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ABSTRACT

Despite decades of research on time-series anomaly detection, the

e�ectiveness of existing anomaly detectors remains constrained

to speci�c domains - a model that performs well on one dataset

may fail on another. Consequently, developing automated solu-

tions for anomaly detection remains a pressing challenge. However,

the AutoML community has predominantly focused on supervised

learning solutions, which are impractical for anomaly detection

due to the lack of labeled data and the absence of a well-de�ned

objective function for model evaluation. While recent studies have

evaluated standalone anomaly detectors, no study has ever eval-

uated automated solutions for selecting or generating scores in

an automated manner. In this study, we (i) provide a systematic

review and taxonomy of automated solutions for time-series anom-

aly detection, categorizing them into selection, ensembling, and

generation methods; (ii) introduce TSB-AutoAD, a comprehensive

benchmark encompassing 20 standalone methods and 70 variants;

and (iii) conduct the most extensive evaluation in this area to date.

Our benchmark includes state-of-the-art methods across all three

categories, evaluated on TSB-AD, a recently curated heterogeneous

testbed from nine domains. Our �ndings reveal a signi�cant gap,

where over half of the existing solutions do not statistically out-

perform a simple random choice. Foundation models that claim to

o�er generalized, one-size-�ts-all solutions have yet to deliver on

this promise. While naive ensembling achieves high accuracy, it

comes at a substantial computational overhead. Conversely, meth-

ods leveraging historical datasets enable fast inference but su�er

under out-of-distribution conditions. To address this trade-o�, we

propose a selective ensembling solution, which combines model

selection with ensembling to o�er a lightweight, practical balance

between accuracy and e�ciency. We open-source TSB-AutoAD

and highlight the need for more robust and e�cient solutions.
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Figure 1: Detection accuracy (VUS-PR) for six representative

anomaly detectors across �ve domains in the TSB-AD bench-

mark [83]. The red triangle indicates the model with the best

detection accuracy: di�erent winners for each domain, sup-

porting the need for automated solutions.

1 INTRODUCTION

Advances in sensing, networking, storage, and processing tech-

nologies have enabled the large-scale collection of data, including

time series [59, 64, 65, 69, 76, 77, 84, 106]. Time-series analysis has

emerged as a �eld of signi�cant interest, o�ering critical insights

into a wide range of phenomena [49, 89, 97, 111, 112]. A wide ar-

ray of time-series mining tasks, including clustering [15, 48, 102,

103, 109, 110, 114], classi�cation [39, 40, 101], similarity search

[37, 41, 100, 105, 107, 108, 113, 151], and anomaly detection [22–

25, 27, 83], has been explored in the literature. Time-series anomaly

detection, which describes the process of analyzing a time series

to identify abnormal patterns, has become critical across multiple

scienti�c �elds and industries [81]. The presence of anomalies can

indicate novel or unexpected events, such as imperfections in mea-

surement systems and potential interactions with malicious entities.

The applications span diverse areas including fraud detection [16],

network intrusion detection [74], and webservice monitoring [146].

Motivation. The detection of anomalies in time series has received

ample academic and industrial attention for over six decades [46, 96].

This interdisciplinary interest spans from datamining and databases

to the machine learning community, evolving from traditional sta-

tistical methods to neural networks and, lately, foundation mod-

els [17, 98]. However, as depicted in Figure 1, our study, along

with other recent benchmark studies [83, 104, 127], reveals that

no single stand-alone anomaly detector universally outperforms

others across di�erent domains. The issue of the absence of a one-

size-�ts-all model persists, even with the advent of foundation

models [83, 135]. Despite the vast amount of anomaly detection

models, a critical question remains:How can we automate time-series

anomaly detection by selecting, ensembling, or generating models?

Achieving optimal performance requires in-depth domain knowl-

edge, data distribution, and a comprehensive understanding of the

myriad of methods. This necessity drives data analysts into an ex-

haustive, computationally expensive, costly, and time-consuming
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Table 1: Comparison of existing studies for automated

anomaly detection with TSB-AutoAD which provides the

most comprehensive testbed, covering a wide range of base

algorithms-statistical (Stat), neural network-based (NN), and

foundation models (FM). It also encompasses a broad spec-

trum of automated solutions, including meta-learning-based

(Meta), internal evaluation (Internal), ensembling-based (En-

semble), and generation-based methods (Generation).

Benchmark
Time
Series

Base AD Algorithms # Automated Solutions

# Stat NN FM Meta Internal Ensembling Generation

Ma et al. [86] : 8 ✓ : : 0 5 2 0
Goswami et al. [54] ✓ 5 ✓ ✓ : 0 4 0 0
Sylligardos et al. [134] ✓ 12 ✓ ✓ : 1 0 1 0

TSB-AutoAD (Ours) ✓ 40 ✓ ✓ ✓ 7 5 5 3

trial-and-error process. Consequently, developing automated solu-

tions for time-series anomaly detection is of paramount importance.

Despite numerous e�orts made to investigate automated anom-

aly detection solutions, as outlined in Table 1, these studies exhibit

several limitations. These include (i) insu�cient evaluation of au-

tomated solutions, where previous studies omit entire categories

of automated solutions, which limits a comprehensive understand-

ing of the �eld; (ii) restricted diversity of base anomaly detection

(AD) algorithms, as most studies rely on a narrow selection of base

algorithms and exclude the latest foundation models, thereby con-

straining evaluations across di�erent algorithmic landscapes; (iii)

the use of di�erent datasets across di�erent studies, which pose

substantial challenges for conducting a meta-analysis of their em-

pirical performance. Automation and anomaly detection have been

recognized as grand challenges across multiple sectors [2, 3], em-

phasizing the need to critically assess the current state of the �eld

and whether it has been an illusion of progress. Given these limi-

tations and the critical role of automated solutions in time-series

anomaly detection, it is essential to conduct a comprehensive study

to thoroughly assess the advancements in this �eld.

Challenges.Automated anomaly detection is notoriously challeng-

ing, primarily due to the intrinsic di�culties of obtaining su�cient

labeled data along with its inherently unsupervised nature [20, 104].

This scarcity of labeled data (i.e., inliers and outliers) hinders the

accurate comparison of di�erent models, limiting e�ective model

validation and selection [13, 95]. For instance, in a given time series,

it is nearly impossible to prede�ne a validation set with known in-

lier and outlier labels for model comparison. Moreover, the absence

of a universal objective function further complicates automation

in anomaly detection. Automated processes evaluate model perfor-

mance using well-de�ned quality metrics, such as accuracy for clas-

si�cation [121] or deviation from actual values for forecasting [9],

but anomaly detection lacks a standardized evaluation criterion.

Additionally, time series exhibit unique characteristics, such as tem-

poral dependencies, varied sampling rates, and continuous values,

that di�er signi�cantly from those in tabular or image data. This

disparity makes automated solutions originally designed for other

data types less e�ective in the context of time series.

Furthermore, conducting a systematic study presents substan-

tial challenges due to the dispersion of proposed automated so-

lutions, which are scattered across various communities such as

machine learning [91, 154], data mining [5, 86], and data manage-

ment [31, 134]. These challenges arise from the di�culties associ-

ated with locating, integrating, and implementing these methods

Figure 2: Accuracy overview of automated time-series anom-

aly detection solutions, ranked by VUS-PR from left (highest)

to right. Methods are grouped into clusters, with ratios indi-

cating the number of methods per cluster.

into a uni�ed framework to investigate the performance variance

of di�erent design choices. Moreover, these methods operate un-

der a range of assumptions, from reliance on historical data to

entirely unsupervised approaches. This variability complicates the

determination of the most e�ective method under di�erent applica-

tion scenarios, subsequently impeding the broader adoption and

practical application of these methodologies.

Contribution. To address these challenges and assess the cur-

rent research landscape, we introduce TSB-AutoAD and present

the most comprehensive study to date, including a taxonomy and

systematic review of automated anomaly detection methods. We

evaluate 20 solutions with 70 variants across diverse time-series do-

mains, measuring e�ectiveness, runtime, robustness to distribution

shifts, and performance across anomaly types and candidate sets.

