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ABSTRACT

By adaptive indexing, an index grows dynamically and progres-
sively through query processing. This mode of index-building, well
explored over the past fifteen years, proves especially useful in ex-
ploratory scenarios where prebuilt indexes do not pay off the time
to construct them, as the query workload variably focuses on partic-
ular areas of the search space, or the data become quickly obsolete.
Despite a significant body of work in multidimensional adaptive
indexing, there remains a gap in comparative studies that evaluate
these methods on equal terms in a wide spectrum of settings, in-
cluding data types, distributions, sizes, and workload patterns. This
work fills this gap with a comprehensive benchmark to thoroughly
evaluate the performance, strengths, and limitations of existing
multidimensional adaptive indexing methods across diverse sce-
narios, contributing valuable insights that complement previous
works. Further, we suggest supplementary technical extensions
that enhance the efficiency of existing methods.
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1 INTRODUCTION

Adaptive indexing (AIx) has been extensively studied in the data-
base community since 2007 [18, 19]. Consider an unorganized col-
umn C of a relation, e.g., in a column store [2, 35]. Alx constructs an
in-memory index for C progressively and in response to range (or
equality) queries along a single dimension or attribute [21]. Assume
the first range query q; seeks records r such that g;.low < r.C <
q1.high. Alx scans C to answer the query and also swaps its en-
tries and divides it into three segments; the first segment contains
the values smaller than g;.low (at no particular order), the second
the query results, and the third the values greater than or equal
to q1.high. At the same time, a binary balanced search tree (e.g., an
AVL tree) is initialized with nodes q1.low and qj.high to indexes
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the trichotomy. Figure 1a shows an example with g;.low = 17
and q.high = 35. Each subsequent query g; uses the tree to find
the segments wherein g;.low and g;.high fall and partitions these
segments in-place to obtain the results of g; and expand the tree.
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Figure 1: Adaptive indexing

Figure 1b illustrates the typical cumulative cost for processing a
query sequence by adaptive indexing vs. that of two alternatives:
linearly scanning the unorganized data column for each query and
probing a bulk-loaded index for each query. Linear scan is cheaper
when a few queries are applied, while indexing fares well when
the queries are many, amortizing the construction cost. Adaptive
indexing is costly for the first few queries, which crack large data
segments, yet settles to the per-query cost of searching a fully built
index. In effect, for medium query counts, its cumulative cost is
significantly lower compared to building an index in advance.

Alx facilitates the exploration of large short-lived datasets that
become available in batches with a few, unpredictably distributed
queries [4, 6, 8, 26]. For example, in meteorology and satellite im-
agery, data arrive in batches (e.g., snapshots of an entire area mon-
itored by sensors or views of a big area of the globe), each batch
becoming obsolete when the next batch arrives. In such cases, build-
ing a traditional, static index upfront with each batch arrival would
delay query processing. Besides, if the queries are relatively few
or target limited areas of the search space, it is not worthwhile to
construct an index for the entire batch. When examining spatial en-
tities from satellite images, the workflow typically involves finding
aregion of interest and zooming in to refined resolution. In effect,
only a small portion of the data is examined, rendering the building
of an index for all entities superfluous.

Alx has led to various extensions [1, 10, 11, 31], including updat-
ing operations [20], progressive merging variants [12, 15], a hybrid
that combines merging with cracking [22], and a stochastic variant
that introduces random cracks to handle skewed workloads [14].
An extensive experimental study on adaptive indexing [32, 33] also
proposed a coarse granular index (CGI) that uniformly partitions the
data to a few buckets in advance and then progressively indexing
buckets by cracking those that contain each query’s boundaries.


https://doi.org/10.14778/3749646.3749709
https://github.com/DinosL/BenchmarkingAdaptiveIndexes
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749709
https://www.acm.org/publications/policies/artifact-review-and-badging-current

This paper focuses on the in-memory adaptive indexing of mul-
tidimensional data, which has been an area of interest for several
years [16, 17, 24, 25, 29, 30, 38]. The most common queries on such
data are multidimensional range queries, including window queries
in spatial databases [27] and multicolumn filtering in analytical data-
base engines [5, 28, 36]. Cracking a multidimensional data space is
challenging, as dimensionality provides numerous partitioning op-
tions. Furthermore, objects in applications such as spatial databases,
publish-subscribe systems, and data stream management systems
are themselves multidimensional ranges, adding to the complexity
of the ensuing indexes. While 1D adaptive indexes have reached
a maturity level already 10 years ago and have been extensively
evaluated [32, 33], multidimensional adaptive indexing is an active
research area with several recent developments [25, 29, 38] that
have yet to be evaluated within the same framework. Besides, ideas
developed for one index (e.g., as in [38]) have not been tested on
other structures (e.g., those in [29]) and composite solutions for
the 1D case [32] have not been transferred and evaluated in the
multidimensional case. Further, no practical guideline exists for the
selection of an appropriate method based on the data type (points
or ranges) and distribution. Lastly, the community currently lacks
a testbed for the development and evaluation of new methods.
Contributions. A previous experimental study on multidimen-
sional adaptive indices [23] compared QUASII [30] and AKD [16],
the only available methods at the time. Variations of these methods
were also evaluated in [29]. However, the studies in [23, 29] only
target point data and do not consider hybrid schemes that combine
multidimensional partitioning with cracking, as in [32] for 1D data.
A later study [38] reevaluated state-of-the-art methods, yet focuses
on low-dimensional spatial data. Besides, an adaptive index for
metric spaces [25] was not included in those studies. We fill these
gaps via the following contributions:

e We comprehensively evaluate existing multidimensional adap-
tive indexes using real and synthetic datasets and workloads of
diverse (i) data types (point or box), (ii) dimensionality, (iii) data
distribution, (iv) size distribution (for boxes), (v) query distribu-
tion, and (vi) query order. Thereby, we determine the superiority
of certain techniques within various areas of the problem space.
We apply enhancements proposed for AIR [38] to AKD [29] to
craft the Advanced AKD (AAKD).

