

1TB scales, respectively. Together, the hybrid approach running

on the A100 and H100 VMs provides two cost-e�ective options

at di�erent price-performance points, both of which substantially

outperform CPU-only baselines in terms of cost-e�ciency.

7 RELATED WORK

Query processing within GPU memory. One of the �rst re-

search prototypes of GPU database engines is the columnar Co-

GaDB [18]. Ocelot [33] is a hardware-oblivious extension of Mon-

etDB that uses OpenCL to run on GPUs. Open-source solutions

include BlazingSQL [4], HeavyDB [5], and RAPIDS for Spark [9].

Prior research has also explored using PyTorch as a data process-

ing runtime to target multiple hardware accelerators [13, 31]. A

rich body of literature studies e�cient algorithms and implemen-

tations of relational operators for GPUs [30, 44, 48, 53]. Beyond

operator-level optimizations, prior work has studied operator fusion

through query compilation to minimize data movement from and to

GPU [27, 43]. Other recent research work has focused on data pro-

cessing and placement in a multi-GPU setting [5, 21, 44, 48, 56, 61].

Our work is complementary to these approaches: Hybrid execution

can leverage these optimizations to improve on-GPU performance,

while these systems can bene�t from a hybrid CPU-GPU execution

to handle workloads that exceed GPU memory capacity.

Query processing beyond GPU memory size. The stream-

ing execution model has been adopted to reduce memory usage

by transferring and processing data in smaller chunks [4, 27, 52].

The performance impact of limited PCIe bandwidth on GPU query

processing has been extensively studied [63]. To mitigate this bot-

tleneck, prior research has proposed transferring compressed data

and performing decompression on GPU [12, 25, 51, 63]. However,

as shown in our evaluation, these techniques are insu�cient to

handle databases that signi�cantly exceed GPU memory capacity.

Hybrid CPU-GPU execution. He et al. [29] explore coprocessing

between CPU and early GPU designs. Kaldewey et al. [36] demon-

strate how a database system can leverage uni�ed virtual address-

ing to process data on the GPU at PCIe bandwidth. Chrysogelos

et al. [21] introduce the HetExchange operator, which selectively

executes parts of the query plan on the GPU. Yogatama et al. [62]

propose data placement strategies for heterogeneous execution.

Prior work on hybrid execution has considered coupled architec-

tures [22, 32], where the CPU and GPU share the same die, enabling

much higher data transfer bandwidth. Moreover, Hybrid execution

has been applied to speci�c relational operators such as joins and

sort [52, 53]. Beyond relational operators, recent work explores

hybrid coprocessing for index lookups [28, 38] by leveraging the

complementary strengths of CPUs and GPUs. Commercial data-

base systems, such as DB2 BLU [41], have also explored hybrid

execution. A recent survey by Rosenfeld et al. [47] provides a com-

prehensive overview of this area. Our hybrid approach di�ers from

prior work in its focus on scalability: it leverages CPUs to handle

workloads that signi�cantly exceed GPU memory capacity, leading

to a distinct set of design choices.

Fast scans and bitvector �ltering on CPUs. The scan operator

has been extensively optimized through various techniques, such

as SIMD vectorization [11, 46, 57, 58, 64], direct predicate evalu-

ation on compressed data [10, 35, 40], and parallel processing of

compressed values �tting within a processor word [26, 35, 39, 40].

Our approach bene�ts from these advancements, particularly in the

predicate evaluation step. For the projection step, we have adapted

the approach outlined in [39] to develop our customized scan oper-

ator that outputs compressed data directly. Bitvector �ltering has

been inspired by semi-join reduction [16, 60] and sideway informa-

tion passing [15]. It has been widely used in database systems to

improve query performance [23, 42, 65]. Prior work has explored

how to incorporate bitvector �ltering in query execution [20, 59]

and query optimization [23].

