
Powerful GPUs or Fast Interconnects: Analyzing Relational
Workloads on Modern GPUs

Marko Kabić
Systems Group, D-INFK,
ETH Zurich, Switzerland
marko.kabic@inf.ethz.ch

Bowen Wu
Systems Group, D-INFK,
ETH Zurich, Switzerland
bowen.wu@inf.ethz.ch

Jonas Dann
Systems Group, D-INFK,
ETH Zurich, Switzerland
jonas.dann@inf.ethz.ch

Gustavo Alonso
Systems Group, D-INFK,
ETH Zurich, Switzerland

alonso@inf.ethz.ch

ABSTRACT
In this study we explore the impact of different combinations of
GPU models (RTX3090, A100, H100, GraceHoppers - GH200) and in-
terconnects (PCIe 3.0, PCIe 4.0, PCIe 5.0, and NVLink 4.0) on various
relational data analytics workloads (TPC-H, H2O-G, ClickBench).
We present MaxBench, a comprehensive framework designed for
benchmarking, profiling, and modeling these workloads on GPUs.
Beyond delivering detailed performance metrics, MaxBench esti-
mates query execution performance using a novel cost model. With
this model, we move beyond traditional metrics such as arithmetic
intensity and GFlop/s and suggest using instead the notions of
characteristic query complexity and characteristic GPU efficiency, as
more suitable metrics for data analytics workloads. We conduct
an extensive experimental analysis with MaxBench across differ-
ent combinations of GPU models and interconnects on various
data analytics workloads. The insights from this analysis reveal
the trade-offs between GPU computing capacity and interconnect
bandwidth on query processing. Using this cost model, we also
examine future trends by investigating how enhancements in inter-
connect bandwidth or GPU efficiency would affect performance in
the future.

PVLDB Reference Format:
Marko Kabić, Bowen Wu, Jonas Dann, and Gustavo Alonso. Powerful
GPUs or Fast Interconnects: Analyzing Relational Workloads on Modern
GPUs. PVLDB, 18(11): 4350 - 4363, 2025.
doi:10.14778/3749646.3749698

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://gitlab.inf.ethz.ch/PUB-SYSTEMS/eth-dataprocessing/Maximus.

1 INTRODUCTION
Rapid data growth and a variety of workloads have created a de-
mand for more efficient processing solutions in modern data centers.
To meet this demand, there has been a clear shift toward heteroge-
neous hardware architectures that incorporate specialized accelera-
tors [1, 38]. Among these, Graphics Processing Units (GPUs) stand
out due to their exceptional parallel processing capabilities and
high memory bandwidth, making them particularly well-suited for
data-intensive tasks. Their suitability is further reinforced by the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749698

rising computational demands of AI and machine learning work-
loads, which have driven the widespread adoption of GPUs in data
center environments. This, in turn, has led to an increasing inter-
est in the development of GPU-accelerated data analytics engines
[6, 8, 11, 14, 17–19, 21, 24, 25, 28, 32, 36, 44, 52, 56].

Although early generations of GPUs were limited by small mem-
ory capacities and slow data transfer over interconnects, recent
advancements have significantly expanded GPU memory and im-
proved interconnect speeds, making them increasingly viable for
large-scale data processing. With the development of fast intercon-
nects, such as NVLink, featuring high bandwidth and more powerful
GPUs, the interconnect may no longer be the main bottleneck [30].

Despite these advancements, several questions still remain: (i) Is
there still a necessity for powerful GPUs, or do fast interconnects
suffice? (ii) How do different GPU models and interconnect tech-
nologies affect the performance of data analytics? (iii) What impact
does increasing interconnect bandwidth and GPU efficiency have
on query execution?

Answering these questions is challenging for two reasons. First,
it requires comprehensive modeling of both interconnect perfor-
mance and GPU capabilities, requiring a robust benchmarking
and profiling framework. Second, doing so involves characterizing
query complexity on GPUs and evaluating their efficiency. Tradi-
tionally, arithmetic intensity (operations per byte) has been used to
measure query complexity with the roofline model. However, for
data analytics workloads, which tend to be memory-bound, such
a metric often yields very low values on GPUs. Additionally, GPU
efficiency is typically measured in GFlops — a metric suitable for
compute-intensive tasks but inadequate for data analytics.