We implement the concept of Course Granular Index (CGI) [32]
in multidimensional spaces and evaluate its effectiveness.

We devise and evaluate a range-query version of multidimen-
sional distance-based adaptive indexing, originally developed
for radius and kNN queries [25].

We propose an evaluation framework for multidimensional adap-
tive indexing, including module and method implementations,
real datasets, synthetic data generation modules, and generators
of query workloads.

Our experimental findings are summarized as follows.

e Among non-adaptive indexes, a uniform grid universally outper-
forms other in-memory alternatives, such as the R-tree.

e AKD [29] can benefit by adopting the enhancements of AIR [38].

o It is most robust to partition the data apriori using a coarse grid
and then adaptively index each cell by AKD for points, or AIR
for range objects.
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Among adaptive indexes, the Advanced AKD prevails on point
data, while AIR performs best on range data.

The AV-tree [25], proposed for similarity queries in high dimen-
sional metric spaces, does not perform well on multidimensional
range queries in low dimensions.

Currently, there is no golden use-for-all solution.

2 METHODS

Here, we describe the multidimensional (adaptive) indices that we
compare experimentally. We focus on in-memory indexing of mul-
tidimensional points and hyperrectangular ranges, which we call,
for simplicity, boxes. Table 1 summarizes the compared methods
and classifies them into three categories based on their adaptive-
ness. Pre-bulit, i.e, non-adaptive indexes are fully constructed before
query processing. The second class includes adaptive indexes that
employ database cracking: they progressively construct an index in
response to queries on an initially unorganized array. In a class of its
own is a composite index that applies CGI [32] in the multidimen-
sional space; this is not a purely adaptive index, as it first coarsely
partitions the data and then indexes the partitions adaptively.

2.1 Non-adaptive indexes

Non-adaptive indexes are general-purpose index structures for mul-
tidimensional data, applicable to index multidimensional points
and ranges. These include the R-tree [13], the quadtree [9], and a
multidimensional uniform grid [37]. The R-tree and quadtree adapt
to data skew. The R-tree yields a balanced hierarchical structure,
originally designed for disk-based indexing, yet has been imple-
mented for efficient in-memory search too [3]. Contrariwise, the
quadtree partitions the data space at varying resolution per region
adapting to data skew to yield an imbalanced structure, and is de-
signed for points, yet can be extended to handle ranges. Grids are
highly efficient data structures for in-memory indexing, originally
proposed for point data, yet extensible to handle non-points [37].
While they perform best on non-skewed data, they were shown
to perform well for moderately skewed data [37]. R-tree partitions
may overlap on each level of the hierarchy, while quadtree and grid
partitions are spatially disjoint.

2.2 Adaptive indices

The QUery-Aware Spatial Incremental Index (QUASII) [30] is the first
proposed multidimensional adaptive index. For each query, it cracks
the data partitions that overlap the query range at one dimension
per level by fixed order, following the recipe of 1D cracking. In effect,
it associates one dimension with each index level. A partition is
finalized and never re-cracked once the objects it comprises are no
more than a cracking threshold t, which ensures that the indexing
overhead is worth the benefits it brings.

The adaptive KD-tree (AKD) [16, 29] repetitively cracks a lead
node of the incrementally constructed KD-tree in two pieces, along
a multidimensional range query boundary, as long as the piece
which includes the query has more than 7 elements. For each query,
it processes all lower bounds before all higher bounds, and asso-
ciates dimensions with tree levels in round robin fashion. Unlike
QUASIL it cracks on the same dimension multiple times at different
levels. The Progressive KD-Tree (PKD) and its extension, the Greedy



Table 1: Classification of tested methods

Method name points | boxes | replication (boxes) | tree | tree balance | overlapping partitions

% R-tree [13] v v X v v v
-q.‘i Quadtree [9] v v v v X X
& grid [37] v v v X - X
QUASII [30] v v X v v X
B AKD [16, 29] v X X v X X
= AIR [38] v v X v v v
z AV-tree [25] v X X v X v
AAKD (combines [29] and [38]) v X X v X X

9
—;; CGI (applies CGI [32] to kD spaces) v X X X X X

Progressive KD-Tree (GPKD) [16], mitigate some disadvantages
of the AKD associated with the initial query cost. PKD lets a pa-
rameter § dictate the fraction of the dataset indexed per query, to
achieve a tradeoff between indexing overhead and pace of index-
building. Smaller § values reduce the overhead, yet also slow down
the progress, whereas larger values accelerate construction at the
cost of higher overhead. GPKD uses a cost model to estimate the
execution time of each query and ensures that each query has a
consistent and robust execution time during index growth.