Based on our �ndings, we propose Selective Ensembling (SENSE),

which combines the strengths of model selection and ensembling to

enhance robustness and generalization, while maintaining runtime

e�ciency. SENSE is designed as a modular plug-in framework that

allows the integration of a selector and an ensembling strategy,

chosen from multiple candidates evaluated in this study.

Results. As shown in Figure 2, we present a performance overview

of automated solutions evaluated on TSB-AutoAD. Our study re-

veals a signi�cant gap in automated anomaly detection solutions,

with over half of the evaluated variants failing to outperform ran-

dom selection and 75% underperforming a naive globally best model

(GB) strategy. Only 10% of the methods are able to outperform Su-

pervised Selection (SS), the common practice of labeling a subset of

data and using the best-performing model for the rest. Among the

methods, OE, which ensembles anomaly scores from all candidates,

demonstrates strong robustness but at a high computational cost.

Meanwhile, automated solutions that leverage historical datasets

su�er performance degradation on out-of-distribution (OOD) time

series. SENSE improves accuracy while maintaining runtime e�-

ciency, o�ering a practical trade-o�.

We start with a discussion of the problem statement and related

works (Section 2). Then, we present our contributions:

• We formulate a taxonomy for automated solutions for time-

series anomaly detection, and review relevant works (Section 3).

• We introduce TSB-AutoAD benchmark to facilitate the explo-

ration of the performance of automated solutions (Section 4).

• We conduct a comprehensive and rigorous evaluation of 20

automated solutions with 70 variants across nine time-series

domains and provide research insights (Section 5).

• We summarize �ndings and outline future research (Section 6).

Finally, we conclude with the implications of our work (Section 7).
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2 PRELIMINARY

We �rst provide the problem statement for automated solutions

(Section 2.1), followed by a discussion of related works (Section 2.2).

2.1 Problem Statement

De�nition. We denote the time-series signal observed from Ċ

sensors over timeĐ asĔ = {Į1, ..., ĮĐ }with each ĮĪ ∈ R
Ċ . Anomaly

detection involves applying an anomaly detectorM toĔ to generate

an anomaly score series ď = {ĩ1, ..., ĩĐ } for each time step, where

ĩĪ ∈ R and a higher score indicates a greater likelihood of an

anomaly. Selecting and con�guring the anomaly detectorM usually

requires the intervention of a human expert. Therefore in this

study, we de�ne automated solution as the task to automatically

generate the anomaly score ď from a set of candidate models ÿ =

{M1,M2, ...,Mn} without the need for human intervention.

Terminology. It is important to distinguish between the base AD

algorithm and the candidate model set. The base AD algorithm refers

to the di�erent detection algorithms ((e.g., LOF [29])), each with

multiple variants de�ned by hyperparameters. Each variant, with

its speci�c hyperparameter settings (e.g., LOF with the number

of neighbors set to 20), constitutes a candidate model. Therefore,

automated solutions operate on the candidate model set.

Scenario. This automated process typically occurs through one of

three approaches: (i) selecting a single model from the candidate set

ÿ , (ii) aggregating predictions from multiple models in ÿ through

ensembling, or (iii) generating a new modeĉNew derived from the

candidate models in ÿ . Additionally, automated solutions can be

classi�ed based on their level of supervision required, operating

either in a fully unsupervised manner or leveraging knowledge

from historical datasets via meta-learning.

It is important to distinguish these approaches from Bayesian

Optimization (BO) [129], where models or hyperparameters are

optimized based on known ground truth and a prede�ned objective

function (e.g., minimizing prediction error in supervised learning).

In anomaly detection, however, it is typically infeasible to obtain

labeled instances of anomalies and normal data for the given test

time series ahead of time. Moreover, there is no universal objective

function for anomaly detection tasks, which limits the applicability

of BO [13]. While methods that utilize historically labeled datasets

also require supervision, they di�er from BO in that, during infer-

ence, they do not require labeled samples as BO does.

2.2 Related Work

2.2.1 Time-Series Anomaly Detection. We begin with the de�ni-

tions of anomaly and then introduce di�erent anomaly detectors.

De�nition. Anomalies in time series can occur in the form of

a single value or collectively in the form of sub-sequences. For-

mally, they can be categorized into three types: point, contextual,

and collective anomalies. The �rst two categories, namely, point

and contextual anomalies, are referred to as point-based anomalies.

Collective anomalies are known as sequence-based anomalies [20].

Point anomalies are individual data points that signi�cantly deviate

from the majority of the data. Contextual anomalies are data points

that fall within the expected distribution range but diverge from

the expected pattern in a given context (e.g., within a time window).

Collective anomalies refer to sequences of points that deviate from

a typical, previously observed pattern.
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Figure 3: An overview of TSB-AutoAD benchmark. We use

M1,M2, andMn to represent the candidate models.

Category of Method. The approaches to this task can be catego-

rized based on the level of prior knowledge available: (i) unsuper-

vised, which does not require any labeled data; (ii) semi-supervised,

requiring labels only for normal instances; and (iii) supervised,

which requires a labeled dataset containing both normal and anoma-

lous instances. In practical applications, due to the limited availabil-

ity of labeled anomalies, unsupervised or semi-supervised anomaly

detection methods are more feasible. Based on the nature of the

processing, the methods can be divided into three categories: (i)

distance-based methods, which analyze subsequences to detect

anomalies in time series, primarily by calculating distances to a

given model [19, 29]; (ii) density-based methods, identify anomalies

by focusing on isolated behaviors within the overall data distribu-

tion, rather than measuring nearest-neighbor distances [4, 78]; and

(iii) prediction-based methods, which propose to train a model on

anomaly-free time series and then reconstruct the data or forecast

future points [90, 125]. In this way, the anomalies are identi�ed by

signi�cant deviations between predictions and the actual data.

2.2.2 Automated Machine Learning (AutoML). AutoML o�ers a

promising methodology for developing machine learning systems

without human intervention [14, 63]. This approach addresses what

is formally recognized as the Combined Algorithm Selection and

Hyper-parameter (CASH) problem. Several successful studies have

been conducted to tackle this issue [8, 44, 137]. The process involves

a range of tasks, such as feature selection, feature extraction, model

selection, and hyperparameter tuning. The evaluation of model per-

formance is carried out using predetermined quality metrics, such

as accuracy (for classi�cation [121]) and deviation from actual data

(for forecasting [9]). However, the broader AutoML community has

predominantly focused on supervised learning applications, where

labeled validation sets are available to facilitate model comparison

and hyperparameter optimization [42, 79, 141]. This gap is partic-

ularly notable in unsupervised anomaly detection, compounded

by the lack of unsupervised quality metrics to evaluate anomaly

detection algorithms e�ectively [13].

2.2.3 Automated Anomaly Detection Studies. Several e�orts have

been made to evaluate automated anomaly detection methods, as

illustrated in Table 1. Ma et al. [86] assess unsupervised model

selection for anomaly detection, yet their investigation predomi-

nantly focuses on only one category of methods, namely, internal

evaluation strategies, and does not extend to time-series data. Simi-

larly, the work by Goswami et al. [54] represents the �rst e�ort to
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address the unsupervised model selection challenge in time-series

anomaly detection; however, their methodology is limited to inter-

nal evaluation techniques. In contrast, Sylligardos et al. [134] focus

on meta-learning-based approaches, although their research is pri-

marily centered on model selection through the use of pretrained

classi�ers. None of the existing studies provide comprehensive cov-

erage across all categories of automated anomaly detectionmethods,

highlighting the need for a more holistic evaluation.

3 AUTOMATED SOLUTIONS FOR
TIME-SERIES ANOMALY DETECTION

In Figure 3, we present an overview of the automated solution

pipeline in TSB-AutoAD. We will start with the introduction of

the proposed taxonomy (Section 3.1) and then elaborate on the

details of works from the three di�erent categories: model selection

(Section 3.2), model ensembling (Section 3.3), model generation

(Section 3.4) in the subsequent sections.

