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ABSTRACT
We present OasisDB, an oblivious and scalable RDBMS frame-

work designed to securely manage relational data while protecting

against access and volume pattern attacks. Inspired by plaintext

RDBMSs, OasisDB leverages existing oblivious key value stores (KV-

stores) as storage engines and securely scales them to enhance per-

formance. Its novel multi-tier architecture allows for independent

scaling of each tier while supporting multi-user environments with-

out compromising privacy. We demonstrate OasisDB’s flexibility by

deploying it with two distinct oblivious KV-stores, PathORAM and

Waffle, and show its capability to execute a variety of SQL queries,

including point and range queries, joins, aggregations, and (limited)

updates. Experimental evaluations on the Epinions dataset show

that OasisDB scales linearly with the number of machines. When

deployed with a plaintext KV-store, OasisDB introduces negligi-

ble overhead in its multi-tier architecture compared to a plaintext

database, CockroachDB. We also compare OasisDB with ObliDB

and Obliviator, two oblivious RDBMSs, highlighting its advantages

with scalability and multi-user support.
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1 INTRODUCTION
With encrypted databases, applications outsourcing their data can

benefit from a cloud’s scalability, persistence, and cost effectiveness

without compromising data confidentiality and privacy. However,

attacks on encrypted databases have proven their ineffectiveness

in preserving data privacy by observing the access patterns and

access frequencies of an application [10, 19, 30–32, 34, 36, 37, 40,

54, 55, 59, 74]. For example, the access frequency distribution of

encrypted keywords searched on encrypted emails can reveal the

plaintext keywords within the emails [34].
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Multi-user
setting Scalable

H/W
agnostic

Supports
updates

Opaque [75] ✗ ✗ ✗ ✗

ObliDB [22] ✗ ✗ ✗ ✓(𝐶𝑜𝑚𝑝𝑙𝑒𝑥 )

Obliviator [51] ✗ ✗ ✗ ✗

SEAL [19] ✗ ✓ ✓ ✗

OasisDB ✓ ✓ ✓ ✓(𝐿𝑖𝑚𝑖𝑡𝑒𝑑 )
Table 1: Comparing OasisDB with other oblivious RDBMs.

Oblivious data systems mitigate such attacks by obfuscating the

access frequency distribution [11, 17–19, 22, 29, 47, 48, 62, 67, 70, 75].

Commonly deployed techniques for obliviousness include Oblivious

RAM or ORAM [26], frequency smoothing [29, 42], and dynamic

keyword shuffling [48]. These schemes protect an application’s

data from honest-but-curious (or semi-honest) adversaries who can

view the data accesses on the cloud server along with any message

exchanges between the trusted and untrusted domains.

Most existing oblivious data systems store data in key-value

format, supporting a single key Get or Put request [11, 17, 18, 29,

47, 48, 62, 64, 67, 70], with many enabling scalability [18, 64, 66, 70].

However, organizations maintain structured data, often captured

in the relational data model consisting of tables, attributes (or

columns), and tuples (or rows). Relational data also enables more

sophisticated ways to query the underlying data by supporting con-

ditional selections of certain tuples, range searches, aggregations

(e.g., SUM, AVG), joins of tables, and ordering of tuples.

A handful of solutions propose and prototype oblivious relational

data management systems (RDBMs) - Opaque [75], ObliDB [22],

Obliviator [51], and SEAL [19]. However, these systems’ support

for a richer set of queries destroys the benefits of scalability usually

associated with cloud storage. Hence, the state-of-the-art requires

one to choose between functionality-rich queries and low scalabil-

ity, or simple keyword queries and high scalability. In particular,

we identify four drawbacks with existing, functionality-rich sys-

tems as summarized in Table 1. (i). Unlike plaintext RDBMSs, these

systems operate in a single-user setting and process client queries

sequentially, leading to a substantial performance gap between

plaintext and oblivious RDBMSs. (ii) Opaque [75], ObliDB [22],

and Obliviator[51] cannot scale
1
to accommodate increasing client

workloads. While SEAL [19] enables horizontal scaling, without

multi-user support, there is no throughput gains reported in [19].

1
[75] and [51] supports executing a single request in parallel but not horizontal scaling.
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Moreover, SEAL (tunably-) leaks the shard that serves a given client

request with the leakage increasing as the scale factor grows. (iii)

Opaque, ObliDB, and Obliviator require specialized hardware en-

claves to execute oblivious relational queries, which may not be

supported by all cloud providers. (iv). SEAL, Opaque, and Obliviator

do not allow applications to update the data.

The above drawbacks indicate a clear need for an oblivious

RDBMS that (i) supports multi-user settings, serving client requests

in parallel, (ii) scales throughput as the number of machines serving

requests increases, (iii) is hardware agnostic, and (iv) accommo-

dates updates to application data. The contributions of this paper,

proposed as an oblivious RDBMSOasisDB, make significant strides

towards achieving all four of these goals.

The first fundamental question we address in designing OasisDB

is how to shard a relational database – consisting of one or more

tables with varying numbers of columns and rows – across multi-

ple machines for scalability. In answering this question, we take

inspiration from commercial plaintext RDBMSs such as YugaByt-

eDB [73], Google’s Spanner [16], CockroachDB [68], and TiDB [69]

that store relational data on top of an underlying key-value storage

engine, which facilitates scalability. This approach gives OasisDB

a huge advantage in leveraging an existing oblivious key-value

store (KV-store) as its storage engine and avoids the need to design

custom storage engines, as seen in [22, 51, 75].

Even with an oblivious key-value storage engine, achieving all

four goals is non-trivial and raises either privacy or performance

challenges. For example, naively scaling the system by sharding

the plaintext tuples across multiple KV-stores can break security

because a single shard consisting of popular entries will receive

many more requests than the other shards, thus revealing the local-

ity of popular entries to an adversary. Simply shifting entries across

shards introduces significant inter-shard coordination, potentially

impacting performance. Additionally, revealing the exact result

volume of each SQL query makes the system vulnerable to volume

pattern attacks [19, 24, 25, 30, 32, 36, 38, 49, 50, 59].

Contributions and overview:
1. OasisDB as a framework: We develop secure mechanisms for

handling relational data and queries on top of an oblivious KV-store

as the storage engine. This design decision allows OasisDB to inte-

grate with many existing (or newly developed) oblivious KV-stores

seamlessly. As a result, OasisDB can be viewed as a framework

for securely scaling non-scalable oblivious KV-stores to support

relational data. To demonstrate its versatility, we implement Oa-

sisDB using two distinct oblivious KV-stores: PathORAM [67], a

widely used scheme in oblivious KV-stores, andWaffle [48], a recent,

highly efficient KV-store. These datastores differ significantly in

their threat models, bandwidth and storage overheads, and perfor-

mance characteristics. By building OasisDB atop these two diverse

KV-stores, we illustrate its adaptability and extensibility. Addition-

ally, we formally define the requirements an oblivious KV-store

must meet to be compatible with OasisDB (§4).

2. Scalablemulti-tier architecture: To achieve scalability, we pro-
pose a novel multi-layer architecture where each layer can be scaled

independently. Specifically, following the commonly deployed sys-

tem model for multi-user environments [17, 29, 48, 62, 64, 70], we

employ a trusted proxy to route concurrent requests between multi-

ple users and the storage server. Unlike traditional approaches, the

proxy in OasisDB is composed of multiple logical processes, which

can be distributed across a small number of physical machines, thus

removing scalability bottlenecks.

OasisDB ’s architecture comprises of three layers (Figure 1).

The top layer, called Executor, interacts with the cloud storage

and executes the oblivious data access mechanisms defined by

PathORAM or Waffle. The middle layer, called Batcher, batches
multiple requests from the bottom layer such that each Executor
receives a uniform load. Maintaining this equal workload is crucial

to preserving obliviousness, as we discuss in §4. The bottom layer,

called Resolver, translates a client-issued SQL query into key-

values to be retrieved from the storage. OasisDB’s design obfuscates

the sizes of SQL query results, effectively mitigating volume pattern

attacks. We evaluate this by launching such attacks against OasisDB

and demonstrate that it successfully defends against them (§6).

3.Oblivious SQL processing: We leverage OasisDB’s design to

demonstrate how to securely process a variety of SQL queries (§5).

In particular, OasisDB supports oblivious conditional selections,

range queries, joins, aggregates, order bys, and (highly restricted)

update SQL queries.