The adaptive Incremental R-tree (AIR) [38] progressively con-
structs an in-memory R-tree [13], distinguishing its leaf nodes into
regular and irregular ones. AIR cracks each irregular leaf along
each rectangular range query boundary that intersects the leaf; it
prioritizes dimensions that split the data space evenly by choosing,
in each cracking step, the query bound closest to the leaf’s midpoint
along the leaf axis with the largest extent. A partition holding fewer
than 7 elements becomes a regular leaf, not to be further cracked.
Although designed for range data (i.e., MBRs), AIR is also applicable
on point data. AIR is robust to workloads by stochastically cracking
[14] the largest piece resulting from a query.

The AV-tree [25] is designed for distance-based range and NN
queries in high-dimensional spaces, where the distance measure
is typically Euclidean distance, defining spherical ranges. To apply
AV-tree for orthogonal range queries, which is the focus of this
paper, we have to convert orthogonal range queries to distance
queries. This is done by computing the geometric center of the
orthogonal query range and expand it in each dimension by half
the extent of the query in that dimension. Specifically, consider a
rectangular query g, expressed by an interval [g¢.low, ¢%.high] in
each dimension d. We convert this query to a weighted Ly,qx query

. . . _ 1 q%.low+q% high .
using its geometric center q.p = {f,\fd} as a pivot
point and retrieve all data points p, such that for each dimension d,
lq.p% - p?| < q.b%, where q.b% = (¢%.high — ¢ .low) /2.

However, since each node of the the AV-tree uses the same (me-
dian to all data under the node) distance bound along all dimensions
(otherwise we would have the overhead of keeping multiple bounds
at each node), when constructing the AV-tree, we use these geomet-
ric centers as pivots and median distances as € bounds. To determine
the cracked pieces (i.e., AV-tree leaves) relevant to a query g, we
use the L4y distance of the pivot v.p at each tree node v, and:

o access the left subtree of v.p, which includes all data points p such
that Vd : |0.p? — p?| < v.e, when 3d : [v.p? — ¢%| - v.e < q.b4.
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e access the right subtree of v.p, having all data points p such
that 3d : [0.p? — p9| > v.e, when 3d : |0.p? — g¥| — v.e > q.b%.
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Figure 2: Multidimensional adaptive indices

Figure 2 illustrates the cracks that each of the four compared
multidimensional adaptive indexes induces to an unorganized ar-
ray [p1,p2,...,ps] of 2D points. For the sake of fairness, apart
from the aforementioned methods, we also test an Advanced AKD
(AAKD), which, instead of a round robin process, prioritizes the
cracked dimensions by the heuristics of AIR, proved in Ref. [38]
to be more robust than other alternatives. We crack a piece on the
minimum query bound along the dimension of its largest extent.
We also introduce a stochastic crack to the largest ensuing piece,
as also successfully applied in AIR.

2.3 Hybrid indexing

The Coarse Granular Index (CGI) [32] is hybrid method proposed
for 1D data. Initially, CGI scans and partitions the data domain to
equi-width ranges. For each query g, CGI determines the partitions
relevant to g in O(1), cracks the borderline relevant partitions on
the query bounds, updates an AVL tree accordingly, and returns
the query results. Hence, in 1D, each query requires at most two
cracks, one for each bound.

As CGI has yet to be generalized to the multidimensional case,
we explore the effectiveness of a coarse multidimensional grid that
partitions the data before the first query, and then cracks each
partition using a local adaptive multidimensional index, such as
AKD or AIR. Figure 3 sketches a multidimensional GCI. First, we
partition the data space into tiles T; to Tj¢ by a 4 X 4 uniform grid
and place the data in each tile T; into an (unorganized) array. Upon
the first query qi, we identify the set of relevant tiles, Ty, Ts, T3, To
and crack the array of each of those on the query boundaries to
initialize a local adaptive index (e.g., AKD tree), which guides and
grows with subsequent queries.



We name CGI methods by the granularity and adaptive index
they use, e.g., CGI100+AKD denotes a CGI of granularity 100 per
dimension where each partition hosts an AKD index. We include
CGI with AIR in experiments with shape data, where AIR is compe-
tent vs. AKD. We apply CGI only on 2D and 3D data, as the number
of tiles, and hence the partitioning and storage costs and partition
sparsity, grow exponentially with dimensionality.
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Figure 3: Multidimensional CGI using AKD

3 EXPERIMENTAL SETUP

We implemented all methods in C++ and compiled them in g++ 7.4.0
with the -03 switch; experiments ran on a 3.10GHz 10-core Intel
Xeon machine with 396G RAM running Ubuntu 18.04.3 LTS. Here,
we provide details on datasets (Section 3.1), query workloads (Sec-
tion 3.2), and performance measures (Section 3.3). We also conduct
tuning experiments (Section 3.4) that suggest the most robust pa-
rameter values for the compared methods.

Table 2: Data sets
Size | Dim | Max Ext.
Uniform 20M | 2 0.0035 0.0035
Clustered 20M | 2 0.0038 0.0038
SkewNormal | 20M | 2 0.00069 0.00069
ROADS 19M | 2 0.0076 0.029

3.1 Datasets

311
and query workloads with diverse characteristics, we generate syn-
thetic datasets comprising of 20 to 80 million data objects, both
points and range objects. The dimensionality of point datasets
ranges from 2 to 6, while for range (i.e., hyperrectangular) data, we
tested 2 and 3 dimensions, as ranges of higher dimensions rarely
arise in real applications [37, 38]. We normalize the values in each
dimension to the range [0, 1]. We generated the following synthetic
point datasets:

e Uniform data. Random values following a uniform distribution
in each dimension.