3.1 Taxonomy Development

We present a taxonomy of existing automated solutions for anomaly

detection, as illustrated in Figure 4. These approaches can be catego-

rized into threemain categories: model selection, model ensembling,

and model generation.Model selection refers to identifying the

best model and its corresponding hyperparameters from the candi-

date set. Subsequently, the selected model is utilized for anomaly

detection. Within the model selection category, the existing liter-

ature can be further categorized into two groups: meta-learning-

based and internal evaluation methods. The former leverages the

knowledge of the performance of various anomaly detectors on

historical labeled datasets to enable the automated model selection

for new datasets. The latter evaluates the e�ectiveness of a model

by using surrogate metrics for anomaly detection, independent of

external data such as ground truth labels for anomalies.

Model ensembling aggregates predictions from multiple can-

didate models using ensemble strategies to enhance robustness

and accuracy. Model generation entails the construction of a

completely new model based on the candidate set, which can then

operate as an anomaly detector to produce scores. We will elaborate

on these methodologies in detail in the following.

3.2 Model Selection

The task of model selection refers to identifying the best model and

its corresponding hyperparameters from a prede�ned candidate set.

This selected model is then used for anomaly detection. Methods in

this category involve the use of historical knowledge (Section 3.2.1)

and the development of internal evaluation (Section 3.2.2).

3.2.1 Meta-learning-based Methods. These methods are predicated

on the principles of meta-learning [13, 140, 142], which leverage

meta-knowledge about model performance to improve the selec-

tion of selection by observing how di�erent methods perform on

di�erent datasets. Speci�cally, in the context of anomaly detection,

these methods require historical datasets annotated with anomalies,

utilizing insights from these datasets to select the most appropri-

ate model for new data. As depicted in Figure 3 (a), a historical

dataset with labeled anomalies Xtrain = {X1, ...,Xm} is provided,

where m represents the number of time series. Subsequently, a
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Figure 4: A taxonomy of automated solutions in time-series

anomaly detection with chronicle.

performance matrix P ∈ R
m×n is generated, with n indicating the

count of models in the candidate set. The matrix P is formulated by

iteratively applying each anomaly detector from the candidate set

to the labeled time series and performing evaluations. In this case,

Pi,j corresponds to the ğ-th anomaly detector’s performance on the

Ġ-th historical dataset. Given a new data XNew ∈ R
1×T, where T

is the length of time series, the model selector identi�es the best

model among n candidate models. These methods can be further

categorized based on the optimization function applied to the per-

formance matrix, which guides the training of the model selectors,

as will be detailed subsequently.

Simple meta-learners identify the best model through straight-

forward search mechanisms:

(1) ARGOSMART [94] �nds the closest (1NN) train data Xi to the

given XNew based on meta-feature similarity and selects the model

with the best performance on Xi dataset.

(2) ISAC [66] clusters meta-train datasets Xtrain based on meta-

features. Given XNew, it �rst identi�es its closest cluster and selects

the best model within this cluster (i.e., the largest average perfor-

mance on the datasets within this cluster).

Optimiztion-based meta-learners learn task similarity by

optimizing performance estimates:

(3) MetaOD [154] is based on collaborative �ltering: n candidate

models are evaluated over m di�erent meta-train datasets, and a

matrix factorization process approximates the performance of all

models based on a projected matrix of meta-features extracted from

the datasets. For a new datasetXNew, its meta-features are extracted

and thenmultiplied by thematrix factorization component, yielding

a performance prediction for every model in the candidate set.

(4) MSAD [134] converts the model selection process into a classi-

�cation task by training a classi�er on Xtrain, each labeled with the

best anomaly detector from n candidate models. For a new test time

series XNew, the model selector classi�es it into one of n categories,

thereby determining the best model.

(5) SATzilla [148], (6) UReg [91], and (7) CFact [91] transform

model selection as a regression task, utilizing features from labeled

datasets to estimate the performance metrics of each anomaly detec-

tor. The model selector, functioning as a regressor, is optimized by

mean squared error. For the input XNew, the model selector predicts

the expected performance of each anomaly detector, choosing the

one with the highest predicted performance. In contrast to MSAD

(i.e., classi�er), regression-based methods not only predict which

model is recommended but also its expected performance.
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3.2.2 Internal Evaluation Methods. These methods evaluate the ef-

fectiveness of a model without any reliance on external information

(i.e., ground truth labels for anomalies).

Stand-alone evaluation relies solely on each anomaly detector

and its corresponding output anomaly score:

(8) Unsupervised Evaluation Curves (UEC) [50] comprise two

numerical performance criteria based on Mass-Volume [33] and

Excess-Mass [51] curves to compare the performance of anomaly

detectors without the need for labeled data. This approach elimi-

nates the reliance on labels for performance evaluation based on

Receiver Operating Characteristic (ROC) or Precision-Recall (PR)

curves, which typically require labeled data.

(9) Clustering Quality (CQ) [93] utilizes internal validation mea-

sures originally designed for clustering algorithms within the con-

text of anomaly detection evaluation. For this, anomaly scores are

partitioned into two clusters by setting thresholds (i.e., the abnor-

mal points cluster and the normal points cluster). Subsequently,

clustering metrics (e.g., Silhouettes [123]) can be applied to assess

their performance, determining the best model based on the as-

sumption that an anomaly detector is considered ‘good’ when the

two sets of scores are more distinctly separated and/or the scores

within each set are more tightly clustered.

Collective evaluation utilizes the interactions among models

within the prede�ned candidate model set:

(10) Model Centrality (MC) [75] is based on the hypothesis that

well-disentangled models should approximate the optimal model

and, consequently, exhibit proximity to one another. Subsequently,

this approach has been adapted to the �eld of anomaly detec-

tion [54, 86], based on the assumption that there is one single

ground truth, thus detectors close to this are likely close to each

other. In this framework, the distance between two models is quan-

ti�ed using Kendall’s ă distance, applied to the anomaly scores

generated by models. The centrality of a model is thus de�ned as

the average distance to its ć nearest neighbors, where ć is a prede-

�ned parameter. This metric is designed to favor models that are

closely aligned with their nearest neighbors. However, a limitation

of this metric arises from the potential clustering of poor detectors.

(11) Synthetic Anomaly Injection (Synthetic) is based on the as-

sumption that an e�ective anomaly detector should exhibit superior

performance on data with arti�cially introduced anomalies [54].

The process involves the generation of synthetic datasets with

anomalies, followed by an evaluation of models on these datasets.

The model that exhibits the highest performance is then considered

the best choice. Chatterjee et al. [32] propose a preliminary sim-

ulation protocol before the injection of anomalies. This protocol

assumes that anomalies in actual time series typically appear in

the trend component or as outliers in the residual component. In

particular, they decompose the original time series with STL de-

composition [34] and then construct the synthetic time series by

adding the seasonality component and random noise with the same

mean and standard deviation as the residual of STL. The injection

of anomalies is based on the synthetic time series instead of the

original time series as in Goswam et al. [54]. However, while simu-

lated data provides valuable insights, it deviates from real-world

scenarios, potentially leading to erroneous decisions.

(12) TSADAMS [54] aggregates imperfect rankings derived from

the aforementioned unsupervised surrogatemetrics to achievemore

reliable rankings of anomaly detectors. Speci�cally, they explore the

application of Kemeny rank aggregation [68], wherein an e�cient

approximation is implemented through the Borda method [28].

Furthermore, TSADAMS introduces several robust variants of the

Borda method, which focus on considering only the top ġ models

and aggregating more reliable rankings.

3.3 Model Ensembling

Ensemble learning integrates the informative knowledge fromweak

predictive results obtained from various learning algorithms (i.e.,

di�erent anomaly detectors) to enhance knowledge discovery and

predictive performance through adaptive voting schemes [38]. By

integrating diverse predictive signals, ensemble methods enhance

robustness and mitigate the weaknesses of individual models. These

approaches can be broadly classi�ed based on how the ensemble

set is constructed: (i) aggregating anomaly scores from all available

models without any selection process, or (ii) incorporating a model

selection mechanism and ensembling only a subset of models.