4. Open-sourced prototype of OasisDB: Finally, we provide

an open-sourced implementation of OasisDB integrated with an

optimized PathORAM design [64] and Waffle [48]. Experimental

evaluations on Epinions dataset [4] provide empirical evidence that

OasisDB scales linearly with the number of machines (§7). We also

compare OasisDB against CockroachDB [68], a plaintext baseline,

and highlight that the performance penalty in OasisDB’s design

is negligible and primarily stems from the oblivious KV-stores.

Comparing OasisDB with two oblivious baselines, ObliDB [22] and

Obliviator [51] on Big Data Benchmark [5] indicates the benefit of

multi-user support and scalability of OasisDB.

Amotivating example: A clinic using an Electronic Health Record

(EHR) system may rely on cloud storage for cost-effective handling

of large records like MRI scans and genome profiles. But privacy

laws may require the clinic to protect patient data from unautho-

rized entities. The clinic in this example only needs to provision a

fewmachines deployed locally on its premise to run OasisDB, which

acts as a gateway between the clients (e.g., doctors, analysts, pa-

tients) and the cloud storage. OasisDB enables the clinic to leverage

the cloud storage without revealing the data or any other sensitive

information to the cloud, while ensuring high performance.

2 BACKGROUND ON OBLIVIOUS KV STORES
This section provides a background on two oblivious key-value

stores, PathORAM [67] and Waffle [48], which serve as sample

alternative storage engines for developing OasisDB.

PathORAM: Given a sequence of logical accesses, PathORAM [67]

generates a sequence of seemingly random physical accesses on

the server. PathORAM securely stores 𝑁 encrypted data blocks on

untrusted storage by organizing them as a binary tree. Each tree

node, termed a bucket, holds exactly 𝑍 blocks. PathORAM assigns

each block to a random path identified by its leaf-id and stores the

block in one of the buckets along the path from the root to leaf.

When a client requests an object, PathORAM retrieves the entire

path containing the object (or block), thereby obfuscating which

specific block is being accessed. After each access to an object, it
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re-assigns the object to a randomly chosen path in the tree. This

ensures that the server observes uniformly random path accesses,

irrespective of the skew in requested data objects.

Path ORAM relies on a single trusted proxy positioned between

clients and untrusted storage to execute the obliviousness protocol.

Upon receiving a read or write request, the proxy performs the

following steps: 1) It retrieves the requested object’s current path

ID p from a local data structure position map, a map of each object to

its assigned path. 2) It reads the entire path p from the storage server

and temporarily stores all the blocks in a local cache-like structure

called the stash. 3) The proxy then assigns a new, random path 𝑝′

to the requested object and updates the position map accordingly.

4) For write requests, it updates the object’s value in the stash. 5)
Lastly, it evicts or writes-back path 𝑝 by pushing blocks from the

stash to the lowest non-full bucket that intersects with both p and

𝑝′. If no such bucket has space, the blocks remain in the stash.
Within the honest-but-curious adversarial model, ORAM as-

sumes the adversary to be active meaning that the adversary can

inject queries (e.g., by compromising clients). Providing oblivious-

ness under such a powerful adversary incurs a lower-bound of

O(logN) bandwidth overhead [27, 43, 57] with each client request

accessing O(logN) objects from the server.

Waffle:Waffle [48] is a recent oblivious KV-store designed to over-

come the logN bandwidth overhead of ORAM by assuming a passive
persistent adversary, which has the same capabilities as an active

adversary except that it cannot inject queries. Under such an ad-

versary, Waffle protects an application’s data using techniques that

allow tuning certain parameters to deliberately trade off privacy

for higher performance.

Waffle protects against access pattern attacks by first reading an

encrypted key (and its value), deleting it, and re-writing it with fresh

encryption such that the adversary cannot infer if the newly written

key-value pair corresponds to the same object or a different object.

However, just employing the above technique leaks timing-based

side channel because a popular object will be read and re-written

much more frequently compared to an unpopular object. Waffle

mitigates the above leakage by guaranteeing that every outsourced

key will be accessed within 𝛼 + 1 accesses after being written on the
server. It achieves this by batching real queries with fake queries

on least recently accessed objects. An application can choose the

number of fake queries per batch: higher the number of fake queries,

lower the 𝛼 value and higher the security, but higher is also the

bandwidth overhead.

Waffle also employs client-side caching at the proxy to handle

highly skewed workloads efficiently by storing popular objects in

the cache. This enablesWaffle to retrieve unpopular objects from the

server at a faster rate, reducing𝛼 .Waffle provides another guarantee

𝛽 , which dictates the minimum number of accesses between reading

an object from the server and re-writing it back. In essence, Waffle

ensures that for any sequence of objects requested by clients, the

sequence of server accesses will be 𝛼, 𝛽-uniform with:

𝛼 = max

(𝑁 −𝐶) − (𝐵 − 𝑓𝐷 )
𝐵 − 𝑅 − 𝑓𝐷

,
𝐷

𝑓𝐷
𝛽 =

𝐶

𝐵 − 𝑓𝐷 + 𝑅
− 1

where 𝑁 is the number of objects, 𝐶 the cache size, 𝐵 the batch

size, 𝑅 the number of real queries in a batch, and 𝐷 an optional

number of dummy objects (added for additional security) with 𝑓𝐷

Figure 1: OasisDB Architecture.

number of queries to the fake objects per batch. All parameters

can be configured by the application, providing a trade-off between

privacy and performance.

3 SYSTEM AND THREAT MODEL
System Model: OasisDB considers an architecture where an appli-

cation outsources its data to the cloud and relies on a local trusted

proxy to route client requests. The proxy-architecture, which is

well-adapted in academic [17, 29, 47, 48, 62, 64, 66, 67, 70] and pro-

duction systems [3, 46, 52, 58, 65], effectively handles multi-user

settings and serves client requests in parallel. OasisDB enables

applications to securely store and query relational data by leverag-

ing oblivious key-value storage engines (we explain how OasisDB

converts tabular data into key-value pairs in §4).

Catered towards scalability, OasisDB partitions the state and

functionality of the central trusted proxy across multiple layers as

shown in Figure 1. In particular, the proxy consists of three lay-

ers – Resolver, Batcher, and Executor– each of which can

be scaled horizontally independent of the other layers. Addition-

ally, OasisDB assumes a scalable cloud storage architecture and

distributes key-value pairs across multiple server instances. The

proxy machines and cloud storage servers reside on different trust

domains and hence, communicate over WAN. While the current

design assumes that proxy machines do not fail, we aim to extend

OasisDB to guarantee fault-tolerance in future work.

Threat Model: OasisDB considers honest-but-curious adversaries

who control the cloud and can observe an application’s data access

patterns to launch attacks using techniques such as frequency anal-
ysis, 𝑙𝑝 -optimization or volume pattern attacks [19, 24, 25, 30, 32,

36, 38, 41, 44, 49, 50, 53, 59] to learn any non-public information

about the data. An adversary can also observe (encrypted) mes-

sage exchanges between the trusted and the untrusted domains.

But it cannot observe or influence message exchanges between the

clients and the proxy or across proxy machines within the trusted

domain. We consider attacks performed by malicious adversaries or

timing attacks based on response times [6, 62] or application query

workload to be out of scope. Along with hiding access patterns,

OasisDB’s batching mechanism obfuscates volume pattern leakages

by blurring the boundaries of individual SQL queries (§6).

Since OasisDB serves as a secure framework incorporating mul-

tiple oblivious KV-stores, the adversary’s capabilities within the

honest-but-curious model may vary. In fact, we build OasisDB with

PathORAM [67] and Waffle [48] as two alternatives, both of which

have slightly different adversarial model as explained in §2.
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4 OASISDB DESIGN

(a) Base relational table Emp (b) Converted key-value pairs

Figure 2: Key-value pairs of UID=100 and index on Salary

4.1 Data Representation
1. How to shard tabular data?
We begin with the fundamental design choice of why OasisDB

represents data in key-value format. A primary goal of OasisDB

is to scale, which is typically achieved by sharding data across

multiple processes executed on different machines. Sharding tables

similar to MySQL [63] by partitioning rows of tables exposes the

physical locations of each table in a shard to the server. Hiding

access patterns would require customized obliviousness techniques

applied per table, as seen in [2, 22, 51, 75].

