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ABSTRACT

Time series imputation models have traditionally been developed

using complete datasets with arti�cial masking patterns to simulate

missing values. However, in real-world infrastructure monitoring,

practitioners often encounter datasets where large amounts of data

are missing and follow complex, heterogeneous patterns. We in-

troduce DIM-SUM, a preprocessing framework for training robust

imputation models that bridges the gap between arti�cially masked

training data and real missing patterns. DIM-SUM combines pat-

tern clustering and adaptive masking strategies with theoretical

learning guarantees to handle diverse missing patterns actually

observed in the data. Through extensive experiments on over 2

billion readings from California water districts, electricity datasets,

and benchmarks, we demonstrate that DIM-SUM outperforms tradi-

tional methods by reaching similar accuracy with lower processing

time and signi�cantly less training data. When compared against

a large pre-trained model, DIM-SUM averages 2x higher accuracy

with signi�cantly less inference time.
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1 Introduction

This paper considers the challenge of learning imputation models

for large univariate time series datasets in the wild, where the input

dataset may contain a signi�cant number of missing values. Our

motivation stems from the domain of civil infrastructuremonitoring

(e.g. water utilities, energy metering, intelligent transportation)

where time series data is collected by multiple organizations over

extended periods at �xed intervals. Such datasets frequently contain

substantial missing values from factors such as sensor failures,

communication interruptions, system maintenance, and software
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issues. For example, in our analysis of water data in California, we

observed a water district with 47% of the expected values missing.

Large-scale missing data issues arise across various infrastruc-

ture datasets. Electric grid monitoring systems frequently experi-

ence signi�cant gaps in data collection, particularly during periods

of high load when data is most valuable. Studies by [23, 38] found

that 47.14% of individual readings can be missing, with 51.26% of

readings being up to a half a day of continuous missing values.

Similarly, loop sensor from the CA Dept. of Transportation’s PEMS

system [9] exhibits wide variations in missing data, with reporting

areas experiencing between 38% to 76% missing values.

Beyond the sheer volume of missing data, infrastructure datasets

often exhibit distinct missing patterns that correlate with speci�c

operational factors. For instance, water meters from the same man-

ufacturer may exhibit synchronized data gaps due to shared main-

tenance schedules or minimum required signal strengths for data

transmission. In the electric domain, [23] reported that understand-

ing the relationship between voltage �uctuations and downstream

load consumption in power grids improves the characterization

and imputation of missing data. Given the level of missing values

and the domain knowledge required, applying plug-and-play impu-

tation techniques across infrastructure domains is challenging.

Traditional approaches to learning imputation models begin by

dividing time series data into �xed-length windows (e.g., hourly

periods) to capture temporal patterns and dependencies. A window

is considered complete if it contains all expected measurements

within its interval [53]. For example, if sensors report readings

every 15 seconds, a complete 1-minute window would contain four

measurements at their expected timestamp intervals. These com-

plete windows serve as training data, where values are arti�cially

masked (removed), and models are trained to reconstruct these

masked values. However, in the wild it can be challenging to �nd a

su�ciently large clean dataset with complete windows for training.

A comprehensive survey of time series imputation models, in-

cluding various machine learning and deep learning approaches,

can be found in [18, 43]. Recent machine learning advances have

demonstrated signi�cant improvements through several architec-

tures: SAITS [14] employs self-attention mechanisms for robust

imputation; non-stationary transformers [29] are designed to han-

dle varying temporal dependencies; MRNN [54] implements multi-

directional recurrent neural networks for complex temporal re-

lationships in streaming data with missing values; StemGNN [6]

utilizes a graph neural network with a spectral GNN for capturing

inter-series correlations and temporal dependencies; and CSDI [42]

employs a conditional score-based di�usion model for imputing

missing values by learning to reverse a noising process.
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While these sophisticated architectures o�er valuable insights

into handling missing data, they often treat missing values as ran-

dommasks or assume patterns drawn from prede�ned distributions,

rather than as complex, domain-in�uenced structures. While this

strategy has been e�ective in domains such as air quality, healthcare,

and activity recognition [54], it presents challenges in large-scale

infrastructure settings, where there is large datasets with signi�-

cant amounts of missing values. These settings are characterized

by numerous missing patterns that, despite their complexity, are

recorded and reported at �xed intervals. Thus, an underlying as-

sumption in our work is that we operate with a complete dataset.

This means we presuppose a �xed data interval and an expected

quantity of data points within that interval.

Several innovations have explicitly addressed how to represent

large and diverse patterns of missing data to feed into an impu-

tation model. A signi�cant advancement is DAGAN [28], which

utilizes two Generative Adversarial Networks (GANs) to learn and

replicate missing patterns from real-world datasets. By training

on actual production data rather than synthetic patterns, DAGAN

aims to model the complexity of real-world missingness. It intro-

duces a method of "projecting" test set values with missing patterns

onto the training set to create pattern-speci�c masks for model

training. Another strategy involves consolidating multiple datasets

into a single, large pretrained model capable of processing substan-

tial data and adapting to various missing data patterns, such as

Amazon’s Chronos [1]. Both of these techniques fundamentally

assume that the entire dataset is known upfront. This includes both

observable data and what might be termed "non-observable pat-

terns"—essentially, the awareness that an expected value is missing,

thereby reducing the anticipated amount of data. Methodologies

designed to leverage real patterns of missing data inherently rely

on this comprehensive, upfront knowledge of the dataset.

Hence, our goal is to explore how imputation models can be

aware of real missing patterns, and "bake" them into the training

process. Previous work has focused on explicitly de�ned patterns,

single sources of missing data, or are assumed to be completely

known during training time (e.g., from production datasets [28]).

In contrast, infrastructure time series settings often have implicit

missing patterns that can be numerous and often cluster based on

characteristics such as meter type and land-use, e.g., single-family

homes exhibit di�erent usage and missing patterns than industrial

factories or multi-family homes.

To address this challenge, we develop DIM-SUM: a generic

framework for baking missing patterns into time series imputation

models. DIM-SUM introduces a model-agnostic framework that

enhances existing imputation methods by systematically incorpo-

rating missing patterns discovered through data analysis. Rather

than developing new architectures or merging existing approaches,

DIM-SUM provides a methodology that allows any imputation

model to learn from and adapt to varying patterns of missing data.

This enables practitioners to select models based on their speci�c

data needs while maintaining robust performance across di�er-

ent missing scenarios and signi�cantly reducing the amount of

data that needs to be used for training. Our contributions are as

follows:

• We propose a technique to preprocess imputation

models for large time series datasets using limited

training data. DIM-SUM provides a framework that can

be applied with any existing imputation model (Section 3).

• We introduce a methodology for baking data from

clean and dirty sources and projecting them into training

data with minimal additional noise (Sections 4 & 5).

• We provide probabilistic bounds for the quality of

trained imputation models given diverse data sources

and unknown patterns of missing data (Section 5.3).

• We evaluate our framework on six large-scale datasets

from water, electric, and weather domains, comparing

DIM-SUM against several baselines: (i) a direct model ap-

proach using �xed missing patterns, (ii) GAN-based meth-

ods that simulate various missing patterns, and (iii) pre-

trained large language models (Section 6).

2 Related Work

The study ofmissing data patterns is well-established [12, 20, 26, 31],

with statistics categorizing missing data as Missing Completely at

Random (MCAR), Missing at Random (MAR), and Missing Not at

Random (MNAR) to describe the relationship between missingness

and data values [27, 37]. In infrastructure time series, instances

of missing values are typically known due to the data’s periodic

nature [37]. While traditional imputation methods often assume

MCAR (where missingness is independent of data values), infras-

tructure settings frequently exhibit complex MNAR patterns (e.g.,

sensor failures due to extreme conditions, where missingness re-

lates to unobserved values) or MAR patterns (e.g., scheduled main-

tenance, where missingness depends on observed variables).

