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ABSTRACT
We present CEDAR, a system for cost-efficient, data-driven claim

verification. CEDAR takes as input a collection of text documents,

containing claims that can be verified from relational data. The

system uses large language models (LLMs) to map claims to SQL

queries that can be used for claim verification.While LLMs like GPT-

4 are nowadays able to map claims to queries with high accuracy,

using them is expensive. This is why CEDAR implements multiple

verification approaches, ranging from zero-shot LLM invocations to

iterative, agent-based approaches, that realize different tradeoffs be-

tween accuracy and costs. The system may apply multiple methods

to the same claim, starting with cheaper methods and resorting to

more expensive versions in case of failures. CEDAR uses cost-based

optimization to derive an optimal order of verification methods

and an optimal number of re-tries (with randomization) for each

method, enabling users to trade costs for accuracy via tuning pa-

rameters. The experiments on real data, including newspaper and

Wikipedia articles, show that CEDAR achieves significantly higher

accuracy than prior methods for data-driven fact-checking.
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1 INTRODUCTION
Data from large relational databases are most effectively communi-

cated through textual summaries that highlight key statistics. Data-

centric roles that make use of such summarizations range from pub-

lic health analysts who analyze disease incidence to data journalists

who analyze data for insights to be published in newspaper articles.

Improperly analyzed data could cause repercussions across many

industries such as scientific paper retractions in academia, financial

losses in retail, flawed regulatory measures in policy-making as

well as environmental damage in energy production. Our primary

goal is to assist authors of such summaries in identifying factual

inaccuracies, much like how a spell checker flags spelling errors.
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We present CEDAR, a tool that supports authors and readers

of data summaries to verify claims about relational data. CEDAR

is applied to collections of text documents containing claims that

refer to associated data sets. Internally, CEDAR translates claims

into SQL queries. Executing those queries and comparing the query

result to the claimed result enables the system to mark up claims as

correct or incorrect. On the surface, this problem may resemble the

classical problem of text-to-SQL translation. However, instead of

translating single questions, we translate claims embedded in larger

text documents that come with a claimed result. Those differences

motivate a specialized system design, e.g., featuring a multi-stage

verification approach that exploits claimed values as a signal to

assess the likelihood of a correct query translation.

Example 1.1. Consider the claim “The two fatal accidents involv-

ing Malaysia Airlines this year were the first for the carrier since

1995.” extracted from a newspaper article on 538 [3]. This claim

is derived from a data set, available on the 538 Web site. Our goal

is to verify the claim value ‘two’ by generating an SQL statement

that queries for the number of fatal accidents involving Malaysia

Airlines on the aforementioned data, stored as table airlines. This
claim maps to the SQL query SELECT "fatal_accidents_00_14"
FROM airlines WHERE airline = 'Malaysia Airlines'. By
executing this query and comparing its result with the claim value,

we can verify whether the claim is correct or incorrect.

CEDAR exploits agents, backed by state-of-the-art LLMs like

GPT-4, to translate claims into SQL queries. Agents are a recently

proposed method that leverages LLMs in an iterative approach

to solve complex problems. The LLM is used to decompose the

problem, as well as to invoke functions, so-called tools, to solve

sub-problems. In the case of data-driven claim verification, tools

give the agent access to the target data and compare candidate

SQL queries to claim values. Special care must be taken to avoid

scenarios in which the agent can “cheat”, i.e., seemingly solve a

given task but without producing a useful solution. For instance,

providing the agent with access to the claim value may often result

in SQL queries that merely return a constant value (the claim value)

but do not accurately represent the semantics of the input claim.

Therefore, CEDAR takes great care to obfuscate key information

for the agent while providing it with enough context to translate

the claim into an SQL query. Furthermore, as agents may collect rel-

evant information for claim verification across multiple iterations,

CEDAR must perform a post-processing step in which it analyzes

traces of tools invocations, created by the agent, to compose a single

SQL query translating the input claim.

Agents are a powerful method that is typically able to map even

complex claims to the appropriate queries. However, the iterative

approach increases the amount of text read and generated by the
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LLM. As LLM processing fees are typically proportional to the

amount of text, verifying claims via agents incurs high verifica-

tion costs per claim. CEDAR reduces monetary processing fees by

a multi-stage verification approach. Instead of applying the most

powerful and expensive methods first (i.e., agents), it starts by apply-

ing cheaper verification methods that are in many cases sufficient.

CEDAR features multiple (non-iterative) single-shot claim-to-SQL

translation methods, requiring only a single invocation to the LLM.

To boost the chances of a successful translation, CEDAR automati-

cally collects samples of correctly translated claims and uses them

as samples for few-shot learning. This approach includes samples

of successfully solved problem instances into the prompt text, sent

to the LLM. If the results of queries, translated via cheaper methods,

are far off the claimed values, CEDAR may decide to apply more

expensive verification methods to the same claim.

Each of the aforementioned verification methods can be used

with a variety of language models. Altogether, this leads to a large

space of possible verification methods, realizing different tradeoffs

between success probability (i.e., the chances to accurately translate

the claim to an SQL query) and monetary verification fees. As

the output of LLMs is randomized (i.e., the LLM may generate

different answers in multiple invocations with the same input), it

is even reasonable to re-try verification on the same claim with

the same approach. CEDAR exploits data obtained via profiling

different verification approaches on samples of the input data. Given

user preferences on the desired cost-quality tradeoff, it determines

an optimized verification schedule. This schedule specifies which

verification methods to use and how many retries to apply before

switching to the next method.

CEDAR uses cost-based optimization to determine the schedule

to use. The problem of finding an optimal verification schedule

relates to the problem of optimally ordering expensive predicates

(taking into account their selectivity and costs). However, it differs

by the possibility of retrying verification methods with possibly

different outcomes. We prove that our scenario-specific cost func-

tion satisfies the principle of optimality, and present a dynamic

programming algorithm, generating an optimal schedule according

to our cost model.

In summary, our original, scientific contributions are as follows:

• We introduce CEDAR, a system for cost-efficient, data-

driven fact-checking.

• We present multiple claim verification methods, translating

claims to SQL queries using LLMs.

• We describe a framework for multi-stage claim verification

and associated optimization methods.

• We report on the results of experiments, evaluating cost

and accuracy of CEDAR in comparison to baselines.

The remainder of this paper is organized as follows. Section 2 de-

fines the problem, while Section 3 gives an overview of the CEDAR

system. Section 4 describes CEDAR’s multi-stage verification ap-

proach. Section 5 describes several approaches for claim verification,

based on LLMs. Section 6 describes how we generate optimized

schedules for multi-stage claim verification. Section 7 reports exper-

imental results, comparing CEDAR to multiple baselines. Section 8

describes prior work that relates to CEDAR before we conclude in

Section 9.

2 PROBLEM STATEMENT
We introduce our formal model.

Definition 2.1. A text Document contains claims summarizing

a data set. Given document 𝑑 , we denote by 𝑑.𝑐𝑙𝑎𝑖𝑚𝑠 the claims

in the document text and by 𝑑.𝑑𝑎𝑡𝑎 a relational database that the

claims refer to.

Definition 2.2. AClaim is defined by a sentence and the position

of a numeric or textual value within that sentence. This value

represents either an aggregate value derived from the data set

associated with the document containing the claim, or a specific

data entry extracted based on filtering conditions. Furthermore, a

claim may be associated with additional text, providing relevant

context to interpret the claim sentence. Given a claim 𝑐 , we denote

by 𝑐.𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 the claim sentence and by 𝑐.𝑠𝑝𝑎𝑛 the position of the

claim valuewithin that sentence, where 𝑐.𝑠𝑝𝑎𝑛.𝑠𝑡𝑎𝑟𝑡 and 𝑐.𝑠𝑝𝑎𝑛.𝑒𝑛𝑑

denote the start and end positions. Also, we denote by 𝑐.𝑐𝑜𝑛𝑡𝑒𝑥𝑡

any relevant context. Finally, we denote the claim value by 𝑐.𝑣𝑎𝑙𝑢𝑒 .

Example 2.3. Consider the claim in Example 1.1. Here, 𝑐.𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

has the value “The two fatal accidents involving Malaysia Airlines

this year were the first for the carrier since 1995.”, 𝑐.𝑠𝑝𝑎𝑛.𝑠𝑡𝑎𝑟𝑡 = 1

and 𝑐.𝑠𝑝𝑎𝑛.𝑒𝑛𝑑 = 1 since the claimed value appears at index 1.