We address these challenges, by making the following contribu-
tions:
(1) We present MaxBench – a framework for benchmarking, pro-

filing, and modeling analytics workloads on heterogeneous
hardware. MaxBench provides detailed performance metrics,
including the breakdown of CPU↔GPU data transfers and
operator-level breakdown of the query execution time.

(2) Using MaxBench, we provide a comprehensive analysis running
the TPC-H, H2O-G, and ClickBench benchmarks on different
GPU models (RTX3090, A100, H100, GH200), as well as different
interconnects (PCIe 3.0, PCIe 4.0, PCIe 5.0, NVLink 4.0).

(3) Based on the comprehensive analysis, we introduce the no-
tions of characteristic query complexity, characteristic GPU
efficiency and characteristic interconnect efficiency.

(4) Using this characterization, we introduce a novel cost model
that allows us to estimate the computation and communica-
tion costs of evaluated benchmarks on any combination of the
evaluated GPUs and interconnects.

4350

https://doi.org/10.14778/3749646.3749698
https://gitlab.inf.ethz.ch/PUB-SYSTEMS/eth-dataprocessing/Maximus
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749698
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(5) Using this cost model, we derive theoretical limits on the ratios
of CPU-GPU data transfer costs and the GPU query execution
costs, in the limit case when the data size tends to infinity.

(6) Through extensive benchmarks, we provide numerous insights,
including identifying a crossing point when the workloads
shift from being interconnect-bound to being GPU-bound for
different workloads and various data-movement models.

(7) We show how optimizations, such as selective data transfer
based on the filtering predicate can be incorporated into the
cost model. In the experimental section, we evaluate the impact
of this optimization on different hardware configuration.

(8) With the introduced analytical models, we estimate the perfor-
mance impact of future GPU devices and interconnects, when
their efficiencies are scaled beyond their current capabilities.

2 RELATED WORK
There is extensive related work on GPU query processing: relational
operators on GPUs [27, 41, 43, 45, 49, 52], multi-GPU query pro-
cessing [37, 42, 48], or CPU-GPU co-processing of queries [23, 29]
covered in detail by surveys [10, 12, 40, 55]. We have structured the
discussion around two main categories of related work: (i) experi-
mental analyses and modeling, and (ii) analyzing the interconnect.

Experimental Analyses and Modeling. Cao et al. [12] analyze
the performance and resource utilization of different GPU database
systems for a specific GPU. Yuan et al. [55] propose a GPU-based
query engine to understand the effect of query characteristics, soft-
ware optimization, and hardware configuration. Their evaluation
is constrained to machines with limited interconnects (PCIe 3.0 at
most) and currently outdated GPUs, whereas our work includes
a greater variety of interconnects and modern data center-grade
GPUs. On building the Tensor Query Processor (TQP) with tensor
abstractions, He et al. [22] also evaluate its performance with TPC-
H queries, however, without looking into data transfers over the
interconnect. Shanbhag et al. [44] advocate against the co-processor
model, focusing on the effect of memory bandwidth on performance.
Lastly, Arefyeva et al.[4] discuss memory management strategies
for relational data processing on GPUs.

On the modeling side, many papers have modeled the perfor-
mance of singular relational operators on the GPU (e.g., [44, 52])
and data transfer costs (e.g., [55]). Existing models introspect the
operator implementations but are tied to those implementations.
In the HPC domain, CPU-GPU transfers in supercomputers with
PCIe 2.0 and PCIe 3.0 interconnects have been studied [50].

Tackling the Interconnect Bottleneck. Numerous ideas have
been proposed to alleviate the limited bandwidth between the CPU
and the GPU. We refer interested readers to [40] for a thorough
review. Most recently, Yogatama et al. [53] develop a fine-grained
semantic-aware caching policy for CPU-GPU co-processing. Yuan
et al. [54] overcome the limited interconnect bandwidth by aggre-
gating the PCIe bandwidth of multiple GPUs to serve a single GPU.
Beyond traditional CPU-GPU interconnects, Lutz et al. [30, 31] de-
veloped hash join algorithms for NVLink. Lastly, Afroozeh et al.[2]
explore lightweight encoding techniques to take pressure off the
interconnect and memory subsystem of the GPU with minimal per-
formance impact. Our work, MaxBench, is orthogonal to this line
of work because MaxBench can be used as a platform to evaluate

optimizations proposed in previous work and to demonstrate their
effects on end-to-end query runtime. Some of these optimizations
can be implemented in MaxBench, e.g. as policies (Section 3).