Solution: Inspired by many plaintext databases supporting rela-

tional queries [16, 68, 69, 73], OasisDB converts tabular data into

key-value pairs for ease of scalability. Specifically, a single row trans-

lates tomultiple key-value pairs with each pair as (‘𝑇𝑛𝑎𝑚𝑒 |𝐶𝑛𝑎𝑚𝑒 |𝑝𝑘’
: 𝐶

𝑝𝑘

𝑣𝑎𝑙𝑢𝑒
) where 𝑇𝑛𝑎𝑚𝑒 is the table name, 𝐶𝑛𝑎𝑚𝑒 the column name,

𝑝𝑘 the primary key and𝐶
𝑝𝑘

𝑣𝑎𝑙𝑢𝑒
that column’s value for 𝑝𝑘 , as shown

in Figure 2b. This enables our system to easily partition key-values

across multiple machines while benefiting from re-using existing

oblivious KV-stores.

2. Where and how to store indices?
A naive approach is to process SQL queries by scanning the en-

tire table and filtering rows satisfying a predicate. However, this

incurs significant bandwidth and computation overhead in oblivi-

ous databases. For example, in ORAM-based systems, where each

request retrieves O(logN) objects, scanning a table of size |𝑇 | results
in a prohibitive bandwidth cost of 𝑂 ( |𝑇 | ∗ log |𝑇 |).

Indexing the data and storing the index locally at the proxy en-

sures high security but incurs significant storage and computational

overhead. Whereas, outsourcing the index structure to the cloud

and allowing it to traverse the index to find matching rows expose

query-dependent access patterns to an adversary. This leakage is

particularly problematic for index structures like B-trees but mak-

ing them oblivious requires multiple rounds of communication to

read each tree level obliviously [12], which can severely reduce

system throughput.

Solution: OasisDB addresses this challenge by creating inverted

indices and outsourcing them to the cloud. Inverted indices also

benefit from easy translation to key-value pairs, enabling OasisDB

to retrieve index entries in one round. As seen in the example in Fig-

ure 2b, each index key has the format of (𝑇𝑛𝑎𝑚𝑒 |𝐶𝑛𝑎𝑚𝑒_𝑖𝑑𝑥 |𝑖𝑑𝑥_𝑘𝑒𝑦)
and the value is a list of primary keys of rows containing the index

key in column𝐶𝑛𝑎𝑚𝑒 . For security, OasisDB combines all key-value
pairs – be it from the tabular data or from the index – into a single

set before partitioning the data for outsourcing.

4.2 System Overview
Having described how OasisDB represents tabular and index data,

we now discuss the system design, starting with a naive approach.

Naive approach 1: Because OasisDB stores data in key-value pairs,

the simplest way to execute SQL queries at scale is to partition

data across multiple oblivious KV-store instances, with each shard

handling SQL queries. This eliminates the server as a bottleneck by

sharding its data as well. However, existing oblivious KV-engines

require significant modifications with this approach as they do not

understand the semantics of SQL queries.

Naive approach 2: A simple fix for the above challenge is to add

a new component, a Query Resolver, that processes SQL queries,

translates each query to its appropriate key-value requests, and

routes them to the respective KV-shards. However, this solution

still leaves several challenges unresolved.

Challenge 1: Ensuring global obliviousness. While each KV-shard

ensures obliviousness of its portion of the data, this does not guar-

antee obliviousness of data across shards, especially under skewed

workloads. If two identical SQL queries repeatedly access the same

set of KV-shards, an adversary may infer that those shards con-

tain the relevant data for those queries. In contrast, if two distinct

queries access different sets of shards, their access patterns will

appear uniform. The difference in shard access frequencies thus

leaks the skew in the workload to an adversary.

Challenge 2: Shuffling data across shards. One way to fix the issue

is to shuffle each accessed object to a random shard after each

request, which ensures that any two SQL queries access random

shards. This can be done in two ways: (i). A centralized resolver

maps each accessed key across SQL queries to random KV-shards,

similar to [6, 66]. This introduces coordination between conflict-

ing SQL queries accessing the same keys and notably, the resolver

becomes a scalability bottleneck. However, the KV-stores remain

unchanged. (ii). Alternatively, allowing KV-shards to shuffle data

among themselves removes the resolver bottleneck but requires

meticulous coordination not only between KV-shards but also with

the resolver to track the locations of objects. Inter-shard coordina-

tion necessitates non-trivial changes to the underlying KV-stores,

defeating OasisDB’s goal of reusing existing KV-stores.

Challenge 3: Hiding query result volumes. Beyond access patterns,

the result sizes of SQL queries impose a major challenge in oblivious

RDBMSs. Shuffling or not, naively requesting the exact number of

key-values of a SQL query from the server reveals the size of the

query, which can be exploited to recover data and/or queries [19, 24,

25, 30, 32, 36, 38, 49, 50, 59]. Whereas fully secure solutions, such

as padding to the worst-case size (𝑂 ( |𝑇 |) for point/range queries,
𝑂 ( |𝑇 1| ∗ |𝑇 2|) for joins), impose impractical overheads.

Solution: OasisDB integrates key features from both naive ap-

proaches while addressing their shortcomings. From the first, it

adopts server sharding alongside KV-shards. As shown in Figure 1,

its top layer, Executors, runs the KV-store’s oblivious schemes

on a subset of data. From the second, it incorporates the query

resolver, Resolver, for communicating with the clients and trans-

lating SQL queries to key-values. Additionally, OasisDB introduces

Batcher to eliminate the need for cross-shard shuffling while

ensuring global obliviousness (§4.4). The simple yet effective design

of the Batcher also protects against volume pattern attacks (§6).
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Figure 3: Batcher intermixing and distributing key-value requests
from multiple SQL queries and routing to two Executors in two
batches 𝐵1 and 𝐵2 with a batch size 𝐵𝑅 = 2.

The following sections explains each layer of OasisDB.

4.3 Resolver Layer
The first layer of OasisDB consists of one or more Resolvers that
receive potentially concurrent SQL requests from clients. This layer

executes the query processing logic and maintains metadata essen-

tial for efficient query execution, as we explain in §5. For instance,

it tracks which columns of a table have an index. Additionally, Oa-

sisDB assumes that incoming queries are both syntactically and

semantically valid but the system’s design can be easily extended

to incorporate a validation module if needed.

A Resolver transforms a SQL query into a set of key-value

pairs to be retrieved (or updated) on the server with §5 detailing the

specific key-value pairs accessed for each query type. Upon receiv-

ing a SQL query, a Resolver assigns it a unique request ID, 𝑟𝑒𝑞𝑖𝑑 ,

and constructs a request of the form {𝑟𝑒𝑞𝑖𝑑 , 𝑘𝑒𝑦𝑠, 𝑣𝑎𝑙𝑢𝑒𝑠}, where
𝑘𝑒𝑦𝑠 represent tabular or index keys while each entry in 𝑣𝑎𝑙𝑢𝑒𝑠 ei-

ther contains an updated value for the corresponding key or remains

empty for read requests. This design ensures that the request struc-

ture remains identical for both read and update queries, maintaining

uniformity in query processing. Once the request is generated, the

Resolver forwards it to a randomly chosen Batcher. Upon
receiving all the necessary key-value responses from the above

layers, a Resolver may further perform some post-processing

such as sorting or aggregations before responding to the client.

The lifespan of a single SQL query can be relatively long, as it

typically involves at least two sequential rounds of communica-

tion with the storage server—for instance, retrieving an index first,

followed by accessing the corresponding tabular data. Given this,

it is crucial for Resolvers to scale horizontally by distributing

SQL queries across multiple processes. However, this distribution

introduces challenges in handling update requests and thus, limits

the type of updates that OasisDB handles, as we discuss in §5.5.

4.4 Batcher Layer
The primary security risk in sharding an oblivious KV-store proxy

arises when SQL queries access some server shards more than the

other, revealing the skew in client workloads. For example, in PathO-

RAM, a shard accessed by a frequent SQL query will (obliviously)

read more paths from its subtree compared to the other subtrees,

violating the global oblivious property of uniform accesses over

the entire dataset. Additionally, retrieving the key-values of a SQL

query in isolation reveals the volume pattern of each request. We ob-

serve that the root cause for both leakages is the query-dependent,

non-uniform request load to each shard.