𝑐.𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the paragraph containing the claim sentence.

Definition 2.4. A Correct Claim is a claim for which the claim

value corresponds to the result of executing a query that represents

the claim semantics. Our approach supports arbitrary SQL queries

that return a single cell as output, either a scalar number or a textual

(string) value. Given a claim 𝑐 , we denote by 𝑐.𝑣𝑎𝑙𝑢𝑒 the associated

claim value (which appears in the claim sentence at 𝑐.𝑠𝑝𝑎𝑛). We

denote by 𝑐.𝑞𝑢𝑒𝑟𝑦 an SQL query that translates the claim semantics.

If the result of executing 𝑐.𝑞𝑢𝑒𝑟𝑦 on the data associated with the

document is equivalent to 𝑐.𝑣𝑎𝑙𝑢𝑒 , the claim is correct. Otherwise,

the claim is incorrect. Note that we consider a claim as correct if,

for numeric claim values, the query result can be rounded to the

claimed value (since claims in text often round results) and, for

textual claims, the query result exactly matches the claimed value.

Example 2.5. For the claim 𝑐 from the previous example, it is

𝑐.𝑞𝑢𝑒𝑟𝑦 =SELECT "fatal_accidents_00_14" FROM airlines
WHERE airline = 'Malaysia Airlines' and 𝑐.𝑣𝑎𝑙𝑢𝑒 = 2. Since

the result of the query is equivalent to the claimed value, the claim

is correct. Note that a query result of, e.g., 2.1 could be rounded to

two and is therefore also equivalent to the claimed value.

CEDAR solves the problem defined next.

Definition 2.6. Given a set of documents 𝐷 as input, the goal of

ClaimVerification is to map the claims𝑑.𝑐𝑙𝑎𝑖𝑚𝑠 of each document

𝑑 ∈ 𝐷 to a correctness flag (𝑐.𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ) and an SQL query (𝑐.𝑞𝑢𝑒𝑟𝑦)

that represents the claim semantics.

3 SYSTEM OVERVIEW
Figure 1 shows an overview of the CEDAR system. CEDAR’s input

is a set of text documents to verify, along with associated data

sets. Additionally, users can tune a parameter that enables them to

trade verification precision for monetary processing fees. Setting a

higher accuracy threshold will encourage CEDAR to verify more
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Figure 1: Architecture of CEDAR

thoroughly, using more expensive verification methods. The output

of CEDAR is a verification result, mapping claims that appear in

the input documents to verification results (i.e., whether the claim

is correct or incorrect), as well as to SQL queries that were used for

verification.

Internally, CEDAR first determines the order in which different

verification approaches are applied, as well as the number of retries

for each approach. CEDAR applies cost-based optimization to find

an optimal verification schedule. For that, it exploits profiling statis-

tics, providing estimates for the success probability and the average

costs of different verification approaches. Furthermore, CEDAR

takes into account user preferences on the cost-quality tradeoff

(the accuracy threshold specified as input). If users choose a lower

accuracy, CEDAR has more options to reduce verification costs

by choosing low-cost verification variants, even if it reduces the

quality of the verification result.

After selecting a verification schedule, CEDAR performs multi-

stage verification. This means that CEDAR applies different veri-

fication approaches with a given number of retries until it seems

likely that claims have been mapped accurately to SQL queries that

can be used for verification. If a verification approach fails, CEDAR

proceeds to the next approach, according to the previously chosen

order. CEDAR features a variety of verification methods that realize

a wide range of cost-quality tradeoffs. Those approaches include

agent-based, iterative verification methods as well as (cheaper)

one-shot verification methods. All of those approaches use large

language models for claim-to-SQL translation (the current imple-

mentation relies on OpenAI’s GPT model series). CEDAR instanti-

ates approaches with different model variants, expanding the range

of cost-quality tradeoffs CEDAR is able to choose from.

4 MULTI-STAGE CLAIM VERIFICATION
Algorithm 1 describes multi-stage claim verification, as executed by

CEDAR. CEDAR takes as input a collection of documents to verify,

profiling results describing different claim verificationmethods, and

an accuracy threshold. The latter threshold enables users to trade

Algorithm 1 Multi-Stage Claim Verification

1: // Given a list of documents, profiling data, and an accuracy

2: // constraint, verify the claims in the documents

3: function CEDAR(𝑑𝑜𝑐𝑠, 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑎𝑐𝑐_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 )

4: // Generate optimal verification schedule

5: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← Schedule(𝑝𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔_𝑑𝑎𝑡𝑎, 𝑎𝑐𝑐_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 )

6: // Iterate over documents to verify

7: for 𝑑 ∈ 𝑑𝑜𝑐𝑠 do
8: // Retrieve all claims to verify

9: 𝑐𝑙𝑎𝑖𝑚𝑠 ← 𝑑.𝑐𝑙𝑎𝑖𝑚𝑠

10: // Iterate over verification schemes

11: for 𝑣𝑆𝑐ℎ𝑒𝑚𝑒 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do
12: // Try verification without sample

13: 𝑆 ←Verify(𝑣𝑆𝑐ℎ𝑒𝑚𝑒, 𝑐𝑙𝑎𝑖𝑚𝑠, ⟨⟩, 𝑑 .𝑑𝑎𝑡𝑎)
14: // Remove successfully verified claims

15: 𝑐𝑙𝑎𝑖𝑚𝑠 ← 𝑐𝑙𝑎𝑖𝑚𝑠 \ 𝑆
16: // Did we collect at least one sample?

17: if 𝑆 ≠ ∅ then
18: // Retry verification with sample

19: 𝑠𝑎𝑚𝑝𝑙𝑒 ← element from 𝑆

20: 𝑆 ←Verify(𝑣𝑆𝑐ℎ𝑒𝑚𝑒, 𝑐𝑙𝑎𝑖𝑚𝑠, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑑.𝑑𝑎𝑡𝑎)

21: // Remove successfully verified claims

22: 𝑐𝑙𝑎𝑖𝑚𝑠 ← 𝑐𝑙𝑎𝑖𝑚𝑠 \ 𝑆
23: end if
24: end for
25: end for
26: // Return documents with verification results

27: return 𝑑𝑜𝑐𝑠

28: end function

accuracy for computation fees. Setting a lower threshold enables the

system to select cheaper (and less accurate) verification methods,

thereby saving costs. The system takes accuracy targets as input,

rather than a cost budget. CEDAR selects verification methods

that meet accuracy targets (under several simplifying assumptions)

while minimizing costs. As output, Algorithm 1 returns documents

whose claims are annotated with verification results.

First, CEDAR uses cost-based scheduling to determine an opti-

mal verification schedule. The verification schedule determines the

order in which different verification approaches are tried and the

number of re-tries to execute with each approach. The details of

the scheduling algorithm are discussed in Section 6.

Next, CEDAR iterates over all documents to verify. Each doc-

ument 𝑑 is associated with a set of claims (𝑑.𝑐𝑙𝑎𝑖𝑚𝑠) to verify. At

each step, Variable 𝑐𝑙𝑎𝑖𝑚𝑠 contains the remaining claims to verify

(which is initialized to 𝑑.𝑐𝑙𝑎𝑖𝑚𝑠). For the current document, CEDAR

iterates over all verification approaches in the order that was sched-

uled before. The success probability for verification approaches

increases if document and approach-specific samples (of claims

with associated SQL queries) are available for few-shot learning.

Initially, no such samples are available. CEDAR tries verifying the

current claims without samples, using the Verify function. This

function applies a single verification approach to all claims. Its

pseudo-code (Algorithm 2) is discussed later in this section.

If at least one claim was successfully verified (𝑆 ≠ ∅), CEDAR
retries verificationwith the currentmethod on the remaining claims.
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Algorithm 2 Verifying Claims with Given Method

1: // Verify a given list of claims using a translated sample and a

2: // database containing data about the claims

3: function Verify(𝑣𝑆𝑐ℎ𝑒𝑚𝑒, 𝑐𝑙𝑎𝑖𝑚𝑠, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒)

4: // Initialize successfully verified claims

5: 𝑆 ← ∅
6: // Iterate over claims to verify

7: for 𝑐 ∈ 𝑐𝑙𝑎𝑖𝑚𝑠 do
8: // Retrieve masked claim and context

9: ⟨𝑚,𝑐𝑡𝑥⟩ ← Pre_Proc(𝑐.𝑝𝑎𝑟𝑎, 𝑐.𝑠𝑒𝑛𝑡, 𝑐 .𝑠𝑝𝑎𝑛)

10: // Invoke the verification scheme on the claim

11: 𝑞 ← vScheme(𝑚,𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑐𝑡𝑥 )

12: // Attach query to claim

13: 𝑐.𝑞𝑢𝑒𝑟𝑦 ← 𝑞

14: // Is query likely to be correct?