3 MAXBENCH ARCHITECTURE
MaxBench is a framework for benchmarking, profiling, and model-
ing performance of data analytics on heterogeneous architectures,
built on top of the Maximus query engine [26], using a push-based,
vectorized execution model [9, 57]. It employs the Apache Arrow
data format [46] for efficiently ingesting the data to the CPU mem-
ory, the RAPIDS cuDF dataframe library [3] for GPU execution, and
integrates the Caliper Profiling Toolbox [7] for detailed code instru-
mentation. It is architecturally organized into three layers (Figure
1). The Input Layer, facilitates the selection of the benchmark suite
and the dataset to be executed. The Profiling Configuration Layer
allows users to customize the execution parameters, including the
execution flow and profiling granularity. The Analysis & Modeling
Layer is dedicated to performance metrics.

3.1 Input Layer
Supported Benchmarks. In the input layer, users can specify the
benchmark suite to run. The framework currently supports the
full TPC-H suite [47] – modeling the traditional data warehouse
analytics workloads, the Clickbench suite [15] – modeling large-
scale web analytics workloads, and the H2O-G (group-by) suite [20]
– modeling tasks frequently encountered in data science workloads.

Datasets. The datasets component enables the data generation
for the specified benchmarking suite. During data generation, the
size of the data can be set using the scaling factor. Moreover, certain
benchmarks, such as H2O-G (group-by), offer additional parameters
that allow users to control attributes like the percentage of NULLs
or the data distribution by specifying the number of groups.

Data Formats. The system currently supports reading CSV and
Parquet files by using the Arrow’s and cuDF’s readers.

3.2 Profiling Configuration Layer
Data Location. The users can choose whether the input data ini-
tially resides on a CPU or on a GPU. For the CPU option, it is
further possible to choose whether it should be stored in a pinned
(page-locked) or non-pinned region. This can significantly affect
the interconnect bandwidth on PCIe interconnects. However, the
pinned memory is a scarce resource and should be used with cau-
tion, as it prevents the OS from swapping pages. Similarly, it can
be specified whether the query result should stay on the GPU or
be transferred to the CPU after the execution. Traditionally, query
inputs and results are expected to be stored in the CPU memory.
However, if subsequent processing is expected, such as within
AI/ML pipelines, retaining the data on the GPU may be beneficial.

Copy Policy. The data copying policy determines whether the
CPU↔GPU data transfers occur on a per-dataset or per-query basis.
In a per-dataset approach, the entire dataset is transferred to the
GPU before executing queries. Conversely, in a per-query approach,
only the specific input data for each query is copied to the GPU
prior to its execution. Each option has its advantages: per-dataset
copying can be more efficient if the entire dataset fits within the
GPU’s memory capacity, which can benefit subsequent queries,

4351

CPU GPU

Input Data Location

Profiling Levels

Summarized

Breakdown of Data Transfers Breakdown of Operators

Filter

Join

Project

Group By
…

Message Sizes

BandwidthCPU↔GPU

GPU→GPU

Total Data Transfers Total Operators CUDA Kernels

Benchmarking & Performance Analysis

Performance Modeling & Characterizations

HatchetSQL-like API Nsight SystemsDataFrame API

Performance Data Analysis Performance Data VisualizationTPC-H ClickBench

Benchmarks

H2O-G

Scaling
Factors

Datasets

NULLs %

…

CSV

Data Formats

Parquet …

Input Layer Profiling Configuration Layer Analysis & Modeling Layer

PCIe3 PCIe5 NVLink4

…

Modeling GPU Execution

A100 H100 H200

Modeling Data Transfers

C
os

t M
od

el

…
Hardware

GPUs

Workloads

Characterizations

Interconnects
Queries

Per-Query Per-Dataset

CPU→GPU Copy Policy

Data
Distribution

Figure 1: The architecture of MaxBench.

amortizing the upfront data transfer costs. Meanwhile, per-query
copying is advantageous when the input data required for individual
queries is significantly smaller than the full dataset.