Based on this insight, OasisDB addresses both issues by introduc-

ing the Batcher layer that securely batches key-value requests to

ensure uniformworkload to allExecutors, regardless of any skew
in the client requests. When a Batcher receives a request from a

Resolver containing one or more key-value pairs, it hashes each

key to determine its Executor and enqueues the request in the

corresponding queue. The Batcher monitors these queues and,

once each queue reaches a pre-configured batch size 𝐵𝑅 , it issues

a batch of 𝐵𝑅 key-value requests, potentially containing a mix of

Get and Put operations, to each Executor.
However, this design presents a challenge: some queues may

not receive 𝐵𝑅 requests for an extended period, causing delays for

clients awaiting responses. To mitigate this, a background thread

runs a timer with a pre-configured timeout. If the timer expires and

at least one queue contains a request, the system fills all batches

up to 𝐵𝑅 requests by inserting fake key-value requests if necessary

(§4.5 details howOasisDB handles them) before sending the batched

requests to all Executors. Note that a batch of 𝐵𝑅 requests may

include duplicate keys requested by multiple Resolvers.
To provide additional protection against volume pattern leakages

and to enable multi-user settings, a Batcher processes concurrent

requests from Resolvers and intermixes the key-values (with

potential duplicates) requested by multiple SQL queries. On the flip

side, key-value pairs of a single SQL query might be split across

multiple queues, as seen in Figure 3 where key-values from two

SQL queries are intermixed in batches sent to two Executors.
This raises a subtle challenge of how to route the responses back

to the correct SQL query.

When a Batcher receives a request from a Resolver, it
spawns a separate thread to process the request. Once responses

arrive from the Executors, the Batcher must correctly match

each key-value response to the corresponding thread and return the

values to the appropriate Resolver. Achieving this requires care-
ful thread synchronization and interrupt mechanisms to wake up

waiting threads. OasisDB addresses this challenge using channels

(implemented as Go channels in our prototype). Specifically, each re-

quest thread creates a channel and associates it with key-value pairs

being queued. When a response arrives from an Executor, the
Batcher identifies the corresponding channel and forwards the

response through it. Once all responses for a request are received,

the handling thread sends a final response back to the Resolver.

4.5 Executor Layer
The top layer of OasisDB, consisting of one or more Executors,
is responsible for obliviously accessing key-value pairs from the

untrusted storage servers. OasisDB’s modular design allows an

application to choose from many – but not all – oblivious KV-stores

and scales them for oblivious query processing; this section formally

defines what KV-stores can be integrated with OasisDB. To demon-

strate the flexibility of this approach, we present OasisDB with two

different oblivious KV-stores: PathORAM [67] and Waffle [48].

During initialization, OasisDB transforms all tabular and index

data into key-value pairs, as described in §4.1. It then uses hashing

to randomly distribute all key-value pairs denoted as 𝑁 , across 𝑠

available Executors, with each shard storing ⌈𝑁 /𝑠⌉ objects.
When an Executor receives a batch of 𝐵𝑅 key-value requests

from a Batcher, it executes the oblivious protocol dictated by
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the chosen KV-store for its assigned subset of data. For instance,

a PathORAM-based Executor retrieves 𝐵𝑅 random paths per

batch of requests [67], while a Waffle-based Executor processes

the batch by generating 𝛼, 𝛽-uniform accesses to the server [48],

independent of the skew in client workload. Importantly, a batch

of 𝐵𝑅 requests may contain duplicate requests to the same key-

value pair, which are handled by the oblivious KV-stores. Since the

original PathORAM [67] design processes requests sequentially,

we optimize its throughput in our implementation by handling

batched requests in parallel using techniques from [62, 64]. Once

an Executor completes its execution of 𝐵𝑅 read or write requests

on the server, it returns the responses to the Batcher that issued

the batch.

OasisDB introduces a minor but necessary modification to the

underlying oblivious KV-store. As discussed in §4.4, if a queue for

a given Executor has fewer than 𝐵𝑅 requests when the timeout

occurs, the Batcher fills the batch with dummy requests. This

means that an Executor may receive requests for non-existent

keys. If the Executor were to ignore such requests, an adversary

could infer the number of such dummy requests from the varying

request load across different storage shards, breaking oblivious-

ness. To prevent this, OasisDB requires the underlying KV-store

to generate fake accesses for these dummy requests. Specifically, a

PathORAM-based Executor issues fake read-path requests, while

a Waffle-based Executor adds fake accesses to real objects. In

both cases, the Executor responds with dummy values to the

Batcher. This ensures uniform number of accesses to each data-

base shard.

Oblivious KV-stores compatible with OasisDB: We now dis-

cuss: What criteria must an oblivious KV scheme meet to ensure

compatibility with OasisDB?

Let O be an obliviousness scheme that hides access patterns for

a set of outsourced key-value pairs. Consider a sequence of𝑚 ac-

cesses, 𝐴𝑚 = {(𝑜𝑝1, 𝑘1, 𝑣1), (𝑜𝑝2, 𝑘2, 𝑣2), · · · (𝑜𝑝𝑚, 𝑘𝑚, 𝑣𝑚)} where
each 𝑜𝑝𝑖 indicates a read or write operation, 𝑘𝑖 ∈ 𝐷 is the accessed

key from the database 𝐷 , and 𝑣𝑖 the updated value for writes (or ⊥
for reads). An oblivious scheme O takes 𝐴𝑚 as input and produces

a transcript 𝜏 (𝐷) of server accesses over the outsourced database 𝐷
such that 𝜏 guarantees an obliviousness ‘property’ prop. The exact
definition of prop depends on the specific scheme. In PathORAM,

the property guarantees that 𝜏 (𝐷) accesses randomly chosen paths

on the server, whereas in Waffle, 𝜏 (𝐷) exhibits 𝛼, 𝛽-uniformity. In

both cases, the properties guarantee that the server accesses in

𝜏 (𝐷) appear to be independent of the actual accesses in𝐴𝑚 thereby

preserving obliviousness.

Now consider a sharded KV-store where 𝐷 is partitioned into 𝑠

disjoint chucks such that 𝐷 = (𝑑1 | |𝑑2 ..| |𝑑𝑠 ). Applying the oblivious
scheme O to each shard produces a transcript 𝜏 (𝑑𝑖 ). Assume a se-

cure batching scheme B exists that (i) generates batches of requests

in consecutive rounds, and (ii) ensures that in each round, every

shard receives the same number𝑚′
of requests. Then in each round

𝑗 , the oblivious schemes across 𝑠 shards produce 𝜏 (𝑑1) 𝑗 , 𝜏 (𝑑2) 𝑗 , · · ·
𝜏 (𝑑𝑠 ) 𝑗 . This implies that the overall transcript 𝜏 (𝐷) is given by

𝜏 (𝐷) =
𝑟∑︁
𝑗=1

[𝜏 (𝑑1) 𝑗 | |𝜏 (𝑑2) 𝑗 | | · · · | |𝜏 (𝑑𝑠 ) 𝑗 ]

where 𝑟 is the number of the rounds the batching schemeB runs for.

In simpler words, 𝜏 (𝐷) over the entire database is the combination

of transcripts generated by all shards 𝑑1 to 𝑑𝑠 across all rounds of

requests processed by B.

Definition 1. An oblivious scheme O is sharding-safe iff the
obliviousness property prop guaranteed for each shard implies that
a derived property prop′ holds over the entire dataset when accesses
are generated using the secure batching scheme B. Formally,

prop{𝜏 (𝑑1)},prop{𝜏 (𝑑2)}, · · ·prop{𝜏 (𝑑𝑠 )} =⇒ prop′{𝜏 (𝐷)}.
The oblivious schemes of PathORAM and Waffle are sharding-

safe according to Definition 1. In PathORAM, partitioning a single

tree into 𝑠 subtrees and applying its scheme independently to each

shard ensures that every shard accesses the same number of ran-

domly chosen paths from its subtree. This preserves the derived

obliviousness property prop′, identical to prop, over the entire
dataset 𝐷 . Similarly, applying Waffle’s scheme to 𝑠 shards ensures

that each shard accesses its portion of the data the same number of

times while preserving 𝛼, 𝛽-uniformity, which is the obliviousness

property of Waffle. As a result, both PathORAM and Waffle can be

integrated into OasisDB without compromising privacy.

Pancake [29] is a recent oblivious KV-store that hides access

patterns by smoothening the access frequencies of outsourced ob-

jects. However, simply sharding the data into smaller subsets 𝑑𝑖
and applying Pancake’s frequency-smoothing technique indepen-

dently to each shard fails to ensure uniform access patterns across

the entire dataset 𝐷 , even when using a secure batching scheme.

This is because shards containing popular keys will exhibit higher

overall access frequencies than those maintaining unpopular keys,

as discussed in [70]. Consequently, Pancake is not sharding-safe

according to Definition 1 and cannot be directly integrated into

OasisDB. That said, Pancake can still be sharded using specialized

techniques tailored to its specific scheme, as shown in [70].