15: if CorrectQuery(𝑞, 𝑐.𝑟𝑒𝑠𝑢𝑙𝑡, 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒) then
16: // Determine correctness based on query

17: 𝑐.𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ←CorrectClaim(𝑞, 𝑐.𝑟𝑒𝑠𝑢𝑙𝑡, 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒)

18: // No prior sample available?

19: if 𝑠𝑎𝑚𝑝𝑙𝑒 = ⟨⟩ then
20: return {𝑐}
21: end if
22: // Add to successfully verified claims

23: 𝑆 ← 𝑆 ∪ {𝑐}
24: end if
25: end for
26: return 𝑆

27: end function

After each invocation of Verify, the successfully verified claims

are removed from the set of remaining claims.

Algorithm 2 realizes one single verification stage, iterating over

all input claims using a given claim verification method. For each

claim, CEDAR pre-processes the claim text (discussed in more detail

in the next section), and invokes the current verification method

which results in an SQL query. If claim translation succeeds, this

SQL query represents the semantics of the input claim. Prior re-

search [17] shows that incorrect, numerical claims typically use

numbers that are relatively close to accurate values. This princi-

ple has been exploited by prior work on data-driven fact-checking

as well [14]. CEDAR leverages this insight to verify whether the

queries returned by the claim translation method are plausible,

i.e., whether their result is close enough to the claimed value to

be likely correct. For that, Algorithm 2 uses Function Correct-

Query (pseudo-code omitted due to space restrictions) to execute

the query on the input data and compare the result to the claimed

value. For numerical claims, a query is deemed plausible if its result

is in the same order of magnitude as the claim value. For textual

claims, we compute the similarity between the embedding vec-

tors of claimed and retrieved values using the model ‘MiniLM-L6’

[33]. If the similarity exceeds a particular threshold, the query is

considered plausible. We set the similarity threshold to 0.7, which

indicates moderate-to-strong semantic alignment between short

text spans and accounts for errors due to abbreviations and spelling

mistakes. Function CorrectQuery returns true when the query

Algorithm 3 Validating Claims

1: // Given a query, database, and the claim result, validate

2: // the correctness of the claim

3: function CorrectClaim(𝑞𝑢𝑒𝑟𝑦, 𝑐_𝑟𝑒𝑠, 𝑑𝑎𝑡𝑎)

4: // Execute query on target database

5: 𝑞_𝑟𝑒𝑠 ← ExecuteQuery(𝑞, 𝑑𝑎𝑡𝑎)

6: if isNumeric(𝑐_𝑟𝑒𝑠) then
7: // Get precision of claim value

8: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ←getPrecision(𝑐_𝑟𝑒𝑠)

9: // Round query result to claim precision

10: 𝑟𝑜𝑢𝑛𝑑𝑒𝑑_𝑞_𝑟𝑒𝑠 ← round(𝑞_𝑟𝑒𝑠, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

11: // Check whether rounded query result matches claim

12: return 𝑐_𝑟𝑒𝑠 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑_𝑞_𝑟𝑒𝑠

13: else
14: // Convert to dense vector representations

15: 𝑐_𝑣𝑒𝑐 ← GetEmbedding(𝑐_𝑟𝑒𝑠)
16: 𝑞_𝑣𝑒𝑐 ← GetEmbedding(𝑞_𝑟𝑒𝑠)
17: // Measure semantic overlap

18: 𝑠𝑖𝑚 ← CosineSimilarity(𝑞_𝑣𝑒𝑐, 𝑐_𝑣𝑒𝑐)
19: return 𝑐_𝑟𝑒𝑠 ≥ 0.8

20: end if
21: end function

produced by the claim verification method is assumed to be likely

correct.

If the translated query is likely to be correct, CEDAR assigns a

correctness value to the current claim determined by Function Cor-

rectClaim, specified as Algorithm 3. This function executes the

query on the corresponding data. For numerical claims, it deter-

mines the precision of the claim value, rounds the query result to

that precision, and compares the resulting numbers. If the rounded

query result matches the claim, the claim is correct (otherwise in-

correct). For textual claims, if the similarity exceeds 0.8, the claim is

correct (otherwise incorrect). If none of the approaches succeed in

generating an executable query, the claim is assumed to be unveri-

fiable from the data and marked as correct by default. If executable

queries are generated but no query result matches the claimed

value, the claim is marked as incorrect.

Example 4.1. A query result of 3.140 matches a claimed value of

3.1 and a claimed value of 3 but not a claimed value of 3.143. On the

other hand, a query result of 3.143 matches a claimed value of 3.14.

For (likely) correct queries, Algorithm 2 checks for the spe-

cial case that the current claim is the first one that was success-

fully translated. In that case, the input sample is the empty tuple

(𝑠𝑎𝑚𝑝𝑙𝑒 = ⟨⟩) and Algorithm 2 returns immediately the single, suc-

cessfully translated claim. This is done to enable the calling function

(Algorithm 1) to use the successfully verified claim as a sample for

the next invocation of Verify (since adding samples of successfully

verified claims tends to increase the performance of LLM-based

verification methods). If a sample is already available, Algorithm 2

adds the current claim to the set of successfully verified claims that

is ultimately returned as result.
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Correct:

1 SELECT fatal_accidents_00_14
2 FROM airlinesafety
3 WHERE airline = 'Malaysia␣

Airlines';

Incorrect:

1 SELECT 2 AS fatal_accidents
2 FROM airlinesafety
3 WHERE airline = 'Malaysia␣Airlines'
4 AND fatal_accidents_00_14 = 2;

Figure 2: The effect of masking the claim value

Algorithm 4 Preprocessing Claim Text

1: // Given the paragraph, context, and position of the claim value,

2: // generate the masked claim and context information

3: function Pre_Proc(𝑝𝑎𝑟𝑎, 𝑠𝑒𝑛𝑡, 𝑠𝑝𝑎𝑛)

4: // Obfuscate the claim value in the sentence

5: 𝑚𝑎𝑠𝑘𝑒𝑑_𝑐𝑙𝑎𝑖𝑚 ← 𝑠𝑒𝑛𝑡 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑠𝑝𝑎𝑛, ”𝑥”)
6: // Obfuscate the sentence in the paragraph

7: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ← 𝑝𝑎𝑟𝑎.𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑠𝑒𝑛𝑡 .𝑠𝑝𝑎𝑛,𝑚𝑎𝑠𝑘𝑒𝑑_𝑐𝑙𝑎𝑖𝑚)
8: // Return masked claim and context

9: return ⟨𝑚𝑎𝑠𝑘𝑒𝑑_𝑐𝑙𝑎𝑖𝑚, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡⟩
10: end function

5 VERIFICATION APPROACHES
We discuss pre-processing of claim text and context in Section 5.1.

In Section 5.2, we discuss cheap translation methods that involve

only one single invocation of the LLM. Next, in Section 5.3, we

discuss more complex methods, based on LLM agents. Using agents

requires a post-processing stage in which we compose SQL queries

representing claims in their entirety from multiple SQL queries,

issued by the agent over the course of the claim verification process.

5.1 Pre-Processing
During pre-processing, we obfuscate certain parts of the claim text

and context. The following example illustrates the reason.

Example 5.1. Consider the claim “The 2 fatal accidents involving
Malaysia Airlines this year were the first for the carrier since 1995”,

taken from a 538 article. If prompting the LLM to create an SQL

query for claim verification, providing unchanged text as input, the

LLM generates the query shown on the right side of Figure 2. This

query contains the claimed result as a constant. On the other hand,

if masking the claim value appropriately (as discussed next), the

LLM generates the correct query shown on the left.

To avoid cases like the one depicted in Example 5.1, CEDAR

obfuscates claim values in the claim text and related context. Algo-

rithm 4, invoked in Algorithm 1, takes as input context (the text

paragraph containing the claim), the claim sentence, and the posi-

tion within the claim sentence at which the claim value appears.

Next, Algorithm 4 obfuscates the claimed value in the claim sen-

tence and, finally, replaces the original claim sentence with the

changed version in the surrounding paragraph as well. The result-

ing text avoids the LLM taking “shortcuts” by creating SQL queries

that contain the claim value as a constant.