Profiling Levels. The system offers multiple profiling levels to
accommodate different profiling granularities. At the summarized
level, it tracks only the overall time spent on CPU↔GPU data trans-
fers and GPU query execution, along with capturing the duration
spent in top CUDA kernels. For more granular insights into data
transfers, users can enable the breakdown of data transfers profiling
level. This option provides detailed metrics on the time spent in
CPU↔GPU data transfers as well as information on bandwidth,
message count and total sizes. Enabling the breakdown of opera-
tors records the time spent in each specific operator, such as filter,
project, join, group-by, and others.

3.3 Analysis & Modeling Layer
Benchmarking & Performance Analysis. The profiler output
can be further analyzed using SQL- or DataFrame-like APIs. The
integration with third-party tools enables visualization through
NVIDIA’s official Nsight Systems profiler [16] and the Python-based
Hatchet library [5], which facilitates performance analysis.

Performance Modeling & Characterizations. In addition to
analyzing the profiling data, MaxBench employs this data to model
the time spent on data transfers and operator execution on GPUs.
The time spent in data transfers can be modeled for different types of
interconnects. Similarly, the time spent in operators can be modeled
for different types of GPUs. It also provides the characterization
of hardware (GPUs and interconnects) and workloads (queries)
through the notions of characteristic efficiency and characteristic
complexity introduced in the next section.

4 COST MODELING & CHARACTERIZATION
MaxBench assumes the query execution cost consists of two com-
ponents: the CPU↔GPU data transfers cost, impacted by the inter-
connect and the operator costs, depending on the GPU used.

4.1 Data Transfers Cost (Communication)
The cost of CPU↔GPU data transfers depends on the type of inter-
connect used. This interconnect is typically constrained by its peak
bandwidth, denoted as 𝐵max, which represents the maximum rate at

which data can be transferred. However, the actual achieved band-
width depends on the size of the data being transferred. Smaller
message sizes may not fully utilize the available bandwidth. For a
given data size 𝑠 , we denote the achieved bandwidth as 𝐵(𝑠). We
model this relationship as follows:

𝐵(𝑠) = 𝐵𝑚𝑎𝑥 ·
𝑠

𝑠 + 𝑠0
(1)

The parameter 𝑠0 represents the data size at which half of the
peak bandwidth, 𝐵max/2, is reached. Intuitively, smaller values of
𝑠0 indicate that saturation occurs for smaller message sizes, while
larger 𝑠0 values suggest that larger data sizes are necessary to reach
the bandwidth saturation point.

Once the bandwidth is known, we can estimate the time spent
in data transfers when executing query 𝑞, denoted by 𝑇𝑞,comm (𝑠) as:

𝑇𝑞,comm (𝑠) =
𝑠

𝐵(𝑠) (2)

Observe that the latency is ignored in this formula. In our exper-
iments, the latency was in the range 0.8 − 1.2𝜇𝑠 across all tested
interconnects, negligible for the purpose of data analytics.

4.2 Operators Cost (Computation)
The operators cost represents the time spent executing all operators
in a query plan, such as join, group-by, order-by, filter, project, limit,
and others. This cost does not involve the data transfers cost, but
rather the execution of the operators, once the data is already
residing on a GPU. For this reason, this cost depends solely on the
GPU type and is independent of the interconnect being used.

In our analysis, presented in the results section, we observe that
the cost associated with executing operators increases linearly with
respect to the size of the dataset. Thus, we use a linear model to
estimate the execution time 𝑇𝑞,op of operators on a GPU device 𝑑 ,
based on both the data size 𝑠 and the query 𝑞:

𝑇𝑞,op (𝑠) = 𝑎𝑞,𝑑 · 𝑠 + 𝑏𝑞,𝑑 (3)
Observe that the slope 𝑎𝑞,𝑑 and the intercept 𝑏𝑞,𝑑 depend on

both the query 𝑞 and the GPU 𝑑 . Now, we define the operator’s cost
model as the ordered pair of both the slope and intercept matrix.