(13) Outlier Ensemble (OE) [5] draws an analogy to the bias-

variance trade-o� in classi�cation and introduces three strategies:

AVG, which averages scores across detectors to reduce variance;

MAX, which selects the maximum score per point to reduce bias

and highlight outlier-like behavior; and AOM, which averages the

maximum scores from random detector subsets to balance bias and

variance. While AVG provides stability, MAX is more e�ective in

revealing subtle anomalies that may be down-weighted across most

detectors, and AOM integrates the strengths of both.

(14) SELECT [119] employs a two-phase ensemble approach that

integrates multiple detectors and various consensus techniques to

choose ensemble components without supervision. Rather than

aggregating predictions from all candidate models, SELECT strate-

gically selects a subset of detector results to assemble through the

proposed ‘Vertical’ and ‘Horizontal’ selection.

(15) Iterative Outlier Ensemble (IOE) [86] also propose to ob-

tain an ensembling anomaly score by aggregating outputs from

a chosen subset of models. The process starts with the identi�ca-

tion of a pseudo ground truth by averaging the anomaly scores in

the candidate set. Subsequently, the distance between it and each

anomaly score in the candidate set is calculated, and the closest

anomaly score is chosen as the next pseudo ground truth. This pro-

cess continues iteratively until a convergence criterion is met, at

which point, the pseudo ground truth extracted from each iteration

is averaged to serve as the �nal anomaly score.

(16) HITS [86] is adapted in the context of anomaly detection from

centrality computation in a network setting [67]. In contrast to

Model Centrality (MC), which is computed in a single iteration,

this approach proposes a recursive computation of centrality. The

hubness centralities of candidate models can be used for evaluation

and a model is considered more central or reliable if it directs (with

a high anomaly score) to samples with high authority.

(17) AutoTSAD [126] is an ensemble system that automatically

produces an aggregated anomaly scoring without a need for la-

beled training data. Speci�cally, it consecutively executes the three

modules: (i) data generation, which generates a diverse set of syn-

thetic training time series with injected anomalies, (ii) algorithm

optimization, which leverages the synthetic training time series to

create a pool of optimized algorithm con�gurations, (iii) scoring
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ensembling, which executes the algorithm instances on the test time

series, ranks the most e�ective algorithm instances, and combines

their anomaly scores to produce a �nal anomaly score.

As part of this work, and to address the limitations of naïve

ensembling, particularly its high computational cost, we propose

SENSE, a Selective Ensembling strategy which integrates model

selection (as described in Section 3.2) with ensembling to achieve a

practical trade-o� between accuracy and runtime e�ciency. Com-

prehensive results and analysis are provided in Section 5.6.

3.4 Model Generation

In contrast to the previous two categories, model generation con-

centrates on creating an entirely new model tailored to a speci�c

dataset based on the prede�ned model set. Unsupervised anomaly

detection does not require labeled data, but the accuracy of unsu-

pervised techniques is often low due to the lack of supervision with

domain knowledge [30]. On the contrary, supervised classi�cation

tends to achieve better accuracy, as long as a su�cient number of

high-quality labels are available [4]. Instead of �rst carefully select-

ing an appropriate model and then tuning its parameters, a di�erent

approach involves generating pseudo labels to transform the un-

supervised problem into a supervised one. This line of research

focuses on optimizing the use of existing anomaly detection algo-

rithms, all the while circumventing the need for human-generated

labels. The generated pseudo labels, which indicate the likely posi-

tions of inliers and outliers, are subsequently used to train a binary

classi�er that functions as the anomaly detector.

(18) AutoOD-A [31, 60] is built upon the idea that selecting one

model from many alternate unsupervised anomaly detectors may

not always work well. Instead, it targets combining the best of them.

AutoOD-A begins by automatically identifying a small but reliable

set of labels (inliers and outliers) and iteratively augmenting this

set through three steps: (i) initial reliable object discovery, where an

initial set of outliers/inliers is determined through majority voting;

(ii) learning-based pruning of poor detector, which uses these initial

labels as pseudo-ground truth to prune less e�ective detectors via

logistic regression, thereby re�ning the set of reliable labels. (iii)

reliable object set update, which applies multi-view analysis [80]

to re�ne the set of reliable objects based on comparisons between

logistic regression outcomes and trained outlier classi�er until a

set of reliable objects does not change.

(19) AutoOD-C [31] starts with a large set of noisy labels and pro-

gressively cleans them to produce a more reliable set. The process

involves the following three steps: (i) initial training data genera-

tion, marking all possible outliers determined by anomaly detectors

as anomalies; (ii) modeling, based on the assumption that model

accuracy is higher for correctly labeled data early in the training

phase [131], with ongoing loss tracking for each training instance;

and (iii) training data update, where data points associated with

large early losses are excluded from the label set.

(20) UADB [152] aims to develop a versatile booster model that

improves the detection accuracy of any anomaly detectors by em-

ploying knowledge distillation. The primary focus is to move be-

yond static assumptions and empower the models with the ability

to adapt to di�erent datasets. Speci�cally, the method starts by

distilling the knowledge of source anomaly detectors to a booster

Table 2: Dataset partitioning for benchmarking automated

solutions on TSB-AD-U and TSB-AD-M.

Domain
TSB-AD-U TSB-AD-M

Total Training Eval Total Training Eval

WebService 310 220 90 0 0 0

Medical 147 105 42 49 36 13

Facility 143 102 41 50 36 14

Synthetic 122 87 35 0 0 0

HumanActivity 58 41 17 9 6 3

Sensor 44 32 12 78 56 22

Environment 20 14 6 13 9 4

Finance 20 14 6 1 0 1

Tra�c 6 4 2 0 0 0

Total 870 619 251 200 143 57

model and then exploiting the variance between them to perform

automatic correction. The anomaly scores can be re�ned iteratively.

4 TSB-AUTOAD OVERVIEW

In this section, we review the experimental settings of TSB-AutoAD.

We begin by providing the setup of the benchmark (Section 4.1)

followed by the implementation of automated solutions and base-

line methodologies (Section 4.2). Lastly, we discuss the evaluation

metrics employed (Section 4.3).

4.1 Experimental Setup

Wenow introduce the technical platform and implementation, along

with the datasets and candidate models we use as follows.

4.1.1 Platform. We conduct our experiments on a server with the

following con�guration: 2xAMD EPYC 7713 64-Core. The server

has twoNvidia A100 GPUs and runs Ubuntu 22.04.3 LTS (64-bit). We

implemented the library and scripts that accompany TSB-AutoAD

in Python 3.10 with the main following dependencies: Pytorch

1.12 [115] and scikit-learn 1.3.2 [116]. For reproducibility purposes,

we open-source the TSB-AutoAD [136], accompanied by a demon-

stration toolkit for interactive result exploration [82].

4.1.2 Datasets. The issues associated with the quality of time-

series anomaly detection datasets, including common �aws such

as mislabeling, bias, and feasibility, have signi�cantly hindered

progress in evaluation and benchmarking practices [83, 144]. To

ensure reliable benchmarking results, we conduct our evaluation of

automated solutions using the recently published, heterogeneous,

and curated TSB-AD dataset [83]. TSB-AD comprises 870 univariate

(TSB-AD-U) and 200multivariate (TSB-AD-M) time series from nine

di�erent domains, including web services [6, 144], medical [52, 56],

facility [45, 88], synthetic [70, 71], human activity [12, 122], sen-

sor [7, 62], environment [1, 144], �nance [130, 138], and tra�c [6].

A detailed dataset description is available in the GitHub [136].

