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ABSTRACT

Recently, large language models (LLMs) have demonstrated re-

markable capabilities in understanding and generating natural lan-

guage content, attracting widespread attention in both industry

and academia. An increasing number of services o�er LLMs for

various tasks via APIs. Di�erent LLMs demonstrate expertise in

di�erent domains of queries (e.g., text classi�cation queries). Mean-

while, LLMs of di�erent scales, complexities, and performance are

priced diversely. Driven by this, several researchers are investigat-

ing strategies for selecting an ensemble of LLMs, aiming to decrease

overall usage costs while enhancing performance. However, to our

best knowledge, none of the existing works addresses the prob-

lem, how to �nd an LLM ensemble subject to a cost budget, which

maximizes the ensemble performance with guarantees.

In this paper, we formalize the performance of an ensemble of

models (LLMs) using the notion of correctness probability, which

we formally de�ne. We develop an approach for aggregating re-

sponses from multiple LLMs to enhance ensemble performance.

Building on this, we formulate the Optimal Ensemble Selection

(OES) problem of selecting a set of LLMs subject to a cost budget

that maximizes the overall correctness probability. We show that

the correctness probability function is non-decreasing and non-

submodular and provide evidence that the OES problem is likely to

be NP-hard. By leveraging a submodular function that upper bounds

correctness probability, we develop an algorithm, Thri�LLM, and

prove that it achieves an instance-dependent approximation guar-

antee with high probability. Our framework functions as a data

processing system that selects appropriate LLM operators to deliver

high-quality results under budget constraints. It achieves state-of-

the-art performance for text classi�cation and entity matching

queries on multiple real-world datasets against various baselines

in our extensive experimental evaluation, while using a relatively

lower cost budget, strongly supporting the e�ectiveness and supe-

riority of our method.
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1 INTRODUCTION

The evolution of large language models (LLMs) has signi�cantly

transformed the �eld of natural language processing. These models

have enabled AI systems to generate human-like texts based on

input instructions with remarkable accuracy. An increasing number

of companies (e.g., OpenAI, Anthropic, and Google) have introduced

a wide range of services powered by LLMs, such as GPT-4 [37],

Claude-3 [1], and Gemini [21]. These services, accessible via APIs,

have achieved notable success across various applications, such as

text classi�cation, question answering, summarization, and natural

language inference [31, 44, 45, 57]. In data management, various

LLMs have been adopted for text-to-SQL generation [16, 20, 56],

query performance optimization [50, 51, 61], schema matching [40],

and entitymatching [32, 39, 41]. In those applications, we can regard

each LLM as a standalone operator that takes unstructured data

as input and computes derived attributes (e.g., sentiment, stance).

From this perspective, an LLM ensemble acts as a data processing

system to deliver high-quality results under budget constraints.

More broadly, this strategy can be seen as extending the capabilities

of traditional DBMSs by leveraging the power of LLM operators

over unstructured data. This is particularly relevant for modern
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Figure 1: Overview of Thri�LLM: '8 , ' 9 , ' denote responses.

data management workloads, where unstructured data, e.g., text,

images, increasingly plays a central role.

While LLMs o�er signi�cant improvements in performance,

they come with substantial costs, particularly for high-throughput

applications. For example, GPT-4 charges $30 per million input to-

kens and $60 per million output tokens [23], while Gemini-1.5 [34]

costs $7 and $21 per million input and output tokens, respectively.

Typically, models with higher performance charge a higher price.

However, it is well recognized that expensive models with larger

number of parameters do not necessarily dominate the cheaper

models across all applications [10, 12, 42, 46, 53]. Di�erent mod-

els may excel in di�erent domains, and it has been observed that

smaller LLMs can surpass larger LLMs on speci�c tasks [10, 14, 18].

This phenomenon raises an important question: can we leverage

a set of cost-e�ective LLMs, within a speci�ed budget, to achieve per-

formance comparable to that of a more expensive LLM? The literature

o�ers two main strategies to address this: LLM ensemble [10, 27, 42]

and tiny LM [9, 24, 47]. The ensemble approach aims to optimize

performance by combining outputs from a carefully selected set

of LLMs. In contrast, the tiny LM approach applies advanced tech-

niques to reduce the parameter counts of models without signi�-

cantly compromising the performance. Speci�cally, FrugalGPT [10],

a recent LLM ensemble work, derives an LLM cascade from a ground

set optimized for given queries under a cost budget constraint. As a

representative from the tiny LM family, Octopus v2 [11] �ne-tunes

the small model Gemma-2B to exploit �ne-tuned functional tokens

for function calling, achieving comparable performance with GPT-4

in accuracy and latency. Among the frameworks for LLM usage cost

reduction and LLM performance enhancement, FrugalGPT is the

most pertinent to our research. However, when FrugalGPT applies

the derived LLM cascade to queries, it adopts the single output

from the last executed model in the sequence rather than taking

advantage of all generated responses from the model cascade to

produce an optimal solution. Moreover, the budget constraint is ap-

plied to queries in an expected sense, allowing the incurred costs on

individual queries to exceed the budget in practice, a phenomenon

con�rmed by our experiments. In addition, FrugalGPT does not

provide any performance guarantee for the selected LLM ensemble.

Inspired by these observations, we aim to combine the responses

generated by a collection of LLMs in a non-trivial manner to de-

liver high-quality output, with a focus on classi�cation queries. To

this end, we devise a novel aggregation approach and quantify the

quality of the aggregated response via a new metric of correctness

probability by leveraging likelihood maximization. Building on this,

we formalize an optimization problem, dubbed Optimal Ensemble

Selection (OES for short): given a set of LLMs, a speci�c budget,

and a query, the objective is to identify a subset of LLMs whose

total cost is within the budget while the aggregated correctness

probability on the query is maximized. To address this challenge, we

propose an adaptive LLM selection algorithm Thri�LLM, designed

speci�cally for this budget-constrained LLM selection scenario. As

illustrated in Figure 1, when receiving a query and budget from

a user, Thri�LLM selects an appropriate subset of LLMs from the

LLM candidates without exceeding the budget. These LLMs inde-

pendently process the query, and their responses are subsequently

aggregated by Thri�LLM to produce a �nal answer of high quality,

which is then returned to the user. Take a traditional data manage-

ment task—entity matching—as an example. A global consulting

�rm may collect product information from di�erent regions in

varied formats and descriptions for market analysis. For example,

Product 1: Samsung Galaxy S21 Ultra, Phantom Silver, Factory Un-

locked and Product 2: Samsung smartphone, 256GB storage, high-end

camera, silver color. They both refer to the same high-end Samsung

Galaxy S21. To ensure reliable insights, it must identify records

referring to the same real-world product across sources. In our

framework, each LLM serves as an operator that takes a product

pair and predicts whether they refer to the same entity. These LLM

operators vary in capability. Given a �xed budget, Thri�LLM se-

lects an optimal subset of them to form an ensemble that ensures

high-quality matching.

We conduct an in-depth theoretical analysis of the correctness

probability function in the OES problem and establish that it is

non-decreasing and non-submodular. We also provide evidence of

the hardness of the problem. Nevertheless, we leverage a surrogate

objective function that upper bounds the correctness probability,

show that it is non-decreasing and submodular, and devise an algo-

rithm for OES that achieves an instance-dependent approximation

guarantee with high probability, when LLM success probabilities

are known. We show how our algorithms and approximation guar-

antees can be extended to the case when the success probabilities

are unknown and are estimated within con�dence intervals. We

compare Thri�LLM with 3 baselines on 5 real-world datasets on

various text classi�cation queries across di�erent domains as well

as with 2 SOTA baselines across 5 real-world datasets on entity

matching queries. The experimental results strongly demonstrate

the superior performance of Thri�LLM in terms of accuracy re-

specting cost budgets and delivering high-quality results under

given budgets.

In sum, we make the following contributions.

• We propose a new aggregation scheme for combining indi-

vidual LLM responses and formalize the ensemble predic-

tion quality using a novel notion of correctness probability

(Sections 2 and 3). We show that correctness probability is

non-decreasing but non-submodular and o�er evidence of

hardness of Optimal Ensemble Selection (Section 4.1).

• We develop a greedy algorithm, GreedyLLM, and show

that it has an unbounded approximation factor. We then de-

velop the Thri�LLM algorithm by leveraging a submodular

upper bound function as a surrogate objective, and show

that it o�ers an instance dependent approximation to the

4411



optimum with high probability (Sections 4.2-4.3). When the

success probabilities are unknown and are estimated within

con�dence intervals, our data-dependent approximation

guarantees continue to hold (Section 4.4).

• We conduct extensive experiments on text classi�cation

tasks over 5 real-world datasets across diverse domains

against 5 baselines and on entity matching over 5 real-

world datasets against 4 baselines. Experiments show that

Thri�LLM achieves comparable or superior performance on

the tested datasets while respecting the budget constraints).