5 OBLIVIOUS QUERY PROCESSING USING
OASISDB

After outlining the roles and responsibilities of each layer in Oa-

sisDB, this section delves into how OasisDB executes SQL queries

obliviously. While OasisDB incorporates specific techniques for

query execution, its modular architecture allows database adminis-

trators to modify the query processing logic within the Resolver
layer without requiring changes to the other layers. OasisDB sup-

ports point, range, join, aggregate, order by, and group by operators

with composite queries combining two or more of these operators.

5.1 Point Queries
We begin with a basic SQL query containing one or more point

predicates in the WHERE clause. A Resolver upon receiving a

SQL query first identifies indexed columns in the WHERE clause.

For all indexed columns, it generates a Get request to retrieve the

corresponding index key-value pairs, as shown in Figure 2b. The

request traverses via Batchers and Executors to the server,

which responds with the values for the index keys. Each value

contains concatenated primary keys associated with the index key.

TheResolver then identifies the overlapping primary keys across

all retrieved keys and sends a Get request to fetch the projected

columns in the query.
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This approach of leveraging an inverted index to process point

queries privately is also utilized in searchable encryption schemes

such as Kamara and Moataz [35] and SEAL [19]. However, the

scheme in [35] is non-oblivious and, therefore, susceptible to access

pattern attacks. SEAL [19] mitigates this leakage by employing

ORAM. Nevertheless, SEAL’s tunable-leakage design exposes the

sub-ORAM responsible for frequently queried tuples, revealing

access patterns. OasisDB protects from both types of leakages.

5.2 Range Queries
Next we consider queries where one or more predicates in the

WHERE clause consist of a range filter with a lower bound 𝑙 and/or

upper bound 𝑢.

Plaintext databases typically handle range queries efficiently

by using indexing structures like B
+
-trees and traversing them to

locate the leaf nodes corresponding to bounds 𝑙 and/or 𝑢. However,

traversing an outsourced B-tree to find the desired range requires

𝑙𝑜𝑔𝑁 (i.e., the tree height) rounds of communication between the

proxy and the cloud server [12], often over a WAN. Such communi-

cation delays significantly degrade system performance.

Alternatively, indexing mechanisms designed for range searches

on encrypted data (as discussed in [20]) typically build indexes over

the entire domain of a column being filtered. While this approach

works for attributes like age or height/weight with relatively

small domains, it becomes impractical for attributes with large or

indefinite domains, such as salary or date-of-birth.
Naively addressing the above two challenges by expanding a

range query into a series of index-based point queries ( §5.1) can

lead to significant bandwidth and computation wastage because the

expansion may include many point queries on non-existent data.

OasisDB addresses this inefficiency by employing Bloom fil-

ters [8] to filter out non-existent index keys. During initialization,

OasisDB creates an index for each range attribute based on the

database instance rather than the attribute’s domain and inserts

the index keys into a Bloom filter maintained by all Resolvers.
At query time, the Bloom filter allows a Resolver to filter out

non-existent keys early in the process. The Resolver then sends

a Get request for the index keys that pass the Bloom filter and

proceeds with the second round to retrieve the tabular data.

Note that a Bloom filter returning false positives for non-existent

index keys does not impact the correctness of a range query because

Executors treat them identical to dummy keys (as explained

in §4.5) and return a dummy response, which are filtered out by

Resolvers. Since Bloom filters never return false negatives, Oa-

sisDB returns correct range responses. Similar to point queries,

range queries incur two sequential rounds of communication - one

to retrieve the index and one for the data. The benefit of Bloom

filters is demonstrated in our experiments §7.4.

5.3 Joins
Join queries in SQL combine two (or more) tables based on a spec-

ified join condition and are of the form ‘SELECT col_names
FROM t1, t2 WHERE t1.attr = t2.attr’, joining tables

t1 and t2 on an attribute attr. Equi-joins consist of an equality

predicate, whereas the rest are considered non-equi-joins. OasisDB
currently supports binary equi- and non-equi-joins, although the

Resolver can be easily extended to support multiway-joins.

Existing schemes such as SEAL [19] support oblivious joins by

either streaming each attr value from table t1 and performing

an oblivious point query on t2 to retrieve matching records (equiv-

alent to an index nested loop join) or by utilizing the technique

from [35] to pre-compute a join-map. The join-map identifies pri-

mary keys from tables t1 and t2 with matching attr values,

which can then be offloaded to the server and streamed to join the

tables. Whereas, Chang et al.[13] use ORAM-based B-tree indexing

to retrieve matching join attributes. However, these approaches

incur high bandwidth overhead due to streaming an entire table or

join-map, or require multiple communication rounds to traverse

the B-tree obliviously. Reducing this overhead by storing the pre-

computed join-map locally requires non-trivial local storage.

To achieve high throughput while minimizing storage and band-

width requirements, OasisDB uses Bloom filters to locally store

pairs of primary keys from tables t1 and t2 that satisfy the join

condition during initialization. For join queries with additional

filter conditions (as observed in all join queries used for bench-

marking [4, 5] OasisDB), a Resolver first retrieves the index data

from the server and extracts the primary keys of the filtered ta-

ble(s). If both tables include a filter, the Resolver computes the

cross-product of all filtered primary keys from the two tables and

checks them against the Bloom filter. For pairs that pass the Bloom

filter, the Resolver retrieves the columns projected in the join

query. Similar to point and range queries, this approach incurs two

sequential rounds of communication: one to retrieve the index and

another for the data.

Bloom filters return false positives with non-zero probability,

which can lead to returning tuples that do not satisfy the join

condition. To address this, OasisDB retrieves the join attribute

attr from both tables for the primary keys passing the filter along

with fetching the projected columns. The system returns only the

tuples from t1 and t2 that actually match the join attribute, and

discards the other retrieved tuples.

5.4 Aggregates, Order By, and Group By
OasisDB supports aggregates such asCOUNT, SUM, AVG, MIN,
MAX, along with ORDER BY ASC|DESC, and GROUP BY opera-

tors. Depending on the presence of point, range, and/or join con-

ditions, OasisDB first retrieves the relevant columns required for

query evaluation using the techniques discussed in the previous sec-

tions. Once the data is retrieved, OasisDB applies post-processing

techniques at the Resolver layer to compute aggregates, sort the

results, or group them as specified in the query.

5.5 Updates
OasisDB provides limited support for updating tabular data, specif-

ically allowing updates to a single column in a table filtered by the

table’s primary key. It also restricts updates to columns without an

index or Bloom filter. Although restrictive, this design is sufficient

to handle all four update statements in the Epinions dataset [4],

a real-world customer review application. Among existing obliv-

ious RBDMSs [19, 22, 75], only ObliDB [22] supports updates by

enforcing serial execution of queries, which significantly limits

its throughput, as we show in §7.1. The distributed design of Oa-

sisDB, along with concurrency, cannot trivially support complex

update queries; extending it for such operations would require a
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transactional layer executing distributed commits obliviously. No
such work exists today and addressing this challenge is a promising

avenue for future work.

Upon receiving an allowed update request, a Resolver gener-

ates a Put(k,v) request to modify the specified key-value on the

server based on the table name, updating column name, and the

primary key in the update query (see Figure 2). However, OasisDB

does not support updates of the read-modify-write format.

Serializing SQL Requests: The constraints on update queries along
with the linearizability of the underlying KV-store allow OasisDB

to maintain a serialized execution. Since an update request 𝑟𝑢 in

OasisDB modifies only a single cell, any read request 𝑟𝑟 either

observes the updated value (indicating 𝑟𝑢 occurred before 𝑟𝑟 ) or

does not (indicating 𝑟𝑟 occurred before 𝑟𝑢 ). This ensures a serial

order between any two requests, 𝑟𝑢 and 𝑟𝑟 .

6 SECURITY OF OASISDB
OasisDB is a scalable and secure framework built on an oblivious

KV-store to maintain and process relational data. Informally, assum-

ing the query predicates and update values are encrypted, OasisDB

ensures the following privacy guarantees: (i) it hides the exact rows

satisfying query predicates of a SQL query, (ii) it conceals the rela-

tive frequency of rows satisfying user queries, and (iii) it obscures

the exact result volume of SQL queries.

Recall the definition of a sharding-safe oblivious KV-store in Def-

inition 1, which is satisfied by both PathORAM [67] and Waffle [48]

used in OasisDB.