8 CONCLUSIONS

In this work, we propose hybrid CPU-GPU processing for analytical

database systems. We demonstrate that data �ltering on the CPU,

speci�cally through predicate and bitvector �ltering, can be made

highly e�cient, and it e�ectively reduces data transfer over PCIe to

improve query performance. When combined with two additional

techniques, streaming and partitioning, data �ltering further de-

creases the demand on GPU memory. This reduction extends the

scope of GPU acceleration to databases that signi�cantly exceed

GPU memory size. Beyond performance improvements, our �nd-

ings also indicate that the hybrid approach presents a compelling

cost-e�ective alternative to traditional CPU-only systems.

4529



REFERENCES
[1] [n.d.]. TPC Benchmark H Standard Speci�cation. Revision 2.17.1. https://www.

tpc.org
[2] 2025. Arm A64 Instruction Set Architecture: SVE Instructions. https://developer.

arm.com/documentation/ddi0602/2025-03/SVE-Instructions. [Online; accessed
July-2025].

[3] 2025. Azure Virtual Machines Pricing. https://https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/. [Online; accessed Feb-2025].

[4] 2025. BlazingSQL. https://github.com/BlazingDB/blazingsql. [Online; accessed
Feb-2025].

[5] 2025. HeavyDB. https://www.heavy.ai/product/heavydb. [Online; accessed
Feb-2025].

[6] 2025. Microsoft SQL Server. https://www.microsoft.com/en-us/sql-server. [On-
line; accessed Feb-2025].

[7] 2025. NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-us/data-
center/a100/. [Online; accessed Feb-2025].

[8] 2025. NVIDIA H100 Tensor Core GPU. https://www.nvidia.com/en-us/data-
center/h100/. [Online; accessed Feb-2025].

[9] 2025. RAPIDS Accelerator For Apache Spark. https://github.com/NVIDIA/spark-
rapids. [Online; accessed Feb-2025].

[10] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating com-
pression and execution in column-oriented database systems. In SIGMOD. ACM,
671–682. https://doi.org/10.1145/1142473.1142548

[11] Azim Afroozeh and Peter A. Boncz. 2023. The FastLanes Compression Layout:
Decoding >100 Billion Integers per Second with Scalar Code. Proc. VLDB Endow.
16, 9 (2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[12] Azim Afroozeh, Lotte Felius, and Peter A. Boncz. 2024. Accelerating GPU Data
Processing using FastLanes Compression. In Proceedings of the 20th International
Workshop on Data Management on New Hardware, DaMoN 2024, Santiago, Chile,
10 June 2024, Carsten Binnig and Nesime Tatbul (Eds.). ACM, 8:1–8:11. https:
//doi.org/10.1145/3662010.3663450

[13] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Dong He,
Vivek Gupta, Ehi Nosakhare, Dalitso Banda, Rathijit Sen, and Matteo Interlandi.
2022. Share the tensor tea: how databases can leverage the machine learning
ecosystem. Proc. VLDB Endow. 15, 12 (Aug. 2022), 3598–3601. https://doi.org/10.
14778/3554821.3554853

[14] R. J. Atwal, Peter A. Boncz, Ryan Boyd, Antony Courtney, Till Döhmen, Flo-
rian Gerlingho�, Je� Huang, Joseph Hwang, Raphael Hyde, Elena Felder, Jacob
Lacouture, Yves Le Maout, Boaz Leskes, Yao Liu, Alex Monahan, Dan Perkins,
Tino Tereshko, Jordan Tigani, Nick Ursa, Stephanie Wang, and Yannick Welsch.
2024. MotherDuck: DuckDB in the cloud and in the client. In 14th Conference on
Innovative Data Systems Research, CIDR 2024, Chaminade, HI, USA, January 14-17,
2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf

[15] C. Beeri and R. Ramakrishnan. 1987. On the power of magic. In Proceedings of
the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (San Diego, California, USA) (PODS ’87). Association for Computing
Machinery, New York, NY, USA, 269–284. https://doi.org/10.1145/28659.28689

[16] Philip A. Bernstein and Nathan Goodman. 1981. Power of Natural Semi-
joins. SIAM J. Comput. 10, 4 (1981), 751–771. https://doi.org/10.1137/0210059
arXiv:https://doi.org/10.1137/0210059

[17] Burton H. Bloom. 1970. Space/time trade-o�s in hash coding with allowable
errors. Commun. ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/362686.
362692

[18] Sebastian Breß. 2014. The design and implementation of CoGaDB: A column-
oriented GPU-accelerated DBMS. Datenbank-Spektrum 14 (2014), 199–209.