5.2 One-Shot Translation
CEDAR supports cheap one-shot verification. Here, the LLM is

called only once to translate the claim into an equivalent SQL query.

Algorithm 5 One-shot Claim-to-SQL Translation

1: // Invoke one-shot translation approach using masked claim,

2: // data, a translated sample, and context information.

3: function OneShotVerification(𝑚,𝑑𝑎𝑡𝑎, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑐𝑡𝑥 )

4: // Generate the prompt

5: 𝑝𝑟𝑜𝑚𝑝𝑡 ← OneShotPrompt(𝑚,𝑑𝑎𝑡𝑎, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑐𝑡𝑥)
6: // Invoke the language model using the prompt

7: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ← InvokeLLM(𝑝𝑟𝑜𝑚𝑝𝑡 )

8: // Extract the SQL query from the response

9: 𝑞 ← ExtractQuery(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

10: // Return translated query

11: return 𝑞

12: end function

Given the claim "{claim}" where "x" is a "{type}"
value, you must think about a question that
generates "x" as the answer and then generate a SQL
query to answer that question.

You must use the schema of the following table
called "table". {db_schema}

To query for percentages use the format
"SELECT (SELECT COUNT(column_name) FROM table
WHERE equality_predicates)
* 100.0/ (SELECT COUNT(column_name) FROM table
WHERE equality_predicates)".
Other queries are of format
"SELECT aggregate_function(column_name) FROM table
WHERE equality_predicates".

Wrap the SQL in ```sql ```.
{sample}
The following context information might help
to form the SQL query. {context}

Figure 3: Prompt template for one-shot verification

Algorithm 5 describes the steps for one-shot verification. First,

CEDAR generates a prompt that describes the claim to translate

and relevant context (including information about the structure

of the data the claim refers to and the claim context in the input

document). Next, this prompt is sent to the LLM which generates a

response text. If claim translation succeeds, that response contains

an SQL query (marked up according to the specifications in the

prompt). Algorithm 5 finally extracts and returns that query.

Figure 3 shows the prompt template for one-shot claim trans-

lation. Placeholders are marked via curly braces (e.g., {claim}).
First, the prompt template describes the claim (with obfuscated

claim value), along with general instructions on the translation

task. Second, the prompt contains the data type of the claim value

(placeholder {type}). We use ‘numeric’ to denote numeric claims,

and leave this placeholder empty for others to allow for generaliz-

ability. Third, the template describes the schema of the database
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from which the claim can be verified (placeholder {db_schema}).
Next, the prompt contains high-level suggestions about the types of

queries to consider (the instructions are inspired by the query search

space explored by the AggChecker system [14], whose benchmark

we use in the experiments). Note that the LLM is free to explore

(and, in practice does explore) queries that do not comply with the

suggested format, too. Fourth, the template instructs the LLM to

mark up the generated SQL query in the answer, making it eas-

ier to extract it during post-processing. If available, a sample of a

correctly translated claim is included in the prompt for few-shot

learning ({sample}). Finally, the prompt contains relevant context,

extracted from the text document. While providing the entire text

as input is possible, doing so would increase the number of tokens

read (and their verification costs) significantly. On the other hand,

some amount of context can be required to accurately translate

claims. As a compromise, we choose to provide the LLM with the

paragraph containing the claim sentence as input (context).

Table 1: Placeholder values for a sample prompt
Claim The first Grand Prix winner was ‘x’ at the 1950 British

Grand Prix.

Type “"

DB
Schema Country Driver ... Wins

United Kingdom ... Lewis ... 105

Germany ... Michael ... 91

... ... ... ...

Sample For example, given the claim “‘x’ holds the record for
the most race wins in Formula One history, with 105
wins to date.", to find the value for “x", generated SQL

query would be “SELECT “Driver" FROM table WHERE
“Wins" = (SELECT MAX(“Wins") FROM table)".

Context As of the 2025 Spanish Grand Prix, out of the 781

drivers who started a Grand Prix,[14] there have been

115 Formula One Grand Prix winners. ...

Example 5.2. Table 1 shows how placeholders in the template

from Figure 3 are substituted for an example claim.

5.3 Agent Approach
The one-shot approach discussed previously fails for complex claims.

Among other things, the LLM may not have enough information

about the target database (e.g., the precise names of constants that

appear in the data) to guarantee an accurate translation. However,

apriori, it is hard to determine which information is needed for a

specific claim. This motivates an iterative approach, giving the LLM

multiple tries and the possibility to request additional information

about the data, once it becomes clear that it is relevant.

CEDAR supports verification approaches based on ReAct [37].

This approach uses LLMs to solve complex tasks. The LLM is in-

voked iteratively for “reasoning” and “action”. Via reasoning, the

LLM can decompose complex tasks into sub-problems. Via action,

the LLM can decide to invoke one out of a given collection of func-

tions (so-called “tools”) with task-specific input parameters. The

Algorithm 6 Agent-Based Verification Approach

1: // Invoke the agent-based verification approach using

2: // masked claim, data, translated sample, and context.

3: function VerificationByAgent(𝑚,𝑑𝑎𝑡𝑎, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑐𝑡𝑥 )

4: // Generate prompt for agent

5: 𝑝𝑟𝑜𝑚𝑝𝑡 ← AgentPrompt(𝑚,𝑑𝑎𝑡𝑎, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑐𝑡𝑥 )

6: // Invoke iterative agent approach

7: 𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 ← ReActAgent(𝑝𝑟𝑜𝑚𝑝𝑡 )

8: // Reconstruct query via post-processing

9: 𝑞 ←QueryReconstruction(𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡, 𝑑𝑎𝑡𝑎)

10: // Return reconstructed query

11: return 𝑞

12: end function

result of the function invocation is shared with the LLM in the

prompt of the next LLM invocation.

Algorithm 6 describes CEDAR’s agent-based verification ap-

proach. CEDAR first generates a prompt to describe the verification

task to the language model. The prompt template is related to the

one in Figure 3 but expands this prompt by a description of tools

available to the agent (described later in this section), as well as

additional instructions (e.g., related to output formats and problem

decomposition) enabling the ReAct approach. For that, we use stan-

dard prompt templates offered by the LangChain framework [2].

Next, CEDAR executes iterative verification via the ReAct approach.

The result of verification is not a single query but all SQL queries

executed by the ReAct agent. This is needed since the ReAct agent

may piece together relevant information for claim verification over

multiple queries, resulting in trivial queries (containing constants

obtained via prior queries) at the end. In a post-processing stage,

explained in more detail in the following subsection, CEDAR com-

poses query fragments into one complete SQL query representing

claim semantics.

Algorithm 7 implements the ReAct approach and is invoked from

Algorithm 6. Starting from the original prompt, the algorithm iter-

ates until the LLM decides to stop iterations (the thought property

is set to [Finished] in that case). In each iteration, the language

model is prompted to generate a “thought”, describing the next

steps to take in order to solve the input problem. Each thought

may describe an action. An action is the invocation of a tool, rec-

ommended by the LLM. We use two tools for claim verification.

The first tool enables the LLM to obtain information on the unique

values of certain columns in the data set. This turns out to be cru-

cial to formulate accurate SQL queries. Providing the LLM with

information on all unique values in each column is very expensive.

Hence, it is better to enable the LLM to “decide” itself, whether or

not values in specific columns are relevant for the input claim. The

second tool enables the LLM to “test” SQL queries on the input

data. More precisely, it enables the LLM to compare the result of

a single query to the claim value. It can use the results to guide

its efforts in mapping the input claim to the correct SQL query.

We omit the pseudo-code for the first tool while we describe the

code for the second tool later. In Algorithm 7, we parse actions

from LLM thoughts (mapping them to the correct tool and to the

corresponding tool input parameters), execute the action suggested
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Algorithm 7 Iterative ReAct Agent

1: // Invoke the ’thought/action/observation’ process of the ReAct

2: // agent using the given prompt, return list of queries.