Addressing these challenges, traditional database systems have

adapted and scaled statistical methods for large-scale time series

processing [18, 19, 21, 30, 35, 41]. Early systems integrated imputa-

tion directly into query processing, such as ImputeDB [5], while

later frameworks like HoloClean [34] introduced scalable prob-

abilistic data repair. These evolved into distributed systems like

DAME [49] and EDIT [31], which implement variants of classical im-

putation methods while maintaining statistical guarantees [15, 25].

Furthermore, approaches like GRAIL [53] have focused on e�cient

time-series representation learning and processing at scale, inform-

ing scalable imputation strategies.

Deep learning has signi�cantly advanced imputation by captur-

ing complex temporal dependencies [52]. Recurrent Neural Net-

works (RNNs) like BRITS [7], GRUD [8], and MRNN [54] utilized

bidirectional structures and mechanisms for variable-length or

streaming data. Transformer architectures, including SAITS [14],

non-stationary transformers [29], ETSformer [50], and DAMR [36],

have e�ectivelymodeled long dependencies using self-attention [56].

Other innovations include ImDi�usion [10] using di�usion mod-

els, CSDI [42] employing conditional score-based di�usion, Se-

ries2Graph [4] combining imputation with graph representations,

StemGNN [6] leveraging spectral graph neural networks, uncertainty-

driven networks [16] aiming for e�ciency, and approaches like

DeepMVI [2] focusing on multidimensional time series.

DAGAN [28] made strides in incorporating realistic missing pat-

terns but has limitations for infrastructure data. It learns mappings
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Figure 1: Overview of the DIM-SUM Preprocessing (0, 1, 2) and Training (3, 4, 5) Framework for Time Series Imputation

from a single clean dataset to multiple missing patterns, necessitat-

ing separate models for each source and struggling with the scale

of millions or billions of readings. This approach is computationally

challenging for infrastructure settings that require handling multi-

ple source patterns mapping to multiple target patterns within a

uni�ed, e�cient framework. Furthermore, DAGAN’s GAN-based

architecture lacks theoretical guarantees regarding the �delity of

learned missing patterns or their reproduction during training.

3 The DIM-SUM Approach and Architecture

Figure 1 illustrates the various steps of DIM-SUM and how the

componentswork together to create a robust imputation framework.

Algorithm 1 describes the data preparation and clustering steps (0, 1

and 2) in DIM-SUM, while Algorithm 2 speci�es the model training

steps (3, 4, and 5) in the DIM-SUM learning technique. A more

detailed overview of 1 can be found in Section 4 and a discussion

of the training process is found in 5.

0. Windowing Function: DIM-SUM begins by ingesting a col-

lection of univariate time series � = {G1, . . . , GĊ }, where each

sequence Gğ ∈ R
Đ consists of ) time steps that are partitioned into

smaller, �xed-length windows (Algorithm 1, lines 2-5). This step

standardizes sequence lengths, accommodates varying sampling

rates, and ensures that imputation models operate on locally con-

sistent patterns. Speci�cally, we apply a tumbling window function

of sizeF , resulting in each sequence Gğ being divided into Đ
ĭ non-

overlapping segments G
( Ġ )
ğ . If a sequence contains 1,000 readings

and F = 100, it is split into 10 partitions. Each window retains

an associated mask 1
( Ġ )
ğ ∈ {0, 1}ĭ , where 1 indicates an observed

value and 0 denotes a missing value. After windowing, we con-

struct two subsets: �+, containing fully observed windows, and

�− , containing windows with missing values, where |�+ | j |�− |.

1. Clustering Complete Sequences. To introduce structure in

the training data, we �rst cluster fully observed sequences in �+

(Algorithm 1, lines 6-7). Since time series data can exhibit highly

variable patterns, direct imputationwithout accounting for inherent

structure may yield poor results. We apply mini-batch  -means

clustering to identify dominant patterns and select the number of

clusters using the Davies-Bouldin index [11], which is determined

by passing�+ to����8=3$?C8<0; . The clustering process aims to

group similar temporal patterns, providing a structure for imputing

missing values in �− .

2. Incomplete Cluster Assignment. Once the complete se-

quences have been clustered, we assign the incomplete sequences

in �− to the closest cluster. A naive approach would involve simple

distance-based matching, but this can be unreliable when dealing

with sequences that contain missing values. Instead, we employ

DTW-AROW X
(

G
( Ġ )
ğ , G

(ħ)
Ħ

)

, a dynamic time warping (DTW)-based

method that preserves temporal alignment while handling missing

values e�ectively [39, 55]. For each incomplete sequence in �− ,

we �nd the closest �t to the existing complete cluster centroids

(Algorithm 1, lines 8-9). This approach ensures that incomplete

sequences are mapped to clusters that best re�ect their structure.

To improve assignment stability, we apply a PAC-bound based

sampling heuristic [46], which prevents clusters from becoming

unbalanced by distributing sequences more uniformly, which we

describe in detail in Section 5.2.

3. Projecting Missing Patterns onto Complete Sequences.

To ensure that imputation models are trained in conditions that

re�ect real-world missing patterns, we generate realistic incom-

plete sequences by projecting observed missing patterns onto fully

observed data. For each cluster : , given an incomplete sequence

G
( Ġ )
ğ ∈ �−

ġ
, we extract the missing patterns 1

( Ġ )
ğ ∈ {0, 1}ĭ . These

binary sequences captures the distribution of missing values in the

time series (Algorithm 2, lines 1-2). We then apply this pattern to

a randomly selected complete sequence within the same cluster

G
(ħ)
Ħ ∈ �+

ġ
, e�ectively masking values where elements of 1

( Ġ )
ğ is

0. This process generates a new dataset of masked sequences �Ħ,ġ
that retain the structural properties of complete data while incorpo-

rating missing values from that cluster’s distribution. Each masked

sequence 1ĩĨę ∈ -
ĦĨĥ Ġ

ġ
is created through the projection operation

c applied to the sequence pair (Algorithm 2, lines 3-7).

4. Analyzing missing patterns Once the projected datasets

-
ĦĨĥ Ġ

ġ
have been constructed for each cluster�

ġ
, we analyzewhether

the partial sequences have similarities between the centroids of
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Algorithm 1: DIM-SUM Preprocessing & Clustering

Input: Dataset Ā , window size ĭ, cluster range (ćmin, ćmax ) , PAC

bound ă

Output: Clusters {Ā
ġ
} with assigned sequences

1 Ā+ ← ∅, Ā− ← ∅;

// Step 0: Window partitioning

2 for Įğ ∈ Ā do

3 {Į
(1)
ğ , . . . , Į

( +Đ /ĭ,)
ğ } ←WindowPartition(Įğ , ĭ )

4 for each window Į
( Ġ )
ğ do

5 if IsComplete(Į
( Ġ )
ğ ) then Ā+ ← Ā+ ∪ {Į

( Ġ )
ğ } else

Ā− ← Ā− ∪ {Į
( Ġ )
ğ } ;

// Step 1: Complete sequence clustering

6 ć ← DBIFindOptimalK(Ā+, ćmin, ćmax )

7 {Ā
ġ
} ← ClusterSequences(Ā+, ć )

// Step 2: Assign incomplete sequences

8 for Ā−
ġ
∈ Ā− do

9 Ā−
ġ
← ąĤęĥģĦĢěĪěÿĢīĩĪěĨýĩĩğĝĤģěĤĪ (Ā−,ÿġ , ă )

10 return {Ā
ġ
}

Algorithm 2: DIM-SUM Training

Input: Clusters {Ā
ġ
}, assignments {Ā−

ġ
}, modelM

Output: Trained models {Mġ }

1 for ġ ← 1 to ć do

// Step 3: Create projections

2 for Į
( Ġ )
ğ ∈ Ā−

ġ
do

3 Ę
( Ġ )
ğ ← GetMask(Į

( Ġ )
ğ ) ;

4 Į
(ħ)
Ħ ← SampleFrom(Ā+

ġ
) ;

5 ĘĦĨĥ Ġ ← ÿ
(

Į
( Ġ )
ğ , Į

(ħ)
Ħ

)

;

