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ABSTRACT
Efficient multi-core parallel processing of recursive join queries is
critical for achieving good performance in graph database manage-
ment systems (GDBMSs). Prior work adopts two broad approaches.
First is the state of the art morsel-driven parallelism, whose vanilla
application in GDBMSs parallelizes computations at the source
node level. Second is to parallelize each iteration of the computa-
tion at the frontier level. We show that these approaches can be
seen as part of a design space of morsel dispatching policies based
on picking different granularities of morsels. We then empirically
study the question of which policies parallelize better in practice
under a variety of datasets and query workloads that contain one
to many source nodes. We show that these two policies can be com-
bined in a hybrid policy that issues morsels both at the source node
and frontier levels. We then show that the multi-source breadth-
first search optimization from prior work can also be modeled as
a morsel dispatching policy that packs multiple source nodes into
multi-source morsels. We implement these policies inside a single
system, the Kuzu GDBMS, and evaluate them both within Kuzu
and across other systems. We show that the hybrid policy captures
the behavior of both source morsel-only and frontier morsel-only
policies in cases when these approaches parallelize well, and out-
perform them on queries when they are limited, and propose it as a
robust approach to parallelizing recursive queries. We further show
that assigning multi-sources is beneficial, as it reduces the amount
of scans, but only when there is enough sources in the query.
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1 INTRODUCTION
Modern graph database management systems (GDBMS) follow the
property graph data model, which supports modeling application
records in the form of nodes and edges. An important feature of
GDBMSs is that their query languages have the notion of paths
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as a first-class citizen and special clauses to ask several common
recursive queries. For example, the Cypher query language [25]
has the arrow-based syntax to specify paths or the Kleene star
(“*”) syntax followed by the “* SHORTEST” keyword to compute
shortest paths between nodes. We refer to queries that require such
recursive evaluation as recursive queries and the specialized query
language clauses in GDBMSs as recursive clauses.

We study the problem of how to parallelize recursive queries in
GDBMSs. To explain the core problem that motivates this paper,
consider the following Cypher query that finds the shortest paths
that consist of Knows edges from each Person node with name Alice
to other Person nodes:

1 MATCH p = (a:Person)-[r:Knows* SHORTEST]->(b:Person)
2 WHERE a.name = Alice RETURN p

An example standard plan, drawn left to right, corresponding to
this query is shown in Figure 1. The plan contains a specialized
shortest path operator, which scans source nodes and runs the
Bellman-Ford shortest path algorithm from the sources. Often, the
core computation inside the recursive algorithm is a breadth-first
search like computation which can be expressed as an iterative
frontier extensions (IFE) subroutine [4]. Briefly, in the IFE subroutine,
neighbors of a frontier (i.e., a set) of “active” nodes’ are explored to
form a new frontier of active nodes, until a convergence criterion
is met, such as when the next frontier after an iteration is empty.

A common approach to parallelizing queries in DBMSs ismorsel-
driven parallelism [20]. It breaks a query plan into one or more
subplans (“tasks”/“pipelines”), each of which starts with a table
scan operator, which scans tuples from a base or intermediate table
(henceforth “leaf table”). The system executes tasks in some order
and parallelizes each task𝑇 by assigning small fragments of inputs,
called morsels, from the leaf table to worker threads, which work
in parallel on 𝑇 until the leaf table is consumed. This approach is
adopted across many RDBMSs and GDBMSs, such as Hyper [17],
Umbra [26], DuckDB [30], Neo4j [15] and Kuzu [11]. In vanilla
morsel-driven parallelism, if there are not enough morsels available
for all threads, e.g., when there is a single Person nodewith nameAl-
ice, the system can end up assigning morsels to a few threads while
keeping other threads idle. However, a recursive query from even
a single source node can be expensive and amenable to paralleliza-
tion, as real-world graph databases tend to be heavily connected.
This paper studies the question of: How should a GDBMS that adopts
morsel-driven parallelism parallelize recursive computations?

IFE is a common subroutine used not only to perform recursive
path computations but also other graph algorithms that are exe-
cuted in parallel or distributed graph analytics systems, such as
Ligra [31] and Pregel [23]. These systems adopt an alternative ap-
proach to parallelize the IFE subroutine. Specifically, these systems
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parallelize each frontier of the IFE subroutine by assigning subsets
of active nodes to different threads in each iteration. Therefore,
these systems parallelize the work of each iteration of a recursive
computation from a source node.

In this paper, we first describe the design space of parallelization
approaches that a system can adopt based on the granularity of
morsels the system can pick. We call these approaches morsel dis-
patching policies and show that this space captures and generalizes
the commonly adopted approaches from above. Vanilla morsel-
driven approach of GDBMSs issues source morsels to threads. We
refer to this policy as 1T1S, for 1-Thread-to-1-Source scheduling.
In contrast, parallel graph analytics systems issue morsels from the
frontiers of a single source node.We refer to these as frontier morsels
and to this policy as nT1S, for n-Threads-to-1-Source scheduling.
We then identify a hybrid policy that issues both source morsels
and frontier morsels to threads. We refer to this hybrid approach
as nTkS, for n-Threads-to-k-Source nodes policy.

Next, we empirically analyze the pros and cons of different poli-
cies under a variety of datasets and query workloads that contain
from one to hundreds of sources. We show: (i) the 1T1S policy
parallelizes well when there are many sources but degrades on
queries with few sources, (ii) the nT1S policy achieves limited paral-
lelism with few sources (this limited parallelism persists with many
sources). The hybrid nTkS approach captures the desired paral-
lelism behavior of 1T1S and nT1S on queries where they parallelize
well, and outperforms them on queries where they demonstrate
limited parallelism. As such, we recommend it as a robust morsel
dispatching policy for GDBMSs adopting morsel-driven parallelism.

Finally, we revisit the multi-source breadth-first search optimiza-
tion from prior work [36], which performs concurrent breadth first
searches from a batch of source nodes (implemented inDuckPGQ [35]).
We show that this optimization can also be modeled as a morsel
dispatching policy, in which multiple source nodes are packed into
multi-source morsels. We describe a hybrid policy called nTkMS, for
n-Threads-to-k-Multi-Source nodes policy. Instead of dispatching
source morsels that contain single source nodes, nTkMS dispatches
work both asmulti-source morsels, containing up to 64 source nodes,
and frontier morsels. We show empirically that the nTkMS policy
outperforms the nTkS policy, as it can reduce the amount of scans
performed from the database, however only when there are enough
source nodes in the query to saturate the 64-size groups.

We have implemented all of these policies in Kuzu [11], which
is a columnar GDBMS that adopts morsel-driven parallelism. 1 We
compare our own implementations in Kuzu with Neo4j and Ligra
systems, as well as our implementation of the nTkS policy in the
DuckPGQ system. This allows us to demonstrate the behavior of
these policies both in a controlled manner in a single system as
well as on different system implementations that are at different
performance levels. Aside from the morsel dispatching suggestions
we make in the paper, the details of our implementation in Kuzu
can be of independent interest to readers and serve as a blueprint
for how these policies can be implemented in other GDBMSs.

1Kuzu started as a research prototype in our research group and is now actively being
developed in a spinoff company co-founded by the second author of this paper.

Figure 1: Example query plan with a recursive operator.

2 BACKGROUND
We first cover morsel-driven parallelism in more detail with an
example. Then, we cover the iterative frontier extensions (IFE) [3, 31]
algorithmic subroutine. Lastly, we describe the basic query plan
structure that we assume that a GDBMS generates to evaluate re-
cursive clauses in this paper. We note that throughout the paper,
the terms “source” and “destination” do not indicate any direction
(forward or backward) in the recursive computations. “Source” in-
dicates the nodes from which a recursive computation finds paths
to a set of “destination” nodes in some direction.

2.1 Morsel-Driven Parallelism
Consider the following SQL query that consists of a join between
an Employee and Department records.

1 SELECT e.name, b.name WHERE e.age > 55
2 FROM Employee e, Department d WHERE e.dID = d.ID;

In morsel-driven parallelism [20], a DBMS breaks the query plans
into subplans (a.k.a. tasks/pipelines) that are executed in some order.
Consider a simple hash join-based plan for this query that builds
a hash table on the Department table, which is probed by each
Employee tuple. A standard approach is to break this plan into two
tasks: (i) Task1 is the subplan that builds the hash table (Figure
2); and (ii) Task2 is the subplan that probes the hash table from
Task1. Each task is a linear chain of operators that starts with a leaf
operator that scans a leaf table, which are distributed to multiple
threads for parallel execution of the task.