Clustered data. We generate isotropic Gaussian blobs using
the make_blobs function of Python scikit-learn module, with
standard deviation 0.37 to ensure the formation of five non-
overlapping clusters of equal cardinality. These values were set
empirically to ensure minimum overlap, which challenges in-
dices with the problem of handling white space.

Synthetic data. To test adaptive indexing across various datasets
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o Skewed data. We generate random values by the skewnorm
function from the SciPy library in Python, which produces data
that follow a skew-normal distribution, which extends the nor-
mal distribution to incorporate non-zero skewness, allowing
for asymmetric data shapes. We set the skewness parameter
to a = 20. For a = 0, the distribution reverts to a standard nor-
mal distribution. We chose the value empirically to ensure that
the generated data points exhibit sufficient skewness.

For range data, we generate points as above and use them as cen-

ters, then generate two random numbers within the range [0.0001, 0.02]

as mid-height and mid-width, to be added to and subtracted from
the coordinates of the center point to determine the top right and
bottom left corners. To assess the performance of methods such as
the AKD, which is affected by the extent of range objects as they
require query extension, we generated a 2D dataset with objects
centered uniformly, and width and height following an exponential
distribution g(u) = 373%,

3.1.2  Real data. As real data, we utilize the publicly available
ROADS dataset which features the shape of roads in the US [7].
We use the bottom left corner of each road shape as points. For
points of higher dimensionality we use the Taxi! dataset which
contains records of New York yellow-taxi trips. Each record cap-
tures the pick-up and drop-off location and time, trip distance, and
fare amount for a period that spans January to July 2024.

(a) Unifdrm (b) Clustered (c) SkewNormal (d) ROADS

Figure 4: Distribution of point datasets
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Figure 5: Distribution of shape datasets

Figures 4 and 5 visualize the distribution of our data, both syn-
thetically generated and real, points and ranges. The distribution

!https://www.nyc.gov/site/tlc/about/tle-trip-record-data.page



of the real dataset depicting U.S. roads is notably uneven, denser
in urban areas and sparser in rural regions, leading to a skewed
distribution. The generated shapes vary in both width and length,
reflecting realistic and diverse spatial extents.

3.2 Workloads

Figure 6 depicts the access patterns in our workloads. For the ran-
dom access pattern, we randomly select a point from the data and
assign it an extent such that the average query selectivity is 0.01%
(the default selectivity). The query distribution thus follows the data
distribution. The sequential workload consists of non-overlapping
diagonally consecutive queries. This workload presents a worst-
case scenario for adaptive indexing, as each new query cracks a
large area without benefit from previous ones. Lastly, the “Zoom
In’ workload models a stylized exploratory search scenario.

(a) Random ) (b) Se:lque;ltiai (c) Zbonl Inh

Figure 6: Access pattern of synthetic workloads

3.3 Measures

As all adaptive indexes are in-memory access methods, the main
evaluation measure is the evolving cumulative cost for a sequence of
queries. Side-by-side to cumulative cost, we plot how the per-query
cost changes while constructing the adaptive index. We expect the
cost per query to progressively become lower and settle to that of
a pre-built index. We average both the per-query and cumulative
costs over 5 runs. For pre-built indexes, such as the R-Tree, we
add their construction cost to the cumulative time prior to the first
query. We also measure space requirements.

Table 3: Grid size tuning

Grid CGI+AAKD
Grid Size 100 200 500 100 200 500
Uniform 1.140 | 1.029 1.348 | 1.050 | 0.970 1.364
Clustered | 1.181 1.190 1.234 | 1.881 | 1.133 1.199
Skewed 1.183 | 1.166  1.186 | 1.844 | 1.101 1.185
Roads 0.909 | 0.826 0.935 | 3.274 | 0.972 1.430

3.4 Tuning

Prior to comparative studies, we select values of the following
parameters for our investigation: the cracking threshold for AIR,
QUASIL and AKD, node cardinality for the RTree, the § variable for
the GPKD, and grid size for the static grid and the course granular
index. The ¢ variable for the GPKD controls the percentage of data
that are used to expand the index in each query. A value of 0 means
that no indexing occurs, only full scans, while § = 1 means that the
index is fully built upon the first query.

We tune parameters across different values on our four main
datasets: the synthetic uniform, clustered, and skewed points, as
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Table 4: Irregular Grid and Quadtree tuning

Irregural - Grid Size QuadTree - Height
10 50 100 8 10 12
100 2.848  3.491 3.846 | 14.253 19.551 19.511 g
1000 2.866 3.582 4.054 | 12.058 12.014 12.138 5«2
10000 2.875 3.601 3.963 | 8.311 8.313 8.330 ;S
& | 100 2.768  3.470 3.810 | 10.659 17.209  20.532 'qz)
T | 1000 2835 3558 3.932 | 10.301 12312 12330 | &
g 10000 2.826 3.593 3.970 | 9.177 9.156 9.197 '(E')s
= | 100 2858 3.541 3.988 | 10.469 16.740 20.363 | 2
*E 1000 2947 3.792 3.945 | 10.037 11914 11.875 E
¥ 110000 2873 3.618 3.978 8914 8.952 8.948 | &
100 2.151 2965 3.477 | 8.672 12.185 19.170 2
1000 2.149  3.077 3.546 | 8550 11.441 12.830 |
10000 2.130 3.121 3.576 | 8.369 9.502 9.362 | &

well as the ROADS dataset. Tables 3 and 5 show the total (cumula-
tive) cost for workloads of 10k queries. We chose the most robust
parameters, indicated via highlighted cells, for further experiments.
Interestingly, while we expected the best size for the coarse granu-
lar index (CGI) to be smaller, i.e., coarser, than for the static grid,
it turned out to have the same empirically best size. We attribute
this result to the low creation cost of regular grids, which do not
warrant waiting for the adaptation. When applying an irregular
(data-adaptive) grid, we use a sample of the data to estimate the data
distribution, whose size affects the quality of the estimate, hence
the need to tune it. Similarly, the quad-tree has two parameters,
node capacity and height. The former controls the amount of data
a quadrant can hold before it splits further, while the latter controls
the maximum tree depth, which can help avoid excessive splitting
on skewed data. Table 4 details the search for the best empirical
values of these parameters.