[19] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. 2023.
GPU Database Systems Characterization and Optimization. Proc. VLDB Endow.
17, 3 (Nov. 2023), 441–454. https://doi.org/10.14778/3632093.3632107

[20] Ming-Syan Chen, Hui-I Hsiao, and Philip S. Yu. 1993. Applying Hash Filters to
Improving the Execution of Bushy Trees. In Proceedings of the 19th International
Conference on Very Large Data Bases (VLDB ’93). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 505–516.

[21] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. 2019. HetExchange: encapsulating heterogeneous CPU-GPU paral-
lelism in JIT compiled engines. Proc. VLDB Endow. 12, 5 (Jan. 2019), 544–556.
https://doi.org/10.14778/3303753.3303760

[22] Wei Cui, Qianxi Zhang, Spyros Blanas, Jesús Camacho-Rodríguez, Brandon
Haynes, Yinan Li, Ravi Ramamurthy, Peng Cheng, Rathijit Sen, and Matteo
Interlandi. 2023. Query Processing on Gaming Consoles. In Proceedings of the
19th International Workshop on Data Management on New Hardware, DaMoN
2023, Seattle, WA, USA, June 18-23, 2023, Norman May and Nesime Tatbul (Eds.).
ACM, 86–88. https://doi.org/10.1145/3592980.3595313

[23] Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya. 2020. Bitvector-aware
Query Optimization for Decision Support Queries. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,
2011–2026. https://doi.org/10.1145/3318464.3389769

[24] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technologies
(Sydney, Australia) (CoNEXT ’14). Association for Computing Machinery, New
York, NY, USA, 75–88. https://doi.org/10.1145/2674005.2674994

[25] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database Compression on
Graphics Processors. Proc. VLDB Endow. 3, 1 (2010), 670–680. https://doi.org/10.
14778/1920841.1920927

[26] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice: Pushing
the Envelop of Main Memory Data Processing with a New Storage Layout. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 31–46. https://doi.org/10.
1145/2723372.2747642

[27] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined Query Processing in Coprocessor Environments. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 1603–1618. https://doi.org/10.1145/3183713.
3183734

[28] Tobias Groth, Sven Groppe, Thilo Pionteck, Franz Valdiek, and Martin Koppehel.
2022. Accelerated Parallel Hybrid GPU/CPU Hash Table Queries with String
Keys. In Database and Expert Systems Applications - 33rd International Conference,
DEXA 2022, Vienna, Austria, August 22-24, 2022, Proceedings, Part II (Lecture
Notes in Computer Science), Christine Strauss, Alfredo Cuzzocrea, Gabriele Kotsis,
A Min Tjoa, and Ismail Khalil (Eds.), Vol. 13427. Springer, 191–203. https:
//doi.org/10.1007/978-3-031-12426-6_15

[29] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. 2009. Relational query coprocessing on graphics processors.
ACM Trans. Database Syst. 34, 4, Article 21 (Dec. 2009), 39 pages. https://doi.
org/10.1145/1620585.1620588

[30] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational joins on graphics processors. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data (Vancouver,
Canada) (SIGMOD ’08). Association for Computing Machinery, New York, NY,
USA, 511–524. https://doi.org/10.1145/1376616.1376670

[31] Dong He, Supun Chathuranga Nakandala, Dalitso Banda, Rathijit Sen, Karla
Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstanti-
nos Karanasos, and Matteo Interlandi. 2022. Query Processing on Tensor
Computation Runtimes. Proc. VLDB Endow. 15, 11 (2022), 2811–2825. https:
//doi.org/10.14778/3551793.3551833

[32] Jiong He, Shuhao Zhang, and Bingsheng He. 2014. In-cache query co-processing
on coupled CPU-GPU architectures. Proc. VLDB Endow. 8, 4 (Dec. 2014), 329–340.
https://doi.org/10.14778/2735496.2735497

[33] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
2013. Hardware-oblivious parallelism for in-memory column-stores. Proc. VLDB
Endow. 6, 9 (July 2013), 709–720. https://doi.org/10.14778/2536360.2536370

[34] Intel Corporation. 2025. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2: Instruction Set Reference. Available at https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html,.