Each thread𝑊𝑖 creates a copy of the task and scans morsels of
tuples, e.g., 100K from the leaf table. These tuples are processed by
the rest of the operators in the task until𝑊𝑖 needs to grab another
morsel of tuples. This parallel computation continues until all of
the leaf table’s tuples are exhausted. The logic of assignment of
morsels to threads is implemented by a piece of code termedmorsel
dispatcher [20].

Figure 2: Morsel-driven execution of hash join build task.

Figure 2 shows a possible execution of Task1 under two threads.
The morsel dispatcher assigns Morsel0 to Thread1 and Morsel1 to
Thread2. After grabbing their morsels, threads execute the rest of

4466



1 for (src : srcNodes):
2 nextFrontier.setActive(src);
3 while (!curFrontier.isEmpty()):
4 swapCurNextFrontiers()
5 for (node : graph->nodes()):
6 if (curFrontier->isActive(node)):
7 for (nbr : node.scanFwd()):
8 if (edgeCompute(node, nbr)):
9 nextFrontier->setActive(nbr)
10 curFrontier.reset()
11 outputResults()

Listing 1: Serial IFE subroutine. Outer-most for loop starts
an IFE subroutine from a set of source nodes.

the operators independently except at the last operators of subplans,
which form a pipeline break. This is where synchronization may be
needed, e.g., to build a global hash table out of local thread-level
hash tables. Once Task1 is finished, the system starts executing
Task2.

2.2 Iterative Frontier Extensions (IFE)
IFE is a BFS-like high-level algorithmic subroutine based on mes-
sage passing between nodes and their neighbors. IFE is at the core
of many recursive path finding operators implemented in GDBMSs,
such as Neo4j [16], Kuzu[11], Memgraph [22], or DuckPGQ [35].
As such, in this paper, we focus on parallelizing recursive operators
that execute IFE subroutines. x In an IFE subroutine, the compu-
tation starts from an initial frontier, which is a set of nodes from
which the recursive computation is triggered. Then, in iterations,
the neighbors of each vertex in the current frontier are explored to
construct the next frontier of active nodes, until a convergence cri-
terion is met. Depending on the particular recursive clause, a node
may be visited multiple times or just once while performing the
recursive computation. Listing 1 shows the pseudocode of the IFE
sbroutine. Let us ignore the outer-most for loop for now. The core
subroutine is between lines 3 and 10. The pseudocode is written
using the edgeCompute() interface of systems like Pregel or Ligra.
This is the interface we use in our implementation as well. For each
‘active’ vertex 𝑢, IFE executes edgeCompute() on each 𝑒 = (𝑢, 𝑣)
edge of𝑢 and returns true if 𝑣 should be put in the next frontier. Dif-
ferent algorithms implement different edgeCompute() functions
using different auxiliary data structures to store algorithm-specific
per-vertex values. Below, we give an example for computing un-
weighted shortest path (“shortest paths” for short) lengths from
a single source. Other recursive path finding algorithms, such as
finding variable-length paths or path lengths, are expressed in a
similar manner.

Example 1. Listing 2 shows a pseudocode edgeCompute() for
computing the shortest path lengths from a single source 𝑠 to the
rest of the nodes in a graph. The algorithm keeps the lengths of the
shortest paths from 𝑠 to each vertex in a len array. This array is
initialized to -∞ except 𝑠 , which is set to 0. Then at each iteration, we
update any node 𝑣 that is visited for the first time from a currently
active node 𝑢 as follows. We first set len[v] to len[u] + 1 and
then we put 𝑣 into the next frontier, by returning true.

Figure 3: Recursive Clause Query Plan

2.3 Overall Query Plan Structure
Throughout this paper, we assume that a GDBMS compiles each
recursive clause into an operator that performs IFE subroutine
executions. We assume that the subplan/task in which the IFE
operator runs looks as in Figure 3. Let us refer to the IFE operator’s
task as the IFETask. We assume that a set of prior subplans execute
prior to the IFETask (“previous subplans” in the figure). The last of
these subplans computes the source nodes from which a recursive
path computation should be performed and passes these as a source
nodes table to the IFETask. The IFETask starts with the IFE operator,
which implements the logic of morsel dispatching, e.g., scanning
source nodes from the source nodes table, performing the frontier
extensions, as well as pipelining the output paths or path lengths
of the IFE subroutines to the rest of the operators in the IFETask
(“IFE output consumption subplan in the figure”). If IFETask is not
the last task in the query plan, other suplans may execute after the
IFETask (“next subplans” in the figure) .

1 class ShortestPathLengths {
2 int len[numNodes]; // initialized to UINT64_MAX
3 void init(src) {
4 len[src] = 0
5 curFrontier.add(src)
6 }
7 bool edgeCompute (e=(u, v)) {
8 if (len[v] == UINT64_MAX):
9 len[v] = len[u] + 1
10 return true
11 else:
12 return false
13 }

Listing 2: edgeCompute() for shortest path lengths.

3 DESIGN SPACE OF SCHEDULING POLICIES
Wenext describe a design space of natural parallelization approaches
for executing recursive path finding algorithms based on IFE, which
covers and extends the two popular approaches in prior literature.
Recall Listing 1, which showed the pseudocode of the serial im-
plementation of an IFE-based algorithm. The outer-most for loop
loops through each source node 𝑠 in the source nodes table on line 1.
Then for each 𝑠 , the algorithm runs a separate IFE subroutine from
𝑠 (inside a while loop). The design space we describe is based on
which parts of this serial IFE-based algorithm is split into morsels
for dispatching to worker threads. In Listing 1, there are 2 for loops
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Figure 4: 1T1S scheduling policy.

that contain scans that can be parallelized. These are on lines 1
and 5. The policies we describe are based on which or both of these
loops they parallelize.

3.1 1T1S Policy
The first natural approach dispatches each IFE subroutine execution
from a source as a unit of work (Line 2-11 in Listing 1). Specifically,
the first for loop on line 1 scans each source node 𝑠 and starts
a new IFE subroutine from 𝑠 . We call these IFE subroutines as
source morsels. In vanilla morsel-driven parallelism, e.g., adopted
in Neo4j [15], DuckPGQ [35] and existing approach in Kuzu, the
scan in this first for loop is done by scans from a source table,
and the recursive computation is parallelized at this scan. This is
the approach we call 1T1S for 1-Thread-to-1-Source node policy.
Figure 4 shows the high-level execution of this policy when there
are 𝑛 sources to run IFE subroutines from.

The advantage of 1T1S is that when there are many sources from
which an IFE subroutine should be executed, 1T1S can easily keep
threads busy. Further, under the 1T1S policy, the IFE subroutine
implementations can use fast data structures that do not contain any
synchronization primitives, such as hardware or software locks.
This is because 1T1S guarantees that only one thread works on
any IFE computation. At the same time, this approach will not be
able to utilize multiple threads efficiently on queries that contain
fewer sources than there are threads, e.g., only one source. Worse,
if the system uses large morsel sizes, e.g., 100K as in the original
morsel-driven parallelism paper [20] or 131K as in the DuckPGQ
system, this approach can fail to parallelize even when there are
many sources in the query.

3.2 nT1S Policy
The second natural approach dispatches work only from the inner
for loop on line 5 in Listing 1. This policy takes each source 𝑠 one
by one and splits the scan of the current frontier of each iteration of
the IFE subroutine from 𝑠 into morsels. We refer to these as frontier
morsels. Therefore, each frontier morsel is a set of active nodes
and a single thread is responsible for executing the edgeCompute()
function on each neighbor of each node in the frontier morsel. This
is the approach implemented in parallel graph analytics systems,
such as Ligra [31] and Pregel [23]. We call this approach nT1S, for
n-Threads-to-1-Source node policy. Figure 5 shows the high-level
execution of this policy.

The advantage of nT1S is that unlike 1T1S, nT1S can share work
when there are fewer sources in the query than there are threads.

Figure 5: nT1S scheduling policy.

Threads (→) Speedup
IFE Level (↓) 1 2 4 8 16 32
L0 (src node) 1 1 2 1 1 1 1.0x
L1 (17 nodes) 3 2 2 1 1 2 1.5x
L2 (2053 nodes) 6 4 4 2 2 3 2.0x
L3 (64326 nodes) 65 38 20 14 11 7 9.3x
L4 (276175 nodes) 190 109 60 38 20 16 11.9x
L5 (56731 nodes) 31 21 14 6 4 6 5.2x
L6 (6044 nodes) 5 4 2 2 2 3 1.7x
L7 (1465 nodes) 3 2 2 2 1 2 1.5x
L8 (458 nodes) 2 2 1 2 1 2 1.0x
L9 (93 nodes) 1 1 1 1 1 1 1.0x
L10 (27 nodes) 1 1 1 1 1 1 1.0x
L11 (7 nodes) 1 1 1 1 1 1 1.0x
Total Runtime 331 198 138 95 72 68 4.8x

Table 1: Scalability of each frontier level (in ms).