For evaluation, the time series from each domain are partitioned

into two subsets, as shown in Table 2: (i) Training set – utilized for

supervised selection and provided as meta-training data for meta-

learning-based model selectors. (ii) Evaluation set – made available

without access to ground-truth anomaly labels and serving as a

testbed for assessing di�erent automated solutions. As a result,

the training set consists of 762 time series (619 univariate and 143

multivariate), while the evaluation set contains 308 time series (251

univariate and 57 multivariate).

4369



Table 3: Overview of base algorithms in TSB-AutoAD, cate-

gorized into statistical methods (Stat), neural network-based

approaches (NN), and foundation models (FM), with applica-

bility to univariate (U) and multivariate (M) time series.

Base Algorithm Category Dim Description

(Sub)-MCD [124] Stat U&M Minimum covariance determinant

Sub-OCSVM [128] Stat U&M Support vector method

(Sub)-LOF [29] Stat U&M Identifying density-based local outliers

(Sub)-KNN [117] Stat U&M Distance to its ġ-th nearest neighbor

KMeansAD [150] Stat U&M Distance to the centroid of assigned cluster

CBLOF [58] Stat M Clluster-based LOF

POLY [72] Stat U Local polynomial �tting

(Sub)-IForest [78] Stat U&M Isolation Forest

(Sub)-HBOS [53] Stat U&M Height of the bin in histogram

KShapeAD [102] Stat U Identify the normal pattern based on the k-Shape clustering

MatrixPro�le [153] Stat U Subsequence exhibiting the greatest nearest neighbor distance

(Sub)-PCA [4] Stat U&M Deviation from hyperplane constructed by eigenvectors

RobustPCA Stat M Identify anomalies by recovering the principal matrix

EIF [57] Stat M Extension of the traditional Isolation Forest algorithm

SR [120] Stat U Spectral residual

COPOD [73] Stat M Copula-based parameter-free detection algorithm

Series2Graph [21] Stat U&M Graph-based subsequence anomaly detection

SAND [26] Stat U Streaming subsequence anomaly detection

AutoEncoder [125] NN U&M Reconstruction error through the encoding-decoding

LSTMAD [87] NN U&M Prediction error using LSTM

CNN [90] NN U&M Prediction error using CNN

Donut [146] NN U&M VAE-based method

OmniAnomaly [133] NN U&M Stochastic recurrent neural network

USAD [11] NN U&M Adversely trained autoencoders

AnomalyTransformer [147] NN U&M Anomaly-Attention mechanism

TranAD [139] NN U&M Self-conditioning and adversarial training

TimeNet [143] NN U&M Temporal 2d-variation modeling

FITS [149] NN U&M Interpolation in the frequency domain

OFA [155] FM U&M Finetuning of pre-trained GPT-2 model

Lag-Llama [118] FM U Decoder-only transformer using lags as covariates

Chronos [10] FM U T5 model pretrained on tokenized time series

TimesFM [35] FM U Pretrained decoder-only attention model with input patching

MOMENT [55] FM U Pre-trained T5 encoder from masked time-series modeling

4.1.3 Candidate Model Set. The candidate models serve as the un-

derlying anomaly detectors from which automated solutions can

select or generate �nal predictions. The accuracy of automated so-

lutions is inherently in�uenced by the selection and quality of these

candidate models, as will later be discussed in Section 5.5. However,

the primary objective of this study is to evaluate the relative per-

formance of automated solutions rather than optimizing individual

anomaly detectors, making our analysis orthogonal to the speci�c

model choices. To ensure completeness and credibility, we adopt

the model set from the TSB-AD benchmark [83]—one of the largest

and most recent time-series anomaly detection benchmarks—which

includes 40 state-of-the-art algorithms spanning both univariate

and multivariate settings (see Table 3)

Once a base algorithm is selected, the next step involves con�g-

uring its hyperparameters to instantiate candidate models. Given

that more than half of the automated solutions require iteratively

applying each candidate model during inference, an unlimited num-

ber of candidate models is impractical. Moreover, to ensure the

reliability of our evaluation and mitigate the risk of poor con�g-

urations degrading performance (i.e., “garbage in, garbage out"),

we construct a high-quality candidate model set. Speci�cally, we

perform hyperparameter tuning on the training set, selecting the

best con�guration for each algorithm to prevent suboptimal param-

eter choices from compromising model performance. The detailed

hyperparameter setting is available on our GitHub repository. As a

result, our candidate model set consists of 32 models for univariate

and 23 models for multivariate time series. This approach enhances

the reliability of subsequent comparisons in model selection and

generation processes, ensuring that automated solutions are evalu-

ated under fair and consistent conditions. It is important to note

that in real-world applications, practitioners can modify the can-

didate model set as needed. The candidate selection in this study

is intended for benchmarking purposes, providing a uni�ed and

consistent testbed for comparing di�erent automated solutions.

4.2 Benchmark Implementations

The following section provides the implementation details for base-

lines and methods within each category of automated solutions.

4.2.1 Baseline. We employ �ve types of baselines to evaluate the

e�ectiveness of automated solutions. First, Oracle represents the

theoretical upper bound for model selection, where the best model

for a time series is selected based on its ground truth labels. Sec-

ond, global best (GB) selects the model that exhibits the highest

overall performance (i.e., highest average ranking) across the en-

tire evaluation set. Third, supervised selection (SS) identi�es the

best model on the label set of each dataset and then uses it for the

remaining evaluation set, which represents the common practice of

utilizing a portion of labeled data to determine the most accurate

model and then applied it to the test dataset. Compared with GB,

which selects a single model globally, SS identi�es the best model

for each domain, resulting in a total of nine selected models for nine

domains. Fourth, random choice (Random) simulates the model

selection process absent of any prior knowledge or expertise, where

a model is randomly chosen for each time series and then applied to

that. Fifth, foundation models (FM) are pre-trained on large-scale

datasets, which enhances their generalization and temporal mod-

eling capabilities for time-series analysis tasks. They can function

both as standalone base detection algorithms and as benchmarks

against which we compare the performance of automated solutions.

In this study, we de�ne the performance of the FM category based

on the highest-performing foundation models within our candidate

model set: TimesFM [35] for univariate time series and OFA [155]

for multivariate time series.

4.2.2 Meta-learning-based Methods. As discussed in Section 3.2.1,

meta-learning-based approaches generally follow three key steps:

(i) extraction of meta-features, (ii) training of meta-learners, and (iii)

applying the trained meta-learner for the model recommendation.

Several studies have explored meta-feature extraction for anom-

aly detection. For instance, Zhao et al.[154] employ a set of 200

meta-features, some of which require running four anomaly de-

tection methods (i.e., HBOS, IForest, LODA, and PCA). However,

this approach is computationally expensive and was originally

designed for tabular data, lacking considerations for temporal struc-

tures. More recently, Navarro et al.[91] integrated Catch22 [85],

a collection of 22 univariate time-series meta-features—capturing

properties such as linear and nonlinear autocorrelation, successive

di�erences, value distributions, and �uctuation scaling—selected

from an initial pool of over 4000 features based on their e�ective-

ness in time-series tasks. Their approach demonstrated improved

performance in model selection for time-series anomaly detection.

To ensure a fair comparison across multiple meta-learners while

maintaining computational e�ciency, we adopt Catch22 as our

meta-feature set. Since Catch22 extracts feature from individual

time series, we extend its application to multivariate time-series

data following the methodology in Navarro et al. [91]. Speci�cally,

for each meta-feature, we compute summary statistics—minimum,

�rst quartile, mean, third quartile, and maximum—resulting in a

feature representation of 110 values for multivariate time series.
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Moreover, we adopt a uni�ed evaluation pipeline for this cate-

gory of methods, following the framework established in a recent

benchmark for meta-learning-based model selection in time-series

anomaly detection [134]. We segment each time series into non-

overlapping subsequences of length Ģ = 1024, applying model se-

lection to each segment. The �nal model is selected based on the

majority vote among the models identi�ed across all segments. Ad-

ditionally, we assess each method under both in-distribution (ID)

and out-of-distribution (OOD) scenarios to evaluate their general-

ization capabilities. In the ID scenario, the model selector is trained

on the complete training set and subsequently applied to the eval-

uation set. In contrast, for the OOD scenario, we construct nine

di�erent sub-training sets, each excluding one of the nine domains.