6 Ĕ
ĦĨĥ Ġ

ġ
← Ĕ

ĦĨĥ Ġ

ġ
∪ {ĘĦĨĥ Ġ }

// Step 4: Analyze structure

7 ĤĦ ← 0;

8 for ĘĩĨę ∈ Ĕ
ĦĨĥ Ġ

ġ
do

9 ĘĩėģĦ ← SamplePattern(Ā−
ġ
) ;

10 Ę
ĨėĤĚ

← RandomPattern( ) ;

11 if ĀćĈ (ĘĩĨę ∥ ĘĩėģĦ ) < ĀćĈ (ĘĩĨę ∥ ĘĨėĤĚ ) then

ĤĦ ← ĤĦ + 1 ;

// Step 5: Adaptive training

12 ĉğĤĉėĩġďěėĨęℎ (ģģğĤ, Ă,Ĉ,Đ )

13 return {Mġ }

each cluster. Within a cluster, we compare each observed missing

pattern 1ĩĨę ∈ -
ĦĨĥ Ġ

ġ
against both a sampled pattern 1ĩėģĦ from

another sequence in �−
ġ
and a randomly generated missing pattern

1
ĨėĤĚ

. If the two samples from the cluster exhibit a structured rela-

tionship with the underlying behavioral pattern, imputation should

account for these dependencies rather than treating missing values

as independent noise (Algorithm 2, lines 9-12).

Wemeasure the structured relationship as the similarity between

observed and reference missing patterns using the KL divergence

metric [22]: �ćĈ (1ĩĨę ∥ 1ĩėģĦ ) and �ćĈ (1ĩĨę ∥ 1ĨėĤĚ ) If a ma-

jority of the missing patterns in -
ĦĨĥ Ġ

ġ
demonstrate non-random

structure, the cluster exhibits similar missing data behavior. This

informs the subsequent training of cluster-speci�c modelsMġ .

5. Adaptive Training with MinimumMasks. Finally, DIM-

SUM employs an iterative training process that determines the min-

imum masking necessary for robust imputation. For each cluster : ,

we begin with an initial mask size<0 and progressively increase the

fraction of missing values introduced during training. With our pro-

jected patterns1ĩĨę ∈ -
ĦĨĥ Ġ

ġ
already capturing real distributions, we

create two additional representations: -ģėĩġ
ġ

= �+
ġ
» 1ĩĨę applying

only arti�cial masks to complete data, and -
ĦĨĥ Ġ,ģėĩġ

ġ
= �+

ġ
» 1ĩĨę

applying arti�cial masks to windows of data. At each iteration,

we train two models: an oracle model using only -ģėĩġ
ġ

, and a

projection model using -
ĦĨĥ Ġ,ģėĩġ

ġ
. If the projection model’s per-

formance remains within two standard deviations of the oracle

model’s performance while handling progressively larger missing

regions, training continues; otherwise, the process is halted.

The details of this minimum mask selection process are detailed

in Algorithm 4 in Section 5.2. Once a minimum mask is selected by

sampling the training data (determined by the PAC bound, which

we describe later in Section 5.3), we train the imputation model

across the cluster-speci�c data and apply inference. We validate the

performance of the model on the projected data using a statistical

test to measure how well a model reconstructs missing values.

4 Baking Missing Patterns via Clustering

Through our empirical studies with various smart utility datasets,

we have found that the large scale and intricate nature of this

data frequently results in these state-of-the-art imputation models

typically produce unpredictable results. This is particularly evident

in the large water dataset comprising of 1.5 billion readings, where

approximately 30% of values are missing. When applying the Non-

stationary Transformer model [29] directly to the clean portions of

this dataset and injecting 10% ofMCARmissing values, we observed

an MSE of 1.4876. However, when we apply DIM-SUM to same

transformer-based architecture, the MSE dramatically improved to

0.7770 (47.8% error reduction).

Our performance gain comes from the recognition that utility

consumption data contains repetitive behavioral patterns. Rather

than treating the dataset as a monolithic entity, partitioning it into

clusters of similar behavior allows us to train specialized smaller

models that implicitly learn patterns of missing sequences on com-

plete values that additionally have similarity based on what we can

observe. By identifying and grouping similar temporal behaviors,

these pattern-speci�c models better capture the distribution char-

acteristics of each cluster, leading to more accurate imputations

even with substantially fewer computational resources than using

one large model on the entire dataset.

We identify distinct temporal patterns within complete win-

dows �+, where each window G
( Ġ )
ğ representsF consecutive mea-

surements. This requires balancing pattern speci�city with having

enough training samples per cluster. Too many clusters can create

sparse sample distribution, while too few fail to capture temporal

pattern diversity. We directly apply mini-batch  -means clustering

to all windows, which reduces computational cost through batch

processing while preserving clustering quality on large-scale time
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series data [40]. Each window is �rst normalized using z-score nor-

malization to focus on pattern shapes rather than absolute values.

Normalization ensures that clustering captures similarities in the

temporal dynamics (the shape of the time series) rather than being

dominated by magnitude di�erences. This helps identify mean-

ingful patterns across sensors or devices with di�erent baseline

readings but similar behavioral patterns, regardless of scale. Such an

approach is quite e�ective for the cyclic nature of utility usage, i.e.,

single family homes may take showers in the morning, but amount

of water consumed may di�er. To determine the optimal number of

clusters, we perform a binary search over the range [ min,  max],

using the Davies-Bouldin index [11] as our optimization criterion,

lines 6-7 in Algorithm 1. For each candidate : , we compute:

DB(:) =
1

:

ġ
∑

ğ=1

max
Ġ≠ğ

(

fğ + f Ġ

3ğ Ġ

)

(1)

where fğ represents the average distance between points in clus-

ter 8 and their centroid, and3ğ Ġ is the distance between the centroids

of clusters 8 and 9 . The Davies-Bouldin index measures the aver-

age similarity between each cluster and its most similar cluster,

where similarity is de�ned as the ratio of within-cluster distances

to between-cluster distances. Lower values indicate better cluster-

ing, with more compact and well-separated clusters.

We employ a binary search rather than an exhaustive search

over all possible : values to e�ciently �nd the optimal number of

clusters. This approach reduces the computational burden while

still providing a robust estimate of the optimal : . Once the optimal

number of clusters is determined in our sample space, we obtain the

�nal clustering by applying ClusterSequences(�+,  ). The optimal

 search has a time complexity of O(log('ć ) · (C |�
+ |F + 2F)),

for search range 'ć , C K-means iterations, clusters, |�+ | complete

windows, and window sizeF .

4.1 Assigning Incomplete Sequences

Training imputation models presents a fundamental question when

working with limited complete data: how do we balance the use of

complete sequences and utilize the observable data in the incomplete

sequences for training? This challenge is ampli�ed when the data

is partitioned into clusters to capture distinct temporal patterns,

as it further reduces the available training samples per model. To

address this limitation while maintaining the bene�ts of cluster-

speci�c models, we develop a sampling strategy that augments each

cluster’s training data with incomplete sequences. While we cannot

directly validate imputation quality on real missing values, we can

project observed missing patterns onto complete sequences where

reconstruction accuracy can be measured. Consider a complete

time series sequence and a projected version of that time series

with missing values written over random indices:

Complete: [10, 8, 7, 5, 6, 8, 12, 15, 14, 12, 10, 9, 8, 7, 8, 10, 13, 15, 14]

Projection: [10,<, 7,<, 6, 8,<,<, 14, 12,<, 9, 8, 7,<, 10, 13,<, 14]

The projected sequence is fed into an model, which will output its

best estimate of the original complete window. Although this is a

standard practice, the projection does not account for the shared

patterns of the observable values between complete and incomplete

sequences. These subsequences of values also provide important

information for �tting the right sequence to an existing cluster by

exploiting the distributional closeness of observable values.