However, this approach is limited by how much a single IFE sub-
routine from one source can parallelize. Due to Amdahl’s Law for
parallelism [2], the scalability of any program will be limited to
its parallelizable parts. In recursive path finding algorithms, the
frontiers tend to start sparse, grow large, and shrink again and
become sparse. The sparse frontiers limit how much parallelism
can be achieved cumulatively.

Table 1 is an example experiment demonstrating this behavior
in our implementation of the nT1S policy in Kuzu. The experiment
runs a shortest path query from a single source to all destinations
on the LDBC100 graph, returning the lengths of paths. LDBC100
graph contains 448K nodes and 19.9M edges. The table presents
how many nodes exist in each frontier and how much speedup
there is on each frontier as we scale the number of worker threads
on the system from 1 to 32. As shown, when a frontier is dense,
as in level 4, we can obtain good scalability of 11.9x, yet on other
frontiers, which cumulatively add up to 36% of the computation,
there is at most 4.1x speedup and often much less. This leads to an
overall speedup of 4.8x. This phenomenon limits the scalability of
using nT1S policy alone.

3.3 nTkS Policy
We next identify a third hybrid policy that combines parallelization
of both loops. We call this approach nTkS policy, for n-Threads-
to-k-Source nodes. nTkS maintains the execution of multiple 𝑘

concurrent IFE subroutines, i.e., source morsels. However, it is not
the source morsels that are given as morsels to threads. Instead,
each frontier of each source morsel is split into morsels but different
threads can be dispatched frontier morsels from different source
morsels. Figure 6 shows the high-level execution of this policy.
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Figure 6: nTkS scheduling policy.

The advantage of the nTkS policy is that when there are few
source nodes in the query, nTkS aims to mimic the behavior of
nT1S. When there are many source nodes, nTkS can outperform
nT1S as when frontiers of a source morsel gets sparse, it can keep
idling threads active on other source morsels with denser frontiers.
When there are many source nodes, nTkS behaves similar to 1T1S.
However, nTkS can outperform 1T1S because whenever there are
fewer source morsels than number of threads, while 1T1S starts
keeping threads idle, nTkS starts behaving more like nT1S where
multiple threads work on the same source morsel. This situation
can arise in two ways: (i) either the original query does not have
many source nodes; or (ii) the query contains many source nodes
initially but as the computation progresses some source morsels
finish, and there are fewer source morsels left to work on than the
number of threads.

3.4 Multi-Source Morsels
We next review the multi-source BFS (MS-BFS) optimization from
reference [36], which is also used by the DuckPGQ system [35].
MS-BFS organizes up to 64 IFE subroutines, IFE1, ..., IFE64, as a
unit and runs them concurrently. For example, if a shortest path
query contains 64 or more source nodes, MS-BFS runs the shortest
path computation from 64 sources at a time. That is, first, the first
frontiers of all 64 IFE subroutines are extended concurrently, then
the second frontiers, then the third frontiers, so on and so forth. For
each vertex 𝑢 in the graph, we store 64 bits to represent 𝑢’s active
state in each of the 64 concurrent IFEs, i.e., the 𝑖’th bit represents
whether 𝑢 is active in IFE𝑖 . These bits are referred to as “lanes” in
reference [36]. If 𝑢 is active in iteration 𝑗 for 𝑡 IFE subroutines, say
IFEℓ1 ,...,IFEℓ𝑡 , then instead of scanning the neighbors of 𝑢 𝑡 times,
we can scan them once and run 𝑡 edgeCompute() on each of those
neighbors. MS-BFS also reduces the amount of writes performed to
set nodes active in frontiers. Specifically, one can set a neighbor 𝑣
of𝑢 active in up to 𝑡 IFE subroutines with a small number of bitwise
operations.

We can model MS-BFS also as a morsel dispatching policy that
packs multiple source nodes on line 1 of Listing 3 into multi-source
morsels. Using this optimization, we can have variants of the previ-
ous policies. For example, if the query contains 128 source nodes, the
nTkMS policy, for n-Threads-to-k-Multi-Source nodes, can launch
two multi-source morsels and have multiple threads grab frontier
morsels from each multi-source morsel. We will empirically evalu-
ate the behavior of nTkMS in Section 5.

Figure 7: Control flow of IFE operator and morsel dispatcher.

4 IMPLEMENTATION DETAILS
We next describe the details of our implementation of these policies
in Kuzu. Our implementation can be found here [6]. Briefly, Kuzu is
a columnar, disk-based GDBMS. It has a vectorized [1, 11], i.e., batch-
at-a-time, query processor that adopts morsel-driven parallelism.
The query processor is pull-based, where parent operators pull
data from their children tuples via getNextTuples() function calls.
Kuzu stores the adjacency lists of nodes in disk-based compressed
sparse-row (CSR) structures, and access to adjacency lists happens
through the system’s buffer manager.

1 struct SourceMorsel {
2 Frontier currentFrontier, nextFrontier;
3 int curIter; // current iteration of the IFE subroutine
4 IFEPhase phase; // one of enum {FRONTIER_EXTENSION, OUTPUT}
5 AuxState auxState; // other algorithm-specific data, e.g., Parents
6 }
7 class IFE : PhysicalOperator {
8 MorselDispatcher md;
9 EdgeCompute ec; // recursive clause-specific edgeCompute function
10 Graph graph; // provides iterator interface to scan nbrs
11 DestinationNodeMask targetDsts; // possible destination nodes
12 bool getNextTuples() {
13 while (true) {
14 SrcMorsel sm = md.grabSrcMorselIfNecessary(&sm);
15 if (sm == null): return false; // exit
16 if (sm.phase == OUTPUT):
17 OutputMorsel om = md.grabOutputMorsel(&sm);
18 if (om == null): continue;
19 outputPaths(om, sm, dsts); // pipeline outputs to parent op
20 return true;
21 else if (sm.phase == EXTEND_FRONTIER):
22 FrontierMorsel fm = md.grabFrontierMorsel(&sm);
23 if (fm == null): continue;
24 extendFrontier(fm, sm, ec, graph);
25 // if frontier finished, update phase or start new frontier
26 sm.checkIfFrontierFinished();
27 }}}
28 void extendFrontier(FrontierMorsel fm, SourceMorsel sm,
29 EdgeCompute ec, Graph graph) {
30 for (auto u : fm):
31 if (sm.cFrontier->isActive(u)):
32 for (auto v : graph->scanFwd(u)):
33 if (ec.compute(u, v, sm)):
34 sm.nFrontier->setActive(v);

Listing 3: Pseudocode of the IFE operator.

4.1 IFE Operator
Listing 3 shows the pseudocode implementation of the generic IFE
operator, which we implemented as a standard physical operator
in Kuzu. The operator is constructed with several fields:
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• MorselDispatcher implements the different policies we out-
lined in Section 3 (discussed more momentarily).

• Graph is an interface that provides functions, such as scanFwd,
that provide an iterator interface to scan neighbors of vertices
in the database. Internally, it translates these calls to calls that
read database records through the system’s buffer manager.

• EdgeCompute implements the edgeCompute() function that im-
plements a specific instance of an IFE-based recursive algorithm.
We implemented different edgeCompute() functions for the dif-
ferent recursive clauses in Cypher and whether the query re-
quires computing outputs actual paths or only the path lengths,
which require operating on separate auxiliary data structures.2
For reference, Listing 4 shows an example edgeCompute() com-
puting the shortest paths clause that returns the actual paths
(instead of path lengths).

• DestinationNodeMask targetDsts is a “nodemask” that keeps
track of the specific nodes in the graph, for which an output
path or path length needs to be returned. The mask is an array
of boolean values of size the total nodes in the graph.

35 class ShortestPaths : EdgeCompute {
36 void compute(nodeID u, nodeID v, SourceMorsel sm) {
37 if (!sm.auxState.visited[v])
38 sm.auxState.parents[v].addParentEdge(u, sm.curIter);
39 sm.auxState.visited[v] = true; // atomic memory_relaxed op
40 }}

Listing 4: edgeCompute function that computes shortest paths.

Figure 7 summarizes the high-level control flow of the IFE operator
assuming a morsel dispatcher that gives source morsels instead of
multi-source morsels. The thread𝑊 running the operator, inside
a while loop, first grabs a source morsel sm from the morsel dis-
patcher md by calling grabSrcMorselIfNecessary() (line 14). It
is inside this function that different morsel dispatching policies are
implemented.