2 PRELIMINARIES

We denote matrices, vectors, and sets with bold uppercase letters

(e.g., T), bold lowercase letters (e.g., x), and calligraphic letters (e.g.,

S), respectively. The 8-th row (resp. column) of matrix T is denoted

T[8, ·] (resp. T[·, 8]). We use [=] to denote the set {1, 2, · · · , =}.
We refer to textual tasks submitted to LLMs as queries. Queries

typically contain contexts, called prompts, preceding the actual ques-

tions. In general, we assume queries include necessary prompts. Let

Q be a query class representing a speci�c category of queries in the

real world and L = {;1, ;2, · · · , ;!} be a set of distinct LLMs (! > 0).

Given a random query @ ∈ Q (with its corresponding prompt),

the query processing cost of a model consists of two components:

the input and output costs, which are directly determined by the

number of input and output tokens, respectively. We let 18 (@) ∈ R+
denote the total incurred cost of model ;8 for processing query @.

When the model ;8 is deterministic, its cost 18 (@) is solely deter-

mined by the query @. For simplicity, we refer to this cost as 18
when the query is clear from the context. The performance of the

models from L on the query class Q is represented by the set of

success probabilities P = {?1, ?2, · · · , ?!}, where each ?8 denotes
the probability that the model ;8 generates a correct response to a

query selected uniformly at random from Q.
Speci�cally, for a classi�cation query @ ∈ Q, let C =

{�1, . . . ,� } denote the set of  > 0 possible classes. When model

;8 ∈ L is applied to query@, it returns a prediction response denoted

'(;8 ) ∈ C. For a subset S ¦ L of LLMs, their prediction responses

yield an observation qS = ('(;) | ; ∈ S), a prediction sequence

of the LLMs from S. The set of all possible observations for S on

the query class Q is termed as observation space ¬S . We denote

the prediction derived from observation qS ∈ ¬S as � (qS). The
derivation procedure is elaborated in Section 3.2.

Given a set of LLMs S and considering a random query @ from

Q with an associated ground-truth class �@ , the probability of

observing qS , denoted as Pr[qS], is computed as follows. Let S) =

{; ∈ S | '(;) = �@} (resp. S� = {; ∈ S | '(;) ≠ �@}) be the subset
of models whose prediction agrees (resp. disagrees) with �@ . Then

Pr[qS] is Pr[qS] =
∏

;8 ∈S) ?8
∏

; 9 ∈S�
1−? 9
 −1 .

Notice that a model making a wrong prediction could predict

any one of the rest  − 1 wrong classes. For example, given a query

class Q, let the LLM set S = {;1, ;2, ;3} with corresponding success

probabilities P = {0.9, 0.8, 0.8} and the class set C = {�1,�2,�3}.
Figure 2 demonstrates the observation space ¬S . Suppose we sam-

ple a random query @ from Q uniformly. When the ground-truth

class �@ = �1, the probability of observation q3 = (�1,�1,�3) is

� = (� , � , � ),    � = (� , � , � )

� = (� , � , � ),    � = (� , � , � )

ï

� = (� , � , � ),    � = (� , � , � )

� = {� , � , � },    � = {� , � , � }
« = * *

Figure 2: Example of an observation space ¬S .

Pr[q3] = 0.9 × 0.8 × 1−0.8
2 = 0.072. Similarly, the probability is up-

dated to Pr[q3] = 0.0005 or Pr[q3] = 0.004 if �@ = �2 or �@ = �3,

respectively. By following this procedure, the probability bP (S) is
aggregated over the entire observation space ¬S .

By leveraging the realization probability Pr[qS], the fundamen-

tal notion of correctness probability b (S) of S, i.e., the probability
that S makes the correct prediction on a random query from query

class Q, is formalized as follows.

Definition 1 (Correctness Probability). Given a random

query @ sampled uniformly from class Q and a subset S of LLMs,

let �@ be the ground-truth response. Let ¬)S ¢ ¬S be the subset of

observations with � (qS) = �@ . The correctness probability on query

class Q is bP (S) =
∑

qS ∈¬)
S
Pr[qS].

When the success probabilities P are clear from the context, we

will drop the subscript and denote correctness probability as b (.).
We next formally state the problem we study in the paper.

Definition 2 (Optimal Ensemble Selection). Consider a query

class Q, a set L of LLMs, and a cost budget � ∈ R+. The Optimal
Ensemble Selection (OES) problem is to �nd a subset S◦ ¦ L
whose total cost is under �, such that the correctness probability

b (S◦) on Q is maximized, i.e.,

S◦ = argmax
S:S¦L,2 (S)f�

b (S), (1)

where 2 (S) := ∑

;8 ∈S 18 is the total cost of LLMs in S.

3 PROBABILITY ESTIMATION AND RESPONSE
AGGREGATION

3.1 Estimation of Success Probability

We assume that queries from the same query class Q exhibit seman-

tic similarity. The success probability of a model ; on query class Q
is the probability that ; returns the correct response for a query @

randomly sampled from Q. This probability is crucial in addressing

the OES problem. However, success probabilities of LLMs are not

known a priori but can be estimated from historical data.

Speci�cally, consider an input table T that records the historical

performance of the ! LLMs on # queries in a matrix format with

!, # ∈ N+. The entries of T vary based on the type of query @. For

classi�cation tasks, T contains boolean entries, i.e., T ∈ {0, 1}#×! .
Conversely, for generation or regression tasks, it contains real val-

ues in the interval [0, 1], i.e., T ∈ [0, 1]#×! , with Tℓ,: indicating

the quality or accuracy score of the response from the ℓ-th model

on the :-th query. In this paper, we focus on classi�cation queries.

To accurately estimate the success probability for each query

class, we �rst cluster the queries in T into distinct groups based on

their semantic similarity. To this end, we convert all queries into

4412



embeddings by leveraging the embedding API [38] provided by

OpenAI. Subsequently, we employ the DBSCAN [19] algorithm to

cluster the embeddings. The success probability ?; of the ;-th model

on one resultant cluster Q: is estimated as ?; =
1
| Q: |

∑

@8 ∈Q: T[8, ;].

3.2 Response Aggregation

Given a set S of LLMs and an observation qS =

('(;1), '(;2), · · · , '(; |S | )), the aggregated prediction � (qS)
of qS is derived by combining all responses in observation qS .
Since the ground-truth�@ of query @ is unknown, we take the class

with maximum likelihood as the aggregated prediction � (qS).
Speci�cally, each response in observation qS corresponds to a class

from C = {�1,�2, · · · ,� }, which includes the (unknown) ground

truth �@ . We consider each of the  classes in turn as the ground

truth and compute the likelihood of observing qS . The class with
the highest likelihood is selected as the prediction � (qS).

Initially, the set S is partitioned into disjoint subsets as S =

{S(�1),S(�2), · · · ,S(� )} where S(�: ) = {; : '(;) = �: , ; ∈ S}
represents the subset of models that predicted class �: . The likeli-

hood function 5 (�@ = �: | qS), which measures the probability of

�: being the ground truth, is de�ned as

5 (�@ = �: | qS) =
∏

;8 ∈S(�: ) ?8
∏

; 9 ∈S\S(�: )
1−? 9
 −1 (2)

for : ∈ [ ]. Based on this likelihood, we can derive the prediction

� (qS) from observation qS as� (qS) = argmax�: ∈C 5 (�@ = �: |
qS). If there are multiple classes with the same maximal likelihood,

we break the tie randomly.

Computing 5 (�@ = �: | qS) for all : ∈ [ ] is expensive. How-
ever, by identifying redundant calculations, we can speed it up.

Speci�cally, computing 5 (.) involves a substantial amount of re-

peated calculations, as
∏

; 9 ∈S(�: )
1−? 9
 −1 for : ∈ [ ] is repeated

 − 1 times, leading to unnecessary overheads. We can choose

� (qS) as the class with the highest likelihood by ranking the  

likelihoods 5 (�@ = �: | qS) without calculating their exact values.
Speci�cally, it holds that

5 (�@ = �: | qS) =
∏

;8 ∈S(�: ) ?8
∏

; 9 ∈S\S(�: )
1−? 9
 −1

=
∏

;8 ∈S(�: )
?8 ( −1)
1−?8

∏

; 9 ∈S
1−? 9
 −1 .

The factor
∏

; 9 ∈S
1−? 9
 −1 is independent of : because it is shared

across all likelihood functions 5 (�@ = �: | qS),∀: ∈ [ ]. Con-
sequently, it is the term

∏

;8 ∈S(�: )
?8 ( −1)
1−?8 that determines the

prediction of a given observation. For clarity, we de�ne

ℎ(�: | qS) =
∏

;8 ∈S(�: )
?8 ( −1)
1−?8 (3)

as the belief in �: being the ground truth, conditioned on the ob-

servation qS for : ∈ [ ]. We use this belief in place of the likeli-

hood when deriving the prediction from an observation. Without

loss of generality, we set ℎ(�: | qS) =
?min

2(1−?min ) heuristically if

S(�: ) = ∅ where ?min = min{?1, ?2, · · · , ?!}. Let �: (qS) be the
:-th highest belief value for : ∈ [ ] among all classes. This leads

to the following easily proved fact.