Definition 4.1. For a query set 𝑄 and the GPU device set 𝐷 ,
the operators cost model is defined as an ordered pair of matri-
ces (𝐴, 𝐵), where 𝐴 = [𝑎𝑞,𝑑]𝑞∈𝑄,𝑑∈𝐷 is the slope matrix and 𝐵 =

4352

[𝑏𝑞,𝑑]𝑞∈𝑄,𝑑∈𝐷 is the intercept matrix. All entries in 𝐴 must be
strictly positive, and all entries in 𝐵 must be non-negative.

4.3 Incorporating Optimizations
The proposed cost model can be extended to include optimizations
that fall into three categories: (1) reducing data transfer costs (e.g.,
compression), (2) minimizing computation costs (e.g., kernel fusion),
and (3) reducing both. For instance, performing initial filtering on
the CPU and offloading the remaining query plan to the GPU re-
duces communication costs by transferring less data and lowers
GPU computation costs by skipping the filtering step. This section
demonstrates how such optimizations, using selective data trans-
fers as an example, can be integrated into the cost model. Other
optimizations can be incorporated similarly. In practice, selective
data transfers based on predicates are available in some of the
state-of-the-art engines [33, 39, 54].
Communication Costs. Let us generalize the communication cost
from Section (4.1), by separating the cost of transferring the query
input and the query output, as: 𝑇𝑞,comm (𝑠) = 𝑇 in

𝑞,comm (𝑠) +𝑇 out
𝑞,comm (𝑠).

Let 𝑇filter (𝑠) denote the cost of filtering data of size 𝑠 on the CPU,
where 𝜎 (𝑠) ∈ (0, 1] is the filter selectivity and 𝜎 (𝑠) · 𝑠 is the size of
the filtered data. Now we extend the communication cost from Eq.
(2), and define perceived bandwidth 𝐵𝑝𝑒𝑟𝑐 (𝑠), as follows:

𝑇 in
𝑞,comm (𝑠) = 𝑇filter (𝑠) +

𝜎 (𝑠) · 𝑠
𝐵(𝜎 (𝑠) · 𝑠) , 𝐵𝑝𝑒𝑟𝑐 =

𝑠

𝑇 in
𝑞,comm (𝑠)

(4)

If the query result is copied back to the CPU, we can still use Eq. (2)
and (1) to model these transfer costs, since selective filtering only
affects the input data transfers.
Computation Cost. Let 𝑞′ = 𝑞 \ {𝜎} denote the query plan with-
out the initial filter operators that are used for selective data trans-
fers. For 𝑞′, we can still use the cost model from Section 4.2.

4.4 Hardware & Query Characterization
Interconnects. Equation (1) suggests the interconnects are charac-
terized by the peak bandwidth 𝐵𝑚𝑎𝑥 and the 𝑠0 parameter, which
controls how fast the peak is achieved. However, for large enough
data sizes, the bandwidth will be close to the peak bandwidth. For
this reason, it makes sense to assume that the peak bandwidth is
the main characteristic of the interconnect.

Definition 4.2. For an interconnect 𝐼𝐶 , we define the characteris-
tic interconnect efficiency 𝜒𝑖𝑐 as:

𝜒𝑖𝑐 = lim
𝑠→∞

𝐵(𝑠) = 𝐵𝑚𝑎𝑥 , (5)

where a higher value of 𝜒𝑖𝑐 indicates more efficient interconnects.

GPU Devices and Queries. GPU devices are often character-
ized by their peak performance, typically measured in gigaflops
(GFlop/s), which indicates the number of floating-point operations
they can execute per second. This metric is commonly evaluated
with matrix multiplication benchmarks and aligns well with high-
performance computing (HPC) applications or ML training, involv-
ing extensive linear algebra computations. However, data analyt-
ics workloads are typically memory-bound rather than compute-
intensive. Consequently, gigaflops may not accurately reflect the
GPU’s performance for these workloads. Similar challenges arise

when trying to characterize the query complexity when executed
on GPUs. In previous works, such as [13], the queries were char-
acterized by the arithmetic intensity, measured in operations per
byte, in order to perform a roofline analysis using a black-box
model [51]. While this approach is insightful, it was observed that
the arithmetic intensity for most queries tended to be lower com-
pared to typical GPU kernels. This observation suggests that, while
arithmetic intensity offers valuable insights, exploring additional
or alternative metrics might enhance our understanding of query
complexity when executed on a GPU. To provide new insights, in
this section we propose a novel approach for characterizing both
GPU efficiency and query complexity on GPUs.