The SourceMorsel structure, shown on top of Listing 3, repre-
sents the state of an IFE subroutine execution from a single source 𝑠 .
It contains the data structures that are needed by the IFE subroutine,
which include the current and next frontiers, current iteration of
the IFE subroutine, and the auxiliary data structures to store the
intermediate paths that are computed (auxState field). It further
contains a phase field, which can take one of two values:
• FRONTIER_EXTENSION indicates that the IFE subroutine has
not yet finished, i.e., the frontiers have not yet converged.

• OUTPUT indicates that the IFE subroutine has finished, i.e., all
paths from 𝑠 have been computed and now these paths need to
be pipelined to the parent operator.
After𝑊 calls grabSrcMorselIfNecessary(), if there are no

more source morsels (line 15), the computation has finished and the
operator exits. Otherwise, if sm’s phase is FRONTIER_EXTENSION,
𝑊 grabs a frontier morsel from sm and runs edgeCompute() on each
active node in this frontier morsel. Obtaining frontier morsels is a
2We found the Graph and edgeCompute() interfaces very helpful in implementing
different IFE-based recursive algorithms and recommend it to system developers.
These higher-level interfaces are better fits for implementing recursive path finding
algorithms than the standard tuple or vector-based query processor interfaces of
DBMSs to scan and operate on database records.

simple operation that is independent of morsel dispatching policy,
and returns back a range of integer node IDs. After𝑊 finishes its
frontier morsel it calls sm.checkIfFrontierFinished() (line 26),
which checks if all active nodes in the current frontier are processed
and if𝑊 is the last thread to finish its frontier morsel. If so, then𝑊
either moves the computation to the next frontier or if there are no
active nodes in the next frontier, then sets sm’s phase to OUTPUT.

If sm’s phase is OUTPUT, then the thread grabs an output morsel.
The output morsel is a range of node IDs that represent destination
nodes. For each valid destination node 𝑑 , if the computation found
paths from 𝑠 to 𝑑 , then𝑊 outputs each path or path length from 𝑠

to 𝑑 .

4.2 Data Structure Implementations
Frontier:We use a dense frontier implementation to store active
nodes in the current and next frontier. Dense frontiers are arrays
that store one boolean value per vertex in the graph.When frontiers
are swapped at the end of each iteration, we have a variant of
the sparse frontier optimization from Ligra [31]. Specifically, if the
number of nodes in the next frontier is less than 1/8th of all nodes,
we construct an additional sparse version of the frontier in a single
threaded manner and write the ID of every active node to an array.
Parents: When computing paths, we keep paths compactly by
keeping track of the “parents”, i.e., last edges that were used to
visit each node. Figure 8 gives an overview of the data structure
we use. Our data structure consists of: (i) a dense pre-allocated
array that keeps an 8-byte pointer for each vertex (initialized to
null pointers) and that is shared across all threads; and (ii) a set
of memory buffers that are owned by and written to by separate
threads. When thread 𝑇𝑖 needs to write a parent 𝑣 for node 𝑢, it
writes to its memory buffer a tuple with the information about 𝑣 ,
specifically 𝑣 ’s ID and the edge ID of the (𝑣 , 𝑢) edge, and an 8-byte
pointer to the next parent edge on the path. Therefore, for each
edge of each path we compute, we store an additional 24 bytes.
Then 𝑇𝑖 updates 𝑢’s pointer at the dense array to point to this
tuple using compare-and-swap operation (CAS). This computation
happens inside addParentEdge() function on the Parents data
structure, as shown in the example edgeCompute() function in
Listing 4. Figure 8 shows an example when two threads 𝑇 1 and 𝑇 2
attempt to add two parent edges to 𝑢, respectively from𝑤1 and𝑤2.
Shortest Paths-specific structures: Shortest paths computations
has the property that each node 𝑢 can be active only once in one
frontier. To ensure nodes are not put into the frontiers multiple
times, we maintain a global visited array, which is a dense struc-
ture that keeps a boolean value per vertex. Further, if a shortest
paths computation computes only path lengths instead of using the
Parent structure, we use dense structures to store only the lengths
of paths, which we store as 1 byte in our implementation, which is
enough to store the path lengths in the datasets in our experiments.
Data structures for multi-source shortest paths implemen-
tations: Here, we followed the overall implementation in refer-
ence [36] and use 64 bits (for 64 lanes) to represent the active state
of each node in frontiers. We used two frontiers for current and
next and a third visited data structure that also stores 8 bytes (64
bits) per node that indicate for which of the up to 64 IFE subrou-
tines, IFE1, ..., IFEℓ , a node is visited or in the frontier of. Therefore,
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Figure 8: Parents data structure to keep multiple paths.

these auxiliary data structures require 3*8=24 bytes per node per
multi-source morsel. Operations on frontiers and visited arrays can
be done with efficient bitwise operations to update a single node’s
value concurrently for multiple IFE sub-routines. We also require
auxiliary data structures, such as path lengths and parents data
structures for each source in a multi-source morsel. In total, for
each multi-source morsel if there are 64 sources in it, the upfront
memory requirements are as follows. If we are returning only path
lengths, we allocate 24 + 1*64 = 88 bytes per node in the graph. We
do not require further memory during the computation. If we are
returning paths, we allocate upfront 24 + 8*64= 536 bytes per node
and allocate more data during the computation for the thread-level
memory buffers to store additional edges in the paths computed.

Finally, we note that suppose a node 𝑢 is active in iteration 𝑖 for
at least one IFE subroutine. We can tell this by inspecting that its
frontier value 𝑋 is not equal to 0. Further, to update the correct
auxiliary data structures, we need to compute which bits of 𝑋 are
exactly 1. For this, we use the builtin C++ function [12] that gives
the index of the first 1 bit in 𝑋 and we use it iteratively to read the
index of every 1 bit.

4.3 Scheduling Policy Implementations
Different scheduling policies are implemented as different morsel
dispatcher logics for assigning source morsels to threads. This is
represented by the grabSrcMorselIfNecessary(SourceMorsel
sm) function of the MorselDispatcher class in Listing 3. Our im-
plementations of 1T1S is straightforward. We discuss only nTkS
since nT1S is a special case of nTkS. nTkS is configured with a 𝑘 ≥ 1
value and launches up to k source morsels as follows. Whenever a
thread𝑊 asks for source morsel to work on, as long as there are
fewer than 𝑘 source morsels that are already launched, and there
are more sources in the query,𝑊 is dispatched a new source morsel
sm. Then,𝑊 keeps working on sm as long as it can grab frontier
morsels from it (or if sm is in OUTPUT phase, then as long as𝑊
can output paths from sm). That is, our implementation of nTkS is
“sticky”.𝑊 can be dispatched another source morsel if it cannot
find a frontier morsel from sm, which happens at the end of each
iteration 𝑖 of the IFE subroutine.

We also implemented the nTkMS policy. In this policy, threads get
a MultiSourceMorsel struct that represents up to 64 concurrent
IFE subroutines and the necessary auxiliary data structures. This
policy is also configured with a 𝑘 ≥ 1 value and follow the same
logic for dispatching new multi source morsels as the nTkS policy.

5 EVALUATION
We next evaluate our different morsel dispatching policies under
a variety of queries that contain different numbers of sources. We
further study what is a good value of 𝑘 for both nTkS and nTkMS
policies and the performance of the nTkMS policy. All of our datasets
and queries can be found in our code repo [6].

5.1 Experimental Setup
Baselines and Kuzu configurations: We compare 4 different poli-
cies that we implemented in Kuzu with three additional baselines:
• Kuzu-1T1S , Kuzu-nT1S , Kuzu-nTkS , and Kuzu-nTkMS, repre-
sent the policies we implemented in Kuzu. Throughout our
evaluations, we set 𝑘 to 32 in Kuzu-nTkS configuration, except
in Section 5.5. For experiments using Kuzu-nTkMS, we specify
the 𝑘 values explicitly.

• Neo4j: We use Neo4j’s v5.16, which implements a morsel dis-
patching policy that is akin to the 1T1S policy. The difference is
instead of source morsels, Neo4j assigns “(source, destination)-
morsels” to threads. Specifically, each thread is assigned amorsel
of 1024 (source destination) pairs and independently computes
shortest paths between each pair using an IFE-based computa-
tion, which extends frontiers one step from the source node side
and one step from the destination node side. However, Neo4j
does not dispatch work at the frontier level. As such, this ap-
proach behaves similarly to the 1T1S policy. As we will explain
in detail below, our queries limit the number of source nodes but
not the destination nodes. Since Neo4j assigns morsels based
on (source, destination) pairs, Neo4j becomes very inefficient
on these queries. Therefore, we test Neo4j on modified queries
that limit the number of destination nodes to 1024.