Fact 1. Given an observation qS , the class �: corresponding to

�1 (qS) is the prediction derived from qS . In formal terms, � (qS) =
argmax�: ∈C ℎ(�: | qS).

Therefore, when deriving the prediction from observations, it

is su�cient to examine the belief value of the subset S(�: ) rather
than evaluating the likelihood across the entire set S. One com-

plication is that the ground truth �@ is unknown. Our next result

shows that we do not need to know the ground truth class �@ to

calculate b (S).

Proposition 1. The correctness probability b (S) is independent
of the ground-truth class �@ of the random query @.

The rationale is that correctness probability b (S) is determined

by the set of success probabilities P on query class Q. As long as
P is �xed, varying �@ of a random query @ ∈ Q does not a�ect the

overall correctness probability b (S) on Q, i.e., it does not matter

what the actual ground truth class is! The intuition lies in the fact

that observations are symmetrically distributed with respect to the

underlying ground-truth labels. Hence, we can assume any class in

C to be the ground truth, without a�ecting the calculation of b (S).

4 ADAPTIVE LLM SELECTION

4.1 Correctness Probability and Problem
Complexity

The correctness probability function b (S) (see De�nition 1) de-

termines the probability of correctness of a given set of LLMs S
on a query class Q, i.e., the probability of obtaining the correct

aggregated prediction from any observation when applying S on a

random query @ ∈ Q. The ultimate objective of OES is to maximize

this probability by identifying a subset of LLMs. To aid our analysis,

we �rst analyze the properties of function b (·).
Let P = {?1, ..., ?!} and P′ = {?′1, ..., ?

′
!
} be two sets of success

probabilities of the models in L. We write P ¯ P′ i� ?8 f ?′8 , 8 ∈
[!]. We have the following lemmas.

Lemma 1. The correctness probability function b (·) is non-

decreasing. Speci�cally, (i) for any subset of modelsS ¦ L and success

probability sets P,P′ such that P ¯ P′, we have bP (S) f bP′ (S);
(ii) for any sets of models S ¢ S′ ¦ L, and any success probability

set P, bP (S) f bP (S′).

Lemma 2. The correctness probability function b (·) is non-

submodular.

Given this, we cannot directly �nd an (even approximately) opti-

mal solution for theOptimal Ensemble Selection problem. Before

we proceed, we establish the following proposition.

Proposition 2. For a set S = {;1, ;2} consisting of two LLMs, we

have b (S) = max{?1, ?2} where ?1 and ?2 are the success probabili-
ties of ;1 and ;2 respectively.

The intuition is that when only two models are employed and

they give two distinct predictions, the one with the higher success

probability results in a higher belief value, as Equation (3) indicates,

dominating the weaker one. Hence, the correctness probability is

equal to the higher success probability between the two. Our proof

of Lemma 2 (see Appendix A) builds on this idea.

Hardness of Optimal Ensemble Selection. We o�er evidence

of the hardness of the OES problem. We can rephrase the OES

problem as, “select for each query, a subset of LLMs (items) so as to
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maximize the sum of success probabilities (value) while adhering

to a pre-de�ned cost budget (weight limit)”, which is a variant of

the 0-1 Knapsack problem [35], a well-known NP-hard problem. It

is also worth noting that, for a given subset of LLMs, its correctness

probability sums over exponentially many possible observations,

which is clearly harder to compute than the “total value” in the

0-1 Knapsack problem. This suggests that the OES problem should

be at least as hard as the 0-1 Knapsack problem. While proving a

formal reduction is challenging due to the complex calculation of

b (.), the above argument o�ers some evidence that OES is likely to

be computationally intractable.

4.2 Our Surrogate Greedy Strategy

As proved above, Optimal Ensemble Selection is essentially a

budgeted non-submodular maximization problem, which is substan-

tially challenging. In the literature [4, 6, 26, 43], the greedy strategy is

recognized as a canonical approach for addressing combinatorial op-

timization problems involving submodular and non-submodular set

functions. In the sequel, we �rst present the vanilla greedy strategy

and demonstrate its inability to solve budgeted non-submodular

maximization with theoretical guarantees. To remedy this de�-

ciency, we propose a novel surrogate greedy, which can provide a

data-dependent approximation guarantee.

Vanilla Greedy. Algorithm 1, dubbed GreedyLLM, presents the

pseudo-code of the greedy strategy applied to the OES problem.

In general, GreedyLLM selects models from the ground set L that

achieve the highest ratio of marginal correctness gain to the associ-

ated cost in each iteration (see Line 3). When there is a tie, i.e., S′
contains more than one model with the same maximum ratio, the

tie is broken in Line 4 by choosing the model ;∗ ∈ ( ′with the largest

probability/cost ratio, which is then added to S if the remaining

budget allows; otherwise, ;∗ is omitted, and GreedyLLM proceeds

to the next iteration. The process terminates if either the budget is

exhausted or the set L becomes empty.

The selection mechanism of the greedy strategy is straightfor-

ward, making the algorithm e�cient. However, the greedy strategy

for this budgeted non-submodular maximization problem does not

come with any approximation guarantees and can indeed lead to ar-

bitrarily bad results. For example, consider a set of LLMsL = {;1, ;2}
subject to a budget �, each with associated probabilities {?1, ?2}
and costs {11, 12}. Assume that 11 = �, 12 j �, and ?1 k ?2,

yet the ratio
?1
11

<
?2
12
. In this case, {;1} is the optimal solution

while GreedyLLM would myopically choose {;2} as the solution.
As a consequence, this misselection results in an approximation

guarantee
?2
?1
, which can be arbitrarily small.

Our Surrogate Greedy. To derive a plausible approximation guar-

antee for this budgeted non-submodular maximization problem,

we propose a surrogate greedy strategy. The idea is as follows. We

design a surrogate set function W (S) to approximate the correct-

ness probability function b (S). This surrogate function is devised

such that i) W (S) is submodular and ii) W (S) g b (S) holds for ev-
ery subset S ¦ L. Subsequently, we establish an approximation

guarantee forW (S) concerning budgeted submodular maximization.

Built on this foundation, we derive a data-dependent approximation

guarantee for b (S) for the Optimal Ensemble Selection problem.

Algorithm 1: LLM Selection in Greedy - GreedyLLM

Input: LLM set L, success probability set P = {?1, ?2, · · · , ?! },
cost set {11, · · · , 1! }, budget �, and the set function b ( ·)

Output: Subset S
1 S ← ∅;
2 while � > 0 and L ≠ ∅ do
3 S′ ← argmax;8 ∈L

b (S∪{;8 })−b (S)
18

;

4 ;∗ ← argmax;8 ∈S′
?8
18
, L ← L \ {;∗};

5 if � < 1∗ then
6 continue;

7 S ← S ∪ {;∗}, � ← � − 1∗;
8 return S;

Algorithm 2: Surrogate Greedy - SurGreedyLLM

Input: LLM set L, success probability set P = {?1, ?2, · · · , ?! },
cost set {11, · · · , 1! }, budget �, correctness function b ( ·) ,
and surrogate function W ( ·)

Output: Subset S
1 ;∗ ← argmax;8 ∈L,18 f� ?8 ;
2 S1 ←GreedyLLM (L, P, {11, · · · , 1! }, �, b ( ·));
3 S2 ←GreedyLLM (L, P, {11, · · · , 1! }, �, W ( ·));
4 S∗ ← argmax{{;∗}, b (S1 ), b (S2 ) };
5 return S∗;

Speci�cally, we de�ne the surrogate set function as

W (S) := 1 −∏;: ∈S (1 − ?: ) (4)

Accordingly, we have the following result.

Lemma 3. The set function W (S) in Equation (4) is submodular

and W (S) g b (S) holds for ∀S ¦ L.

Proof of Lemma 3. Consider two subsets S1 ¦ S2 ¦ L and an

LLM ;8 ∈ L \ S2. We calculate the ratio of marginal gains

W (S1∪{;8 })−W (S1 )
W (S2∪{;8 })−W (S2 ) =

1−∏;: ∈S1∪{;8 } (1−?: )−1+
∏

;: ∈S1 (1−?: )
1−∏;: ∈S2∪{;8 } (1−?: )−1+

∏

;: ∈S2 (1−?: )

=

∏

;: ∈S1 (1−?: )−
∏

;: ∈S1∪{;8 } (1−?: )
∏

;: ∈S2 (1−?: )−
∏

;: ∈S2∪{;8 } (1−?: )
=
?8

∏

;: ∈S1 (1−?: )
?8

∏

;: ∈S2 (1−?: )

=
1

∏

;: ∈S2\S1 (1−?: )
g 1.