3: function ReActAgent(𝑝𝑟𝑜𝑚𝑝𝑡 )

4: // Initialize list of queries

5: 𝑄 ← []
6: // Analyze the prompt to start the thought process

7: 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 ← agent.analyze(𝑝𝑟𝑜𝑚𝑝𝑡 )

8: // Repeat the thought process until it reaches an answer

9: while 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 .𝑎𝑛𝑠𝑤𝑒𝑟 ≠“[Finished]” do
10: // Based on reasoning, decide if an action is required

11: if 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 .reqires_action() then
12: // Decide which action to take

13: 𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 .selectTool()

14: // Generate action input

15: 𝑖𝑛𝑝𝑢𝑡 ← 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 .generateInput( )

16: // Execute the action based on generated input

17: 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑎𝑐𝑡𝑖𝑜𝑛.execute(𝑖𝑛𝑝𝑢𝑡 )

18: // Log queries if any

19: if 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑄𝑢𝑒𝑟𝑦𝑖𝑛𝑔 then
20: 𝑄 ← 𝑄 ◦ [𝑖𝑛𝑝𝑢𝑡]
21: end if
22: // Analyze the output to continue reasoning

23: 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ← 𝑎𝑔𝑒𝑛𝑡 .analyze(𝑜𝑢𝑡𝑝𝑢𝑡 )

24: 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 ← 𝑎𝑔𝑒𝑛𝑡 .analyze(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

25: else
26: // Continue reasoning based on its knowledge

27: 𝑡ℎ𝑜𝑢𝑔ℎ𝑡 ← 𝑎𝑔𝑒𝑛𝑡 .analyze( )

28: end if
29: end while
30: // Return list of queries

31: return 𝑄

32: end function

by the LLM, and feed the result of the invocation to the LLM for

the next iteration.

If an action invokes the querying tool, allowing the LLM to issue

SQL queries on the input data, we log the corresponding queries in

a list (𝑄). We return the list of queries as the final result.

Algorithm 8 Database Querying Tool Algorithm

1: // Query data using query 𝑞 and compare

2: // query result to claimed result.

3: function DatabaseQuerying(𝑞, 𝑑𝑎𝑡𝑎, 𝑐𝑙𝑎𝑖𝑚_𝑟𝑒𝑠)

4: // Execute query on input data

5: 𝑞𝑢𝑒𝑟𝑦_𝑟𝑒𝑠 ← ExecuteQuery(𝑞, 𝑑𝑎𝑡𝑎)
6: // Get feedback comparing query result to claimed result

7: return getFeedback(𝑞𝑢𝑒𝑟𝑦_𝑟𝑒𝑠, 𝑐𝑙𝑎𝑖𝑚_𝑟𝑒𝑠)

8: end function

Algorithm 8 shows pseudo-code for the tool allowing the LLM to

query the input data. In addition to the query result, the tool returns

a short feedback message to the agent comparing the query result

to the claim value using Function CorrectQuery discussed earlier.

For numbers, the feedback distinguishes between ‘close’, ‘greater’

and ‘smaller’, whereas for embedding vectors it distinguishes be-

tween ‘matched’ and ‘mismatched’, based on a similarity threshold.

Of course, we could provide the LLM directly with the claim value

as input. However, this leads to the problem illustrated in Exam-

ple 5.1. On the other hand, giving the LLM some information on

whether or not the results of queries come close to the claimed

value can provide the LLM with valuable guidance, allowing it to

correct its candidate queries. We balance between the two extremes

(no information and all information on the claim value) by provid-

ing the LLM agent with high-level, comparative information only.

As the second component of the output tuple, Algorithm 8 returns

a short text, comparing the query result to the claim value. This

information is sufficiently imprecise to avoid scenarios in which the

LLM creates queries that contain the claimed value as a constant.

On the other hand, the information is precise enough to enable the

LLM to correct mistakes in the initial query over multiple iterations.

Example 5.3. Figure 4 illustrates how the agent approach pro-

cesses an example query. The output shows all agent thoughts, as

well as tool invocations and results. The agent tries a first SQL

query using the querying tool. However, the query result is empty,

leading to an error message. This motivates the agent to obtain a

list of unique values in one of the relevant columns. Indeed, it turns

out that the query should use a different constant from the prior

version (i.e., USA instead of United States). The agent corrects
the constant and issues a new query, resulting in the claimed value.

5.4 Post-Processing
The agent approach enables the LLM to issuemultiple queries on the

test database. The final query often contains constants, obtained by

issuing prior queries. Therefore, we need to add a post-processing

stage, reconstructing the complete SQL query from the queries

issued over all iterations of the agent.

Algorithm 9 obtains as input a list of SQL queries issued by

the agent while verifying a single claim (together with the data

the queries refer to). The output is one single query, obtained by

substituting constants that appear in the last query in the input list

with prior queries with matching results. Given a list with only a

single element, the last remaining query is returned (which may

have been subject to substitutions in prior instances of the recursive

method). If more than a single query remains, Algorithm 9 executes

that query on the input data. Next, the algorithm iterates over all

other queries, searching for constants that match the query result.

If so, it is assumed that the agent derived the constant from the

prior query result. Note that we consider substitutions only in one

direction, substituting queries for constants that appear in later

queries. This is reasonable since the input list contains queries in the

order inwhich theywere issued by the agent (and the agent can only

derive constants from queries executed previously). Algorithm 9

decomposes each query into terms split by a white space delimiter.

For numerical query results, the numerical term with minimal

absolute distance to the query result is substituted. If the query

result can be rounded to that term (note that it may be possible to

round the query result to multiple terms but we consider the one

with minimal distance most likely), the algorithm substitutes the

token with the query. For string results, it replaces the string literal
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Thought: To find the value of “x" in the claim “The French

consume more wine than people in any other country - 370

glasses of wine per person per year, compared to just “x" glasses in

the U.S.", we need to determine the wine consumption per person

in the U.S. from the given table.

The table schema provided includes the columns: “coun-

try", “beer_servings", “spirit_servings", “wine_servings",

and “total_litres_of_pure_alcohol". We are interested in the

“wine_servings" column for the country “United States".

Thought: The correct SQL query to find the wine con-

sumption per person in the U.S. is:

``` sql

SELECT “wine_servings" FROM table WHERE “country" = ‘United

States’

```
Action: database_querying
Action Input: SELECT “wine_servings" FROM table WHERE

“country" = ‘United States’

index 0 is out of bounds for axis 0 with size 0

Observation: It appears that there might be an issue with

the country name used in the query. The country name might

be different in the dataset. To resolve this, I will first check the

unique values in the “country" column to ensure the correct

country name is used.

Action: unique_column_values

Action Input: country
country

0 Barbados

1 Botswana

.

50 USA

.

.

Observation: The unique values in the “country" column indicate

that the United States is represented as “USA". I will now modify

the SQL query to use “USA" instead of “United States".

Action: database_querying
Action Input: SELECT “wine_servings" FROM table WHERE

“country" = ‘USA’

[84, ‘Value is correct’]

Thought: I now know the final answer.

Final Answer: 84

Figure 4: Example for agent-based approach

directly with the sub-query. Finally, the algorithm performs further

substitutions via a recursive call.

6 OPTIMAL SCHEDULING
CEDAR uses a multi-stage verification approach. Using the claimed

value as a signal to detect successful verification, CEDAR proceeds

to the next verification approach whenever the last one fails for

a limited number of re-tries. The order in which verification ap-

proaches are tried as well as the number of retries per approach

Algorithm 9 Query Reconstruction Algorithm

1: // Given a list of SQL queries, reconstruct a single query that

2: // generates the expected answer by recursively replacing its

3: // constants with sub-queries.