Theorem 1. Let𝑈 (𝑚) be an independently, uniformly drawn ran-
dom number in [1,𝑚]. Given PathORAM [67], a sharding-safe oblivi-
ous KV-store that satisfies obliviousness property 𝜏 (𝑑) = ˝𝑛

𝑘=1
𝑈 ( |𝑑 |),

OasisDB using PathORAM satisfies the obliviousness property

𝜏 (𝐷) =
𝑟∑︁
𝑗=1

𝑠∑︁
𝑖=1

𝐵𝑅∑︁
𝑘=1

𝑈 ( |𝑑𝑖 |)

where 𝑠 is the number of PathORAM shards and 𝑟 the number of
batched requests generated by OasisDB.

Proof. PathORAM’s obliviousness property per shard ensures

that each shard accesses a uniform, independent random path from

its subtree for each key-value request. To achieve the global oblivi-

ousness property, OasisDB ensures that the same number of random

paths be accessed per subtree across all shards. Hence, the oblivi-

ousness property of PathORAM can be repeatedly composed a fixed

number of times due to the independence of the random variables.

Note that if different shards were to access varying numbers of

random paths, this would introduce leakage, potentially revealing

the locality of certain objects (e.g., popular objects).

In detail, OasisDB’s security hinges on the functionality of the

Batcher layer and demonstrating that its operations remain inde-

pendent of the specific key-value pairs generated by the input SQL

workload. When Resolvers translate SQL queries into key-value

requests and forward them to Batchers, each Batcher sends

batches of 𝐵𝑅 key-values at a time to all Executors, regardless
of the specific objects requested by client queries. Additionally,

OasisDB’s modification of Executors to process non-existent

keys as if they were regular keys (as detailed in §4.5) ensures that

the accesses generated on the server is a function of 𝐵𝑅 , i.e., each

PathORAM shard reads exactly 𝐵𝑅 paths per batch. This creates

storage accesses that satisfy the global obliviousness property. □

Theorem 2. Given Waffle [48], a sharding-safe oblivious KV-store
satisfying the obliviousness property 𝛼, 𝛽-uniformity, OasisDB using
Waffle satisfies the obliviousness property:

⌊𝛼/𝐵𝑅⌋ (𝑠 − 1)𝐵𝑅 + 𝛼, ⌈𝛽/𝐵𝑅⌉ (𝑠 − 1)𝐵𝑅 + 𝛽-uniformity.

Proof. Waffle defines𝛼, 𝛽-uniformity (§2), which, loosely speak-

ing, ensures that each key on the server is read (and deleted) within

at most 𝛼 accesses after being written, while each key in the cache

remains for at least 𝛽 accesses. In Waffle, the obliviousness property

per shard holds if each shard is initialized with identical system

parameters, enabling the computation of 𝛼, 𝛽-bounds. In addition,

OasisDB ensures uniform accesses to shards, preventing any key-

value pair from violating these bounds across the entire database.

To derive the composed bound, we need to compute the mini-

mum and maximum number of accesses to other shards between

reading (and deleting) a key in a shard. This amounts to (𝑠 − 1)𝐵𝑅
accesses per intermediate batch with at least ⌊𝛼/𝐵𝑅⌋ and at most

⌈𝛽/𝐵𝑅⌉ such batches. The derived bound, which holds for the entire
database in OasisDB, follows accordingly. This represents a worst-

case scenario for 𝛼, 𝛽-bounds. Because accesses by a proxy shard

are confined to its server shard ensuring local 𝛼, 𝛽-uniformity, the

obliviousness is further reinforced. □

Proposition. Assuming OasisDB employs a sharding-safe oblivi-
ous KV-store with an obliviousness property prop, the accesses gen-
erated by OasisDB in serving SQL queries will satisfy the global
obliviousness property prop′.

Proof. From the arguments for OasisDB with PathORAM and

Waffle, we can assert that with a sharding-safe oblivious KV-store,

OasisDB preserves the global obliviousness property prop′. □

6.1 Volume pattern protection in OasisDB
Volume pattern attacks [19, 24, 25, 30, 32, 36, 38, 49, 50, 59] exploit the
result sizes of SQL queries to infer either protected query predicates

or the underlying data itself. These attacks work as follows at a

high level: a persistent adversary has access to the transcript of

interactions between the system being evaluated (e.g., OasisDB)

and the cloud database. The transcript includes encrypted keyword

or range query predicates and any information disclosed in the

leakage profile of the system. For example, a volume revealing

oblivious database would reveal the exact result size of each query

as part of its leakage profile.

These attacks often rely on the ability to isolate each query’s

volume precisely. Furthermore, the attacker needs to collect cer-

tain number of queries and observe the above leakages to mount

a successful attack. Auxiliary information on query distribution

and data density assumptions can reduce the number of required

queries or refine the attacker’s reconstruction process [7, 30–32, 40].

The adversary, which has access to auxiliary information and the

observed leakage patterns, attempts to match encrypted query to-

kens or searched values to plaintext keywords or values from the

auxiliary data. Several recent systems [9, 19, 33, 56, 61, 71] mitigate

such attacks by per-query obfuscation of volumes.

Our approach. OasisDB does not employ per-query volume-hiding

strategies. Instead, it prevents an adversary from reliably isolating
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the result volumes of individual SQL queries in the first place, by

generating uniform workload of exactly 𝐵𝑅 requests per batch to

the KV-stores. Specifically, if 𝑟 is the collective result size of either

one or more SQL queries, OasisDB sends 𝑖 rounds of 𝐵𝑅 × 𝑠 key-

value requests to the server, where 𝑠 is the number of Executors
and 𝑖 is the smallest value such that (𝑖 − 1) ×𝐵𝑅 ×𝑠 < 𝑟 ≤ 𝑖 ×𝐵𝑅 ×𝑠 .
This ensures that even during periods of low activity, the server still

observes multiples of 𝐵𝑅 key-value accesses. However, the choice

of 𝐵𝑅 can impact the level of protection OasisDB provides against

volume pattern attacks because lower 𝐵𝑅 values hint at the actual

volume of SQL queries.

To assess the efficacy of OasisDB’s defense mechanism, we

launch two volume pattern attacks: i) keyword-based attack [7]

for point queries, and ii) range-based attack [31] for range queries.

While for space constraints, [1] presents the detailed attacks with

results, we present the findings of the range attack here.

The range attack [31] considers a single shard database with no

fake or index key accesses to the database, and hence can be viewed

as a ‘worst case attack’ for OasisDB. We apply the attack for two dif-

ferent datasets, MIMIC-PC [23], a medical dataset, and Salaries [28],

a human resource dataset. The attack compares three batching tech-

niques: 1) NoBatch, which performs no batching, revealing the

exact volume per SQL query, 2) FixedQ, which batches a fixed

number of SQL queries, resulting in varying number of key-values

per batch retrieved from the server, and 3) FixedKV, which fixes

the size of key-values retrieved from the server to 𝐵𝑅 per batch.

Through these attacks, we aim to answer the following questions.

1. Is fixed size batching necessary for volume pattern hiding?
The attack on the Mimic-PC dataset shows that, with as few as 1,000

observed queries, the error in recovery drops to 7% for NoBatch
and 11% for FixedQ2. In contrast, FixedKV (OasisDB’s approach)

yields a recovery error of 96%, effectively equivalent to random

guessing. These results underscore the importance of fixed-size

key-value batching in defending against such attacks.

2. Can any 𝐵𝑅 value successfully protect against volume at-
tacks? To answer this question, we perform range attacks [31] on

the FixedKV setting by choosing 𝐵𝑅 ∈ {2, 50, 100}. On Mimic-

PC [23] dataset, the attack fails to recover any data even at 𝐵𝑅 = 2,

while for the Salaries [28] dataset, the attack achieves a partial

recovery
2
at 𝐵𝑅 = 2 and 50, with an error rate of 38–45%. Only

at 𝐵𝑅 = 100 does the attack become fully ineffective. The differ-

ence stems from the domain size of the attacked range attribute:

Mimic-PC’s has a domain size of 2684, whereas Salaries’ has only

395. This suggests that administrators should configure OasisDB

with a higher 𝐵𝑅 when sensitive and frequently queried attributes

have small domains; otherwise, even smaller 𝐵𝑅 values can offer

sufficient protection.

7 EXPERIMENTAL EVALUATION
This section investigates the performance of OasisDB, integrated

with Waffle [48] and PathORAM [67] as KV-stores, and compare

both with other baselines across various query types. In particular,

we answer the following questions:

• How does OasisDB perform compared to its baselines? (§7.1)

2
As a reference, an error close to or above 50% suggests that the attack is ineffective,

while an error below 50% indicates partial or practical recovery.