It follows that W (S1 ∪ {;8 }) − W (S1) g W (S2 ∪ {;8 }) − W (S2) for
S1 ¦ S2, showing that W (.) is submodular.

To compare b (S) with W (S), we analyze the di�erence between
the failure probabilities 1 − b (S) and 1 − W (S) = ∏

;8 ∈S (1 − ?8 ).
The probability 1 − b (S) captures all cases where the aggregated
prediction is incorrect. Those cases fall into two disjoint categories:

Category I contains cases where at least one model in S pro-

vides a correct prediction, whereas Category II comprises cases

where all models in S yield incorrect predictions. Consequently,

we can express 1 − b (S) = Pr[Category I] + Pr[Category II]
and 1 − W (S) =

∏

;8 ∈S (1 − ?8 ) = Pr[Category II]. Given that

Pr[Category I] g 0, it follows that 1 − b (S) g ∏

;8 ∈S (1 − ?8 ),
implying W (S) g b (S), which completes the proof. □

Khuller et al. [29] study budgeted maximum set cover, a well-

known submodular optimization problem, and propose a modi�ed
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greedy algorithm that has a (1 − 1√
e
)-approximation guarantee1.

Basically, the algorithm selects a single set S1 whose coverage is
maximum within the budget; if the coverage of S1 is more than

that of the vanilla greedy solution S2, then return S1; otherwise,
return S2. By leveraging this as a building block, we now introduce

our surrogate greedy approach, dubbed SurGreedyLLM, for the

budgeted non-submodular LLM selection problem in Algorithm 2.

In particular, SurGreedyLLM �rst identi�es the model ;∗ with
the highest success probability under the budget �. Next, it derives

solution sets S1 and S2 by leveraging GreedyLLM on set functions

b (·) and W (·) respectively. The one with the highest correctness

probability among the three sets {{;∗},S1,S2} is returned as the

�nal solution. The following theorem shows that SurGreedyLLM

provides a data-dependent approximation guarantee.

Theorem 3. Consider sets {;∗}, S1, S2, and S∗ derived from Sur-

GreedyLLM. It holds that

b (S∗) g max{b ((1 ), b ((2 ), ?∗ }
max{W (S2 ), ?∗ } (1 − 1√

e
) · b (S◦), (5)

where ?∗ is the success probability of ;∗ and S◦ is the optimal solution

of Optimal Ensemble Selection.

4.3 Surrogate Greedy: Further Optimizations

In this section, we seek further optimizations onAlgorithm 2. Specif-

ically, we shall �rst show that it is possible to further optimize the

solution S∗ returned by Surrogate Greedy by identifying models in

S∗ that can be safely pruned without changing the �nal prediction.

Eliminating models from S∗ helps cut down the cost incurred by

the �nal solution. The intuition why this works is because when we

apply models in S∗ successively on a given task, by observing the

predictions obtained so far we may be able to determine that the

remaining models cannot in�uence the �nal aggregated prediction.

Secondly, we note that calculating the correctness function b (·)
exactly is expensive. Therefore, for practical implementation, we

estimate b (·) using \ Monte Carlo simulations, where \ is deter-

mined by input parameters n, X ∈ (0, 1). The principle for selecting
appropriate values for n and X is discussed in Section 4.3.2.

4.3.1 Adaptive Selection. After obtaining S∗ from Algorithm 2, it

can be further reduced at model invocation time, in an adaptive

manner tailored for practical scenarios. Speci�cally, when we apply

models from S∗ in sequence on a given query, a tipping point arises

upon which the aggregated prediction from the models applied so

far cannot be not in�uenced by subsequent models from S∗ not yet
used. At this juncture, the aggregated prediction can be deemed

�nal and returned in response to the query. This procedure enables

the derivation of a subset of LLMs S from S∗ with a reduced cost

by leveraging real-time observational feedback, while ensuring the

same prediction as that of S∗. Building on this pivotal insight, we

have developed an adaptive LLM selection strategy and introduce

Thri�LLM, detailed in Algorithm 3.

We �rst initialize T ∗ = S∗ obtained from Algorithm 2 and select

models from T ∗, add them to S while removing them from T ∗. Let
S be the current set of selected LLMs from T ∗, i.e., S = S∗ \ T ∗,
and qS be any real-time observation of S on input random query

1They also propose a greedy algorithm with a (1 − 1/e) approximation guarantee,

but its prohibitive$ (=5 ) complexity makes it impractical for use.

@. In each iteration before the selection, the algorithm checks the

termination condition � (T ∗)�2 (qS) > �1 (qS) where � (T ∗) :=
∏

;8 ∈T∗
?8 ( −1)
1−?8 is the potential belief value of set T ∗. In particular,

the potential belief � (S) of a setS represents themaximumpossible

belief value that the set S could contribute to any class. Note that

the set T ∗ is updated (Line 7 in Algorithm 3) during each selection

and contains the remaining unselected LLMs.

Algorithm 3: Adaptive LLM Selection - Thri�LLM

Input: Set L of LLMs, set P of success probability, cost 11, · · · , 1! ,
budget �, parameters n , X , and a random query @ ∈ Q

Output: Subset S and prediction on @

1 ?∗ ← max{?8 : ;8 ∈ L, 18 f �}, \ := 8+2n
n2?∗ ln(

2!2

X ) ;
2 S∗ ← Apply Algorithm 2 with \ Monte Carlo simulations for b ( ·)

estimation;

3 T∗ ← S∗, S ← ∅, qS ← ∅, �2 (qS ) ← 1, �1 (qS ) ← 1;

4 while T∗ ≠ ∅ do
5 if � (T∗ )�2 (qS ) > �1 (qS ) then
6 ;∗ ← argmax;8 ∈T∗ ?8 ;
7 S ← S ∪ {;∗}, T∗ ← T∗ \ {;∗};
8 Apply ;∗ on query @ and update observation qS ;

9 else

10 break;

11 return S and the prediction with belief �1 (qS ) ;

If the condition is satis�ed (Line 5), this suggests the possibility

that the application of the residual set T ∗ to query @ can yield a

prediction that di�ers from the existing prediction associated with

the belief value �1 (qS). We formalize this observation in Proposi-

tion 4. In this scenario, we persist in picking the model ;∗ with the

largest success probability from T ∗ into set S. Subsequently, ;∗ is
applied to query @, and observation qS is updated accordingly. This

procedure terminates if the condition is not met or T∗ is empty.

Proposition 4. If the condition � (T ∗)�2 (qS) f �1 (qS) holds
in Algorithm 3, the prediction by set S is the same as the prediction

by set S∗.

4.3.2 Approximation Guarantee and Time Complexity. In Algo-

rithm 3, correctness probability values of all subsets examined

in SurGreedyLLM are estimated using a su�cient number of Monte

Carlo simulations. We quantify the con�dence of the estimation in-

terval in the following result, derived using Hoe�ding’s inequality.

Lemma 4. Consider an arbitrary set S ¦ L with correctness prob-

ability b (S). The correctness probability estimation b̃ (S) in Algo-

rithm 3 satis�es:

Pr
[

|b (S) − b̃ (S)| f n?∗

2

]

g 1 − X/!2, (6)

where n, X ∈ (0, 1), ?∗ = max{?8 : ;8 ∈ L, 18 f �}, and b̃ (S) is
averaged from \ =

8+2n
n2?∗ ln(

2!2

X
) Monte Carlo simulations.

Lemma 4 directly follows from Lemma 3 in [48]. Building on

Lemma 4, we establish the approximation guarantee of the subset

of LLMs from Thri�LLM.

4415



Theorem 5. Given parameters n, X ∈ (0, 1), let S∗ be the solution
returned by Thri�LLM andS◦ be the optimal solution to theOptimal

Ensemble Selection problem. Then we have

Pr
[

b (S∗) g (max{b ((1 ), b ((2 ), ?∗ }
max{W (S2 ), ?∗ } − n) (1 − 1√

e
) · b (S◦)

]

g 1 − X,

where S1, S2, and ?∗ are derived from SurGreedyLLM.

Time Complexity. The time complexity of Algorithm 3 is domi-

nated by the selection process with set function b (·). Speci�cally,
there are at most$ (!2) evaluations of correctness probability. Each
evaluation invokes \ Monte Carlo simulations, and each Monte

Carlo simulation conducts$ (!) evaluations. Thus, the overall time

complexity is $ (\!3) = $ ( !3
n2?∗ ln(

2!2

X
)) = $ ( !3

n2
ln( !

X
)).