For instance, to evaluate a model selector’s OOD performance in

the Medical domain, the selector is trained on data from the remain-

ing eight domains, ensuring that data from the Medical domain is

entirely absent from the training set.

4.2.3 Internal Evaluation. The selection of method variants within

this category follows the speci�cations outlined in their respective

original publications, with a detailed list of variants provided later

in Table 4. For instance, in our evaluation of the Clustering Qual-

ity (CQ) measure, we incorporate ten di�erent clustering quality

metrics, including the Xie-Beni index [145] and the Silhouette in-

dex [123]. In the case of Model Centrality (MC), we set the number

of nearest neighbors to 1, 3, 5, etc., when computing the average

distance between anomaly scores. For Synthetic-anomaly-injection-

based approaches, we categorize methods into two primary groups:

those utilizing the original time series and those applying a simula-

tion protocol as described by Chatterjee et al. [32]. The selection

of anomaly types follows the strategies proposed by Goswami et

al. [54], incorporating variations such as spikes and speedup anom-

alies. Methods that operate on the original time series are denoted

as ‘Orig’, while those employing synthetic transformations are la-

beled as ‘STL’. To e�ciently train models within our candidate

model set, we follow the setup outlined in Goswami et al. [54] and

subsample all time series exceeding a length of 2560 by a factor

of 10. In TSADAMS, we use rankings derived from the aforemen-

tioned surrogate metrics as inputs for rank aggregation methods

and adopt six aggregation techniques [54].

4.2.4 Model Ensembling. For methods within this category, we

utilize their original publicly available implementations to ensure

consistency and reproducibility. For example, in the OE method,

anomaly scores are standardized to Z-values prior to ensemble ag-

gregation, following the approach outlined by Aggarwal et al. [5].

As AutoTSAD [126] is designed speci�cally for univariate time se-

ries and relies on specialized solutions closely integrated with base

AD algorithms—using hyperparameters initialized from heuristics

in TimeEval [127]. To ensure the integrity of our experiments, we

strictly adhere to its original evaluation protocols, employing the

system as implemented in its o�cially released software.

4.2.5 Model Generation. For AutoOD-A, the ‘Orig’ variant refers

to the original implementation, whereas ‘Ensemble’ extends the

original approach by computing the �nal anomaly score as the

average of the outputs from reliable anomaly detectors identi�ed

by the method. In AutoOD-C, four variants are considered in terms

of how we obtain the initial training data: (i) ‘Majority’ uses initial

labels identi�ed as anomalies by consensus among 25% of detec-

tors. (ii) ‘Individual’ aggregates the top 5% anomalies detected by

each detector. (iii) ‘Ratio’ sums all anomaly scores and selects 15%

with the highest scores. (iv) ‘Avg’ calculates the average anomaly

score and then sets a threshold to determine initial labels. UADB is

designed to enhance any given anomaly score. To provide as much

bene�t to this solution, we employ the ensembled anomaly score

as input—even though in practice only one score is used—to assess

whether it can improve the performance of the ensembled score.

4.3 Evaluation Measures

Statistical Validation. To validate the statistical di�erence of

performance among multiple automated solutions across multiple

datasets, we apply the Friedman test [47], followed by the post-

hoc Nemenyi test [92] at a 95% con�dence level. In the Critical

Di�erence (CD) diagram, methods that do not exhibit statistical

di�erences are connected by black lines.

Accuracy Evaluation. Anomaly detection is commonly framed as

a binary classi�cation task, where each time step is labeled as nor-

mal or abnormal based on a threshold applied to the anomaly score.

While thresholding is typically user-de�ned or estimated via statis-

tical techniques like Peaks Over Threshold (POT)[132], our study fo-

cuses on generating accurate anomaly scores rather than optimizing

threshold selection. To ensure fair evaluation, we adopt threshold-

independent measures that summarize performance across all pos-

sible thresholds[83, 104, 127]. However, existing measures su�er

from key limitations: bias (e.g., AUC-ROC overestimating the per-

formance [43]), indiscrimination (e.g., A�liation [61] yielding uni-

formly high scores), and lack of adaptability to the sequential nature

of time series (e.g., AUC-PR and F-score being sensitive to temporal

shifts [36]). To address these issues, we adopt VUS-PR [18, 99] as our

primary evaluation metric. VUS-PR enhances robustness to lag by

incorporating bu�er regions near outlier boundaries, reduces bias,

and ensures consistent and fair performance assessment. It also

serves as the accuracy measure for evaluating meta-learning-based

methods in our benchmark.

E�ciency Evaluation. In addition to the accuracy evaluation of

these solutions, we measure the inference time during the test

phase. It refers to the duration required to obtain a detection result

(i.e., the anomaly score) for a given time series by automated so-

lutions. In model selection, the inference time is divided into two

components: selection time, which measures the time needed to

identify the best model from a given time series, and detector run-

time, which is the time required for the selected model to compute

and produce the anomaly score.

5 BENCHMARK EVALUATION AND ANALYSIS

In this section, we present a rigorous and comprehensive analysis of

the performance of automated solutions, aiming to derive research

insights with implications for the novel design and application

of automated time-series anomaly detection methods. We aim to

provide insights into the following research questions (RQ):

• RQ1. How far we are at achieving automated, robust, and ac-

curate time-series anomaly detection (Section 5.1)?

• RQ2. What are the computational implications and scalability

characteristics of these automated solutions (Section 5.2)?
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Table 4: Accuracy evaluationwith boxplots showing score dis-

tributions for VUS-PR (mean in green andmedian in orange).

The best variant for each method is marked with ★. The ‘#

of Wins’ represents the number in which a given method

outperforms the three baselines, SS, GB, and Random.

Method Variant VUS-PR Rank
# of Wins

SS GB Random

B
a
se
li
n
e

Oracle - 1 218 270 308

SS - 8 0 212 251

GB - 19 88 0 178

Random - 28 57 130 0

FM - 29 50 143 144

M
o
d
e
l
S
e
le
ct
io
n

SATzilla
ID ★ 2 123 218 277

OOD 17 89 159 201

ISAC
ID ★ 13 100 175 218

OOD 31 58 115 155

ARGOSMART
ID ★ 5 129 201 260

OOD 20 75 139 173

MetaOD
ID ★ 25 81 134 172

OOD 28 80 138 153

MSAD
ID ★ 3 132 209 268

OOD 16 96 162 204

UReg
ID ★ 7 110 199 257

OOD 18 91 145 184

CFact
ID ★ 11 95 186 240

OOD 24 71 136 165

CQ

XBS 42 51 125 129

STD 47 47 118 121

R2 37 56 134 135

Hubert 53 57 123 109

CH ★ 34 56 134 135

Silhouette 63 30 91 89

I-Index 45 59 131 125

DB 36 66 121 133

SD 58 51 116 110

Dunn 38 65 127 137

UEC
EM ★ 33 40 136 140

MV 64 30 101 99

MC

3 67 42 98 72

5 ★ 69 40 99 71

7 70 38 99 69

9 72 38 97 68

12 73 36 95 64

Synthetic

Orig-spikes 41 48 129 134

STL-spikes 26 67 142 149

Orig-scale 39 56 127 142

STL-scale 21 73 142 170

Orig-noise 52 60 123 128

STL-noise 32 72 128 143

Orig-cuto� 44 58 115 138

STL-cuto� 31 64 127 147

Orig-contextual 46 58 110 144

STL-contextual 35 68 116 145

Orig-speedup ★ 22 82 143 169

STL-speedup 23 67 142 170

TSADAMS

Borda ★ 50 56 125 119

Kemeny 55 56 126 110

Trimmed Kemeny 57 52 126 112

Partial Borda 59 44 119 110

Trimmed Borda 56 48 123 119

MIM 60 58 119 110

E
n
se
m
b
li
n
g

OE

AVG ★ 4 141 213 268

MAX 12 103 176 246

AOM 6 126 204 265

SELECT
Vertical ★ 62 52 100 89

Horizontal 65 45 92 95

IOE - 66 51 100 85

HITS - 15 91 166 197

G
e
n
e
ra
ti
o
n

AutoOD-A

Orig 68 38 93 77

Ensemble ★ 10 118 191 240

Majority 71 32 84 62

AutoOD-C

Majority ★ 40 67 124 131

Ratio 51 61 116 109

Average 54 61 115 113

Individual 61 49 104 83

UADB

Orig 14 113 174 218

Mean_C 48 61 119 124

STD_C 49 61 119 124

Mean 43 65 124 131

STD ★ 9 125 195 246

• RQ3. How robust are these methods under out-of-distribution

conditions and across di�erent types of anomalies (Section 5.3)?