[35] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. 2008. Row-
wise parallel predicate evaluation. Proc. VLDB Endow. 1, 1 (2008), 622–634.
https://doi.org/10.14778/1453856.1453925

[36] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. 2012. GPU join
processing revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware (Scottsdale, Arizona) (DaMoN ’12). Association
for Computing Machinery, New York, NY, USA, 55–62. https://doi.org/10.1145/
2236584.2236592

[37] Donald E. Knuth. 2009. The Art of Computer Programming, Volume 4, Fascicle 1:
Bitwise Tricks & Techniques; Binary Decision Diagrams (12th ed.). Addison-Wesley
Professional.

[38] Martin Koppehel, Tobias Groth, Sven Groppe, and Thilo Pionteck. 2021. CuART
- a CUDA-based, scalable Radix-Tree lookup and update engine. In ICPP 2021:
50th International Conference on Parallel Processing, Lemont, IL, USA, August 9 -
12, 2021, Xian-He Sun, Sameer Shende, Laxmikant V. Kalé, and Yong Chen (Eds.).
ACM, 12:1–12:10. https://doi.org/10.1145/3472456.3472511

[39] Yinan Li, Jianan Lu, and Badrish Chandramouli. 2023. Selection Pushdown in
Column Stores using Bit Manipulation Instructions. Proc. ACM Manag. Data 1, 2
(2023), 178:1–178:26. https://doi.org/10.1145/3589323

[40] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory
data processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM,
289–300. https://doi.org/10.1145/2463676.2465322

[41] Sina Meraji, Berni Schiefer, Lan Pham, Lee Chu, Peter Kokosielis, Adam Storm,
Wayne Young, Chang Ge, Geo�rey Ng, and Kajan Kanagaratnam. 2016. Towards
a Hybrid Design for Fast Query Processing in DB2 with BLU Acceleration Using
Graphical Processing Units: A Technology Demonstration. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,

4530

https://www.tpc.org
https://www.tpc.org
https://developer.arm.com/documentation/ddi0602/2025-03/SVE-Instructions
https://developer.arm.com/documentation/ddi0602/2025-03/SVE-Instructions
https://https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://github.com/BlazingDB/blazingsql
https://www.heavy.ai/product/heavydb
https://www.microsoft.com/en-us/sql-server
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://github.com/NVIDIA/spark-rapids
https://github.com/NVIDIA/spark-rapids
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3662010.3663450
https://doi.org/10.1145/3662010.3663450
https://doi.org/10.14778/3554821.3554853
https://doi.org/10.14778/3554821.3554853
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf
https://doi.org/10.1145/28659.28689
https://doi.org/10.1137/0210059
https://arxiv.org/abs/https://doi.org/10.1137/0210059
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.14778/3632093.3632107
https://doi.org/10.14778/3303753.3303760
https://doi.org/10.1145/3592980.3595313
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.1145/2723372.2747642
https://doi.org/10.1145/2723372.2747642
https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1007/978-3-031-12426-6_15
https://doi.org/10.1007/978-3-031-12426-6_15
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1376616.1376670
https://doi.org/10.14778/3551793.3551833
https://doi.org/10.14778/3551793.3551833
https://doi.org/10.14778/2735496.2735497
https://doi.org/10.14778/2536360.2536370
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.14778/1453856.1453925
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/3472456.3472511
https://doi.org/10.1145/3589323
https://doi.org/10.1145/2463676.2465322


1951–1960. https://doi.org/10.1145/2882903.2903735
[42] Abhishek Modi, Kaushik Rajan, Srinivas Thimmaiah, Prakhar Jain, Swinky Mann,