• Ligra:We use Ligra, which implements frontier-level parallelism,
as an external baseline for the nT1S policy.

• Duck-nTkS: We tried using the original version of DuckPGQ
as a baseline for comparison, however we encountered sev-
eral problems. Similar to Neo4j, DuckPGQ also issues (source,
destination) morsels. Even when we limited the destination
nodes in our queries, we found DuckPGQ’s MS-BFS implemen-
tation to be very slow and also not parallelize well. We reached
out to the authors of DuckPGQ [35] and verified that this was
expected behavior. Instead, we modified the DuckPGQ code
and implemented our nTkS policy considering only the source
nodes and without the MS-BFS optimization. We refer to this
modified DuckPGQ as Duck-nTkS. Our implementation can be
found here [10]. Unlike Kuzu, which has a disk-based CSR in-
dex that gets created once when the database is constructed,
DuckPGQ creates an on-the-fly in-memory CSR for each query.
We observed that the creation of these in-memory CSRs take a
significant time, so instead of end-to-end times, we only report
the time taken by Duck-nTkS to perform the IFE computation.

Hardware: We use a single machine with Intel Xeon E5-2670 CPU
@2.60GHz processors and 512GB of memory. The machine has 16
physical cores (32 virtual cores) across 2 NUMA nodes with 32 KB
of L1 data cache, 32KB L1 instruction cache, 256 KB L2 cache and
20 MB L3 cache sizes. We use the systems in their default settings,
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e.g., Kuzu sets its buffer manager size by default to 80% of the host
memory (410 GB).
Datasets: Table 2 lists the datasets used in our experiments, which
include the following: (i) LDBC100 is a synthetic graph generated
with LDBC social network benchmark [34] at scale 100; (ii) Liv-
erJournal is the LiveJournal social network graph from the SNAP
graph dataset repository [32]; (iii) Spotify is a graph released by the
music streaming platform Spotify representing songs and pairs of
songs listened together in listening sessions [18]; and (iv) Graph500-
28 is one of the a synthetic graphs released by the LDBC benchmark
at scale 28. We choose these datasets as they vary in their sizes from
20 million to 4.2 billion edges, but each one is large enough that
even recursive queries from a few sources have room for benefiting
from parallelization.

Name |𝑉 | |𝐸 | Avg Degree
LDBC100 448,626 19,941,198 44

LiveJournal 4,847,571 68,993,773 14
Spotify 3,604,454 1,927,482,013 535

Graph500-28 121,242,388 4,236,163,958 35
Table 2: Datasets.

Query workloads: We used query workloads that find shortest
paths starting from a set of source nodes to the rest of the nodes in
the graph, and returning the lengths of the paths or actual paths.
In Cypher, these queries have the below structure:

1 MATCH p = (a:Node)-[r:Rel* SHORTEST]->(b:Node)
2 WHERE a.id IN [s1, ... sn]
3 RETURN len(p)

𝑠𝑖, ..., 𝑠𝑛 values above identify the IDs of sources. We picked each
source node in our workloads randomly and ensured that we can
perform at least 3 levels of IFE computation. We used 3 values for
𝑛 that limit the number of source nodes as follows:
• 1-source workloads in which the queries contain 1 source.
• 8-source workloads in which the queries contain 8 sources.
• 64-source workloads in which the queries contain 64 sources.
In Section 5.6, when we evaluate Kuzu-nTkMS policy, we use work-
loads with 128 and 256 sources as well.

Ligra does not have a query language and its existing shortest
path algorithm finds shortest path lengths from a single source.
We modified the code slightly to run a separate IFE subroutine
from multiple source one at a time. Ligra’s existing shortest paths
algorithm only computes path lengths and not the actual paths, so
we did not use queries that return paths for Ligra.

As discussed above, for Neo4j, we also modified the queries in
1/8/64-source workloads by putting a separate predicate to limit
the number of destinations to 1024. Limiting the queries to contain
1024 destinations ensures that these queries have the same num-
ber of (source, destination) morsels in Neo4j as there are source
morsels in Kuzu configurations. With this workload change, we can
no longer compare the raw performance of Neo4j with our other
baselines. However our primary goal is to compare the parallelism
behaviors of these systems under representative workloads instead
of comparing their raw performances.

Our experiments measure the systems we study with 1, 2, 4,
8, 16, and 32 threads. Tables 3 and 4 report numbers only for the
experiments that contain 1, 8, and 32 threads, since these are the
representative parallelism levels to explain the behaviors we want
to highlight. The longer version of our paper contains additional
figures that show the performances of these systems with 2, 4, and
16 threads. All reported numbers are based on execution on a
warmed up database. We first run each query once to warm up each
system’s buffer manager cache, discard the first execution number,
then report the average of an additional 3 more executions. The
average runtime deviation was 8% across our experiments. The
median deviations were 12.5%, 11%, 5%, and 3% on any experiment,
respectively, on LDBC, LJ, Spotify and Graph500-28.

5.2 1-Source Workloads
In our first set of experiments we measure the runtime of our
baselines on our 1-source workloads as we increase the parallelism
from 1 thread to 32 threads. We expect that systems that implement
1T1S to not parallelize and those that implement frontier parallelism
(i.e., nT1S policy) to parallelize with more threads. We also expect
systems that implement the nTkS policy to parallelize. In particular,
we expect Kuzu-nTkS to mimic the behavior of Kuzu-nT1S.

Tables 3a and 4a show the runtimes under our workloads that
return path lengths and paths, respectively. The tables also report
the CPU utilizations of the systems. Recall that the machine we use
supports 32 virtual cores/threads. As an example, a 50% utilization
indicates that 16 of the threads were busy doing useful work.

Observe that as we expect, both Kuzu-1T1S and Neo4j, which
implements a 1T1S policy, cannot benefit from additional threads.
Instead, Kuzu-nT1S and Ligra benefit from additional threads. On
the queries that return path lengths, Ligra achieves between 9.0x
to 16.4x improvement, while Kuzu-nT1S achieves between 5.0x to
12.8x improvement. Importantly, Kuzu-nTkS mimics the behavior
of Kuzu-nT1S, producing almost identical runtime numbers. Sim-
ilarly Duck-nTkS demonstrates comparable scalability factors to
Kuzu-nT1S on all datasets except for LDBC100. This is because
the underlying DuckDB system allocates as many threads to any
pipelines as there are number of row groups [9] in the underly-
ing scanned table of a pipeline. A row group in DuckDB contains
122880 rows. The pipeline for the IFE computation on LDBC scans
from the node table in DuckDB, which contains 448626 rows. So
the IFE pipeline is assigned only 4 threads on LDBC and the CPU
utilization of Duck-nTkS is around 4/32=12.5%.

We note that Kuzu-nT1S and Ligra are two independent systems
at different performance levels. Ligra is generally faster because it
is a purely in-memory system and accesses adjacency lists directly,
while Kuzu-nT1S accesses them through the buffer manager. Note
that the Duck-nTkS numbers we report are also faster than Kuzu-
nTkS for two reasons. First, DuckPGQ also uses an in-memory CSR
and does not use a buffer manager. Second, recall that we only
report the IFE computation pipeline of Duck-nTkS, as Duck-nTkS’s
end-to-end runtime is dominated by its on-the-fly in-memory CSR
construction pipeline.
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Threads
(→) 1 8 CPU

(%) 32 CPU
(%)

nTkS 331 95 (3.5×) 18 73 (4.5×) 67
nT1S 310 91 (3.4×) 18 62 (5.0×) 70

LDBC 1T1S 312 304 (1.0×) 3 310 (1.0×) 3
Ligra 130 17 (7.6×) 21 14 (9.3×) 82
Neo4j 121 122 (1.0×) 3 121 (1.0×) 3
D-nTkS 69 29 (2.4×) 12 27 (2.6×) 12
nTkS 1975 440 (4.5×) 22 296 (6.7×) 85
nT1S 1890 354 (5.3×) 23 274 (6.9×) 85

LJ 1T1S 1814 1789 (1.0×) 3 1811 (1.0×) 3
Ligra 1411 190 (7.4×) 24 140 (10.1×) 92
Neo4j 324 343 (1.0×) 3 323 (1.0×) 3
D-nTkS 518 123 (4.2×) 23 71 (7.3×) 89
nTkS 15012 2007 (7.5×) 24 1184 (12.7×) 95
nT1S 14389 2106 (6.8×) 24 1121 (12.8×) 95