4: function reconstruct(𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡, 𝑑𝑎𝑡𝑎)

5: // Retrieve and remove first query in list

6: 𝑐𝑢𝑟_𝑞𝑢𝑒𝑟𝑦 ← 𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 .remove(0)

7: // Last remaining query is complete

8: if 𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 .𝑙𝑒𝑛𝑔𝑡ℎ = 0 then
9: return 𝑐𝑢𝑟_𝑞𝑢𝑒𝑟𝑦

10: end if
11: // Execute query on target data

12: 𝑟𝑒𝑠 ← ExecuteQuery(𝑐𝑢𝑟_𝑞𝑢𝑒𝑟𝑦, 𝑑𝑎𝑡𝑎)

13: // Iterate over all remaining queries

14: for 𝑖 ← 0..𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 .𝑙𝑒𝑛𝑔𝑡ℎ do
15: // Split query using white space as delimiter

16: 𝑞𝑢𝑒𝑟𝑦 ← 𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 [𝑖]
17: 𝑞𝑢𝑒𝑟𝑦_𝑝𝑎𝑟𝑡𝑠 ← split(𝑞𝑢𝑒𝑟𝑦)

18: if isNumeric(𝑟𝑒𝑠) then
19: // Identify minimum-distance part

20: 𝑚 ← argmin𝑡 ∈𝑞𝑢𝑒𝑟𝑦_𝑝𝑎𝑟𝑡𝑠 :𝑡 ∈R |𝑡 − 𝑟𝑒𝑠 |
21: // Check whether query part rounds to result

22: if 𝑡 rounds to 𝑟𝑒𝑠 then
23: // Replace part with sub-query

24: 𝑛 ← 𝑞𝑢𝑒𝑟𝑦.replace(𝑡, 𝑐𝑢𝑟_𝑞𝑢𝑒𝑟𝑦)

25: // Replace old query in list

26: 𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 [𝑖] ← 𝑛

27: end if
28: else
29: // Replace with sub-query

30: 𝑛 ← 𝑞𝑢𝑒𝑟𝑦.replace(𝑟𝑒𝑠, 𝑐𝑢𝑟_𝑞𝑢𝑒𝑟𝑦)

31: 𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡 [𝑖] ← 𝑛

32: end if
33: end for
34: // Recursively iterate over the remaining list of queries

35: return reconstruct(𝑞𝑢𝑒𝑟𝑦_𝑙𝑖𝑠𝑡, 𝑑𝑎𝑡𝑎)

36: end function

has a significant impact on the expected cost per claim verification.

Therefore, CEDAR uses cost-based optimization to determine an

optimal order of verification approaches and an optimal number

of retries. We introduce notations and assumptions for this section

in Section 6.1 and derive models to assess the expected cost and

success probability for verification schedules in Section 6.2. Next,

we analyze those models in Section 6.3 to derive formal properties

that motivate the scheduling algorithm presented in Section 6.4.

6.1 Notations and Assumptions
We represent verification schedules as a vector 𝑣 where each vector

component corresponds to a verification approach. CEDAR tries

verification approaches in the order in which they appear in the

verification schedule. We denote the 𝑖-th element of such vectors by

𝑣𝑖 and ranges of components by 𝑣𝑖 .. 𝑗 . Given a specific verification

approach 𝑣𝑖 , we denote by 𝐶 (𝑣𝑖 ) the expected costs of verification.

Expected costs are due to invocations of the associated language
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model. We can use profiling to estimate costs, based on the average

number of tokens consumed per claim. Also, by 𝐴(𝑣𝑖 ), we denote
the accuracy of the verification approach. This is the probability that

the verification approach succeeds. We make several simplifying

assumptions to facilitate the analysis.

Assumption 1. The success probabilities of different retries with
the same verification approach are uncorrelated.

While simplifying, this assumption is reasonable since all verifi-

cation approaches are based on language models that we use with a

certain degree of randomization (i.e., applying the language model

twice to the same input can lead to different outcomes).

Assumption 2. The success probabilities of different verification
approaches are uncorrelated.

This assumption is simplifying as well. However, it is expensive

to obtain information on the correlation of success probabilities

between different verification approaches via profiling. Assessing

the cost of our independence assumptions [11] demonstrates that

our models perform well enough to enable effective scheduling,

despite these simplifying assumptions.

6.2 Cost and Quality Model
We analyze the expected cost of a verification schedule.

Theorem 6.1. The expected cost of a verification schedule 𝑣 , 𝐶 (𝑣),
is given as 𝐶 (𝑣) = ∑

𝑖 𝐶 (𝑣𝑖 ) ·
∏

𝑗<𝑖 (1 −𝐴(𝑣 𝑗 )).

Proof. We can express the expected verification cost via the

following formula: 𝐶 (𝑣) = ∑
𝑖 𝐶 (𝑣𝑖 ) · Pr(𝑣𝑖 : 𝑎𝑝𝑝𝑙𝑖𝑒𝑑). Here, Pr(𝑣𝑖 :

𝑎𝑝𝑝𝑙𝑖𝑒𝑑) denotes the probability that 𝑣𝑖 is applied. As CEDAR tries

verification approaches in the order in which they appear in the

schedule, approach 𝑣𝑖 is only applied if all prior approaches (𝑣 𝑗 for

𝑗 < 𝑖) fail. The probability that approach 𝑣 𝑗 fails is given as 1−𝐴(𝑣 𝑗 ).
Due to our independence assumptions (Assumptions 1 and 2), the

probability that all prior approaches fail is given as

∏
𝑗<𝑖 (1−𝐴(𝑣 𝑗 )).

Substituting Pr(𝑣𝑖 : 𝑎𝑝𝑝𝑙𝑖𝑒𝑑) leads to the postulated formula. □

Next, we analyze the probability of successful verification.

Theorem 6.2. The accuracy of a verification schedule 𝑣 , 𝐴(𝑣), is
given as 𝐴(𝑣) = 1 −∏𝑖 (1 −𝐴(𝑣𝑖 )).

Proof. The probability that verification fails with approach 𝑣𝑖
is given as 1 −𝐴(𝑣𝑖 ). We assume that different tries are statistically

independent due to Assumptions 1 and 2. Therefore, the probability

that all verification approaches fail is given as

∏
𝑖 (1−𝐴(𝑣𝑖 )). Finally,

the probability that at least one approach succeeds is given as the

complement, i.e., 1 −∏𝑖 (1 −𝐴(𝑣𝑖 )). □

6.3 Model Analysis
A cost function satisfies the principle of optimality if optimal solu-

tions are composed of optimal solutions to sub-problems. We show

that this applies to our scenario.

Theorem 6.3. Replacing a prefix of a verification schedule with
one with at least equal accuracy and at most the same cost cannot
worsen any metric for the entire schedule.

Proof. Let 𝑣 be the original verification schedule (which corre-

sponds to a sequence of calls to verification methods). Let 𝑘 be the

length of the prefix to replace, 𝑐𝑜 and 𝑓𝑜 the cost and failure proba-

bility of the original prefix, and 𝑐𝑛 and 𝑓𝑛 the corresponding metrics

for the new prefix. It is 𝑐𝑜 ≥ 𝑐𝑛 and 𝑓𝑜 ≥ 𝑓𝑛 . According to Theo-

rem 6.2, the accuracy before replacement is 1− 𝑓𝑜 ·
∏

𝑖>𝑘 (1−𝐴(𝑣𝑖 ))
and therefore lower or equivalent to the accuracy after replace-

ment: 1 − 𝑓𝑛 ·
∏

𝑖>𝑘 (1 − 𝐴(𝑣𝑖 )) (since 𝑓𝑛 ≤ 𝑓𝑜 ). According to

Theorem 6.1, the cost before replacement can be expressed as

𝑐𝑜 + 𝑓𝑜 ·
∑
𝑖>𝑘 𝐶 (𝑣𝑖 ) ·

∏
𝑘< 𝑗<𝑖 (1−𝐴(𝑣 𝑗 )). After replacement, the cost

becomes 𝑐𝑛 + 𝑓𝑛 ·
∑
𝑖>𝑘 𝐶 (𝑣𝑖 ) ·

∏
𝑘< 𝑗<𝑖 (1 −𝐴(𝑣 𝑗 )). Due to 𝑐𝑛 ≤ 𝑐𝑜

and 𝑓𝑛 ≤ 𝑓𝑜 , this cost cannot be higher than before. □

To limit the size of the search space, the scheduling algorithm

presented in the next section only considers consecutive retries of

the same verification approach. While simplifying, we can prove

that this approach yields optimal solutions in certain scenarios.

Theorem 6.4. Let 𝑣 be a schedule that divides two invocations of
the same verification approach by invocations to a different model.
There is a schedule with equivalent or better costs that does not divide
those invocations.

Proof. Let 𝑣𝑖 = 𝐴, 𝑣𝑖+1 = 𝐵, 𝑣 𝑗 = 𝐵, and 𝑣 𝑗+1 − 𝐴 with 𝑖 < 𝑗 .