Ayushi Agarwal, Ajith Shetty, Shahid K I, Ashit Gosalia, and Partho Sarthi.
2021. New query optimization techniques in the Spark engine of Azure synapse.
Proc. VLDB Endow. 15, 4 (Dec. 2021), 936–948. https://doi.org/10.14778/3503585.
3503601

[43] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improving
Execution E�ciency of Just-in-time Compilation based Query Processing on
GPUs. Proc. VLDB Endow. 14, 2 (2020), 202–214. https://doi.org/10.14778/3425879.
3425890

[44] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. 2021. MG-Join:
A Scalable Join for Massively Parallel Multi-GPU Architectures. In Proceed-
ings of the 2021 International Conference on Management of Data (Virtual Event,
China) (SIGMOD ’21). Association for Computing Machinery, New York, NY,
USA, 1413–1425. https://doi.org/10.1145/3448016.3457254

[45] Holger Pirk, Oscar Moll, Matei Zaharia, and SamMadden. 2016. Voodoo - a vector
algebra for portable database performance on modern hardware. Proc. VLDB
Endow. 9, 14 (Oct. 2016), 1707–1718. https://doi.org/10.14778/3007328.3007336

[46] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015. ACM, 1493–1508. https://doi.org/10.1145/
2723372.2747645

[47] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query Processing on
Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 1, Article 11 (Jan.
2022), 38 pages. https://doi.org/10.1145/3485126

[48] Ran Rui, Hao Li, and Yi-Cheng Tu. 2020. E�cient join algorithms for large
database tables in a multi-GPU environment. Proc. VLDB Endow. 14, 4 (Dec.
2020), 708–720. https://doi.org/10.14778/3436905.3436927

[49] Donovan A. Schneider and David J. DeWitt. 1989. A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-Nothing Multiprocessor Environment.
In Proceedings of the 1989 ACM SIGMOD International Conference on Management
of Data, Portland, Oregon, USA, May 31 - June 2, 1989, James Cli�ord, Bruce G.
Lindsay, and David Maier (Eds.). ACM Press, 110–121. https://doi.org/10.1145/
67544.66937

[50] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1617–1632. https://doi.org/10.1145/3318464.3380595

[51] Anil Shanbhag, BobbiW. Yogatama, Xiangyao Yu, and Samuel Madden. 2022. Tile-
based Lightweight Integer Compression in GPU. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1390–1403.
https://doi.org/10.1145/3514221.3526132

[52] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Ap-
puswamy, and Anastasia Ailamaki. 2019. Hardware-Conscious Hash-Joins on
GPUs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
698–709. https://doi.org/10.1109/ICDE.2019.00068

[53] Elias Stehle and Hans-Arno Jacobsen. 2017. A Memory Bandwidth-E�cient
Hybrid Radix Sort on GPUs. In Proceedings of the 2017 ACM International Con-
ference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). As-
sociation for Computing Machinery, New York, NY, USA, 417–432. https:
//doi.org/10.1145/3035918.3064043

[54] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J.
O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. 2005.
C-Store: A Column-oriented DBMS. In VLDB. ACM, 553–564. http://www.vldb.
org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf

[55] Michael Stonebraker and Andrew Pavlo. 2024. What Goes Around Comes
Around... And Around.. SIGMOD Rec. 53, 2 (2024), 21–37. https://doi.org/10.
1145/3685980.3685984

[56] Lasse Thostrup, Gloria Doci, Nils Boeschen, Manisha Luthra, and Carsten Binnig.
2023. Distributed GPU Joins on Fast RDMA-capable Networks. Proc. ACMManag.
Data 1, 1, Article 29 (May 2023), 26 pages. https://doi.org/10.1145/3588709

[57] ThomasWillhalm, Ismail Oukid, IngoMüller, and Franz Faerber. 2013. Vectorizing
Database Column Scans with Complex Predicates. In International Workshop
on Accelerating Data Management Systems Using Modern Processor and Storage
Architectures - ADMS 2013, Riva del Garda, Trento, Italy, August 26, 2013. 1–12.
http://www.adms-conf.org/2013/muller_adms13.pdf