4.4 Extension to Probability Interval Estimates

Our algorithms as well as the approximation analysis assume the

precise ground truth success probabilities of the models L are avail-

able. In practice, they are unavailable and must be estimated, e.g.,

using the historical query responses of these models as illustrated

in Section 3.1. These estimates have an associated con�dence inter-

val. Speci�cally, given arbitrary sample sizes, con�dence intervals

can be derived by leveraging concentration inequalities [5]. We

next show how our algorithms (and analysis) can be extended to

work with con�dence intervals associated with estimates of suc-

cess probabilities. For clarity, denote the estimate of ground truth

success probability ?; as ?̂; . Let this estimate ?̂; have an associated

con�dence interval [?§
;
, ?¦
;
] at a con�dence level of 1 − X; , where

X; ∈ (0, 1). In the following, we explore the approximation guaran-

tee of Thri�LLM when these intervals are provided as inputs.

Let Plow = {?§1 , ?
§
2 , · · · , ?

§
!
}, P̂ = {?̂1, ?̂2, · · · , ?̂!}, and Pup =

{?¦1 , ?
¦
2 , · · · , ?

¦
!
} be the sets of lower bounds, estimated values,

and upper bounds corresponding to model success probabilities,

respectively. The corresponding correctness functions b (·), b; (·),
and bD (·) are de�ned based on ground-truth probabilities, Plow,
and Pup, respectively. Although the same observation space is

shared by the four scenarios involving ground-truth probabilities,

Plow, P̂ and Pup, the corresponding probability distributions of

observations intrinsically di�er. Run Algorithm 3 with each of the

success probability sets Plow, P̂, and Pup and let S∗; , S
∗, and S∗D be

the solution returned by the algorithm on these inputs respectively.

Based on this, we can establish the following theorem.

Theorem 6. Consider a set L = {;1, ;2, · · · , ;!} of LLMs and a

random query @ from class Q. Suppose the success probability of

model ; on @ is estimated as ?̂; with con�dence interval [?§
;
, ?¦
;
]

at a con�dence level of 1 − X; for X; ∈ (0, 1). Given approximation

parameters n, X ∈ (0, 1), we have

Pr
[

b (S∗ )
b (S◦ ) g

b; (S∗; )
bD (S∗D ) (

max{bD ((D1 ), bD ((D2 ), ?∗D }
max{WD (SD2 ), ?∗D } − n) (1 − 1√

e
)
]

g 1 − (X + !2∑!
;=1

X; ),
where WD (·) is the surrogate set function, (D1 and (D2 are selected by
SurGreedyLLM on Pup, respectively.

To ensure this data-dependent approximation guarantee holds

with high probability, a failure probability X + !2∑!
;=1

X; j 1 is

necessary. To this end, the term !2
∑!
;=1

X; is supposed to be in the

scale of X , i.e., !2
∑!
;=1

X; = Θ(X). In the following, we discuss how

to ensure a small failure probability.

Diminishing failure probability. When substantial samples are

available for query clusters, the failure probability (con�dence level)

in Theorem 6 can be signi�cantly improved by enlarging the sample

sizes. However, this may not be possible due to the lack of samples

in real-world applications. In this scenario, we can calibrate the

failure probability by repeatedly estimating the con�dence intervals

[?§
;
, ?¦
;
] with estimation ?̂; until a targeted failure probability (con-

�dence level) is reached. Speci�cally, we sample a certain number

of queries from each cluster and derive the con�dence interval at a

certain con�dence level. We then repeat this procedure a su�cient

number of times and return the median value among all estimates.

By doing this, we can diminish the failure probability to a desired

level. Formally, we establish the following Lemma.

Lemma 5. Let X; ∈ (0, 1) be the failure probability of con�dence
interval [?§

;
, ?¦
;
] with estimate ?̂; of success probability ?; derived

by a sampling procedure A, such that

Pr
[

?§
;
f ?; f ?¦;

]

g 1 − X; .

By independently repeating A a total of Λ; times, and taking the

interval with the corresponding estimates being the median among

the Λ; estimates, denoted as [?̄§
;
, ?̄¦
;
], we have

Pr[?̄§
;
f ?; f ?̄¦; ] g 1 − exp(−Λ; (1−2X; )2

2 ) . (7)

Theoretically, we aim to limit probability !2
∑!
;=0

X; = Θ(X)
in Theorem 6. Lemma 5 proves that X; can be diminished

to exp(−Λ; (1−2X; )2
2 ). In this regard, we can simply ensure

!2 exp(−Λ; (1−2X; )2
2 ) f X

! . Therefore, we have Λ; =
6 log(!/X )
(1−2X; )2 .

5 RELATED WORK

LLM Ensemble. FrugalGPT [10] aims to reduce the utilization

cost of large language models (LLMs) while improving the over-

all performance. In particular, it derives an LLM cascade from a

candidate set tailored for queries under a budget constraint. How-

ever, its performance is suboptimal as only the response from the

last executed model in the cascade is adopted, without exploiting

previous responses. Furthermore, it generates one LLM cascade

for the whole dataset, i.e., for all query classes, which can lead to

inferior performance due to the inherent diversity of the datasets

and query classes. LLM-Blender [27] is another recently proposed

LLM ensemble approach, but it does not incorporate any budget

constraint. Instead, it considers a set of existing LLMs from di�erent

mainstream providers. It �rst applies all models to the given query

and selects the top- responses using a ranking model called Pair-

Ranker. The  responses concatenated with the query are fed into a

�ne-tuned T5-like model, namely the GenFuser module, to generate

the �nal response. In the development of LLMs, their performance

grows gradually over time due to the scaling law and �ne-tuning.

LLM-Ensemble [17] learns aggregation weights for each LLM and

forms an ensemble by weights for the �nal response. Similarly,

LLM-Topla [49] selects a subset of LLMs optimized for diversity us-

ing a genetic algorithm. To predict the increasing performance and

capture the convergence point along time, Xia et al. [53] develop a
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time-increasing bandit algorithm TI-UCB. Speci�cally, TI-UCB iden-

ti�es the optimal LLM among candidates regarding development

trends with theoretical logarithmic regret upper bound. Di�erent

from TI-UCB on a single optimal LLM, C2MAB-V proposed by Dai

et al. [13] seeks the optimal LLM combinations for various collab-

orative task types. It employs combinatorial multi-armed bandits

with versatile reward models, aiming to balance cost and reward.

Recently, Shekhar et al. [42] try to reduce the usage costs of LLM

on document processing tasks. In particular, they �rst estimate

the ability of each individual LLM by a BERT-based predictor. By

taking these estimations as inputs, they solve the LLM selection

as a linear programming (LP) optimization problem and propose

the QC-Opt algorithm. Instead of selecting combinations of well-

trained LLMs, Bansal et al. [2] propose to compose the internal

representations of several LLMs by leveraging a cross-attention

mechanism, enabling new capabilities. Recently, Octopus-v4 [12]

has been proposed as an LLM router. It considers multiple LLMs

with expertise in di�erent domains and routes the queries to the

one with the most matched topic. However, (i) it does not consider

the budget constraint but only LLM expertise when routing, and

(ii) it employs one single model instead of an LLM ensemble for

enhanced performance. Among the above works, FrugalGPT [10]

and LLM-Blender [27] have similar goals and are most relevant to

our work. We experimentally compare with them in Section 6.

Entity Matching. Entity Matching (EM) aims to identify whether

two records from possibly di�erent tables refer to the same real-

world entity. It is also known as record linkage or entity reso-

lution [22]. According to [3], EM consists of �ve subtasks: data

preprocessing, schema matching, blocking, record pair comparison,

and classi�cation. Magellan [30] serves as a representative end-to-

end EM system, though it requires external human programming.

An emerging and fruitful line of work [3, 7, 15, 36, 54, 59] proposes

applying deep learning-based methods to improve the classi�cation

accuracy and automate the EM process. DeepMatcher [36] utilizes

an RNN architecture to aggregate record attributes and perform

comparisons based on the aggregated representations. DeepER [15]

employs GloVe to generate word embeddings and trains a bidirec-

tional LSTM-based EM model to obtain record embeddings. Au-

toEM [59] introduces a methodology to �ne-tune pre-trained deep

learning-based EM models using large-scale knowledge base data

through transfer learning. Another line of research, such as Em-

bDI [7] and HierGAT [54], leverages graph structures to improve

EM by learning proximity relationships between records. With the

emergence of transformer-based language models like BERT [28]

and RoBERTa [33], Ditto [32] �ne-tunes these pre-trained models

with EM corpora and introduces three optimization techniques to

improve matching performance. As the state-of-the-art method,

Peeters et al. [41] shows that LLMs with zero-shot learning outper-

form pre-trained language model-based methods, o�ering a more

robust, general solution.