4 EXPERIMENTAL EVALUATION
This section presents the results of our evaluation.

(1) First, we compare methods within each category: static,
AKD-based, and grid-based using point and shape data to
identify the most robustly performing representative for
each category (§4.1).

Next, we thoroughly evaluate the top methods across vari-
ous types of data (points and ranges), with different distri-
butions of object locations (§4.2) and query access (§4.7).
Then, we assess how the distribution of object extents af-
fects performance (§4.3).

We also examine the effect of dataset size (§4.5) and query
selectivity (§4.6).

Finally, we examine the effect of dimensionality using high-
dimensional point data (§4.8).

@

®)
©
®)

We plot the results in groups to maintain readable plots.

Since QUASII and AKD-based methods are not designed to han-
dle data with spatial extent, we adjust them to achieve proper
functioning with the query window extension technique [34] on
data with spatial extent. We adjust the lower coordinates of the
query window by the maximum object extent in the data, in each
dimension, so that it overlaps any qualifying object. This extension
introduces the overhead of filtering out false positives from the
results, as the window then overlaps non-qualifying objects too.



Table 5: AIR, QUASII, AKD, RTree, and GPKD tuning

AIR - Threshold QUASII - Threshold AKD - Threshold R-Tree Node size GPKD - 6
2048 4096 8192 | 1024 2048 4096 | 1024 2048 4096 | 1024 2048 4096 0.4 0.6 0.8
Uniform 2.071 © 2.056 2.060 | 2.498 | 2.408 2.414 | 2.515 | 2.426 2.431 | 4.589 | 4.552 4.641 | 2.641 | 2.582 2.584
Clustered | 2.018 | 2.003 2.002 | 2.423 | 2.335 2.340 | 2.539 2.472 | 2.455 | 4.612 | 4551 4.561 | 2.674 | 2.616 | 2.662
Skewed 2.031 = 2.014 2.179 | 2.464 | 2377 2393 | 2.509 | 2.471 2.481 | 4.687 4.641 | 4483 | 2.709 | 2.562 2.592
Roads 1.283 1304 1307 | 1.881 1.812 | 1.808 | 1.516 | 1.506 1.570 | 4.235 | 4.061 4.070 | 2.575 | 2.450 2.473
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4.1 Method Selection

4.1.1  Pre-built Indices. Figures 7a and 8a illustrate the total work-
load time for index construction and evaluation of 10k queries, for
three pre-built indices: R-tree, Quadtree, and a Grid with granular-
ity of 200 200, for points and shapes data respectively. Surprisingly,
while simply partitioning the space into equally sized cells, the grid
index significantly and consistently outperforms the competition
across all datasets and data types, independently of data skew. More
complex indexes, such as the R-tree and the quadtree, take longer
time to construct, which does not pay off; the simpler and less costly
to construct grid index performs better overall. We thus use the grid

as the representative of static methods in subsequent experiments.

4.1.2  Grid Indices. Next, we examine the performance of grid-
based indices, both static and hybrid, comparing Grid (static) to
two hybrid indices: CGI+AAKD (regular grid) and Irregular+ AAKD
(irregular grid). Recall that the latter two (i) prebuild a coarse grid
with spatially equal cells and (ii) adaptively and progressively grow
an AAKD adaptive index within each grid cell. We consider the
option of complementing CGI with an AIR index later, when dealing
with range data. We set the granularity of all coarse grids to 200x200,
as the tuning experiments indicated, and measure the cumulative
cost for index creation and evaluation of 10k random queries.
Figures 7b and 8b show that CGI+AAKD is the best choice, apart
from when dealing with the ROADS dataset, as the inclusion of an
AAKD endowed with ample indexing space within each grid cell
renders query evaluation faster, with uniform data benefiting the
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Figure 9: Effect of data distribution on 2D point datasets.

most. The AAKD index refinement reduces the number of elements
accessed, leading to improved query evaluation performance. Al-
though one might have expected the irregular grid to outperform
the regular one on non-uniform data, this is not the case, as the
irregular grid incurs a higher cost for data partitioning, compared
to the linear-time cost of constructing a regular grid. We thus use
CGI+AAKD to represent the CGI index in subsequent experiments.