Sp 1T1S 14372 14289(1.0×) 3 14197 (1.0×) 3
Ligra 20428 3394 (6.1×) 24 1243 (16.4×) 99
Neo4j 3481 3562 (1.0×) 2 3561 (1.0×) 2
D-nTkS 7976 1203 (6.6×) 24 630 (12.7×) 95
nTkS 131963 18662 (7.1×) 22 14854 (8.9×) 91
nT1S 128090 17980 (7.1×) 23 14032 (9.1×) 92

G-28 1T1S 126929 125116(1.0×) 3 120198(1.0×) 3
Ligra 113276 17116 (6.6×) 22 12582 (9.0×) 92
Neo4j 136929 135116(1.0×) 3 119092(1.0×) 3
D-nTkS 61591 10557 (5.8×) 22 6288 (9.8×) 91

(a) 1-Source Workload

1 8 CPU
(%) 32 CPU

(%)
2177 320 (6.8×) 24 190 (11.5×) 97
2089 485 (4.3×) 17 401 (5.2×) 66
2077 358 (5.8×) 22 346 (5.8×) 23
635 118 (5.4×) 21 86 (7.4×) 79
808 157 (5.1×) 22 159 (5.1×) 23
602 174 (3.5×) 13 173 (3.5×) 13
15800 2311 (6.8×) 24 1258 (12.6×) 99
15708 3141 (5.0×) 18 2244 (7.0×) 70
15749 2581 (6.1×) 23 2316 (6.8×) 24
8803 1543 (5.7×) 20 871 (10.0×) 78
14993 2541 (5.9×) 23 2458 (6.1×) 24
4062 745 (5.5×) 23 404 (10.1×) 98
121401 16845 (7.2×) 24 8723 (14.0×) 98
121307 16617 (7.3×) 24 8985 (13.5×) 93
121703 20627 (5.9×) 23 19503 (6.2×) 24
131963 23992 (5.5×) 22 10828(12.2×) 95
63138 12428 (5.1×) 22 12380 (5.2×) 23
67712 10213 (6.6×) 23 5514 (12.3×) 98
716313 100548 (7.1×) 23 64943 (11.0×) 96
713313 127377 (5.6×) 17 90292 (7.9×) 69
710989 106117 (6.7×) 22 103557(7.0×) 23
647141 156599 (4.1×) 17 69137 (9.4×) 74
1819017 271495 (6.7×) 23 267502(6.9×) 23
348438 58744 (6.0×) 23 33725 (10.3×) 95

(b) 8-Source Workload

1 8 CPU
(%) 32 CPU

(%)
15683 2140 (7.3×) 24 1073 (14.6×) 98
15598 3391 (4.6×) 18 3058 (5.1×) 67
15609 2230 (7.0×) 21 1334 (11.7×) 80
3463 815 (4.2×) 19 498 (7.0×) 75
7581 1025 (7.4×) 21 681 (11.1×) 81
4329 1178 (3.6×) 12 1165 (3.7×) 12
124197 18601 (6.7×) 24 8952 (13.9×) 98
123957 25824 (4.8×) 19 16310 (7.6×) 72
124087 20681 (6.0×) 21 12285 (10.1×) 82
66141 11617 (5.7×) 20 7622 (8.7×) 78
113919 18374 (6.2×) 21 10689 (10.7×) 80
34222 5692 (6.0×) 24 3074 (11.1×) 98
955169 132885 (7.2×) 24 82740 (11.5×) 91
955109 136444 (7.0×) 24 72109 (13.3×) 94
948231 155448 (6.1×) 21 93884 (10.1×) 80
1065394 184212 (5.8×) 20 91849 (11.6×) 92
2381885 590591 (4.0×) 19 246495 (9.7×) 80
818891 133735 (6.1×) 23 58913 (13.9×) 93
4959436 795891 (6.2×) 24 416996 (11.9×) 95
4929436 1095430 (4.5×) 18 631978 (7.8×) 70
4939436 809743 (6.1×) 21 519940 (9.5×) 73
4407690 1275313 (3.5×) 17 523052 (8.4×) 74
5898289 966932 (6.1×) 22 620872 (9.5×) 78
2748338 407708 (6.7×) 24 231375 (11.8×) 96

(c) 64-Source Workload

Table 3: Runtime (ms) and CPU utilizations (for 8 and 32 threads) for path length queries. D-nTkS is Duck-nTkS.

Threads
(→) 1 8 CPU

(%) 32 CPU
(%)

nTkS 971 152 (6.4×) 18 89 (10.9×) 87
nT1S 951 158 (6.1×) 18 87 (11.0×) 89

LDBC 1T1S 959 961 (1.0×) 3 965 (1.0×) 3
Neo4j 172 175 (1.0×) 3 178 (1.0×) 3
D-nTkS 202 67 (3.0×) 13 67 (3.0×) 13
nTkS 5129 954 (5.4×) 22 540 (9.5×) 87
nT1S 5117 979 (5.2×) 23 531 (9.6×) 88

LJ 1T1S 5095 5079 (1.0×) 3 5158 (1.0×) 3
Neo4j 1110 1069 (1.0×) 3 1057 (1.0×) 3
D-nTkS 1345 250 (5.4×) 23 141 (9.6×) 88
nTkS 24471 3437 (7.1×) 24 1847 (13.3×) 93
nT1S 24171 3597 (6.7×) 24 1778 (13.6×) 94

Sp 1T1S 24729 24829(1.0×) 3 24419(1.0×) 3
Neo4j 5671 5579 (1.0×) 2 5694 (1.0×) 2
D-nTkS 13001 1826 (7.3×) 24 981 (13.2×) 94
nTkS 212099 28984 (7.3×) 22 19325 (11.0×) 91
nT1S 215005 29019 (7.4×) 23 19201 (11.2×) 92

G-28 1T1S 210019 208298(1.0×) 3 205902(1.0×) 3
Neo4j 30192 31777 (1.0×) 3 30395 (1.0×) 3
D-nTkS 98992 13527 (7.4×) 22 9019 (11.2×) 91

(a) 1-Source Workload

1 8 CPU
(%) 32 CPU

(%)
5175 727 (7.1×) 24 391 (13.3×) 99
4961 844 (5.9×) 17 586 (8.5×) 68
4991 745 (6.7×) 23 674 (7.4×) 24
3485 601 (5.8×) 22 580 (6.1×) 23
1431 485 (3.0×) 13 477 (3.0×) 13
39981 5701 (7.1×) 24 3236 (12.4×) 99
40343 6165 (6.5×) 18 4101 (9.8×) 71
39091 6023 (6.5×) 23 5505 (7.1×) 25
50195 9842 (5.1×) 23 9126 (5.5×) 24
10278 1465 (7.0×) 24 830 (12.5×) 99
194690 27462 (7.1×) 24 13235 (14.7×) 97
193905 25392 (7.6×) 24 13063 (15.0×) 98
192998 25733 (7.5×) 23 24775 (7.8×) 24
34044 5158 (6.6×) 22 5007 (6.8×) 24
108589 15317 (7.2×) 23 7081 (14.9×) 98
1236007 167390 (7.4×) 23 99185 (12.5×) 95
1229780 168026 (7.3×) 17 119275 (10.3×) 65
1231109 163930 (7.5×) 22 167270 (7.4×) 24
247201 41898 (5.9×) 23 40524 (6.1×) 23
601234 81423 (7.8×) 23 48246 (12.6×) 95

(b) 8-Source Workload

1 8 CPU
(%) 32 CPU

(%)
35827 4808 (7.4×) 24 2315 (15.5×) 98
35992 6209 (5.8×) 18 4530 (8.0×) 68
35920 5434 (6.6×) 21 3292 (11.0×) 79
29474 4151 (7.1×) 21 2631 (11.2×) 80
9889 3015 (3.3×) 12 2996 (3.3×) 13
318855 44892 (7.1×) 24 22089 (14.5×) 97
321421 48396 (6.6×) 19 32281 (9.8×) 70
321879 49519 (6.5×) 21 27025 (11.9×) 80
478855 61391 (7.8×) 21 36140 (13.2×) 80
87859 12369 (7.8×) 24 6086 (14.9×) 97
1578916 217542 (7.3×) 24 126666 (12.5×) 90
1550691 203740 (7.6×) 24 110323 (14.1×) 95
1561234 207060 (7.5×) 21 148688 (10.5×) 81
2023172 293213 (6.9×) 19 175928 (11.5×) 82
1188343 163729 (7.2×) 23 98210 (12.2×) 90
8315386 1285103 (6.5×) 24 615954 (13.5×) 94
8419386 1326979 (6.3×) 18 889690 (9.5×) 69
8419193 1360128 (6.2×) 21 764686 (11.0×) 75
10759211 1605852 (6.7×) 22 847182 (12.7×) 77
4608082 712157 (6.6×) 24 301182 (15.3×) 94

(c) 64-Source Workload

Table 4: Runtime (ms) and CPU utilizations (for 8 and 32 threads) for path queries. D-nTkS is Duck-nTkS.