Swapping components 𝑣𝑖 and 𝑣𝑖+1 leads to the following change in

the cost estimate. Denoting by 𝑓𝑖 the probability that all verification

approaches before the 𝑖-th approach fail, and by 𝑐𝐴 , 𝑐𝐵 , 𝑓𝐴 , 𝑓𝐵
the costs and failure probabilities of verification methods 𝐴 and 𝐵

respectively, the change in cost due to the swap can be expressed as

follows (using Theorem 6.1): Δ𝑖 = 𝑓𝑖 · (−𝑐𝐴− 𝑓𝐴 ·𝑐𝐵 +𝑐𝐵 + 𝑓𝐵 ·𝑐𝐴). On
the other hand, if swapping the verification approaches at positions

𝑘 and 𝑘 + 1 in the schedule and denoting by 𝑓𝑗 the probability that

all verification approaches before the 𝑗-th one fail, the change in

cost due to the swap is Δ 𝑗 = 𝑓𝑗 · (𝑐𝐴 + 𝑓𝐴 ·𝑐𝐵 −𝑐𝐵 − 𝑓𝐵 ·𝑐𝐴). As 𝑓𝑖 and
𝑓𝑗 are probabilities and therefore non-negative, it is not possible

that both changes lead to an increase in costs (i.e., either Δ𝑖 ≤ 0 or

Δ 𝑗 ≤ 0). Therefore, there is a schedule that brings both invocations

to method 𝐴 closer together and has at most equivalent cost to 𝑣 .

As we can swap repeatedly, due to transitivity, there is at least one

cost-equivalent schedule, compared to 𝑣 , that uses 𝐴 consecutively.

Hence, separating invocations of the same approach by invocations

to a second does not yield better solutions. □

6.4 Scheduling Algorithm
Algorithm 10 finds optimal verification schedules, given profiling

data (which may be generic or specific to a certain class of data

summaries), and a lower bound on the resulting accuracy. The latter

parameter enables users to reduce verification costs by allowing for

a lower accuracy. Profiling requires labeled data, but according to

our experiments discussed in Section 7.3.3, the performance penalty

of reusing profiling results across verification domains is limited.

The algorithm uses dynamic programming and shares some sim-

ilarities with Selinger’s classical algorithm for join ordering [29].

However, it differs by its search space as we choose not only a per-

mutation but also the number of tries for each verification method

(which includes the possibility of avoiding a certain method alto-

gether). Also, it differs by the presence of multiple metrics, namely
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Algorithm 10 Optimal Scheduling Algorithm

1: 𝑉 is the set of verification methods

2: 𝑚 is the maximal number of retries

3: // Generate an optimal verification schedule,

4: // given profiling data and an accuracy constraint.

5: function Schedule(profiling_data, min_A)

6: // Initialize entries for single verification methods

7: 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 ← {}
8: for 𝑣 ∈ 𝑉 do
9: 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑣] ← ∅
10: for 𝑘 ← 0..𝑚 do
11: 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑣] ← 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑣] ∪ {[⟨𝑣, 𝑘⟩]}
12: end for
13: end for
14: // Iterate over the number of verification schemes

15: for 𝑙 ← 2..|𝑉 | do
16: // Iterate over subsets of verification schemes

17: for 𝑆 ⊆ 𝑉 : |𝑆 | = 𝑙 do
18: // Iterate over last verification scheme in schedule

19: for 𝑣 ∈ 𝑆 do
20: // Remove last scheme from set

21: 𝑆 ′ ← 𝑆 \ {𝑣}
22: // Iterate over Pareto-optimal solutions

23: for 𝑝 ∈ 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑆 ′] do
24: // Iterate over number of retries

25: for 𝑘 ∈ 0..𝑚 do
26: // Create new verification schedule

27: 𝑛 ← 𝑝 ◦ ⟨𝑣, 𝑘⟩
28: // Prune with newly generated schedule

29: Prune(𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑆], 𝑛)
30: end for
31: end for
32: end for
33: end for
34: end for
35: return SelectSchedule(𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑉 ],𝑚𝑖𝑛_𝐴)

36: end function

cost and accuracy, which require custom handling during pruning

and the final schedule selection step.

First, Algorithm 10 initializes the 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 variable. This vari-

able maps subsets of verification methods to schedules using those

verification methods exclusively (while differing by the associ-

ated number of tries). The variable only stores schedules that are

Pareto-optimal, considering the two metrics cost and accuracy. Al-

gorithm 10 represents schedules as an (ordered) list of tuples. Each

tuple represents the invocation of one specific verification method

with a given number of tries (which may also be zero, meaning that

the method is, in fact, not used). During initialization, Algorithm 10

maps each verification method to schedules that use the method

with different numbers of retries. At this stage, pruning is unneces-

sary since all such schedules are guaranteed to be Pareto-optimal

(assuming a non-zero success probability and cost).

Second, Algorithm 10 constructs schedules that use more and

more different verification methods. In the outermost loop, it it-

erates over the number of verification methods that a schedule

can use (ending with the cardinality of 𝑉 , i.e., the total number of

verification methods available). For each number of methods, the

algorithm iterates over subsets (variable 𝑆) of verification methods

with the corresponding cardinality. For each of those subsets, it iter-

ates over the verification method that is used last. For that method,

the algorithm iterates over the number of tries, starting with zero

and ending with the maximal number of tries (𝑚). Finally, Algo-

rithm 10 iterates over all Pareto-optimal schedules, stored for the

remaining subset 𝑆 ′ of verification methods (excluding the verifica-

tion method, selected as the last method). For each Pareto-optimal

schedule, it appends the tuple representing the invocation of the

last verification method, using the given number of tries. This yields

a new schedule that uses all of the verification methods in 𝑆 .

The algorithm prunes the content of 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑆] with the newly

generated schedule. This means the new schedule is inserted and all

schedules that are not Pareto-optimal (including, possibly, the newly

generated schedule) are discarded. The Prune function (whose

pseudo-code is omitted) is specialized to our scenario which in-

volves two cost metrics. It first sorts all schedules by their accuracy,

then scans sorted schedules to efficiently discard schedules that do

not balance out reduced accuracy with lower costs. After iterations

are complete, 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑉 ] contains Pareto-optimal schedules.

Theorem 6.5. Algorithm 10 generates optimal schedules.

Proof. Algorithm 10 considers all permutations of verification

methods and, for each method, all possible numbers of tries. It only

discards verification schedules that are Pareto-dominated. However,

due to Theorem 6.3, replacing the prefix of a verification schedule

with one that has better or equivalent cost and accuracy cannot

worsen any of thosemetrics for the entire schedule either. Therefore,

the algorithm generates Pareto-optimal schedules. □

The final schedule is selected from the Pareto-optimal schedules

in 𝑑𝑝𝑇𝑎𝑏𝑙𝑒 [𝑉 ] (Function SelectSchedule, pseudo-code omitted),

using the following rules. First, if available, we restrict our focus to

schedules that match the user-specified accuracy constraint. Other-

wise, only schedules with maximal accuracy are considered. Second,

to achieve the highest possible accuracy, we perform additional

filtering to account for the simplifying assumptions in our cost

model. According to Assumption 2, our accuracy model treats tries

by different verification methods as statistically independent. How-

ever, in practice, using more diverse verification methods increases

success chances, compared to many retries with the same method.

Therefore, we filter the remaining schedules to the ones that use the

maximal number of different verification methods. Among those,

we ultimately select the one with minimal estimated costs.

7 EXPERIMENTAL EVALUATION
Section 7.1 describes the experimental setup, Section 7.2 compares

CEDAR to baselines, and Section 7.3 studies scenario variants.

7.1 Experimental Setup
We evaluate all baselines on three diverse collections of data sets.

The AggChecker data set introduced in prior work [14] contains 56
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data summaries containing 392 numerical claims in total, and covers

publicly available articles from several newspapers (including 538

and the New York Times), as well as summaries of Stack Overflow

developer surveys and Wikipedia articles. The TabFact data set [34]

is a large-scale data set featuring 118k natural language statements

labeled as either ‘entailed’ or ‘refuted’ based on 16k relational tables

from Wikipedia. We use a sample of 100 numerical claims based

on 28 tables derived from TabFact. The WikiText data set, which

evaluates the performance of the system on textual claims, features

50 claims extracted from 14 Wikipedia articles. While all other data

sets use single-table databases for verification, we introduce Join-

Bench, a benchmark where claim queries require joins. JoinBench

was constructed by decomposing three of the original single-table

schemas from AggChecker into a total of 23 tables via schema

normalization (while reusing the associated AggChecker claims).

Claims in AggChecker and WikiText are taken from real-world

documents (using data sets referenced by the authors themselves).

TabFact uses Wikipedia tables and human-annotated claims. All

data sets are publicly available on GitHub [12].

We compare CEDAR to multiple prior systems for data-driven

fact-checking. These include AggChecker [14] and TAPEX [22].