• How does OasisDB scale? Which components of the system

contribute the most to its performance? (§7.2)

• How does fake requests and skewed workloads affect the sys-

tem’s performance? (§7.3)

• How does its query optimizations impact performance? (§7.4)

Implementation and Experimental Setup: We implement Oa-

sisDB in Go, integrating Waffle [48] and an optimized PathORAM

implementation [1] as the underlying KV-stores. Experiments run

on machines with Intel E5-series CPUs, 10 Gbps networking, and

up to 256GB RAM. A multi-threaded open-loop client generates

concurrent SQL queries to measure throughput and latency. We

emulate a WAN link with a default 10ms round-trip delay between

the trusted proxy and untrusted Redis [60] cloud storage. We refer

readers to the full version [1] for further details.

Baselines: We compare OasisDB with three baselines:

1. CockroachDB [68] acts as an insecure baseline in evaluating the

privacy overhead incurred by OasisDB. We chose CockroachDB

because its architecture, similar to OasisDB, builds on a scalable KV

storage engine to store relational data and support SQL queries [15].

2. ObliDB [22] acts as one of the oblivious RDBMS baselines. ObliDB

utilizes hardware enclaves (i.e., Intel SGX) to obliviously process

SQL queries on the server. However, ObliDB assumes the presence

of oblivious memory within the enclave — a functionality not pro-

vided by Intel SGX. Hence, its evaluations are without accounting

for the associated costs of oblivious memory. ObliDB is deployed

on an Intel SGX v2 (Xeon E2374G) machine with 128GB RAM.

3. Obliviator [51] is a recent oblivious system supporting SQL queries

using hardware enclaves. It differs from ObliDB in two significant

ways: i) It removes the assumption of oblivious memory, provid-

ing a stronger security guarantee, and ii) It enables multi-threaded

query execution, similar to OasisDB. We run Obliviator on Azure

with DC32ds_v3 VM.
3

We note that both ObliDB [22] and Obliviator [51] lack support

for multi-user environments and process queries sequentially. Nei-

ther systems are scalable and by default, they do not hide query

volume patterns. This limits their performance, particularly inWAN

settings. However, both systems remain suitable for cloud-based

deployments where on-premise resources are scarce and their limi-

tations are acceptable.

Datasets and query types: We evaluate OasisDB and its baselines

on two datasets:

1. Epinions [4]: Dataset based on epinions.com, a consumer review

platform. This dataset models user interactions with other users

and products wherein users rate and review the products (or items).

We use Benchbase [21] to generate a dataset comprising of over 1

million rows distributed across five tables and assign primary and

foreign keys with uniform distribution. 1M rows of the dataset re-

sults in over 6M key-values, including any constructed indexes. Un-

less stated otherwise, our workload consists of 13 selection queries

(Point, Range, Aggregate and Join) and 4 update queries, with pred-

icates chosen randomly from the dataset.

2. Big Data Benchmark [5]: It consists of two tables, PageRank

and UsersVisited, with information on multiple websites and

their visits with 360K and 350K rows. We compare the oblivious

3
We were unable to run ObliDB on Azure as it requires EPID-based SGX attestation,

which is incompatible with Azure’s datacenter attestation protocol (DCAP).
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Figure 4: Baseline and scaling experiments of OasisDB

baselines ObliDB [22] and Obliviator [51] on this dataset. The work-

load for this dataset consists of 3 queries (Point, Range, and Joins).

Of the 20 queries across the two benchmarking workloads, most

being composite queries, Table 2 depicts the distribution of various

SQL operations tested in the experiments.

Op.
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Table 2: Distribution of operator types in the experiments.

7.1 Comparison with Baselines
Comparison with CockroachDB: This experiment evaluates the

cost of achieving obliviousness by comparing OasisDB with a

plaintext baseline, CockroachDB[14, 68]. We use BenchBase[21] to

benchmark CockroachDB on the Epinions dataset [4] with an identi-

cal workload to OasisDB. In addition to the two oblivious KV-stores,

we compare CockroachDB with an insecure variant of OasisDB,

where the Executor layer employs a plaintext KV-store, which

bypasses data encryption, decryption, and any oblivious mecha-

nisms to access data. This version of OasisDB will identify the

overhead introduced by the Resolver and Batcher layers of

OasisDB. For this experiment, OasisDB is deployed with a scale

factor of one, while CockroachDB runs on a single-node cluster

(i.e., without scaling or replication). The client process generates

maximum 1000 concurrent requests across all baselines.

The results shown in Figure 4a highlight that the plaintext KV

version of OasisDB achieves identical throughput to CockroachDB.

The two systems also incur identical average query latency with

137ms for CockroachDB and 141ms for OasisDB plaintext version.

These results indicate that OasisDB’s Resolver and Batcher
layers introduce minimal overhead.

Using Waffle as the KV-store in OasisDB (with 𝛼 = 5000) results

in a 9.2× drop in throughput compared to CockroachDB, and the

average query latency increases to 891 ms – 5.5× higher than that of
CockroachDB. When using PathORAM as the KV-store, we observe

an even greater performance degradation relative to Waffle, due to

PathORAM’s stronger threat model, which incurs a logN bandwidth

overhead. These results underscore that OasisDB ’s performance is

heavily influenced by the choice of underlying KV-store.

Comparison with ObliDB and Obliviator: This experiment com-

pares OasisDB with ObliDB [22] and Obliviator [51], two oblivious

RDBMSs that leverage Intel SGX for oblivious query processing.

The experiment uses the Big Data Benchmark [5] consisting of

point, range, join, aggregate, group by, and order by operators. We

introduce a 10ms round-trip WAN latency to both systems to simu-

late client-server communication, mirroring OasisDB ’s setup. Since

both baselines are not scalable, OasisDB is deployed with a scale

factor of 1 for a fair comparison.

As shown in Figure 4b, OasisDB achieves 5.7x and 7.7x the

throughput of ObliDB and Obliviator respectively when using

Waffle, and 1.22x and 1.64x the throughput when using PathO-

RAM. The lower throughput of both baselines stem from their

sequential query processing, whereas OasisDB batches multiple

requests to amortize communication and computation costs, im-

proving throughput. However, batching increases query latency:

ObliDB and Obliviator incur an average latency of under 20ms,

whereas OasisDB incurs over 800ms latency. Although batching

increases latency, it is necessary to hide volume patterns, which

neither of the baselines ensure in this experiment.

7.2 System Scaling
This experiment evaluates OasisDB’s ability to scale with the num-

ber of machines – a primary design feature of the system - by

increasing the number of machines from one to five such that each

machine deploys one Resolver, Batcher, and Executor pro-

cess. For example, a scale factor of three implies three Resolvers,
Batchers, and Executors, totaling nine processes deployed

across three machines. This and the following experiments use

Epinions data with clients generating 17 different SQL queries in-

cluding updates.

Figures 4c and 4d illustrate the results of this experiment for

OasisDB with Waffle and PathORAM, respectively. As shown, both

versions of OasisDB exhibit linear scalability, demonstrating Oa-

sisDB ’s ability to efficiently distribute workload across multiple

machines. Specifically, as the scale factor increases, OasisDB dis-

tributes client requests across multiple Resolvers, which further

distribute the load across multiple Batchers, and ultimately onto

multiple Executors, improving system throughput.

Per-Layer Scaling: While the previous experiment demonstrated

the overall scalability of OasisDB, it does not reveal which layer

of its architecture contributes the most to this behavior. Therefore,

we conduct a layer-wise scalability analysis by scaling one layer

at a time from one to three processes, while keeping the other two

layers fixed at three processes each. Hence, the end result of each

experiment reaches the same configuration of three processes per
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Figure 5: Per layer scaling for the two versions of OasisDB and the effect of skew and fake requests on OasisDB.

layer. This experiment follows the same process of co-location as

mentioned in the previous experiment but with varying the number

of processes in one layer at time.

Figures 5a and 5b illustrate that the Executor layer has the

largest impact on performance for bothWaffle and PathORAMwith

the throughput increasing by ∼4x for both compared to scale 1.

This is because Executors execute resource-intensive oblivious
algorithm for both versions and as they scale, the workload per

process reduces, leading to a substantial improvement in perfor-

mance. For the Resolver layer, we anticipated it to play a more

vital role in scaling as each Resolver maintains context for each

query across multiple rounds of communication with the server.

The results are counterintuitive and indicate that Resolvers con-
tribute the least to scaling. Batchers similarly exhibit a lower

improvement of ∼ 20% as the layer scales. From the insights of

this experiment, an application can choose how many processes to

deploy per layer depending on the required throughput.