For assigning incomplete sequences to a cluster, we use Dy-

namic Time Warping with Aligned Resolutions of Warping (DTW-

AROW [55]), which handles sequences with missing values while

preserving temporal relationships with an extended cost function:

X (Gğ , G Ġ ) =

{

0, if Gğ = NaN or G Ġ = NaN

(Gğ − G Ġ )
2, otherwise

DTW-AROW enforces synchronized advancement through miss-

ing regions and applies a correction factor, which is calculated as

the ratio of observable values to all values in both sequences. This

prevents arti�cial alignments while ensuring fair comparisons be-

tween sequences with di�erent proportions of missing data. The

computational complexity of comparing each incomplete sequence

with all centroids would be $ ( |�− | · |�+ |/�), where � is the num-

ber of sequences per centroid. Given that |�+ | j |�− |, we leverage

sampling theory to reduce this to $ (= · :), where = is the number

of sampled incomplete sequences and : is the number of clusters.

To determine the required number of incomplete sequences, we

leverage PAC learning theory [46], which is developed formally in

Section 5.3. For each cluster, we compute an observable value ratio

W = (1 − U) (1 −M), where U is the ratio of missing values that are

currently present and M is the masking ratio used during training,

as seen in Algorithm 3 (lines 8-9, Algorithm 1).

The observable value ratio tells us how many true values the

model receives during training, which we form our bound on. The

goal of the cluster assignment algorithm is to sample enough miss-

ing data into each cluster, such that there is a strong trend of similar

patterns to project. If there is not a strong trend, it indicates to us

that the patterns are unlikely to be signi�cant across the entire

dataset. Furthermore, by sampling enough observable data to meet

a PAC bound and assuming our data is independent and identically

distributed (I.I.D), we can approximately ensure the expected per-

formance achieved during training on the cluster-speci�c model

translate to the test data that �ts the properties of each cluster.

The algorithm initially calculates the PAC bound assuming U

incomplete data. Once we sample this initial calculated amount,

we examine the actual projected missing patterns, recalculate the

bound, and add more samples if needed. This dynamic adjustment

allows us to determine the number of samples needed to satisfy our

learning guarantees more accurately.

The heuristic approach to cluster assignment �rst attempts to

place an incomplete sequence in the closest matching cluster based

on DTW-AROW distance. However, if this cluster has reached its

capacity, we assign the sequence to the next closest available clus-

ter. This ensures a more even distribution of incomplete sequences

across clusters while still prioritizing similarity. The motivation for

assigning to the next closest cluster is that it allows us to quickly

sample and �ll clusters with strong correlations to meet the bound.

This helps reduce the amount of training samples we need to it-

erate through and �lls less frequent clusters faster. In later steps,

we show that this heuristic approach works well for identifying

strong clusters and eliminating clusters which have no dominant

pattern trends. Next, we can now prepare the data for training an
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Algorithm 3: Incomplete Sequence Cluster Assignment

Input: Dataset �− , clusters {�ġ }, PAC threshold g ,

MaxClusterSize, U ,M

Output: Augmented cluster assignments

1 for G
( Ġ )
ğ ∈ �− do

2 Wğ ← (1 − U) (1 −M);

3 foreach �ġ do

4 3ġ ← X
(

G
( Ġ )
ğ ,�ġ

)

;

5 (ę ← SortByDistance(3ġ );

6 for 2 ∈ (ę do

7 if Observableę < g and |�ę | < MaxClusterSize then

8 �ę ← �ę ∪ {G
( Ġ )
ğ };

9 Update Uğ based on in G
( Ġ )
ğ ;

10 Wğ ← (1 − Uğ ) (1 −M);

11 Observableę ← Observableę + Wğ ;

12 Update g if necessary;

13 break;

14 if G
( Ġ )
ğ not assigned then

15 2∗ ← argminę∈ďę |�ę |;

16 �ę∗ ← �ę∗ ∪ {G
( Ġ )
ğ };

17 return {�ġ }

imputation model that is �tted to the distributions of that particular

cluster.

5 Training Models with Incomplete Data

The clustering of time series based on their characteristics and

missing patterns raises a practical question: How can imputation

models be e�ectively trained using a mix of complete sequences (�+
ġ
∈

�+) and sequences with missing values (�−
ġ
∈ �−) within each

cluster? An e�ective training strategy must address two objectives:

(1) Leveraging real-world missing patterns present in �−
ġ
is

useful to represent the actual scenarios that models will

encounter in production environments. These patterns con-

tain information about how and when data becomes un-

available, but provide limited data to the model.

(2) Acquiring su�cient complete data from �+
ġ
is required for

learning the underlying temporal dynamics and distribu-

tions that govern each cluster. Complete sequences provide

the ground truth necessary for understanding the range of

valid behaviors and relationships within the data, but may

limited in representing all distributions across the dataset.

The DIM-SUM framework addresses these challenges by combin-

ing information from both �+
ġ
and �−

ġ
. We translate the missing

patterns from �−
ġ

into binary encodings and project them onto

the complete sequences in �+
ġ
. The projection of missing patterns

e�ectively creates regions of missing values in the training data

that re�ect real-world scenarios, i.e., the data is “projected” away

from the complete sequences before training. This simulates an en-

vironment where the model must train on sequences with missing

values, forcing it to adapt to incomplete information.

During training, the projected missing values are treated as gen-

uinely missing, requiring the model to learn how to handle missing

data in the observable regions to compute the loss. This is achieved

using a masking process. However, excessively masking the re-

maining observable values might introduce unnecessary noise into

the training process, potentially harming model performance. To

address this, the framework focuses on identifying a minimal e�ec-

tive mask—the smallest amount of additional masking necessary to

ensure the model performs e�ectively.

Mask size is determined by comparing against an oracle model

trained only on complete sequences with the same small mask

(meaning all the projected values are observable during training),

representing an ideal training situation. When a model trained

with both projected missing values and masked values achieves

performancewithin a reasonable threshold of this oracle, it indicates

an appropriate balance between learning from missing patterns

and preserving su�cient training data. We assert this balance to

be the di�erence in loss achieved by oracle model (which only

imputes the masked values) and the projection model (imputes

masked and projected values) is minimal across the various mask

percentages.This process takes O((|�− | +
∑

ġ #train,ġ ) · F) time,

for |�− | incomplete windows, #train,ġ training sequences of length

F per cluster.

5.1 Pattern Projection and Masking

For any given cluster �
ġ
, we have both a complete subset �+

ġ
¢ �+

containing windows of full time series and a partial subset �−
ġ
¢

�− containing series with missing values. Our goal is to learn from

both sets while ensuring we maintain theoretical guarantees about

model performance. To utilize both sequences, we use a process of

projection, where the missing patterns from windows in �−
ġ
are

applied to complete windows in �+
ġ
to create training data with a

ground truth. Ultimately, we “project” these values away as input

to the model for training, simulating a scenario where the model

is forced to train on incomplete training data, but we are able to

verify it’s accuracy after training since we have the ground truth.

We de�ne a projection c as an operation that maps a miss-

ing patterns from a sequence in �−
ġ
onto a sequence in �+

ġ
. This

operation creates masked values in the complete sequence that

mirror the missing values in the partial sequence, expressed as

c : �−
ġ
× �+

ġ
→ {0, 1}ĭ × Rĭ , whereF is the window length. For

each sequence G
( Ġ )
ğ ∈ �−

ġ
and a complete sequence G

(ħ)
Ħ ∈ �+

ġ
, we

encode its missing patterns as a binary vector 1ĩĨę which equals 1 if

a value is present and 0 if it is missing. The projection then creates

a binary mask and applies it to a complete sequence: c
(

G
( Ġ )
ğ , G

(ħ)
Ħ

)

.