5.3 8-source Workloads
We next evaluate our baselines on workloads that contain multiple
sources but smaller than the number of available threads, using our
8-source workloads. Here we expect that systems that implement
1T1S policies to benefit from parallelism up to 8 threads, which
are the number of sources in these workloads. We expect nT1S
policies to behave similar to the single-source experiments, since
these policies should repeat their previous behaviors on each source.
Kuzu-nTkS should on the other hand outperform both policies. This
is because unlike 1T1S, it can use all threads when more than 8

threads are available and unlike nT1S it is not limited by the amount
of parallelism achievable on a single frontier.

Tables 3b and 4b show our results for all of our datasets. Observe
that now both Kuzu-1T1S and Neo4j parallelize up to 8 threads
and then flatten as there are not enough source morsels to issue to
threads. This is why the CPU utilization for both these cases reach
at most 25%, which corresponds to 8 threads out of 32, across all
datasets. Kuzu-1T1S achieves between 5.8x and 7.8x improvements,
while Neo4j achieves between 5.1x and 6.9x improvements. Further,
Kuzu-nT1S and Ligra achieve similar scalability levels as before: on
the queries that return path lengths, Ligra achieves between 7.4x
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to 12.2x improvement, while Kuzu-nT1S achieves between 5.2x to
13.5x improvement.

Kuzu-nTkS achieves more robust parallelism on the same work-
loads, parallelizing between 11.0x-14.0x. Duck-nTkS behaves similar
to Kuzu-nTkS except on LDBC, where it again is assigned only 4
threads due to row group based processing. The improvements of
Kuzu-nTkS over Kuzu-nT1S is especially visible on the LDBC graph,
where Kuzu-nT1S achieves a very limited parallelism of 5.2x. In-
stead, Kuzu-nTkS can achieve 11.5x improvement here, improving
absolute runtime by 2.1x. This indicates that when the frontier of a
specific IFE subroutine gets sparse and Kuzu-nT1S starts keeping
threads idle, Kuzu-nTkS can keep those threads active on other con-
currently running IFE subroutines. This behavior is also reflected
by the higher CPU utilization numbers for Kuzu-nTkS than other
policies. We observe similar patterns on the queries that return
paths, where Kuzu-nT1S achieves between 8.5x-14.1x improvement
factors. In contrast, Kuzu-nTkS achieves more robust improvements
factors of between 12.4x to 14.7x. Spotify is an outlier here, where
the runtime and CPU utilization gap between nTkS and nT1S policy
is not significant. This is because Spotify has a very high average
degree, which leads to denser frontiers. Therefore, even if a single
source’s IFE computation is active at any point, there is enough
work to keep all threads busy and we do not need to launch multi-
ple concurrent IFE computations. As a result, nT1S scales better on
Spotify than other datasets.

5.4 64-source Workloads
Our next set of experiments evaluates the behavior of nTkS and our
baselines when the query has more sources than total threads in
the system. We now expect nTkS to mimic the behavior of systems
that implement the 1T1S policy, but we can also expect it to beat
its performance. The reason for this is that in the last phases of
the computation for 1T1S, once number of available sources go
below 32, 1T1S policies start to keep some threads idle. Instead in
nTkS, those threads start helping other IFE subroutines that are
continuing to execute. Finally, we expect the nT1S policies to behave
similar to their previous behaviors.

Tables 3c and 4c show our results for all of our datasets. As
expected, Ligra and Kuzu-nT1S continue behaving similar to the
previous experiments. Observe that we no longer see Neo4j and
Kuzu-1T1S policies flattening as there are enough source morsels
to keep threads busy. Neo4j now achieves between 9.5x to 13.2x
improvements while Kuzu-1T1S achieves between 7.8x to 11.9x
improvements. Importantly, except on the Spotify dataset, Kuzu-
1T1S now consistently outperforms Kuzu-nT1S and achieves better
scalability numbers.

Kuzu-nTkS achieves between 11.5x and 15.5x improvements.
Duck-nTkS similarly achieves between 11.1x and 15.3x improve-
ments (again except on LDBC). Observe that Kuzu-nTkS is consis-
tently competitive with or outperform Kuzu-1T1S. This is because
once the number of active IFE subroutines reduces below the num-
ber of threads, Kuzu-1T1S starts keeping threads idle. This is why
it consistently achieves lower CPU utilization numbers than Kuzu-
nTkS. Instead, Kuzu-nTkS keeps those threads busy by dispatching
them work from IFE subroutines that have not yet finished.

(a) nTkS experiments.

(b) nTkMS experiments.

Figure 9: (a) Kuzu-nTkS and (b) Kuzu-nTkMS performances
under varying 𝑘 . The values on top of the bars are 𝑘 values.
Improvement factors are over using 𝑘=1.

In summary, our experiments so far demonstrate that the nTkS
policy is a robust approach to obtaining good scalability across query
workloads that contain few source nodes to those with more source
nodes than the number of threads. This is because although nTkS
implements a mechanism to dispatch work from the frontiers of
each IFE subroutine, whenever frontiers get sparse and there is con-
tention, it moves threads to other frontiers from which more work
can be given. Therefore, we recommend it to system developers as
a robust morsel dispatching policy.

5.5 Effects of the Choice of 𝑘
Recall that the parameter 𝑘 in the nTkS policy determines the num-
ber of concurrent sources that will be dispatched to threads. So far
in our experiments, we set this value to 32, which is the maximum
number of threads we use in our experiments. This value ensures
that threads work on separate sources when possible and only work
together on the same source when the total active sources is con-
strained through 𝑘 or if there are no new sources left to launch. Our
next set of experiments study the effects of the choice of 𝑘 on the
performance of nTkS. We use 32 threads and use our 64-sources
workload that return path lengths and vary 𝑘 from 1 to 32. Figure 9a
shows the improvement factors we get as we increase 𝑘 over using
𝑘=1. We see that increasing 𝑘 generally improves performance by
up to 3x on our datasets, except in Spotify, where we see a 1.15x
performance loss.

To better understand this differing behavior, we analyzed the
CPU metrics using Linux perf tool on the Spotify experiments. First,
no matter what the value of 𝑘 is, the CPU utilization is high across
all Spotify experiments. CPU utilization is a good metric for how
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well the computation is parallelizing, e.g., is there contention on
locks, but not necessarily whether the CPUs are doing actual work
or stalled for memory accesses. Instead, the runtime behavior nTkS
policy on Spotify is related to the CPU cache hit rate. Table 5 shows
the LLC-Load throughputs for each experiment from Figure 9. LLC-
Load is the number of memory requests that was served from the L3
cache. Observe that except for Spotify, LLC-Load increases in each
dataset as 𝑘 increases, which correlates with the runtime pattern in
Figure 9. In contrast for Spotify, we see a decrease after 𝑘 = 4 (from
50.1M to 38.2M).

We hypothesized that this behavior must be driven by the aver-
age degree in these graphs. Spotify has an average degree of 535.
This is much larger than other datasets, which have an average
degree of at most 44. First, this explains why the LLC throughput
is significantly larger in Spotify (between 38-50M loads/second)
compared to other datasets (at most 24M loads/second). That is, the
IFE computation performs a lot more memory accesses in general.
More importantly, a high average degree implies that on average,
nodes will have many common neighbors. Therefore, threads that
are extending the frontiers of the same source morsel access the
common locations in the same visited array structure to check if a
neighbor is already visited or not. To verify this, we provide addi-
tional metrics in the longer version of this paper [7] that directly
measures the average number of times each node is accessed in the
visited array across experiments on different datasets. This leads to
a higher L3 cache hits. However, as k increases, this cache locality
decreases, since threads start working on different auxiliary data
structures and access different visited arrays.

To verify that increasing 𝑘 can lead to lower cache locality as
graphs get denser, we performed a further controlled experiment.
We generated a set of random Erdős-Renyi graphs, each with 5
million nodes, and increasing average degrees from 25 to 500. Then
we repeated our experiment studying the effect of𝑘 . Figure 10 shows
our results. Starting with an average degree of 100 (500M edges),
increasing 𝑘 can start degrading performance. Further, the denser
the graph, the lower the value of 𝑘 at which further increases in 𝑘

start degrading the performance. Specifically at average degrees 100
(500M edges), 250 (1.25B edges), and 500 (2.5B edges), performance
degrades at 𝑘 = 16, 𝑘 = 8, and 𝑘 = 4, respectively. In summary, the
optimal choice of 𝑘 depends on how dense the input graph is. On the
one hand, increasing 𝑘 increases the total parallelism we can extract
from the nTkS policy and improves performance. At the same time,
as the average degrees of input graphs increase, this gain can be offset
by a loss of CPU cache locality and in balance degrade performance.
Systems that use the nTkS policy can use the average degrees as a
proxy to select an appropriate 𝑘 value.