4.1.3 AKD Indices. Three adaptive KD-tree variants are suggested
in [29]: the simple adaptive KD-tree (AKD), the progressive adap-
tive KD-tree (PKD), and the greedy progressive adaptive KD-tree
(GPKD). We have formulated another option, the Advanced Adap-
tive KD-tree (AAKD), which adapts the heuristic ordering of cracks
proposed by AIR. Specifically, AKD performs 2d cracks along the
ends of a query range in each dimension by a fixed order, e.g.,
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Xlows> Xhigh> Ylow- then Yp;gp. Contrariwise, AIR orders cracks by a
heuristic aiming to enhance the marginality of the ensuing struc-
ture. AAKD applies this heuristic on the AKD structure. We also
introduce a stochastic crack on the largest resulting piece. Fig-
ures 7c and 8c show the total time to process a workload of 10k
queries by these four options on different data distributions, for
points and shapes respectively. As expected, GPKD outperforms
the non-greedy on points. Additionally, the simple AKD outpaces
progressive options. That is expected, as the progressive options
are meant to overcome variance in the query time over the work-
load rather than to achieve low total workload time. Besides, the
application of the crack-order-heuristic on the simple AKD proves
worthwhile, as it outperforms other variants in all data distributions.
In the remaining experiments we only include AKD and AAKD.
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4.2 Effect of object location

4.2.1 Point Data. We commence our comparative study for static,
adaptive, and hybrid indexing options with 2D point data. Figure 9
shows how the methods selected in Section 4.1, i.e., static grid,
CGI+AAKD, and AAKD, perform alongside the adaptive indexes:
AIR, AKD, AV-tree, and QUASII. We present results for a random ac-
cess pattern, showing both per-query and accumulated time across
various datasets. Adaptive methods exhibit the typical behavior,
starting with a high per-query cost, continuing with a declining
trend, and eventually settling to the performance of a pre-built
index. QUASII has an expensive start and subsequent slow growth,
and does not overcome its initial handicap. AIR and AKD exhibit
similar performance, with AAKD holding a small edge over both of
them. This is expected as the datasets in question are point datasets.
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We discuss experiments with range data in the following. These
three indexes also appear largely insensitive to the data distribution.

The coarse granular index option with a regular grid comple-
mented with an AAKD (CGI+AAKD) performs robustly across all
datasets. So much so, that the per query performance resembles a
pre-built static index even though the AAKD is still extending itself.
Remarkably, this benefit does not come at an exorbitant initial cost,
as the initial cost often resembles QUASIIs first query cost, while
this investment is vindicated by the total cost remaining competi-
tive. Besides, the cumulative cost of CGI crosses the fully adaptive
method latest after 100 queries. Another interesting observation is
the comparison among the static grid and CGI. As mentioned in the
tuning discussion (§3.4), the grid size of the static and CGI methods
are equal, hence their initial building costs match. The total costs
are on par with each other in all dataset comparisons except the
ROADS data. As Figure 4 shows, the ROADS data has a few areas
that are extremely crowded, and queries follow this data pattern.
Therefore, the grid cells in those areas are overwhelmed with too
many points to manage and many queries to respond to. This is
where the extra layer of the adaptive index comes into play and
facilitates better performance. Grid-based methods perform best
when faced with a uniform data distribution.

On the other hand, the AV-tree performs significantly worse than
its competitors. We attribute this gap to two factors: (i) a fundamen-
tal change in the query processing mechanism to accommodate
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Figure 14: Effect of query access pattern, uniform point data.

rectangular range queries; as the index was designed to accom-
modate Ly distance queries, it creates suboptimal partitions when
faced with Lp,4x distance queries. And (ii) the low data dimension-
ality, which renders distance-based partitioning less appropriate.
The combination of these two factors contributes to AV-tree’s poor
results. As its inclusion limits our ability to compare to other lines
in the figures, we exclude this method from the remaining plots.

4.2.2 Shape Data. Figure 10 shows the per-query and cumula-
tive workload time for the methods in Section 4.2.1 apart from
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the excluded AV-tree. CGI+AAKD performs consistently well for
our synthetic data but struggles on real data. Interestingly, AIR
shows the opposite behavior, which calls for further investigation.
In the same context, QUASII, AKD, and AAKD also take a hit with
different size distributions. We discuss this matter in detail in Sec-
tion 4.3. The performance of AAKD, AKD, and QUASII has shifted
up compared to the point experiments due to the query-window-
extension overhead on shape datasets. This effect makes AAKD
and AIR perform similarly for uniformly sized objects.
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While the static grid does not outperform the current state of
the art for shape datasets, AIR, in the uniform and ROADS data
experiment, it does cross under in the other synthetic datasets,
which is an important finding. We create another hybrid to complete
the space of investigation: CGI using an AIR index. At first glance
it may seem that this is a simple extension; however, we had to
make an effectual design choice: We had to choose between either
treating the dataset objects as shapes, creating the initial grid with
replication, and consequently having shapes in our AIR indices,
which would then deal with raw queries, or treat the dataset as
points, create the initial grid without replication, inserting points
into the AIR indexes, and applying the query window extension
technique to reach correct results. The first option has almost the
same startup cost and performance as the static Grid; as Figure 10
shows, this cost is much higher compared with the second option

Grid
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denoted by CGI+AAKD. Thus, we decided to use the second option
as the standard implementation of CGI for boxes.

Another important finding is the performance of AAKD on real
shape data. Several factors need to be considered here. First, the
shape data are treated as points and the search simulates retrieval
of shape data using the query window extension technique. Second,
the heuristic employed by AAKD aims to create partitions that are
square-like by cracking on the longest axis on mediocre bounds.
This combination limits the pruning ability, resulting in more data
being scanned per query and, consequently slower search times.
If the data were handled as actual shapes then we would expect a
performance more similar to AIR.