To maintain the theoretical guarantees established during cluster

assignment, we ensure a one-to-one mapping between partial and

complete sequences. Each partial sequence G
( Ġ )
ğ is projected onto

exactly one complete sequence G
(ħ)
Ħ chosen uniformly at random,

creating our projected dataset -
ĦĨĥ Ġ

ġ
=

{

c
(

G
( Ġ )
ğ , G

(ħ)
Ħ

)

: G
( Ġ )
ğ ∈

�−
ġ
, G
(ħ)
Ħ ∈ �+

ġ

}

. This bijectivity preserves the PAC-bounded prop-

erties of our original cluster assignments.
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After establishing these initial projections, we analyze whether

the missing patterns within each cluster exhibit meaningful struc-

ture. We maintain a count =pattern of windows whose missing pat-

terns are more similar to other patterns in �−
ġ
than to randomly

generated ones (=Ħ in Algorithm 2). For each source pattern 1ĩĨę ,

we use Kullback-Leibler (KL) divergence [22] to compare it against

both a randomly sampled pattern from the same cluster 1ĩėģĦ
and a synthetic pattern with matching missing rate 1

ĨėĤĚ
. This

comparison is formalized through the following decision criterion:

1ĦĨĥ Ġ =

{

1ĩėģĦ if �ćĈ (1ĩĨę |1ĩėģĦ ) < �ćĈ (1ĩĨę |1ĨėĤĚ )

1
ĨėĤĚ

otherwise
(2)

A cluster is considered to exhibit meaningful structure when more
than two-thirds (l in Algorithm 4) of its patterns show stronger sim-
ilarity to other real patterns than to random patterns. We measure
this by computing a KL divergence criterion:

1
�

�Ĕ
ġ

�

�

∑

ĘĩĨę ∈Ĕ
ĦĨĥ Ġ

ġ

∑

ĘĩėģĦ∼Ĕ
ĦĨĥ Ġ

ġ

I

(

ĀćĈ (ĘĩĨę ∥ĘĩėģĦ ) < ĀćĈ (ĘĩĨę ∥ĘĨėĤĚ )
)

(3)

where I is the indicator function. For each pattern that satis�es this

criterion, we increment=pattern, providing a running measure of the

cluster’s structural signi�cance. If the ratio exceeds l , it suggests a

dominant missing pattern within the cluster. If the ratio is below

l , the missing patterns are likely rare or represented elsewhere,

prompting the removal of that cluster. For clusters meeting this

criterion, we proceed to create distinct training representations:

-
ĦĨĥ Ġ

ġ
= �+

ġ
» 1ĦĨĥ Ġ

-ģėĩġ
ġ

= �+
ġ
» 1

ģėĩġ

-
ĦĨĥ Ġ,ģėĩġ

ġ
= �+

ġ
» (1ĦĨĥ Ġ ' 1ģėĩġ )

(4)

where » represents element-wise masking and' denotes the logical

AND operation. Throughout this process, we retain the ground

truth values for all masked positions to enable proper evaluation.
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Figure 2: An example of the U-shaped relationship between

selected mask percentage and model performance with �xed

level of projected missing data observed from a series of

training rounds on a CA Water Dataset.

5.2 Determining Minimal E�ective Mask

A key aspect of our training strategy involves applying a degree of

additional arti�cial masking after an initial projection of realistic

missing patterns (derived from �−) onto complete data (from �+).

Through our empirical �ndings with this two-stage approach, we

observed that imputation model performance concerning validation

loss often follows a U-shaped curve (as exempli�ed in Figure 2).

Initially, moderate levels of this additional arti�cial masking tend to

enhance model performance; we attribute this to the masking act-

ing as a regularizer or data augmentation technique, compelling the

model to learn more robust features beyond the speci�c projected

patterns and improving generalization to diverse missingness sce-

narios. However, as the rate of additional arti�cial masking becomes

excessive, performance progressively degrades.

This U-shaped performance characteristic necessitates a sys-

tematic search for a minimal e�ective mask (<∗), representing

the optimal balance between induced robustness and information

preservation. A key observation across the infrastructure settings

we explored is that this minimum e�ective mask (<∗) is typically

found at relatively small percentages; applying more masking be-

yond this optimal point generally increases computational costs

for training without commensurate performance bene�ts. To deter-

mine<∗ for a given dataset context prepared with projected pat-

terns, Algorithm 4 implements a logarithmic sampling strategy that

concentrates evaluations in the lower range of mask percentages,

where<∗ is often located, by starting from an initial<min = 0.01

and evaluating mask sizes<ğ =<min (1 + A )
ğ , where A controls the

growth rate.

For each candidate mask size< two training scenarios are con-

sidered. First, an oracle model"oracle is trained using only -ģėĩġ
ġ

with a masking percentage <ğ , representing the best achievable

performance when training with complete sequences. Second, a

model"real is trained using -
ĦĨĥ Ġ,ģėĩġ

ġ
, which incorporates both

projected patterns and masking. Both models compute their losses

!oracle (<ğ ) and !real (<ğ ) on a held-out validation set +ġ ¢ �+
ġ

using the model’s loss function ℓ (·, ·). The absolute di�erence be-

tween these losses de�nes a gap that measures how well the model

trained with projected patterns matches the performance of the

oracle. To account for training variability, a convergence threshold

l = 2foracle is established, where foracle is the standard deviation of

!oracle in multiple training runs with random initializations. When

the gap falls below l , the minimum mask size is selected.

Algorithm 4: Logarithmic Minimum Mask Search

Input: Initial maskģģğĤ = 0.01, growth rate Ă , threshold Ĉ , intĐ

Output: Minimum e�ective mask percentageģ∗

1 gaps← [ ]

2 for ğ ← 0 toĐ − 1 do

3 ģğ ←ģģğĤ (1 + Ă )
ğ

4 Train models on Ĕ
ģėĩġ

ġ and Ĕ
ĦĨĥ Ġ,ģėĩġ

ġ
withģğ

5 gap← |Ĉoracle − Ĉreal |

6 gaps.append(gap)

7 if gap < Ĉ then ģ∗ ←ģğ return

8 ģ∗ ←ģargmin(gaps)

9 returnģ∗

5.3 Statistical Learning Guarantees

Section 5.2 introduced an algorithm for �nding a minimal e�ective

mask, but this empirical approach raises an important question:
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"Given that data is truly missing, how can con�dence in the cluster

model quality be established?" The challenge stems from test vali-

dation: when true values are missing in production data, standard

error metrics on held-out sets cannot verify model performance

on the missing labels. However, by projecting patterns from -
ĦĨĥ Ġ

ġ
onto complete sequences in �+

ġ
the model’s ability to reconstruct

missing values can be directly evaluated against known ground

truth values. For cluster : , let (ġ ¦ �
+
ġ
be the set of complete se-

quences that have had patterns from-
ġ
projected onto them during

training. For each windowF in these sequences, the reconstruction

ability of the model can be evaluated through the test statistic:

)ġ (F) =

{

1, if |Mġ (F) − ~ğ | f g for projected values ~ğ

0, otherwise
(5)

whereMġ is the imputation model for cluster : , and g is the

reconstruction error tolerance. This tolerance represents the max-

imum acceptable di�erence between predicted and true values,

typically set as a percentage of the data standard deviation (e.g.

g = 0.1f means predictions within 10% of the standard deviation)

[13]. By converting the continuous regression problem into a binary

classi�cation (success/failure) via this threshold, the test statistic

enables the application of PAC learning theory [45] to bound the

probability of learning an e�ective imputation model:

Uġ =
1

|(ġ | ·F

∑

Įğ ∈ďġ

(1 − 1ĦĨĥ Ġ ) (proportion of projected values)

Vġ =<∗ (proportion of masked values)

Wġ = 1 − Uġ − Vġ (proportion of observable values)

(6)

Here, Uġ measures the average proportion of projected values

in the training set, Vġ represents the proportion of values masked

during training using the minimal e�ective mask<∗, and Wġ repre-

sents the remaining observable proportion. Note that Uġ is scaled

from window to window of data, while the mask<∗ is �xed across

all windows. Let Wmin be the minimum threshold of observable

values required for training. The constraint Wġ g Wmin de�nes a

feasible region for learning [47]. The classi�cation of whether a

given con�guration allows successful learning is as follows:

5ġ (Uġ , Vġ ) =

{

1 if PĮ∼Ā+
ġ
[)ġ (G) = 1] g 1 − X

0 otherwise
(7)

This creates a decision boundary in the (Uġ , Vġ ) space that sepa-

rates con�gurations that have reliable learning from those that do

not [46]. The problem of �nding this boundary can be viewed as

learning a hypothesis from the class:

Hġ = {ℎĂ : ℎĂ (Uġ , Vġ ) = I(\1Uġ + \2Vġ + \3 g 0) for \ ∈ R3} (8)

where I is the indicator function and \3 is a constant term. This

hypothesis class is an artifact of PAC learning, corresponding to

a linear classi�er in the (Uġ , Vġ ) space with a VC dimension of 3

[3, 47]. For any three points in this space, a hyperplane exists that

realizes all 23 possible binary classi�cations, i.e., if the statistical

test is satis�ed. However, it is impossible to shatter four points with

a hyperplane in R
2, as demonstrated by the XOR con�guration

[32]. Applying PAC learning theory with the VC dimension of 3

yields the following bound for the minimum number of observable

sequences needed for reliable learning in cluster : [3, 45]:

|(ġ |Wġ g
1

n

(

3 log
1

n
+ log

1

X

)

(9)

where n is the error tolerance for learning the decision boundary

and X is the failure probability. When a cluster’s observable size

falls below this threshold, reliable learning cannot be guaranteed

with probability 1 − X [46]. These bounds establish probabilistic

guarantees about the minimum amount of observable data

needed to generalize performance of the projected values, which

serve as an approximation of truly missing data.

6 Evaluation

This section evaluates DIM-SUM, which serves as a preprocessing

framework applicable to any existing imputationmodel. Our evalua-

tion speci�cally applies DIM-SUM to 5 distinct imputation-speci�c

models (MRNN, SAITS, Nonstationary Transformer, StemGNN,

and CSDI [6, 14, 29, 42, 54]), studying their performance across 6

datasets. These datasets span real-world and benchmark scenarios

within the water, electricity, and weather infrastructure domains.

We experimentally investigate DIM-SUM’s ability to enhance

model accuracy by leveraging information from missing data pat-

terns. This is examined across diverse levels and types of missing-

ness (Exp 1 & 2). For our real-world datasets (WD1, WD2, GESL-V,

GESL-C, Weather) with inherent missingness, DIM-SUM’s method-

ology involves projecting these naturally observed patterns onto

complete data segments. As a benchmark, we generate and apply

synthetic Missing Not at Random (MNAR) and Missing Completely

at Random (MCAR) patterns for controlled experimentation. Fur-

thermore, we compare the performance of DIM-SUM when applied

to these datasets against the strategy of adapting a large pre-trained

model Exp 3, demonstrating DIM-SUM’s potential to o�er compet-

itive results with greater e�ciency.

Beyond these comparisons, we evaluate DIM-SUM against an-

other preprocessing framework, DAGAN [28], which also exploits

missing data patterns prior to model training (Exp 4). Lastly, we

provide a comprehensive assessment of DIM-SUM’s performance

across all combinations of model architectures and compared tech-

niques, focusing on critical metrics such as computational running-

time and reduction in required training data (Exp 5 & 6).

6.1 Datasets

In Table 1, we provide detailed information on the 6 datasets used

in our experiments. These consist of Advanced Metering Infrastruc-

ture (AMI) data from CA cities, other infrastructure-related data,

and a weather reanalysis dataset.
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Table 1: Overview of Evaluation Datasets

Infrastructure Dataset Characteristics

Water District 1 (WD1) 1.6B readings, 68,000 meters

Interval: 15 min Duration: 2 years

missing: 30% Feature: Flow rate

Water District 2 (WD2) 450M readings, 18,000 meters

Interval: 15 min Duration: 2 years

missing: 47% Feature: Flow rate

London Smart Meters (LCL) 168M readings, 360 sources

Interval: 10 min Duration: 1 year

missing: 10-90% Feature: EV charging load

GESL-Current (CESL-C) 11M readings, 13 meters

Interval: 0.033s Duration: One month

missing: 10-90% Feature: Grid current

GESL-Voltage (GESL-V) 11M readings, 13 meters

Interval: 0.033s Duration: One month

missing: 10-90% Feature: Grid voltage

Weather 43M readings

Interval: 60 min Duration: One year

missing: 10-90% Feature: Climate

Figure 3: AMap ofWD2Displaying the Percentage ofMissing

Readings from Meter Sources (Red: 98%+ missing values)

Water Consumption Datasets (WD1, WD2) We utilize data

from two CAwater districts collected over a two-year period. These

represent real-world infrastructure data with naturally occurring

missing values. WD1 contains readings from 68,000 AMI meters

(1.6 billion measurements), while WD2 comprises 18,000 meters

with 450 million readings. Both datasets record �ow values at 15-

minute intervals. We observe that 30% and 47% of values are missing

in WD1 and WD2, respectively. WD1 has been anonymized and

released alongside this paper in [17]. Fig. 3 illustrates the variability

in the amount of missing data in various geographical regions.

Electricity Usage Datasets (LCL, GESL-V, GESL-C) For elec-

tricity usage, we examine the London Smart Meters dataset from

the Low Carbon London (LCL) project [44], containing 168 million

readings from 360 sources at 10-minute intervals. We also use the

Grid Event Signature Library (GESL) [24] with PMU measurements

at 30 Hz over 3-minute intervals for current (GESL-C) and voltage

magnitude (GESL-V). These datasets are typically more complete;

thus, for controlled experiments, missingness is often induced.

Weather Benchmark Dataset To further validate our approach

on benchmarks, we utilize a weather dataset, ERA5 [33]. The dataset

measures hourly estimates for a large number of atmospheric, land,

and oceanic climate variables over the past 80 years. We sample 43

million points from this dataset, representing a year of data.

We process all datasets into uniform sequence lengths of 96 (cor-

responding to 24-hour windows at 15-minute intervals, or an 4

days for hourly intervals). For water consumption datasets with

observable missing patterns, DIM-SUM directly projects these pat-

terns onto complete data segments. For electricity and weather

datasets where observations are complete, we apply MNAR and

MCAR masking at speci�ed percentages. We use a uniform 20%

holdout set for evaluation for all model and dataset combinations.

6.2 Models and Strategies

To comprehensively evaluate DIM-SUM and understand its interac-

tion with various imputation strategies, we �rst conducted a broad

study across a diverse set of imputation model architectures. We

examined the impact of these architectures when applied to di�er-

ent methodologies, including a standard direct application of each

imputation model, adjusting the preprocessing to be missing pat-

tern aware (DAGAN [28] & DIM-SUM), and utilizing a pre-trained

model for inference-based imputation (Chronos [1]).

Imputation Model Architectures Studied: Our initial inves-

tigation covered 8 state-of-the-art time-series imputation models,

chosen to represent a range of techniques from recurrent and

transformer-based to graph neural networks and di�usion models:

• MRNN (Multi-directional Recurrent Neural Networks for

Time Series) [54]: Recurrent architecture that processes

temporal data from multiple directions.

• BRITS (Bidirectional Recurrent Imputation for Time Series)

[7]: Bidirectional recurrent neural network, with a focus

on leveraging correlations in missingness.

• SAITS (Self-Attention-based Imputation for Time Series) [14]:

Amulti-staged transformer architecturewith diagonally-

masked self-attention blocks and feature reconstruction,

designed speci�cally for imputation.

• NonstationaryTransformer [29]: Amodi�ed transformer

with series stationarization and de-stationary attention

mechanisms that explicitly model temporal variations and

non-stationarity in data distributions.

• Autoformer [51]: A transformermodel featuring an auto-

correlation mechanism and series decomposition blocks for

enhanced time series analysis.

• MICN (Multi-scale Isometric Convolutional Network) [48]:

Employs multi-scale isometric convolutions to capture

temporal patterns e�ciently.

• StemGNN [6]: A Graph Neural Network (GNN) based

model that captures inter-series correlations and temporal

dependencies in multivariate time series through a spectral

graph perspective.

• CSDI [42] (Conditional Score-based Di�usion Models for

Imputation): Leverages score-based generative models con-

ditioned on observed data to perform imputation through

a di�usion process.
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For the experimental evaluation, we selected �ve of these mod-

els that represent diverse and highly competitive architectural

paradigms: MRNN, SAITS, Nonstationary Transformer, StemGNN,

and CSDI. DIM-SUM’s framework is model-agnostic, and its perfor-

mance when integrated with these �ve models is compared against

the other approaches detailed below.