AggChecker verifies claims by translating them to SQL queries

whereas TAPEX applies language models to both, tabular data

and text claims. Additionally, we leverage text-to-SQL translation

methods, using the “Create Table + Select 3” (P1) prompt template

(which is described in detail in prior work [26] and performed best

among multiple templates) and the text-to-SQL translation prompt

template (P2) proposed by OpenAI [4]. For both templates, we

first translate the claim into a question and then apply GPT-3.5 to

translate that question to SQL, using both aforementioned prompt

templates. We use the same method as CEDAR to assess whether

the translated SQL query supports or refutes the claim.

As in prior work [14], we measure the quality of verification

results according to three metrics: recall (the ratio of incorrect

claims identified), precision (the ratio of claims marked as incorrect

that are indeed incorrect), and the F1 Score (combining precision

and recall). We also report execution time and monetary execution

fees (incurred for LLM invocations, the dominant cost component).

A demonstration of CEDAR [13] was presented at SIGMOD

2025. All experiments are executed on a server with Intel Core

i7-1355U CPU with 16 GB of main memory. CEDAR is implemented

in Python, using the LangChain framework. CEDAR uses DuckDB

to execute SQL queries. Unless noted otherwise, we use CEDAR

with a high accuracy threshold of 99%. CEDAR uses the following

verification approaches: the one-shot approach from Section 5.2

with GPT-3.5 and GPT-4o, and the agent approach from Section 5.3

with GPT-4o and GPT-4.0. For each approach, we use a temperature

of zero for the initial invocation and a temperature of 0.25 (for one-

shot approaches) or 0.5 (for agent approaches) when invoking the

approach a second time on the same claim. The extended technical

report [11] contains additional experiments and technical details.

7.2 Comparison to Baselines
Table 2 presents a comparative analysis of model performance on

the AggChecker, TabFact and WikiText data sets using precision,

recall, and F1 score metrics. CEDAR consistently outperforms all

Table 2: Comparing result quality of CEDAR and baselines.

Dataset Baseline CEDAR AggC TAPEX P1 P2

Agg
Checker

Precision 59.7 36.2 0 15 15

Recall 89.6 70.8 0 64 70

F1 score 71.7 47.9 0 24 24

Tab
Fact

Precision 87.9 50 88.5 45.4 41.9

Recall 85.3 34.6 71.9 88.2 91.2
F1 score 86.6 40.9 79.3 60 57.4

Wiki
Text

Precision 33.3 - 100 0 4.5

Recall 100 - 18 0 100
F1 score 50 - 30.5 0 28.64

other approaches, achieving the highest F1 scores across all data

sets. On the AggChecker data set, CEDAR improves the F1 score

from 48% (AggChecker, the runner-up) to 72%, while on the TabFact

data set, it enhances the F1 score from 79% (TAPEX, the runner-

up) to 87%. On the WikiText data set containing textual claims,

CEDAR improves the F1 score from 30.5% (TAPEX, the runner-

up) to 50%. The AggChecker baseline does not support textual

claims. An interesting observation is that TAPEX, which performs

as the second-best model on the TabFact data set, has the worst

performance on the AggChecker data set. This discrepancy arises

because TAPEX uses a table-flattening technique that is effective for

smaller tables but becomes infeasible as table sizes increase. Text-to-

SQL translationmethods are not designed to exploit claim values for

guidance regarding the correctness of query translation (different

from the fact-checking baselines), resulting in significantly lower

F1 scores. With the high accuracy threshold of 99%, CEDAR incurs

costs of $18.12 to verify all 392 claims of the AggChecker data set,

$1.46 for TabFact and $1.9 for WikiText. This is significantly higher

than for the other baselines exploiting LLMs as a service, namely

P1 and P2. As shown at the end of this section, costs can be tuned

by lowering the accuracy threshold.

Figure 5 compares cost–quality and throughput–quality tradeoffs

of baselines to single-stage verification and CEDAR’s multi-stage

verification approach using different accuracy thresholds, evalu-

ated on the AggChecker [14] data set. CEDAR spans the full Pareto

frontier in the Cost-F1 score space, and realizes Pareto-optimal

trade-offs in the Throughput–F1 score space, as the optimization

focuses on cost rather than time. CEDAR achieves significant im-

provements in cost and F1 score, compared to GPT-4.0 agent (the

baseline with highest F1 score).

7.3 Further Analysis
7.3.1 Unit Conversions. In some cases, units used in claims differ

from the ones used in source data (e.g., to increase clarity for specific

reader groups). If so, verifying claims requires unit conversions. We

evaluated our system’s ability to handle such conversions using a

benchmark [12] of 20 claims drawn from eight Wikipedia articles.

The system achieves an F1 score of 94.7% when the claim units

align with those in the dataset, and maintains a strong performance

of 88.9% even when unit conversions are required. In Figure 6, each

bar represents the difference in F1 score when changing the data
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Figure 5: Comparing cost-quality tradeoffs of single-stage
and multi-stage verification on AggChecker [14] data set.

Table 3: Query complexity statistics across data sets.

Data set Joins GroupBy SubQ Agg Cols

AggChecker 0/ 0 0.01/ 1 0.54/ 2 0.99/ 12 1.3/ 2

TabFact 0/ 0 0/ 0 0.09/ 2 0.63/ 1 1.05/ 2

WikiText 0/ 0 0.22/ 1 0.33/ 3 0.51/ 3 1.33/ 4

JoinBench 0.62/ 3 0/ 0 0.52/ 2 0.76/ 2 1.5/ 2

such that unit conversions are required for verification. For most

documents, mismatched units have minimal impact on verification

accuracy (except for one document containing a single claim that

CEDAR is unable to verify when unit conversions are required).

1 2 3 4 5 6 7 8

−1
0

1

0 0 0.12 0 0 0

−1

0

Document

Δ
F
1
S
c
o
r
e

Figure 6: Change in F1 score (ΔF1) due to unit conversions.

7.3.2 Query Complexity. Table 3 reports detailed statistics (per-

query average/maximum) on the complexity of SQL queries across

benchmarks. JoinBench re-uses a subset of claims from AggChecker

while normalizing the corresponding database such that joins are

required. Normalization does not change the F1 score achieved by

CEDAR (100% in both cases) but increases costs from $1.2 to $3.7,

showing that verification using join queries often requires more

expensive verification methods.

7.3.3 Effect of Distribution Shifts on Profiling. We evaluate the

robustness of our approach under distribution shifts. We calculate

optimal schedules for each single document in the AggChecker data

set, resulting in eight distinct verification schedules. Then, we apply

each schedule to subsets of the AggChecker claims associated with

different domains (defined by the claim source: 538, StackOverflow,

NYTimes, and Wikipedia). Figure 7 shows the change in F1 score

and cost overheads when applying schedules across domains. While

domain-specific profiling and optimization yield optimal results,

the performance penalty of generalization is limited (cost overheads

of less than factor 2 and F1 loss of less than 0.1 in 80% of cases).

However, profiling may have to be redone as models evolve.
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Figure 7: Cost Overhead vs. F1 Loss across profiling results.

8 RELATEDWORK
We address the problem of data-driven fact-checking from relational

data. We compare with several prior methods [9, 14, 22] for the

same problem in our experiments. Other work addresses the same

problem but under different assumptions. E.g., Scrutinizer [15, 16]

assumes that domain-specific classifiers for claim-to-SQL transla-

tion are trained via fact-checkers. TabFact [34] and TFV [1] also

assume that labeled training data for translation is available. CEDAR

does not require user-provided training data for claim-to-SQL trans-

lation. Manual labels are required for profiling. Our work is com-

plementary to prior methods [6] targeting related problems such

as identifying check-worthy claims [7, 8, 18], studying the robust-

ness of data-related claims via query perturbations [32, 35, 36],

or automated fact-checking methods that use non-relational data

sources for verification, including knowledge bases [10, 30], or un-

structured data [5, 20, 25, 31]. As CEDAR focuses on automated

fact-checking, it is complementary to methods that aim at facili-

tating fact-checking for human fact-checkers [23, 24]. Our work

relates to methods for text-to-SQL translation [19, 21, 27, 28]. How-

ever, the problem of claim-to-SQL translation differs, e.g., by the

presence of a claimed query result. The multi-stage verification

approach applied by CEDAR is ultimately enabled by claimed re-

sults, providing the system with a strong signal as to whether or

not translation in prior stages was successful.

9 CONCLUSION
We introduced CEDAR, a system for cost-efficient data-driven claim

verification. Compared to prior work, CEDAR is more accurate and

reduces costs via multi-stage execution and cost-based scheduling.
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