7.3 Internal Experiments
This sections presents internal experiments on how OasisDB be-

haves under varying skew and the effect that fake queries have

on the system. The full version of the paper [1] also presents an

additional experiment measuring the performance changes under

varying Round-Trip Time (RTT) between the trusted and untrusted

domains.

Effect of varying skew: Thus far, client-generatedworkloads have

selected query predicates uniformly from the set of possible at-

tribute values. This experiment evaluates the impact of skew in

these workloads, with results shown in Figure 5c. The experiment

uses the default scale factor of three. We observe that throughput

decreases by 0.4x for both KV-stores as the workload skew increases

from uniform to 0.99 Zipf. This is because, under skewed workloads,

many KV requests target the same Executor, leading to queue

buildup at that node. In contrast, uniform workloads distribute

requests evenly across all Executors. This pattern occurs even

in plaintext RDBMSs; for instance, CockroachDB exhibits a 15.9%

throughput drop when moving from a uniform to Zipf(0.99) distri-

bution. Importantly, this performance degradation does not affect

the security of OasisDB, as throughput is a client-observed metric.

Each server shard continues to observe a stream of 𝐵𝑅 key-value

accesses, independent of access skew. Two of the volume pattern

attacks launched on OasisDB — targeting uniform and skewed

workloads — show negligible recovery success [1].

Effect of fake key-value requests in OasisDB: Recall from §4.4

that OasisDB adds fake requests if a preset timer times out and some

queues have less than 𝐵𝑅 requests. Because fake requests add addi-

tional overhead on the system, two natural questions that arise are:

i) Is adding fake queries to reach 𝐵𝑅 batch size necessary for security?
and ii) What effect does it have on system performance? Section 6.1

answered the first question, establishing that the FixedKV mech-

anism is integral to mitigating volume pattern attacks. This section

discusses the performance implications of fake requests.

We experimentally evaluate the effect of adding fake key-value

requests by comparing OasisDB with a NoFake version that re-

moves this padding. Although for space constraints, we only present

the performance with Waffle as the KV-store, the trend also held for

PathORAM. The setup consists of 3 Executors, 1 Batcher, and
1 Resolver for both the Fake and NoFake versions, with equal

number of concurrent clients injecting queries. Because security

requires each Executor to receive 𝐵𝑅 key-values, the NoFake
version waits until each queue in a Batcher receives 𝐵𝑅 requests.

Figure 5d depicts the measured throughput for both versions and

the percent of fake requests added. We observe that OasisDB only

adds 0.99% fake requests and has 3.65% lower throughput than the

NoFake version when clients draw queries from a uniform distri-

bution. However, when clients generate a skewed query workload,

although the percent of fake queries in OasisDB increases to 2.95%,

its throughput is 3.6x higher than the NoFake version. This differ-

ence occurs because under skewed workloads, not all Executor
queues receive equal request load, and hence, the NoFake version

has to wait much longer until all queues receive 𝐵𝑅 requests, signif-

icantly reducing the throughput. This experiment underscores the

benefit of adding fake requests despite incurring wasted compute

and communication.

7.4 Oblivious Query Processing
We now evaluate range and join queries in OasisDB, comparing

throughput with and without Bloom filters cross two key-value

stores, Waffle and PathORAM.

For Range Queries (Figure 6a), we assess the impact of the

Bloom filter in preventing unnecessary key retrievals. The Bloom
approach efficiently filters keys without any false positives, whereas

the NoBloom approach retrieves all range expanded keys from the

server. The results indicate that Bloom filters improve the through-

put by 3.3x over the NoBloom approach for both KV-stores. As the

range length grows, the throughput reduces for both KV-stores due
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Figure 6: Range and Join queries with &without Bloomfilters

to increased bandwidth and computation overhead, with PathO-

RAM exhibiting a more significant drop due to its higher sensitivity

to increased KV pair retrievals.

For Join Queries (Figure 6b), both Bloom and NoBloom ap-

proach retrieve the index keys of the tables being joined in the

first round, obtaining the primary keys of tuples satisfying point

and/or range predicates. The Bloom approach identifies potential

joins from the cross product of these keys locally at the Resolver,
whereas the NoBloom approach can only learn the join result by

fetching the join attribute for the retrieved keys from round one.

As explained in §5.3, OasisDB only incurs two rounds of communi-

cation, retrieving the projected attributes in round two, whereas

NoBloom requires three rounds along with the overhead of fetch-

ing the attributes that do not join. On average the Bloom approach

retrieves 6.2 KV pairs per query whereas the NoBloom one fetches

45 KV pairs. This results in Bloom improving the throughput by

2.5x over NoBloom for Waffle and 4x for PathORAM, indicating

the benefit of Bloom filters.

8 RELATEDWORK
This section reviews existing works related to OasisDB, categoriz-

ing them into scalable and non-scalable oblivious query processing

systems. Broadly, existing scalable systems lack SQL support, while

oblivious SQL processing systems do not scale, distinguishing them

from OasisDB. Note that we focus the discussion on oblivious query

processing systems and exclude those that rely on alternative pri-

vacy schemes such as MPC or homomorphic encryption.

Scalable Oblivious Data-stores: Several existing works have
explored scalable oblivious key-value storage systems [6, 18, 64,

66, 70]. These systems achieve high-throughput and scalability

but are limited to basic GET/PUT operations and do not support

SQL semantics. Secondly, these systems are often tightly coupled

with the underlying oblivious processing technique. Earlier works

such as ObliviStore [66] and CURIOUS [6] cater towards sharding

ORAM proxies for scalability but rely on a single load balancing

process for security, which becomes a bottleneck. Snoopy [18] relies

on TEEs for concealing access patterns and linear scans the entire
database per batch of requests. ShortStack [70]’s scalability design

is hard-wired to Pancake [29]’s oblivious scheme and does not

generalize to other oblivious KV stores. Similarly, Treebeard [64]’s

scheme is tied to tree-based ORAM schemes and cannot adapt

to other oblivious KV schemes. Unlike these systems, OasisDB is

agnostic to the underlying oblivious retrieval mechanism, and more

importantly it supports SQL queries while hiding access patterns

and obfuscating volume patterns.

Oblivious Query Processing: Many works propose oblivious

query processing techniques. Works such as [12, 13, 39, 45] discuss

oblivious mechanisms to process specific type of SQL queries such

as joins or ranges using either TEEs or black-box ORAM approaches.

They differ from OasisDB in their limited support for general SQL

queries and their lack of scalability.

With regard to oblivious systems that support a wider range

of SQL queries, works such as [2, 22, 51, 61, 75] rely on TEEs.

Menhir[61] offers support to only single table queries using ORAM

and differential privacy to prevent access pattern and volume pat-

tern leakage, but it cannot perform joins. ObliDB [22], Opaque [75],

Arasu and Kaushik’s [2] and Oblivator [51] enable a wider range of

SQL-like queries using customized query processing algorithms for

each type of query. Additionally, Opaque and ObliDB rely on the

existence of oblivious memory within the TEEs, which is currently

not supported by any commercial TEE providers. These works pri-

marily vary from OasisDB in their lack of scalability and support

for multi-user settings.

SEAL [19] presents a range of searchable encryption techniques

that support point, range, join, and aggregate queries with config-

urable security parameters. However, SEAL also relies on ORAM

along with oblivious data structures [72] to ensure privacy, which

can introduce significant performance overheads. Moreover, SEAL

trades-off privacy in exchange for scalability, unlike OasisDB, and

only supports single-user settings.

9 CONCLUSION
We present OasisDB- an oblivious and scalable RDBMS framework

for storing and processing relational data. It addresses critical chal-

lenges in existing systems, such as supporting multi-user settings,

ensuring scalability, and handling updates while hiding access

and volume pattern leakages. OasisDB leverages existing obliv-

ious KV-stores and proposes a distributed multi-layer architecture,

with each layer scaling independently. We demonstrate the flex-

ibility of OasisDB by integrating it with two distinct oblivious

KV-stores, PathORAM and Waffle and discuss how OasisDB sup-

ports a wide range of SQL queries, while obfuscating query result

sizes to thwart volume pattern attacks. Experimental results on

real-world datasets, Epinions, show that OasisDB scales linearly

with the number of machines. Compared to ObliDB and Obliviator,

two oblivious RDBMS, as baselines, OasisDB exhibits benefits due

to scalability and multi-user support. Future work on OasisDB will

focus on support for OLTP workloads with serializablity guarantees

and expanding query types to nearest neighbor searches.
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