Strategies for Missing Pa�ern Integration: In our experi-

ments, we evaluate performance across di�erent overarching strate-

gies for handling missing data for imputation:

• Direct Model Application (Standard Approach): This

approach involves applying each imputation model ar-

chitecture directly to the dataset (which may contain

inherent or induced missing values, as speci�ed per ex-

periment). The model is used according to its standard

implementation, relying on its own internal mechanisms

or recommended setup for handling and imputing miss-

ing data, without external preprocessing frameworks. This

serves as a primary point of comparison to assess the added

value of preprocessing frameworks.

• Missing Pattern Extraction Strategy (DIM-SUM): DIM-

SUM falls into this category. It �rst analyzes the dataset to

identify and cluster data segments, then projects dominant

missing data patterns onto bounded samples within each

cluster for e�cient and targeted model training.

• Pre-trained Model Strategy (Chronos): This involves

leveraging large foundation models like Chronos [1], which

are pre-trained on diverse time series data from var-

ious domains and then applied to the speci�c dataset.

Chronos tokenizes time series and uses a language model

architecture to predict missing values based on context.

• Meta-Model Strategy (DAGAN):This includes approaches

like DAGAN [28], which use generative models (e.g.,

GANs) to learn and replicate realistic missing data

patterns, or to directly impute values.

6.3 Experimental Results

We now present the detailed experimental results across the 6

datasets (WD1, WD2, LCL, GESL-V, GESL-C, and Weather) and

evaluate how DIM-SUM compares to various model architectures

and strategies for incorporating missing patterns.

6.3.1 Improvement of Existing Imputation Models using

DIM-SUM This experiment evaluates the enhancement DIM-SUM

brings to the �ve selected imputation model architectures, focus-

ing on imputation accuracy (MSE) at �xed levels of missingness.

We explicitly compare to direct model strategy, where the entire

dataset is used for training. Table 2 presents MSE comparisons for

all �ve models using a �xed 50% MCAR mask and a 20% uniform

holdout dataset across each of the six datasets.

As we saw previously, the loss achieved by a model can vary

signi�cantly from dataset to dataset. For example, the LCL dataset

achieves near perfect loss using MRNN and SAITS, but skyrockets

when the Non-stationary Transformer [29] model. Importantly,

across nearly all datasets and model con�gurations, DIM-SUM

achieve better MSE using a signi�cantly smaller of training data,

which we discuss in 6.3.4.

6.3.2 DIM-SUM Performance as a Function of Missing Data

DIM-SUM consistently delivers competitive imputation accuracy

across the majority of datasets and throughout many missing pat-

tern scenarios. This is demostrated through benchmarking direct

application of models to various levels of missing data and missing

patterns, as shown in Figure 5. Across each dataset, level of missing

data, and type of missing data, DIM-SUM remains very competitive

to direct applications, with the ability to train and produce results

signi�cantly faster, which we show in 6.3.4 and 6.3.4.

6.3.3 Comparisonwith a Pre-trainedModel We evaluate DIM-

SUM against Chronos [1], a prominent pre-trained foundation

model for time series. Figure 5 illustrates comparative MSE on the

20% holdout set for our 6 datasets. Chronos generally shows strong

performance at lower missing percentages (e.g., 10-30%), where

ample context is available for its predictions. However, as missing-

ness increases, DIM-SUM tends to exhibit more robust or superior

accuracy across the datasets. For example, on WD1 at 90% missing

data, DIM-SUM achieves an MSE of 0.9874, whereas Chronos’s MSE

is visibly higher (1.6863). This is attributed to Chronos’s sequential

imputation, which can lead to error propagation when context is

sparse. The signi�cant computational cost of Chronos, especially

its inference time, is discussed in Section 6.3.4.

6.3.4 Comparison with a Meta-Model Strategy for miss-

ing pa�ern generation Next, we compare DIM-SUM with DA-

GAN [28], a GAN-based framework. MSE comparisons are pre-

sented in Table 3. DIM-SUM consistently demonstrates superior

MSE compared to DAGAN, especially at higher missing percent-

ages, across datasets. For instance, on WD1 with 90% missingness

(Non-stationary Transformer), DIM-SUM’s MSE is 1.0972, markedly

better than DAGAN’s 13.7267. DAGAN’s tendency to over�t dom-

inant patterns contributes to this performance gap. DIM-SUM’s

clustering approach, in contrast, helps preserve and learn from

diverse data patterns.

Computational E�iciency Computational e�ciency is a signif-

icant advantage of the framework. Using DIM-SUM with the fol-

lowing PAC bound (X = 0.1, n = 0.03), Table 4 details the average

end-to-end (E2E) computation time, directly comparing DIM-SUM

with Baseline (Direct), DAGAN, and Chronos approaches at both

10% and 90% missingness levels. This allows for an assessment

of how these techniques perform under varying data availability.

DIM-SUM consistently demonstrates superior E2E e�ciency. Note

that full DAGAN preprocessing is impractical for large datasets.

DIM-SUM’s own complete preprocessing is far quicker (e.g., WD1:

45 seconds for DIM-SUM vs. 22 minutes for DAGAN on sampled

data).

Reduction of Training Data A primary bene�t of DIM-SUM is

its dramatic reduction in training data requirements, as detailed

in Table 5. This table illustrates that DIM-SUM consistently op-

erates with signi�cantly fewer sequences compared to strategies

like Direct Model Application or Chronos, which are trained using

the entire available set of clean sequences. This e�ciency also ex-

tends to comparisons with pattern-aware methods like DAGAN;

even when DAGAN employs DIM-SUM’s sampling, DIM-SUM’s

inclusion of majority cluster selection further re�nes data needs,

resulting in smaller training sets. For instance, on the extensive
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Table 2: MSE Comparison: Direct Model Application vs. DIM-SUM.

Dataset

MRNN SAITS Nonstationary StemGNN CSDI

Direct DIM-SUM Direct DIM-SUM Direct DIM-SUM Direct DIM-SUM Direct DIM-SUM

WD1 1.0887 0.8748 1.0000 0.9792 1.1491 1.0915 1.0114 1.2505 4.4240 3.3774

WD2 0.9423 0.8833 1.0027 1.0179 0.9603 1.0089 1.0798 1.0677 0.9199 0.9631

LCL 0.7190 0.6080 0.8981 0.6817 1.1910 1.1252 0.8414 0.8047 13.2458 6.6625

GESL-C 0.0079 0.0015 0.0633 0.0565 1.3024 1.1063 0.1069 0.1469 2.1340 0.7282

GESL-V 0.0007 0.0006 0.0594 0.0510 1.1122 1.0920 0.2616 0.9006 43.4276 26.2236

Weather 1.0733 0.8664 0.6229 0.3126 0.4933 0.3253 0.6135 0.4200 27.9520 2.6036

Figure 4: MSE comparison of direct models versus applying DIM-SUM across the six datasets with MCAR and MNAR

Table 3: MSE Comparison: DAGAN vs. DIM-SUM (D / DS) across Models, Datasets, and Missingness Levels (10% & 90%).