Figure 17 illustrates the breakdown of the cumulative running
time over a random workload of 10k queries on shape data. The
running time consists of several components: the start-up cost
(which is the time to build the grid), the adaptation time (the time
spent extending the index during query processing), the search
time (the time spent traversing the tree until the algorithm reaches
leaf nodes), and finally, the filtering time (the time taken to filter
false positives for CGI+AAKD).

When dealing with uniform data, adaptation time is negligible
and due to the uniformity of data, search and filtering times show
minimal variation across the different grid-based methods. The
experiment on the non-uniform Roads data reveal more interesting
insights. Search time is substantially higher for both methods, pri-
marily because these methods utilize the query window extension.
This extension results in a much bigger search area compared to
the original window query. Consequently, filtering becomes consid-
erably more expensive, again due to the query window extension.

[M cGl+AAKD M AAKD |

36

Start-up
& Adaptation
B3 Search
Ll Filtering

N
=3
|

T

w

Total Time (sec)
T

Uniform Roads

Datasets

Figure 17: Cumulative time breakdown.

4.3 Effect of object size

AKD-based methods are not tailored handle shapes, and as a result,
the extent of a single object in the dataset can significantly impact
performance, as queries have to be extended by the largest object
extent. Table 2 indicates that our synthetically generated datasets
have more uniformly sized shapes, while the real data have shapes
of varying size distributions. To further improve our argument that
the distribution of the shapes can affect the performance the indexes
under study, we vary the sizes in two manners: First we changed the
parameters of the widths and heights of the shapes from a uniform



distribution with an average of 0.2% of the dimension range, to
0.5%, 1%, and 5% of the dimension range. The details of these new
distributions are found in Table 6. And second we synthetically gen-
erated a dataset where shapes are uniformly placed in the domain
space but have extents that follow an exponential distribution, as
described in section 3.1.1. Figure 11 shows the performance of the
different indexes under these settings.

Table 6: Extent of datasets with different object sizes.

Extent AVG MAX MIN

Uniform 0.5% [0.0049, 0.0049]  [0.009, 0.009]  [4.64e~ 10, 1.92¢77]
Uniform 1% [0.009, 0.009]  [0.019,0.019] [5.62¢7 10, 1.31¢710]
Uniform 5% [0.045,0.045] [0.09,0.09] [2.05¢78, 1.39¢—9]

The static grid’s index creation cost grows as the average size of
the objects grows. This is due to the rising number of objects that
are replicated in the grid cells. The performance of AIR remains
immune to changes in the size of the data objects. AKD, AAKD,
and QUASII get more and more hindered with larger data objects
as a consequence of the extensions. An interesting pattern to notice
is the behaviour of AAKD when dealing with particularly large
objects, as in Figure 11d, and even in the ROADS dataset in Fig-
ure 10d. We can see that the AAKD performs worse than than both
of its parents, AIR and AKD. This is because trying to fit left corner
points of large objects into square-like partitions, actually backfires,
and creates a badly shaped index. We notice this in the number of
shapes scanned per query, which is the most fundamental measure
for index performance. The coarse granular indexes try to resist
the unusual sizes and have best performance for objects with sizes
up to 1% of the space, but eventually for larger and exponentially
sized objects, AIR prevails as the best choice.

4.4 Complex distributions

In the next experiment, test various combinations of shape size and
location distribution parameters that accommodate more diverse
scenarios. First, we synthetically generate shapes that are placed
in the domain using a normal distribution, while their size follows
a uniform distribution, and vice versa. In addition, we generate a
dataset of 10M shape objects where their location and size are corre-
lated, such that shapes become smaller and denser as they move to-
wards the bottom right corner and bigger and sparser as they move
towards the upper right corner. Figure 18 shows how the methods
under study perform in these new and diverse settings. Similarly
to the previous findings, CGI+AAKD performs consistently well in
these complex distributions. AIR outperforms CGI+AAKD in Fig-
ure 18(c), where object density and size are anti-correlated, which
can be attributed to the large objects that appear in the upper right
corner, causing large query extensions and extensive post-filtering
in CGI+AAKD.

4.5 Effect of object cardinality

Figure 12 illustrates the scalability performance of the indices across
datasets of varying cardinality. In this experiment, we use uniform
point datasets of varying size. All other experiments use 20 million
objects, in this section and examine the performance of the methods
for larger sizes, namely 40, 60, and 80 million objects. Consistent
with previous studies [25, 29, 38], the results demonstrate that data
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cardinality has little to no impact on the relative performance of
the indices under evaluation, highlighting their robustness and
scalability. As in other experiments, we see that using a simple
static grid seems to be the best choice for point datasets. The
performance of the course granular index in also equivalent.

4.6 Effect of query selectivity

This subsection includes experiments showcasing the effect of query
selectivity on point data. Figure 13 shows the per-query and cumu-
lative performance of the indices when faced a workload of varying
selectivity. When the selectivity is very high, adaptive indices strug-
gle to create good enough indexes that can filter out future searches.
This is evident in the per query times displayed in the 0.1% selec-
tivity that do not decrease down to the static index performance. A
similar phenomenon can be seen in too small selectivities, although
not as harshly for the 0.0001% selectivity. We have set 0.001% as
our default selectivity for all other experiments as a reasonable size.
Overall, the coarse granular index, or equivalently the static
grid performs reliably even while affected by the query size.

4.7 Effect of query pattern

Figures 14 and 15 show the performance of the methods in work-
loads with non-random access patterns for points and shapes re-
spectively. The number of queries are lower for these experiments,



as the normalized data space limits the number of sequential non-
overlapping queries and meaningful zoom-in queries we can create.
As expected, the stochastic crack employed by AIR and AAKD
helps mitigate the negative effects of a sequential workload. Note
that CGI+AAKD is extremely robust and not affected by the query
access pattern when dealing with points.