6 EXPERIMENTS

6.1 Experimental Setup

Datasets for text classi�cation query. We conduct experiments

on 5 datasets across various real-world applications, namely Over-

ruling, AGNews, SciQ, Hellaswag, and Banking77, as summarized

Table 1: Dataset details for text classi�cation

Dataset Overruling AGNews SciQ Hellaswag2 Banking77

Domain Law News Science Commonsense Banking

Sizes 2.1 K 7.6 K 12.7 15 K 13 K

#Classes 2 4 4 4 77

Table 2: Dataset details for entity matching

Dataset
Training set Test set
# Pos # Neg # Pos # Neg

(WDC) - WDC Products 500 2,000 250 989
(A-B) - Abt-Buy 616 5,127 206 1,000
(W-A) - Walmart-Amazon 576 5,568 193 1,000
(A-G) - Amazon-Google 699 6,175 234 1,000
(D-S) - DBLP-Scholar 3,207 14,016 250 1,000

Table 3: Summary of commercial LLM APIs.

Company LLM APIs Size (B)
Cost/1M tokens (usd)

Input Output

OpenAI
GPT-4o-mini N.A. 0.15 0.6

GPT-4o N.A 5.0 15.0

Google

Gemini-1.5 Flash N.A. 0.075 0.3

Gemini-1.5 Pro N.A 3.5 10.5

Gemini-1.0 Pro N.A. 0.5 1.5

Microsoft

Phi-3-mini 3.8 0.13 0.52

Phi-3.5-mini 3.8 0.13 0.52

Phi-3-small 7 0.15 0.6

Phi-3-medium 14 0.17 0.68

Meta
Llama-3 8B 8 0.055 0.055

Llama-3 70B 70 0.35 0.4

Mistral AI Mixtral-8x7B 46.7 0.24 0.24

in Table 1. Speci�cally, Overruling [60] is a legal document dataset

designed to determine if a given sentence is an overruling. In par-

ticular, an overruling sentence overrides the decision of a previous

case as a precedent. AGNews [58] contains a corpus of news ar-

ticles categorized into four classes: World, Sports, Business, and

Science/Technology. Hellaswag [55] consists of un�nished sentences

for commonsense inference. Speci�cally, given an incomplete sen-

tence, models are required to select the most likely follow-up sen-

tence from 4 candidates. SciQ [52] is a collection of multiple-choice

questions from science exams, with a unique correct option. Fi-

nally, Banking77 [8] dataset consists of online banking queries

from customer service interactions, with each query assigned a

label corresponding to one of 77 �ne-grained intents.

Datasets for entity matching query. For this task, we used �ve

datasets with the same setup as in [41]. Dataset names and detailed

statistics are presented in Table 2. On each dataset, the model is

required to determine whether two real-world entity descriptions

(records) refer to the same entity, answering either yes or no. Among
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Figure 3: Prompt template for AGNews dataset.

these �ve datasets, DBLP-Scholar is a bibliographic entity dataset,

while the remaining four are e-commerce datasets.

LLMs.We incorporate 12 commercial LLM APIs provided by �ve

leading companies – OpenAI, Google, Microsoft, Meta, and Mistral

AI. The details of these LLMs are summarized in Table 3. As shown,

we select state-of-the-art LLMs from �ve companies as candidates.

Additionally, we present the costs per 1 million input and 1 million

output tokens, which vary from $0.055 to $15.0. Typically, larger

models incur higher costs. To reduce the internal model random-

ness, we set the lowest temperature for all LLM candidates, thereby

ensuring more deterministic responses.

Baselines. For text classi�cation, we compare Thri�LLM with

GreedyLLM and four related models, namely FrugalGPT [10], LLM-

Blender [27], LLM-Topla [49], and LLM-Ensemble [17]. FrugalGPT,

LLM-Ensemble, LLM-Topla, and LLM-Blender are described in de-

tail in Section 5. Since LLM-Ensemble didn’t address cost constraint

in their original work, we apply a straightforward approach by

greedily selecting the top-K weighted LLMs until the budget is met.

For LLM-Blender, we utilize the latest models for PairRanker and

GenFuser, following the original parameter settings recommended

by the authors. For entity matching, we include the SOTA methods

RoBERTa [33] �netuned by [41] and Di�o [32].

Parameter settings. In the experiments, we split the datasets for

text classi�cation into 80%/20% as historical and test sets, which

form two disjoint query sets. As with datasets for entity matching,

we follow the train/test splits as those in [41]. For Thri�LLM, we

�x parameters n = 0.1 and X = 0.01. According to the actual query

costs, we set a series of budgets � = {1.0, 5.0, 10, 50, 100} × 10−5

(USD) such that only subsets of LLMs in Table 3 are feasible given

those budget constraints. Empirically, for a single query, when

� = 1.0×10−5 USD, no more than 2–3 models are typically selected;

whereas for � = 1.0 × 10−3 USD, up to 9–10 models are chosen.

Running environment. Our experiments are conducted on a

Linux machine with an NVIDIA RTX A5000 (24GB memory), Intel

Xeon(R) CPU (2.80GHz), and 500GB RAM.

Prompt Engineering.We design two-shot prompting templates

for text-classi�cation datasets to ensure models generate outputs

in the desired format. For AGNews, we adopt the prompt tem-

plate from FrugalGPT [10] but limit input-output examples to two,

as shown in Figure 3. The blue text blocks contain the prompt

and examples, while the orange block contains the target ques-

tion. This structure is applied across all datasets. For other datasets

in text classi�cation, we randomly select two training records as

input-output pairs. For datasets in entity matching, we follow the

procedure outlined in [41] and use a zero-shot prompt with two

templates: domain-complex for DBLP-Scholar and Amazon-Google,

and general-complex for the others.

6.2 Performance on Text Classi�cation Query

The tested methods are evaluated in terms of accuracy scores

against LLM usage costs. Figure 4 presents the results of the accu-

racy versus costs of the 3 tested methods except for LLM-Blender

on the �ve datasets. In particular, FrugalGPT encounters the out-

of-memory issue on our machine (24GB GPU memory) on dataset

Hellaswag, so its performance is not reported in Figure 4d. More-

over, FrugalGPT enforces budget constraints based on the expected

training cost and does not respect the budget constraint strictly in a

per-querymanner, unlike Thri�LLM. For a fair comparison, wemod-

ify the budget constraint of FrugalGPT on testing queries to align

with this per-query approach in our experiments. LLM-Blender

utilizes all 12 LLM candidates for response collection, subsequently

aggregating the most prominent responses to formulate the �nal

solution. Given that LLM-Blender is not budget-aware, it is not

appropriate to compare it with budget-constrained methods across

di�erent budget scenarios. As such, we report the performance of

LLM-Blender and compare it with Thri�LLM separately in Table 4.

Figure 4 demonstrates the accuracy scores with the correspond-

ing utilized cost of each method on the 5 datasets for text classi-

�cation queries. As shown, Thri�LLM consistently outperforms

all other baseline models with either superior accuracy at the low-

est costs or the highest accuracy with lower costs on all datasets.

In particular, it achieves the highest accuracy on 4 out of the 5

tested datasets, except on Banking77. Thri�LLM may select sev-

eral weaker models instead of stronger ones on Banking77. This

selection discrepancy arises because the success probabilities of

these weaker models are overestimated when queries are from a

substantial number of distinct classes. Compared with GreedyLLM,

Thri�LLM acquires comparable accuracy scores but consumes no-

tably lower costs. This observation demonstrates the e�ectiveness

of adaptive selection in Thri�LLM on cost savingwithout sacri�cing

the performance. On datasets AGNews, Hellaswag, and Banking77,

where the accuracy scores do not approach 1, Thri�LLM exhibits an

ability to enhance accuracy further as costs increase. This indicates

that Thri�LLM e�ectively harnesses the capabilities of the LLM

ensemble and scales e�ciently with increased budget allocation.

For small budgets, LLM-Ensemble su�ers signi�cant performance

degradation because the single top-weightedmodel exceeds the bud-

get. LLM-Topla performs worse than Thri�LLM except on AGNews

and Banking77. The performance gains stem from LLM-Topla being

�ne-tuned individually on each dataset, which incurs substantially

higher computational cost.

Overall, Thri�LLM demonstrates a steadily strong performance,

outperforming the baselines. The analysis reveals a general trend

where Thri�LLM provides higher accuracy at lower cost levels,

indicating its e�ciency in utilizing computational resources.

Comparison with LLM-Blender. In Table 4, we compare the best

accuracy scores of Thri�LLM across �ve di�erent budget settings

with the accuracy of LLM-Blender, which uses all model outputs as

candidates for response selection. Despite this, it can be seen that
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Figure 4: Accuracy vs cost for text classi�cation query.

Table 4: Accuracy (%) of Thri�LLM and LLM-Blender.