Dataset

MRNN SAITS Nonstationary StemGNN CSDI

@10% @90% @10% @90% @10% @90% @10% @90% @10% @90%

(D / DS) (D / DS) (D / DS) (D / DS) (D / DS) (D / DS) (D / DS) (D / DS) (D / DS) (D / DS)

WD1 0.4983 / 0.9131 13.7267 / 1.0972 6.1859 / 0.7711 11.1561 / 1.1104 4.1538 / 0.8171 13.3162 / 0.9874 6.8437 / 0.7571 18.9274 / 1.1046 24.3528 / 2.6256 38.4582 / 3.5908

WD2 1.5169 / 0.9340 5.7200 / 1.0330 1.8119 / 0.9673 5.8485 / 0.9536 1.3394 / 0.9190 5.7613 / 0.9754 1.6794 / 1.1130 5.8613 / 1.1297 5.7641 / 0.7817 8.2235 / 0.7962

LCL 1.3765 / 1.0504 1.3756 / 1.1158 0.7852 / 0.4592 1.0902 / 0.8304 0.5174 / 0.4592 0.9865 / 0.8304 0.1020 / 0.6773 0.5019 / 1.1064 0.6576 / 10.4309 0.9625 / 2.9519

GESL-V 1.1524 / 1.0862 2.5685 / 1.0692 0.0314 / 0.0293 3.1598 / 0.3266 0.0229 / 0.0010 0.0315 / 0.0086 0.0458 / 0.8221 3.2871 / 1.2994 0.0453 / 24.3325 0.6210 / 32.4632

GESL-C 1.2613 / 1.2358 6.4517 / 1.1706 0.0343 / 0.0335 7.9391 / 0.2492 0.1231 / 0.0013 0.3673 / 0.0022 0.1640 / 0.1354 8.0370 / 0.9166 0.0931 / 1.0443 0.5011 / 1.8508

Weather 1.0396 / 1.3247 11.5739 / 1.1486 0.1904 / 1.0443 13.3771 / 0.7553 0.3192 / 0.4389 4.0234 / 0.5671 0.2401 / 0.5769 13.4723 / 1.0015 0.1904 / 347.7666 0.5850 / 43.5254

WD1 dataset, DIM-SUM utilizes merely a fraction of the sequences

needed by these alternative strategies, underscoring its superior

data utilization e�ciency and exceptional value, particularly in

resource-constrained or large-scale deployment scenarios.

7 Conclusion

DIM-SUM presents an innovative and scalable preprocessing frame-

work designed to enhance the training of imputation models for
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Figure 5: MSE comparison of DIM-SUM applied to direct models and Chronos across the six datasets

Table 4: End-to-End (E2E) Computation Time (ms) Comparison

Dataset Technique
NST SAITS MRNN StemGNN CSDI

@10% @90% Incr. @10% @90% Incr. @10% @90% Incr. @10% @90% Incr. @10% @90% Incr.

WD1

DIM-SUM 182.0 194.1 +12.1 292.1 311.4 +19.3 325.9 311.6 -14.3 366.0 348.6 -17.4 967.9 963.1 -4.8

Baseline (Direct) 1169.4 1269.3 +99.9 1251.9 1332.6 +80.7 1147.1 1233.3 +86.2 381.8 3343.7 +2961.9 993.7 982.7 -11.0

DAGAN 5.69 × 106 6.13 × 106 +4.43 × 105 5.69 × 106 5.71 × 106 +1.93 × 104 7.47 × 106 7.41 × 106 −6.64 × 104 6.11 × 106 6.34 × 106 +2.30 × 105 6.25 × 106 6.31 × 106 +6.00 × 104

Chronos 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105

WD2

DIM-SUM 171.1 173.3 +2.2 263.8 235.6 -28.2 269.7 276.9 +7.2 373.9 347.1 -26.8 856.0 869.5 +13.5

Baseline (Direct) 434.1 433.3 -0.8 460.3 421.1 -39.2 491.7 465.5 -26.2 335.8 262.2 -73.6 865.1 863.6 -1.5

DAGAN 5.69 × 106 6.13 × 106 +4.43 × 105 5.69 × 106 5.71 × 106 +1.93 × 104 7.47 × 106 7.41 × 106 −6.64 × 104 6.11 × 106 6.34 × 106 +2.30 × 105 6.25 × 106 6.31 × 106 +6.00 × 104

Chronos 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105

LCL

DIM-SUM 16.2 14.7 -1.5 199.5 190.6 -8.9 225.4 227.7 +2.3 29.9 33.0 +3.1 75.2 72.5 -2.7

Baseline (Direct) 161.5 161.9 +0.4 136.6 133.5 -3.1 138.6 150.0 +11.4 0.4 27.6 +27.2 71.1 72.3 +1.2

DAGAN 5.69 × 106 6.13 × 106 +4.43 × 105 5.69 × 106 5.71 × 106 +1.93 × 104 7.47 × 106 7.41 × 106 −6.64 × 104 6.11 × 106 6.34 × 106 +2.30 × 105 6.25 × 106 6.31 × 106 +6.00 × 104

Chronos 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105

GESL-C

DIM-SUM 8.5 8.4 -0.1 9.7 14.5 +4.8 11.8 14.1 +2.3 21.0 21.2 +0.2 44.0 42.2 -1.8

Baseline (Direct) 31.7 25.2 -6.5 103.6 41.3 -62.3 5.1 3.7 -1.4 20.0 20.2 +0.2 42.9 40.9 -2.0

DAGAN 5.69 × 106 6.13 × 106 +4.43 × 105 5.69 × 106 5.71 × 106 +1.93 × 104 7.47 × 106 7.41 × 106 −6.64 × 104 6.11 × 106 6.34 × 106 +2.30 × 105 6.25 × 106 6.31 × 106 +6.00 × 104

Chronos 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105

GESL-V

DIM-SUM 8.9 8.5 -0.4 15.4 11.4 -4.0 12.3 14.1 +1.8 20.9 20.4 -0.5 51.4 50.7 -0.7

Baseline (Direct) 27.8 28.1 +0.3 116.5 36.0 -80.5 6.7 5.7 -1.0 2.3 20.8 +18.5 50.9 46.8 -4.1

DAGAN 5.69 × 106 6.13 × 106 +4.43 × 105 5.69 × 106 5.71 × 106 +1.93 × 104 7.47 × 106 7.41 × 106 −6.64 × 104 6.11 × 106 6.34 × 106 +2.30 × 105 6.25 × 106 6.31 × 106 +6.00 × 104

Chronos 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105

Weather

DIM-SUM 5.1 6.0 +0.9 10.5 8.5 -2.0 8.0 9.8 +1.8 12.0 11.3 -0.7 29.4 28.2 -1.2

Baseline (Direct) 5.2 4.8 -0.4 9.1 7.2 -1.9 8.4 8.7 +0.3 13.7 10.4 -3.3 28.1 28.2 +0.1

DAGAN 5.69 × 106 6.13 × 106 +4.43 × 105 5.69 × 106 5.71 × 106 +1.93 × 104 7.47 × 106 7.41 × 106 −6.64 × 104 6.11 × 106 6.34 × 106 +2.30 × 105 6.25 × 106 6.31 × 106 +6.00 × 104

Chronos 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105 1.08 × 105 8.64 × 105 +7.56 × 105

Table 5: Reduction in training data required for DIM-SUM

Dataset
Clean Seq.

(Baseline)
Total Seq. DAGAN DIM-SUM Reduction

WD1 4,888,091 16,666,667 240,000 58,025 189-287x

WD2 635,274 4,888,091 100,000 51,241 12.4-95x

LCL 1,746,141 1,746,141 40,000 7,969 219x

GESL-V 115,622 115,622 20,000 2,514 96x

GESL-C 115,622 115,622 20,000 2,514 96x

Weather 427,083 427,083 40,000 1,564 273x

time series data, particularly when faced with extensive missing

values and limited complete data. By integrating pattern clustering,

adaptive masking, and statistical learning guarantees, DIM-SUM

e�ectively navigates the challenges posed by real-world missing

data patterns, moving beyond traditional arti�cial masking tech-

niques. This approach allows existing imputation models to learn

from and adapt to the diverse and complex missing data scenarios

frequently encountered in domains like smart utility management.

The framework’s e�cacy is demonstrated through comprehen-

sive experiments across six diverse datasets, including water, elec-

tricity, and weather data, utilizing �ve di�erent imputation model

architectures. These evaluations show that DIM-SUM not only

achieves comparable or improved accuracy against baseline and

state-of-the-art methods but does so with signi�cantly reduced

training data and faster processing times. Furthermore, DIM-SUM

provides theoretical learning guarantees, o�ering reliable perfor-

mance even with minimal clean training data, making it a valuable

tool for practical, large-scale time series applications.
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