• RQ4. How does the performance of automated solutions vary

across di�erent types of anomalies (Section 5.4)?

Figure 5: Summary of accuracy evaluation of automated solu-

tions (their best variants) on TSB-AD-U and TSB-AD-M. The

methods are arranged from right to left in the boxplot based

on the rankings of the average VUS-PR value. The mean is

marked by a dashed line and the median by a solid line.

• RQ5. How does the choice of candidate model sets a�ect the

overall performance of automated solutions (Section 5.5)?

• RQ6.What are the bene�ts of selective ensembling (Section 5.6)?

5.1 Overall Accuracy Evaluation

In Table 4, we present a comprehensive evaluation of automated

solutions across both univariate and multivariate time series, com-

pared against �ve baselines in terms of both average rankings and

the number of “wins” each method achieves over a given baseline

across 308 times in total. Unfortunately, the advent of foundation

models has not fundamentally transformed the landscape of time-

series anomaly detection, nor do they o�er a one-size-�ts-all solu-

tion—a �nding consistent with recent studies on foundation models

in time-series analysis [83, 135]. Consequently, there still remains a

pressing need for robust automated solutions. The top-performing

automated solutions appear to be meta-learning-based methods,

which leverage knowledge from historical datasets, and ensembling

methods, which aggregate wisdom from multiple models. Despite

these promising aspects, the overall performance of automated so-

lutions remains below expectations. Among the evaluated variants,

only 7 outperform SS (a common practice of using labeled validation

data for model selection), and fewer than 20 exceed GB (applying

one single model with the most robust performance). Moreover,

over half of the methods fail to surpass random choice. Although

meta-learning-based methods exhibit strong performance in ID

scenarios, they experience notable degradation under distribution

shifts, as demonstrated by comparisons between ID and OOD cases

(further discussed in Section 5.3).

Figure 5 presents an overview of the best-performing variants

of automated solutions, distinguishing their performance on uni-

variate and multivariate time series. The overall trend remains

consistent, with meta-learning-based methods achieving the high-

est rankings, followed by OE for univariate data and Synthetic

for multivariate time series. OE demonstrates robust performance

through a simple score ensembling strategy, underscoring both

the potential of ensemble methods and the ongoing need for more

e�cient and robust automated solutions in time-series anomaly
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Figure 6: Overview of runtime analysis for automated solu-

tions: (a) illustration of the relationship between VUS-PR

and average detection time across the benchmark and the

illustration of scalability with respect to (b) inference time

and (c) selection time for model selection methods.

detection. In contrast, AutoTSAD, which is speci�cally designed

for univariate time series, fails to outperform this simple ensem-

bling approach. UADB, designed to enhance a given anomaly score

(speci�cally, the score produced by OE (Avg) in our study), fails

to surpass the performance of OE (Avg) itself, highlighting the

need for further advancements in this approach to enhance its

e�ectiveness. Synthetic approach emerges as the most e�ective

unsupervised model selection methodology, particularly excelling

in multivariate cases. However, its performance varies depending

on the type of synthetic anomalies used. The impact of initial out-

lier removal is also anomaly-dependent; while it proves ine�ective

for speedup anomalies, it is bene�cial for spike anomalies. These

�ndings underscore the promise of synthetic methodologies while

emphasizing the need for more realistic and e�ective anomaly injec-

tion techniques. Finally, internal evaluation measures consistently

fail to outperform random selection, underscoring their limited

e�ectiveness in approximating anomaly score performance.

5.2 Runtime Scalability

In Figure 6, we present a runtime analysis of automated solutions.

As shown in Figure 6 (a), meta-learning-based methods achieve

signi�cantly lower runtimes compared to alternative approaches.

This e�ciency stems from their ability to select the best model by

leveraging historical knowledge instead of performing model selec-

tion by iteratively examining each model’s performance on the �y.

Although these methods experience degradation under distribution

shifts, their performance under OOD conditions remains superior

to that of most other automated solutions, all while maintaining or-

ders of magnitude lower runtimes. In contrast, OE, which requires

the iterative application of each anomaly detector, is computation-

ally expensive despite its robust performance. Moreover, methods

such as SELECT and MC are characterized by both slow inference

times and lower accuracy. Figures 6 (b) and (c) further demonstrate

Figure 7: Illustration of the impact of distribution shifts on

meta-learning-based methods in (a) ID, (b) OOD cases, and

(c) comparison between the two cases.

that the inference time for meta-learning-based methods is con-

siderably lower than that of other model selection techniques. To

explore scalability in streaming contexts, despite these methods not

being originally designed for such settings, we simulate a scenario

where model selection is updated every 300 time points (e.g., equiv-

alent to 5 minutes under one-second sampling intervals). This leads

to signi�cantly slower performance compared to static settings,

underscoring the need for future adaptation to data streams.

5.3 Out-of-distribution Experiments

To evaluate the performance of meta-learning-based model se-

lectors in scenarios where the test data is dissimilar to any of

those used in training data, we examine their e�ectiveness un-

der OOD conditions. For this purpose, model selection algorithms

are trained on all but one dataset (see details in Section 4.1). Fig-

ures 7(a) and (b) show that meta-learning methods drop out of the

top three rankings under OOD conditions, while ensembling and

generation-based approaches retain stable performance. Nonethe-

less, meta-learning methods still outperform the Globally Best (GB)

baseline in several cases, indicating their potential. Figure 7(c) fur-

ther highlights that OOD performance degradation is consistent

across all meta-learning-based methods. Furthermore, comparisons

across di�erent meta-learners reveal that the optimization strategy

for model selectors signi�cantly in�uences performance rankings.

Speci�cally, regression-based (e.g., SATzilla, UReg, CFact) and cross-

entropy-based methods (e.g., MSAD) are generally more e�ective,

whereas ranking-based (e.g., MetaOD) and nearest-neighbor-based

approaches (e.g., ARGOSMART) perform less favorably.

5.4 Analysis on Anomaly Types

As illustrated in Figure 8, we evaluate the e�cacy of various auto-

mated solutions (with the best variant selected for each method for

clarity) on time series datasets featuring di�erent types of anom-

alies. While anomaly types are unknown prior to detection, an-

alyzing performance variation across types o�ers insights into

the strengths and limitations of each method. In the case of point

anomalies (a), where anomalies occur at individual time steps, the
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Figure 8: Performance overview under (a) point, (b) sequence,

(c) single, and (d) multi anomaly.

ensemble-based method OE demonstrates the highest e�ectiveness,

followed by meta-learning and generation-based approaches such

as UADB, with UEC being the most e�ective internal evaluation

method. For sequence anomalies (b), where anomalies span con-

tiguous segments, meta-learning-based methods outperform OE,

and the Synthetic approach proves to be the most reliable internal

evaluator. We further analyze performance under single-anomaly

(c) and multi-anomaly (d) scenarios. In both cases, meta-learning

methods and ensembles consistently lead in performance. Synthetic

performs particularly well in single-anomaly settings, where the

lower contamination ratio reduces false negatives and enhances the

e�ectiveness of synthetic injection. Finally, methods such asMC, SE-

LECT, IOE, and AutoOD-C perform poorly on single-anomaly time

series but improve notably when multiple anomalies are present.