While a decreasing trend in the per-query times is expected
for adaptive indexes, we see a similar trend for static indexes in
the zoom-in patterns. This is due to the decrease in the extent and
selectivity of queries as we zoom in. As we access fewer grid cells as
the workload goes on, the benefits of the CGI with AAKD over the
plain AAKD, and CGI with AIR over the plain AIR become moot. As
seen in the object size experiments in section 4.3, the performance
of AKD, AAKD, CGI with AAKD, and QUASII are affected by the
query windows extension and the static grid by its replication. As
such, AIR seems to be performing better. However, it is important
to remember these workloads are very short therefore the benefit
of the coarse grid does not have time to shine.

4.8 Effect of dimensionality

Figure 16 shows results on the effect of dimensionality on point
data, performing the same set of experiments on uniform data of
higher dimensionality. Most of the indexing methods in this study
are designed to support multidimensional data. We have included
more indexes in this experiment to make the results come across
more clearly. Grids do not scale to higher than 3 dimensions, so they
were excluded. The AV-tree still struggles due to the Ly,qx distances.
The AAKD becomes worse with higher dimensional data, while the
plain AKD is less affected. Evidently, the heuristic choice becomes
less worthwhile and instead just becomes a burden with higher
dimensions. Given the datasets are points, AKD and AIR have
similar reliable behavior regardless of dimensionality as expected.

Table 7: Memory Usage (MB)

Before 1st query  After workload

AAKD 320 323.16
AIR 320 326.06
AKD 320 322.67
QUASII 320 320.77
Grid 623 623
CGI+AAKD 623 626

4.9 Memory usage

Table 7 shows the memory usage of various indices for 20 million
shape data objects uniformly distributed, measured both before
any queries are evaluated and after the workload has been com-
pleted. Initially, all adaptive indices consume the same amount of
memory (accounting for storing the data objects), as no indexing
has occurred at that point. In contrast, the grid index allocates dis-
crete memory space for each cell, since the partition is out-of-place.
Since the objects are shapes, they may span across multiple cells,
resulting in replicated entries across these cells. The grid combined
with AAKD (CGI+AAKD) shows that the overhead of the adaptive
index in minimal. That is the case for uniform data where the data
are equally distributed among the cells and their cardinality is not
much bigger than the threshold used.
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5 CONCLUSIONS & FINDINGS

We evaluated the performance and robustness of multidimensional
adaptive indexes in diverse scenarios, tuning factors such as object
size and distribution, workload pattern, and more. Our comparison
includes an advanced AKD implementation which adopts cracking
heuristics from AIR [38]. We also included a first-time implemen-
tation of multidimensional coarse granular indexing (CGI) [32].
We found that grid-based methods perform best on uniformly dis-
tributed data and are robust on non-uniform point data, yet their
advantage is limited to low-dimensional spaces. Highly clustered
collections of real shape data collections pose challenges arising
from object sizes and data density in small areas. On such data,
the query window extension method impairs KD-based methods,
whereas those ingesting data with extent, such as AIR, are more
resilient. On shape data, AIR is unaffected by object size, while the
hybrid CGI+AAKD method maintains good performance with ob-
ject size up to 1% of the dimension range. Linearly growing dataset
size (i.e., cardinality) has a minor effect on efficiency, towards which
static grids and coarse-granular indexes on point datasets are par-
ticularly robust. We experimented with up to 10k queries, as we
observed that larger workloads did not hamper performance, as
the best adaptive indexes eventually match the performance of the
best pre-build indices. On the other hand, query selectivity signif-
icantly affects adaptive indexing. With high selectivity, adaptive
indexes struggle to filter searches effectively. Low selectivity also
impacts performance, to a lesser extent. In contrast, static grid meth-
ods maintain stable performance regardless of query selectivity.
Query patterns also affect performance. Adaptive indexes benefit
from zoom-in query patterns that progressively refine search areas.
CGI+AAKD remains robust and is largely unaffected by different
query access patterns. Dimensionality presents challenges, particu-
larly for grid-based approaches, which do not scale well beyond 3D.
AAKD struggles with higher-dimensional data, whereas AIR and
AKD deliver reliable performance as dimensionality increases. The
AV-tree falters due to its reliance on cumbersome L, distance
queries to express ranges.

Our main experimental findings can be summarized as follows:

On point data CGI+AAKD performs best.

On data of small objects, CGI is most effective; still, for larger
and less regular objects, AIR supercedes other methods.

In space above 3D, AKD and AIR are the best choices.

On irregular query patterns, no method consistently performs
best, yet AIR and AAKD are the most robust.

Our key conclusion is that a static grid index, which had not been
considered as a competitor of adaptive indexes in previous studies,
is highly effective and robust on point data. Our findings challenge
the assumption that adaptive indexes always outperform static ones
with a reasonable workload. One of our proposed extensions, the
coarse-granular index, is based on this observation, aiming to create
a coarse grid that gets refined via adaptation throughout the query
workload. However, we found the best-performing grid sizes to
be equal, thus the simplicity and inexpensive build of the grid is
hard for adaptive indexes to overcome on point data. Nonetheless,
on shape data, which incur replication in grids, inherently shape-
oriented indexes like AIR perform the best, especially so on oddly-
sized shape data.
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