5.6 Multi Source Morsel Optimization
Our final set of experiments evaluate the performance benefits of
nTkMS policy. Recall that MS-BFS has the benefit of reducing the
amount of scans by sharing scans across multiple IFE subroutines.
At the same time, it has some overheads. Specifically, when a node
𝑢 is visited in an IFE, i.e., put into a frontier, its 64-bit visited status
changes. We need an additional loop to find out all the frontiers that
𝑢 is part of to update the other data structures. We first evaluate
this optimization on query workloads that contain 1 to 256 sources

k → 1 2 4 8 16 32

LDBC
Time 4.1 3.3 2.3 1.5 1.3 1.2
LLC Tp 10.9 11.4 13.9 19.4 23.6 23.9
CPU % 66 78 85 88 95 98

LJ
Time 37.5 31.2 22.6 13.5 10.3 9.7
LLC Tp 6.2 6.5 7.2 9.5 10.7 10.9
CPU % 87 90 92 93 96 98

Sp
Time 82.8 71.8 68.7 73.0 82.8 95.6
LLC Tp 40.4 48.5 50.1 48.6 43.1 38.2
CPU % 94 96 98 97 95 91

G-28
Time 938.9 766.0 640.0 492.9 449.9 432.0
LLC Tp 12.7 15.1 17.2 21.2 23.0 24.0
CPU % 70 80 87 92 95 96

Table 5: Runtime (s) vs LLC Throughput (Tp, Million/s).
64-src workload

Figure 10: Varying 𝑘 for random Erdős-Renyi graphs.

using Kuzu-nTkMS configuration with 𝑘 = 4. As a baseline, we use
the standard Kuzu-nTkS configuration with 𝑘 = 32.

Figure 11 shows the performance improvements of Kuzu-nTkMS
over Kuzu-nTkS as we increase the number of sources in the queries.
The solid and dashed lines represent the results when using query
workloads that return lengths and paths, respectively. First, observe
that Kuzu-nTkMS is often slower than Kuzu-nTkS when using fewer
than 32 sources. Unless enough sources are available for a single
multi-source morsel, the overhead of Kuzu-nTkMS is higher than
its benefits. When we saturate the “lanes”, using the optimization
improves performance, 1.4x-4.4x across the different datasets and
query workloads.

Observe that starting with 128 sources, experiments that re-
turn paths run out of memory on Graph500-28. Recall from Sec-
tion 4.2 that we pre-allocate 536 bytes per node, per multi-source
morsels. Therefore, the pre-allocated memory requirements for
2 multi-source morsels for Graph500-28, which has ∼120 million
nodes, is 128 GB. With the space needed to store the actual paths,
this exceeds the memory capacity of our machine. Returning path
lengths requires only 21 GB allocation for 2 multi-source morsels
and the size of the memory footprint does not increase during
computation.

In our next and final set of experiments, we repeat our exper-
iment from Section 5.5 and study the effect of 𝑘 on Kuzu-nTkMS.
We use the 256-source workload returning path lengths and vary
𝑘 . Figure 9b shows that as long as the system is not running out
of resources, a larger 𝑘 improves performance. For Kuzu-nTkMS
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Figure 11: nTkMS (𝑘 = 4) improvement over nTkS (𝑘 = 32).

the improvement factors are less compared to Kuzu-nTkS policy
because as long as there are more that 64 sources in the queries,
even when 𝑘 = 1, a single multi-source morsel keeps threads busy.
An advantage of packing multiple sources together is that frontiers
generally remain denser because they represent the union of 64
IFE computations running at the same time. Finally, similar to our
previous experiments we see that Kuzu-nTkMS benefits least on our
Spotify graph, which has the highest average degree, on which the
CPU utilization is consistently already very high for 𝑘 = 1.

Prior work [35] has provided experiments for MS-BFS only on
queries that return lengths and only on workloads that saturate at
least onemulti-sourcemorsel. Our conclusions forMS-BFS aremore
nuanced. Specifically, we observe important runtime benefits only
when the number of sources are large enough to saturate many of the
lanes in a multi-source morsel. Further, on queries that return paths,
the memory footprint of computing the paths for a large number
of sources can be prohibitively large. Systems implementing this
optimizations should decide when to trigger this optimization based
on the return type and the number of source nodes in the queries.

6 RELATEDWORK
Morsel-driven parallelism is related to the seminal Volcano sys-
tem’s [13, 14] parallelism model. Graefe has introduced several
parallelism techniques in the context of the Volcano system. Im-
portantly, he introduces horizontal parallelism, which refers to two
separate approaches. First is bushy parallelism, which runs differ-
ent subplans that do not depend on each other independently on
separate threads at the same time. This is a form of task-level paral-
lelism. Second is intra-operator parallelism, which splits the input
of an operator into multiple partitions. This is a form of data-level
parallelism. Morsel-driven parallelism a form of data parallelism
that extends Volcano’s intra-operator parallelism, where the in-
puts are partitioned in a much more fine-grained manner than in
the Volcano system (always at the leaves of the subplans/tasks).
While many modern systems adopt data-level parallelism, such as
DBMSs adopting morsel-driven parallelism, Spark [37], and Timely
Dataflow [24], there are also systems that adopt hybrid task- and
data-level parallelism approaches [5].

Our design space includes the vertex-centric parallelism ap-
proach of parallel or distributed graph analytics systems. Systems
such as Pregel [23], Ligra [31], GraphChi [19], GraphLab [21] have
been based on this model of parallelism. These systems have vertex-
or edge-centric APIs, such as Ligra’s edgeCompute() function, that
assume an IFE-based computation. Programmers implement these
functions to describe the computation that should be done per
vertex or edge. Then, the system automatically parallelizes the ex-
ecutions of these functions using vertex-centric parallelism that
parallelize work at each frontier. Our implementation uses Ligra’s
API to implement parallel versions of recursive algorithms, includ-
ing recursive path finding algorithms, such as transitive closure,
shortest paths [19, 23, 27, 31]. Implementing recursive algorithms
in a DBMS with a vertex-centric abstraction however, deviates from
the tuple-based abstraction that is used in other physical operators
in a DBMS. Another parallelism approach is to use OpenMP [28]
or a similar multi-threading library to automatically parallelize
loops using their own thread pools. These threading libraries are
adopted in several in-memory graph analytics libraries, such as
graph-tool [29], which support a suite of batch graph algorithms.
IFE-based graph algorithms that can be modeled as sparse matrix
multiplication-based computations are also studied extensively in
the high-performance computing literature. There is extensive work
in this literature on communication-avoiding algorithms that aim to
minimize the communication between a set of distributed/parallel
compute nodes by advanced data partitioning approaches [8, 33].
For example, in 2D partitioning approaches, a matrix𝑀 , each row
of which represents an adjacency lists, is partitioned into subma-
trices whose dimensions have size roughly the square root of𝑀’s
dimensions. Our work differs from this literature in that we assume
an IFE algorithm executing inside a DBMS that has a standard data
layout in which the threads can scan the entire adjacency lists of
each node.

7 CONCLUSIONS
In this paper we studied several approaches in prior literature to
parallelize recursive path-finding queries in GDBMSs: (i) vanilla
morsel-driven parallelism of GDBMSs; (ii) frontier-level parallelism
of graph analytics libraries; and (iii) the multi-source morsel op-
timization. We first showed that these approaches can all be in-
tegrated to into DBMSs that adopt morsel-driven parallelism as
different morsel dispatching policies that assign source (or multi-
source) morsels and frontier-morsels to threads. We then extended
them with hybrid policies, which we call nTkS and nTkMS policies
that dispatch both source and frontier morsels. We then experimen-
tally evaluated and analyzed their pros and cons on a variety of
query workloads, especially recommending the nTkS policy as a
robust policy to parallelize recursive queries. Our work focused
on queries using walk semantics of paths, which allows multiple
nodes and edges to be repeated. One important venue for future
work is to study queries under the two other path semantics in
modern graph query languages, which are trail and acyclic. These
semantics respectively limit edges and nodes from being repeated
in the paths. It is important to study the optimizations that can
be applied to directly compute these semantics, especially under
parallel execution.
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