5.5 Impact of Di�erent Candidate Sets

In this section, we investigate the impact of candidate model sets by

comparing automated solutions using the entire candidate model

set versus a subset consisting of the top 10 models from the entire

set as identi�ed from the TSB-AD benchmark [83]. Figure 9 (a)

presents a pairwise comparison between the entire set and the

subset. With a reduced number of available models in the subset,

the performance of methods such as SS and top-performing meta-

learning-based approaches declines. This reduction is attributed to

the restricted selection pool, where the removal of certain models

may exclude those that demonstrate higher detection accuracy for

speci�c time series, thereby limiting the e�ectiveness of model

selection. Conversely, a re�ned subset leads to substantial perfor-

mance gains for methods that require iterative application of each

candidate, such as Synthetic, CQ, and OE—with the most signi�cant

Figure 9: Overview of the impact of candidate model sets.

The Entire Set consists of all 40 base AD algorithms, while

the Subset includes only the top 10 AD algorithms.

improvement observed in CQ, a relatively weak model selection

method. Figures 9 (b) and (c) further illustrate that, although the

relative performance for each method di�ers between the complete

set and the subset, the overall ranking of automated solutions re-

mains largely consistent. Meta-learning-based methods and OE

remain among the top performers, with OE surpassing the SS base-

line when using the re�ned subset. In contrast, internal evaluation

methods still struggle to outperform the SS baseline. However,

under out-of-distribution scenarios, they exhibit improved perfor-

mance compared to meta-learning-based methods when using the

re�ned subset, where meta-learning-based approaches experience

performance degradation due to distribution shifts.

5.6 E�ectiveness of Selective Ensemble

As discussed previously, relying solely on the top-ranked model

introduces risks due to ranking imperfections and model variability,

while indiscriminate aggregation of all predictions may lead to un-

satisfactory outcomes, where poor models degrade the aggregated

results but also consume excessive computational resources. Incor-

porating the top-ġ models o�ers a balance, raising the question of

how to combine the strengths of model selection and ensembling

while mitigating their respective limitations. To this end, the previ-

ously introduced SENSE framework o�ers a promising solution by

aggregating predictions from the top-ġ ranked models, rather than

relying solely on the top-1. As shown in Figure 10, we evaluate

the trade-o� between accuracy and inference time across di�erent

SENSE variants. The bene�ts of top-ġ ensembling are particularly

evident for the Synthetic variant, where individual model selection

performance is less reliable. For SATzilla, performance improve-

ment plateaus after Top-3, suggesting saturation in accuracy and

providing an e�ective balance between performance and compu-

tational cost, as inference time increases with ġ . In OOD settings,

achieving comparable performance to OE typically requires ensem-

bling 11–13 models. This suggests that di�erentiating between ID

and OOD cases is a valuable direction for reducing runtime cost.

6 DISCUSSION AND FUTURE RESEARCH

We �rst present key �ndings and a practical guide in Section 6.1,

followed by a discussion of future research directions in Section 6.2.
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Figure 10: Evaluation of (a) VUS-PR and (b) inference time

across di�erent variants of the Selective Ensemble (SENSE)

framework under varying values of Top-k. The performance

of naive ensembling OE is marked with the gray dotted line.

6.1 Discussion

Position: Current Limitations of Automated Solutions. De-

spite recent advances in foundation models and anomaly detec-

tion algorithms, automated solutions remain more reliable in prac-

tice. However, performance disparities persist: only four methods

(SATzilla, MSAD, OE, ARGOSMART) surpass Supervised Selection,

while 60% of solutions underperform a random baseline and 75% fall

below a simple globally best model. Many approaches incur high

computational costs by evaluating all candidate models, yet still

trail behind meta-learning and simple ensemble strategies. Further-

more, unsupervised surrogate metrics (e.g., MC, UEC, CQ) perform

poorly due to limited adaptability to time-series contexts.

Promise: Strengths and Opportunities. (i) The naïve ensemble

(OE), which aggregates anomaly scores from all candidate mod-

els, delivers surprisingly strong performance, demonstrating the

e�ectiveness of ensembling for bias and variance reduction in anom-

aly detection. (ii) The optimization strategy within meta-learning-

based methods plays a critical role in predictive accuracy. Simple

regression- and classi�cation-based losses often yield more robust

results, suggesting the need for further exploration of these tech-

niques. (iii) There are substantial di�erences in runtime across

automated solutions. While OE achieves high accuracy, it incurs

high computational cost; in contrast, meta-learning approaches are

more e�cient but less reliable under distribution shift. This high-

lights the need for methods that balance accuracy and e�ciency.

(iv) The quality of the candidate model set strongly a�ects the per-

formance of unsupervised methods. Carefully curated model pools

improve reliability and are crucial for real-world deployment. (v) By

combining model selection with ensembling, SENSE consistently

improves performance while maintaining favorable inference time,

o�ering a balanced solution between accuracy and cost.

Finally, we present a practical guide in Figure 11 for selecting

automated solutions. When computational resources are su�cient,

OE, which ensembles anomaly scores from all candidate models, is

recommended and particularly e�ective for point anomalies. For

scenarios with historical labeled data and strict latency require-

ments, SATzilla and MSAD are preferable, o�ering strong perfor-

mance for sequence anomalies. In fully unsupervised settings, the

Synthetic anomaly injection approach provides the most reliable

model selection and performs well on sequence anomalies. SENSE

is introduced as a modular plug-in framework that enables the in-

tegration of a model selector and an ensemble component over the

top-ġ candidates. It o�ers a practical balance between predictive

'o

Figure 11: A practical guide for automated solutions.

accuracy and computational e�ciency, with ensembling as few as

three models demonstrating strong performance.

6.2 Future Research

Despite these insights, it is worth noting that the research attention

in this �eld remains insu�cient, with numerous promising avenues

yet to be explored. We identify research opportunities as follows.

(1) Domain Generalization. The performance gap between ID

and OOD cases in meta-learning-based methods poses a challenge

for broader adoption. Despite their advantage in inference e�-

ciency, enhancing domain generalization is critical for improving

robustness. SENSE o�ers an initial attempt to address this issue

by ensembling the top-ġ selected models, but further research is

needed to improve selection accuracy under distribution shifts.

(2) Explore Time Series Traits. Many automated solutions are

designed for tabular data, overlooking the unique characteristics

of time series. E�ective automated time-series anomaly detection

requires specialized feature extraction techniques. Moreover, many

methods treat time steps in isolation, neglecting the temporal de-

pendencies crucial for developing more e�ective solutions.

(3) Incremental Automated Solutions. Research on automated

solutions for evolving data streams remains limited. However, en-

abling automated detection in streaming settings, along with incre-

mental updates to adapt to concept drift, holds substantial promise

for both academic and industrial applications.

(4) Develop Advanced Anomaly Detector. While AutoML aims

to reducemanual model design, the development of advanced anom-

aly detectors remains essential. A more accurate base detector im-

proves overall AutoML performance, and continued progress in

detector design directly bene�ts automated pipelines.

7 CONCLUSION

In this study, we focus on addressing a crucial yet often overlooked

research question: Given a time series, how can we automatically

achieve the best anomaly detection performance given a set of candi-

date models? However, current methods are proposed from di�erent

communities and evaluated on di�erent datasets, without a speci�c

focus on the time series domain. To bridge this gap, we introduce

TSB-AutoAD and conduct a comprehensive analysis of automated

time-series anomaly detection. Our extensive benchmarking of 20

automated solutions with 70 variants across nine time-series do-

mains, reveals substantial discrepancies: over half of the automated

solution variants do not surpass a simple random baseline, yet this

analysis also uncovers previously unrecognized but highly e�ective

solutions. This study highlights the critical importance and ongoing

demand for automated solutions within the time-series anomaly

detection domain, acting as a call for further research on this topic.
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