Dataset Overruling AGNews SciQ Hellaswag Banking77

Thri�LLM 95.60 86.45 99.25 89.94 73.82

LLM-Blender 89.35 83.02 90.06 53.18 52.08

on all datasets Thri�LLM clearly outperforms LLM-Blender by a sig-

ni�cant margin. Distinct from the response aggregation mechanism

in Thri�LLM, LLM-Blender relies on the GenFuser component, a

generative model �ne-tuned on the T5-like architecture, to generate

the �nal outputs by fusing collected candidate responses with addi-

tional query interpretations, which, however, leads to suboptimal

quality. These results reveal the superior performance of Thri�LLM

over LLM-Blender in text classi�cation even with smaller budgets.

6.3 Performance on Entity Matching Query

Figure 5 displays the F1 scores against the utilized costs of the three

tested models. RoBERTa and Di�o, both based on the BERT [28]

architecture, are �ne-tuned tailored for each tested dataset. Con-

sistent with the experiment settings in [41], we incorporate their

reported results for RoBERTa and Di�o to ensure comparability.

However, note that the corresponding utilization costs are not dis-

closed in [41]. To address this gap, we estimate the average cost

per query by leveraging the reported �ne-tuning time and the cor-

responding AWS pricing for computation time, given that their

experiments were conducted on a p3.8xlarge AWS EC2 machine

with 4 V100 GPUs (1 GPU per run).

As shown in Figure 5 for entity matching queries, Thri�LLM

persistently dominates the baselines, yielding higher F1 scores but

incurring lower costs on the four e-commerce datasets and acquir-

ing the highest F1-score on DBLP-Scholar. In particular, Thri�LLM

boosts the F1 scores with a notable improvement of 3.51%, 4.39%,

5.84%, 6.42%, and 0.30% on the 5 datasets respectively. Meanwhile,

the observed performance pattern, where F1 scores increase with

increasing budgets, signi�es the strength of Thri�LLM to maxi-

mize the e�ciency of allocated budgets thereby enhancing overall

performance. This observation demonstrates that Thri�LLM aggre-

gates less expensive LLMs in an e�ective manner, yielding superior

performance at reduced costs.

In general, Thri�LLM achieves higher accuracy as the budget

increases. When the budget is low, around 1 ∼ 5 × 10−5 USD,

Thri�LLM tends to select 3 ∼ 5 weaker but inexpensive models

that, when combined, o�er improved ensemble performance. As

the budget rises to 50 ∼ 100×10−5 USD, Thri�LLM typically selects

1 ∼ 2 stronger yet costly models (e.g., GPT-4o and Gemini-1.5 Pro),

Table 5: Accuracy (%) across con�dence intervals on AGNews.

U 0 0.02 0.04 0.08 0.1

Acc. of Plow 84.80 84.93 84.80 84.80 84.74

Acc. of Pup 84.80 84.80 84.87 84.73 84.80

Table 6: Accuracy (%) of Thri�LLM vs single LLMs.

Dataset Overruling AGNews SciQ Hellaswag Banking77

Thri�LLM 95.60 86.45 99.25 89.86 73.82

GPT-4o 94.68 86.71 99.17 93.29 75.05

Gemini-1.5 Pro 95.14 89.01 96.61 90.96 25.91

Phi-3-medium 95.14 84.21 98.50 88.73 59.84

Llama-3 70B 94.68 81.31 98.86 86.53 69.66

Mixtral-8x7B 94.90 79.34 96.29 N.A. N.A.

complemented by 5 ∼ 7 cheaper ones, to form a more e�ective

ensemble, which enables �exible budget-adaptive selection.

6.4 Ablation Study

Con�dence interval on approximation guarantees. Let U rep-

resent the length of the con�dence interval in Section 4.4, i.e.,

U = ?¦
;
− ?§

;
for ; ∈ [!]. Speci�cally, given the current estimated

probability ?̂; , we set ?
§
;
= ?̂; − U

2 and ?¦
;
= min{?̂; + U2 , 1.0}. By

feeding the resultant probability sets P;>F = {?§1 , ?
§
2 , · · · , ?

§
!
} and

PD? = {?¦1 , ?
¦
2 , · · · , ?

¦
!
} to Thri�LLM respectively, we record the

accuracy scores of the selected LLMs.

We vary U = {0, 0.02, 0.04, 0.08, 0.1} and conduct this experiment

on dataset AGNews with the budget � = 1 × 10−5. The results are
reported in Table 5. The accuracy score of 84.80% with U = 0 acts as

the base case. Compared with this case, accuracy scores with U > 0

are either the same or approximately 84.80% with slight variations

incurred by the inherent randomness of accuracy estimation in

model selection. This observation reveals that Thri�LLM is robust

to the estimation errors in success probabilities.

Thri�LLM vs Single LLM. To further validate the advantage of

the LLM ensemble over an individual LLM, we compare the accu-

racy scores obtained by Thri�LLM with single models in Table 3 on

the 5 tested datasets for text classi�cation queries. For a convinc-

ing comparison, we select the most powerful and most expensive

LLMs provided by each company, including GPT-4o from OpenAI,
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Figure 5: F1 score vs cost for entity matching query.

Table 7: Accuracy (%) across historical data on Overruling.

Budget 20% 40% 60% 80% Original

1.0 × 10−5 95.37 94.91 96.06 94.90 95.14

5.0 × 10−5 95.37 95.37 95.60 95.13 95.37

10.0 × 10−5 95.37 95.37 95.37 95.60 95.37

50.0 × 10−5 95.60 95.37 95.37 95.13 95.37

100.0 × 10−5 95.60 95.37 95.37 95.60 95.60

Thri�LLM SurGreedyLLM GPT-4o
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Figure 6: Accuracy vs cost on Overruling.

Gemini-1.5 Pro from Google, Phi-3-medium from Microsoft, Llama-

3 70B from Meta, and Mixtral-8x7B from Mistral AI. The results

are summarized in Table 6. For clarity, we highlight the highest

accuracy score in bold and underline the second-highest score for

each dataset. As displayed, Thri�LLM achieves the best on 2 out

of 5 datasets. On the other 3 datasets, Thri�LLM either achieves

or closely approaches the second-highest accuracy scores with

negligible gaps. This evidence not only underscores the superior

performance of Thri�LLM as an ensemble model across diverse

topics but also suggests that individual powerful models do not

consistently o�er advantages across all domains.

Adaptive selection.We have proved (see Proposition 4) that the

subset of LLMs selected by Thri�LLM makes the same prediction

as that selected by SurGreedyLLM, while utilizing lower budgets.

To verify this point and quantify the saved costs, we evaluate

Thri�LLM and SurGreedyLLM on dataset Overruling by following

the budget � setting. For comparison, we also include one strong

single model GPT-4o as a baseline. The results are displayed in

Figure 6. As shown in Figure 6a, Thri�LLM and SurGreedyLLM

achieve exactly the same accuracy scores, consistent with our re-

sult in Proposition 4. Figure 6b presents the comparison between

their cost proportions relative to the given budgets. It is worth

noting that Thri�LLM achieves a saving of ∼ 10%-40% of the al-

lowed budget compared to SurGreedyLLM. Furthermore, as the

budget decreases, the cost savings achieved by Thri�LLM com-

pared to SurGreedyLLM become more noticeable. Both Thri�LLM

and SurGreedyLLM outperform GPT-4o when the budget is at least

5×10−5 USD per query. Overall, GPT-4o requires up to ∼30× higher
cost to achieve only a marginal improvement over Thri�LLM and

SurGreedyLLM, as shown in Figure 6b.

Sensitivity to size of historical data. In text classi�cation, 80%

of the dataset is used as historical data for success probability es-

timation. To evaluate the sensitivity of Thri�LLM to the size of

historical data, we select {20%, 40%, 60%, 80%} of the original his-
torical data on Overruling respectively for probability estimation,

and then evaluate the performance of Thri�LLM on test queries by

varying the budget � = {1.0, 5.0, 10, 50, 100} × 10−5 (see Table 7).
The performance of Thri�LLM is stable and robust relative to the

proportion of available historical data. The stability is further en-

hanced with increased budget allocations. These results imply that

Thri�LLM consistently performs well across a wide range of sizes

of available historical data.