[58] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Scha�ner. 2009. SIMD-Scan: Ultra Fast in-Memory Table Scan
using on-Chip Vector Processing Units. Proc. VLDB Endow. 2, 1 (2009), 385–394.
https://doi.org/10.14778/1687627.1687671

[59] Yifei Yang, Hangdong Zhao, Xiangyao Yu, and Paraschos Koutris. 2024. Predicate
Transfer: E�cient Pre-Filtering on Multi-Join Queries. In 14th Conference on
Innovative Data Systems Research, CIDR 2024, Chaminade, HI, USA, January 14-17,
2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf

[60] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In Proceed-
ings of the Seventh International Conference on Very Large Data Bases - Volume 7
(Cannes, France) (VLDB ’81). VLDB Endowment, 82–94.

[61] Bobbi Yogatama,Weiwei Gong, and Xiangyao Yu. 2025. Scaling your Hybrid CPU-
GPU DBMS to Multiple GPUs. Proc. VLDB Endow. 17, 13 (Feb. 2025), 4709–4722.
https://doi.org/10.14778/3704965.3704977

[62] Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating data
placement and query execution in heterogeneous CPU-GPU DBMS. Proc. VLDB
Endow. 15, 11 (July 2022), 2491–2503. https://doi.org/10.14778/3551793.3551809

[63] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Process-
ing Data Warehousing Queries on GPU Devices. Proc. VLDB Endow. 6, 10 (2013),
817–828. https://doi.org/10.14778/2536206.2536210

[64] Jingren Zhou and Kenneth A. Ross. 2002. Implementing database operations
using SIMD instructions. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002,
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki (Eds.). ACM, 145–156.
https://doi.org/10.1145/564691.564709

[65] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
ahead makes query plans robust: making the initial case with in-memory star
schema data warehouse workloads. Proc. VLDB Endow. 10, 8 (April 2017), 889–900.
https://doi.org/10.14778/3090163.3090167

[66] Andreas Zimmerer, Damien Dam, Jan Kossmann, Juliane Waack, Ismail Oukid,
and Andreas Kipf. 2025. Pruning in Snow�ake: Working Smarter, Not Harder.
Proc. ACM Manag. Data 3 (2025).

4531

https://doi.org/10.1145/2882903.2903735
https://doi.org/10.14778/3503585.3503601
https://doi.org/10.14778/3503585.3503601
https://doi.org/10.14778/3425879.3425890
https://doi.org/10.14778/3425879.3425890
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.14778/3007328.3007336
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/3485126
https://doi.org/10.14778/3436905.3436927
https://doi.org/10.1145/67544.66937
https://doi.org/10.1145/67544.66937
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3514221.3526132
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1145/3035918.3064043
https://doi.org/10.1145/3035918.3064043
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3588709
http://www.adms-conf.org/2013/muller_adms13.pdf
https://doi.org/10.14778/1687627.1687671
https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf
https://doi.org/10.14778/3704965.3704977
https://doi.org/10.14778/3551793.3551809
https://doi.org/10.14778/2536206.2536210
https://doi.org/10.1145/564691.564709
https://doi.org/10.14778/3090163.3090167

	Abstract
	1 Introduction
	2 Motivation
	2.1 The PCIe Bottleneck
	2.2 Key Observations

	3 System Overview
	3.1 System Architecture
	3.2 Overview of Data Filtering
	3.3 Streaming and Partitioning

	4 Predicate Filtering
	4.1 Background on Scan
	4.2 Scan for Hybrid Coprocessing
	4.3 Direct Compaction on Compressed Values
	4.4 Skipping Filters

	5 Bitvector Filtering
	5.1 Bitvector Filtering for Hybrid Coprocessing
	5.2 Selecting Bitvector Filters
	5.3 Bitvector Filter Design and Implementation

	6 Evaluation
	6.1 Setup
	6.2 Microbenchmark
	6.3 TPC-H 100GB
	6.4 TPC-H 1TB
	6.5 Cost-Effectiveness

	7 Related Work
	8 Conclusions
	References