7 CONCLUSION

We investigate the problem of �nding an LLM ensemble under

budget constraints for optimal query performance, with a focus

on classi�cation queries. We formalize this problem as the Op-

timal Ensemble Selection problem. To solve this problem, we

design a new aggregation scheme for combining individual LLM

responses and devise a notion of correctness probability to mea-

sure the aggregation quality. We prove that correctness probability

is non-decreasing and non-submodular. Despite this, we develop

Thri�LLM, a surrogate greedy algorithm that o�ers an instance

dependent approximation guarantee. We evaluate Thri�LLM on

several real-world datasets on text classi�cation and entity match-

ing queries. Our experiments show that it achieves state-of-the-art

performance while utilizing a relatively small budget compared

to the baselines tested. Extensions of Thri�LLM to regression and

generation tasks are intriguing directions for future work.
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A APPENDIX: PROOFS

Proof Sketch of Lemma 1. Part (i) is trivial. For part (ii), con-

sider a random query @ ∈ Q with ground-truth class �@ , any LLM

set S ¢ L, and model ; ∈ L \ S. Let S′ := S ∪ {;}. We can prove

that b (S′) g b (S). Part (ii) will follow from this. □

Proof of Lemma 2. We construct a counterexample to demon-

strate that the function b (S) is not submodular. Consider sets

S = {;1}, T = {;1, ;2}, and a LLM ;3. W.l.o.g., we assume their

success probabilities follow the partial ranking of ?1 > ?2, ?1 > ?3,

and
?2 ( −1)
1−?2

?3 ( −1)
1−?3 >

?1 ( −1)
1−?1 , i.e.,

?2?3 ( −1)
(1−?2 ) (1−?3 ) >

?1
1−?1 . As

?
1−? ∈ (0,∞) for ? ∈ (0, 1) and

?1
1−?1 >

?2
1−?2 and

?1
1−?1 >

?3
1−?3

hold simultaneously, such ?1, ?2, ?3 always exist when �xing  . If

set function b (·) is submodular, it should satisfy

b (S ∪ {;3}) − b (S) g b (T ∪ {;3}) − b (T ) . (8)

According to Proposition 2, we have b (S) = b (S∪{;3}) = b (T) =
?1. For b (T ∪ {;3}), since ?1 > ?2, ?1 > ?3, and

?2 ( −1)
1−?2

?3 ( −1)
1−?3 >

?1 ( −1)
1−?1 hold, the prediction accuracy b (T ∪ {;3}) is the total

probability of two cases: (i) ;1 makes the correct prediction while

{;2, ;3} fail to concur on the same incorrect prediction, and (ii)

;1 makes the incorrect prediction while ;2 and ;3 both predict

correctly. Therefore, b (T ∪ {;3}) is calculated as b (T ∪ {;3}) =
?1 − ?1 (1 − ?2) 1−?3 −1 + (1 − ?1)?2?3, where the two terms in the

sum correspond to the two cases. It can be shown from this that

b (T ∪ {;3}) > ?1 = b (T ), violating Equation (8). □

Proof of Theorem 3. Khuller et al. [29] prove that the modi-

�ed greedy strategy yields a solution with a (1− 1√
e
)-approximation

guarantee, i.e., max{W (S2), ?∗} g (1 − 1√
e
)W (S◦W ) where S◦W is the

optimal solution for the budgeted submodular maximization with

set function W (·). Consequently, we have
b (S∗ )
b (S◦ ) g

max{b ((1 ), b ((2 ), ?∗ }
W (S◦ ) g max{b ((1 ), b ((2 ), ?∗ }

W (S◦W ) =

max{b ((1 ), b ((2 ), ?∗ }
max{W (S2 ),?∗ }

max{W (S2 ),?∗ }
W (S◦W ) g max{b ((1 ), b ((2 ), ?∗ }

max{W (S2 ), ?∗ } (1 − 1√
e
),

which completes the proof. □

Proof of Proposition 4. Let �∗ be the class with �1 (qS),
which implies ℎ(�∗ | qS) =

∏

;8 ∈S(�∗ )
?8 ( −1)
1−?8 . The potential

belief � (T ∗) =
∏

;8 ∈T∗
?8 ( −1)
1−?8 is the highest possible belief

that the remaining LLMs in T ∗ can contribute to any class. If

� (T ∗)�2 (qS) f �1 (qS) holds, we have
� (T ∗)� (qS) f · · · f � (T ∗)�3 (qS) f � (T ∗)�2 (qS) f �1 (qS) .
This inequality implies that the remaining models in T ∗ are not
able to contribute the belief to any class except �∗ so as to achieve

a belief higher than �1 (qS). Therefore, Proposition 4 holds. □

Proof of Theorem 5. By Lemma 4, the prediction accuracy

b (S) of each inspected S ¦ L is estimated within error
n?∗

2 with

at least 1 − X
!2

probability. Let S∗ be the set returned from Sur-

GreedyLLM with \ Monte Carlo simulations of b (·). Therefore, for
S∗ = argmax{?∗, b̃ (S1), b̃ (S2)}, it holds that |b (S∗) − b̃ (S∗) | f
n?∗

2 with high probability. Since the set function W (·) can be exactly

computed in linear time, max{W (S2), ?∗} g (1 − 1√
e
)W (S◦W ) holds

without involving estimation errors. As a consequence, we have

b (S∗ )
b (S◦ ) g

b̃ (S∗ )−n?∗/2
b (S◦ ) g max{b ((1 ), b ((2 ), ?∗ }−n?∗

W (S◦ ) g
max{b ((1 ), b ((2 ), ?∗ }−n?∗

W (S◦W ) =
max{b ((1 ), b ((2 ), ?∗ }−n?∗

max{W (S2 ),?∗ }
max{W (S2 ),?∗ }

W (S◦W ) g
max{b ((1 ), b ((2 ), ?∗ }−n?∗

max{W (S2 ), ?∗ }

√
e−1√
e
g (max{b ((1 ), b ((2 ), ?∗ }

max{W (S2 ), ?∗ } − n) (1 − 1√
e
).

Considering that at most !2 possible subsets are checked in

GreedyLLM, the failure probability is bounded by union bound
X
!2
· !2 = X . Therefore, it holds that

Pr
[

b (S∗) g (max{b ((1 ), b ((2 ), ?∗ }
max{W (S2 ), ?∗ } − n) (1 − 1√

e
) · b (S◦)

]

g 1 − X,

which completes the proof. □

Proof of Theorem 6. By taking Plow, P̂, and Pup as inputs to

Thri�LLM, let b; (S◦; ), b (S
◦), and bD (S◦D ) be the accuracy scores

of the corresponding optimal sets respectively, and b; (S∗; ), b (S
∗),

and bD (S∗D ) be the accuracy scores of the selected sets for Plow, P̂,
and Pup respectively. According to Theorem 5, we have

Pr
[

b (S∗ )
b (S◦ ) g (

max{b ((1 ), b ((2 ), ?∗ }
max{W (S2 ), ?∗ } − n) (1 − 1√

e
)
]

g 1 − X.

Pr
[

bD (S∗D )
bD (S◦D ) g (

max{bD ((D1 ), bD ((D2 ), ?∗D }
max{WD (SD2 ), ?∗D } − n) (1 − 1√

e
)
]

g 1 − X,
where WD (·) is the surrogate set function, (D1 and (D2 are selected
by SurGreedyLLM on Pup, respectively. Therefore, we have
b (S∗ )
b (S◦ ) g

b; (S∗; )
bD (S◦D ) g

b; (S∗; )
bD (S∗D ) (

max{bD ((D1 ), bD ((D2 ), ?∗D }
max{WD (SD2 ), ?∗D } − n) (1 − 1√

e
).

Meanwhile, as proved in Theorem 5, there are at most !2 possible

subsets for accuracy estimation. Therefore, each model is involved

in estimation at most !2 times. Therefore, the resulting failure

probability is at most X + !2∑!
;=1

X; . Consequently, we have

Pr
[

b (S∗ )
b (S◦ ) g

b; (S∗; )
bD (S∗D ) (

max{bD ((D1 ), bD ((D2 ), ?∗D }
max{WD (SD2 ), ?∗D } − n) (1 − 1√

e
)
]

g 1 − (X + !2∑!
;=1

X; ).
□

Proof of Lemma 5. Let -1, · · · , -Λ;
∈ {0, 1} be random vari-

ables such that -8 = 1 if ?
(8 )§
;

f ?; f ?
(8 )¦
;

holds where

[? (8 )§
;

, ?
(8 )¦
;
] is the con�dence interval obtained in the 8-th repeti-

tion; otherwise -8 = 0. Let - =
1
Λ;

∑Λ;

8=1 -8 be the average. There-

fore, we have E[- ] g 1 − X; as -8 = 1 holds with at least 1 − X;
probability. Let the value centered at the interval [? (8 )§

;
, ?
(8 )¦
;
] be

the corresponding estimation. After algorithm A is repeated Λ;

times, let [?̄§
;
, ?̄¦
;
] be the con�dence interval whose estimation is

the median value among obtained estimations. The true probability

?; does not belong to [?̄§
;
, ?̄¦
;
] if and only if at least half of the

estimations fail, i.e., -8 = 0. In this regard, we have

%A [?; ∉ [?̄§; , ?̄
¦
;
]] f Pr[- f 1

2 ] f Pr[- f E[- ] − 1−2X;
2 ]

f exp(−2Λ; ( 1−2X;2 )
2) = exp(−Λ; (1−2X; )2

2 ),

where the second inequality is due to the fact that E[- ]− 1−2X;
2 g 1

2
as E[- ] g 1 − X; , and last one is due to Hoe�ding’s inequality [25].

□
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