Equation (3) indicates that the execution time of operators on
the GPU is mainly determined by the slope of the linear curve 𝑎𝑞,𝑑
for large enough 𝑠 . However, this parameter captures both the GPU
efficiency and the query complexity when executed on the GPU.
Our main idea is to decouple this slope parameter 𝑎𝑞,𝑑 into two
parameters, one that captures the inherent query complexity and
the other that captures the GPU efficiency.

Definition 4.3. Let 𝐴 = [𝑎𝑞,𝑑]𝑞∈𝑄,𝑑∈𝐷 be a slope matrix (see Def-
inition 4.1) over queries 𝑄 and GPU devices 𝐷 . Let 𝜒𝑄 =

{︁
𝜒𝑞

}︁
𝑞∈𝑄

and 𝜒𝐷 = {𝜒𝑑 }𝑑∈𝐷 be sets of strictly positive values such that:

𝑎𝑞,𝑑 =
𝜒𝑞

𝜒𝑑
, ∀𝑞 ∈ 𝑄,∀𝑑 ∈ 𝐷. (6)

Then 𝜒𝑄 is called the query characterization set, and 𝜒𝑞 is called the
characteristic query complexity of query 𝑞. Similarly, 𝜒𝐷 is called
the device characterization set, and 𝜒𝑑 is called the characteristic
device efficiency of device 𝑑 .

Intuitively, higher values of the characteristic query complexity
𝜒𝑞 correspond to more complex queries, and higher values of char-
acteristic device efficiency 𝜒𝑑 indicate a more efficient GPU device.
The slope 𝑎𝑞,𝑑 , that determines the runtime, is higher when either
the query is more complex (higher 𝜒𝑞) or the device is less efficient
(lower 𝜒𝑑). Below, we provide sufficient and necessary conditions
when such characterizations exist.

Theorem 4.4. Let 𝐴 = [𝑎𝑞,𝑑]𝑞∈𝑄,𝑑∈𝐷 be a slope matrix over
queries 𝑄 and GPU devices 𝐷 . The sets of strictly positive numbers
𝜒𝑄 =

{︁
𝜒𝑞

}︁
𝑞∈𝑄 and 𝜒𝐷 = {𝜒𝑑 }𝑑∈𝐷 satisfying Equation (6) exist, if

and only if matrix 𝐴 has rank 1.

Proof. We will prove only the (←) part of the proof, as the other
part follows analogously. Let 𝐴 be an arbitrary slope matrix (see
Definition 4.1) of rank 1. By using the Singular Value Decomposition
(SVD), this matrix can be written as: 𝐴 = 𝑈 Σ𝑉 ∗, where Σ is the
diagonal matrix containing the singular values. Since 𝐴 has rank 1,
there is only one non-zero singular value 𝜎 in Σ. Then, matrix 𝐴

can be written as the outer product 𝐴 = 𝑈 Σ𝑉𝑇 = 𝜎uv𝑇 , where u
is the first column of 𝑈 , v is the first column of 𝑉 and 𝜎 is a scalar.
This further means that each entry 𝑎𝑞,𝑑 in 𝐴 can be written as
𝑎𝑞,𝑑 = 𝜎𝑢𝑞𝑣𝑑 for the corresponding values𝑢𝑞 ∈ u and 𝑣𝑑 ∈ v. Since
matrix 𝐴 has all non-zero elements, each 𝑢𝑞 and 𝑣𝑑 are non-zero,
so we can define 𝜒𝑞 = 𝜎 · 𝑢𝑞 and 𝜒𝑑 = 1/𝑣𝑑 , which yields:

𝑎𝑞,𝑑 = 𝜎𝑢𝑞𝑣𝑑 =
𝜒𝑞

𝜒𝑑
,

thus satisfying the condition given by Equation (6). □

4353

Table 1: Hardware Configurations for the empirical evaluation.

Configuration 𝐶1 = PCIe3+A100 𝐶2 = PCIe5+H100 𝐶3 = GH200 (NVLink4+H200) 𝐶4 = PCIe4+RTX3090
CPU Intel Xeon Platinum 8171M AMD EPYC 9124 NVIDIA Grace AMD EPYC 7313
CPU cores 2x6 2x16 72 ARM Neoverse V2 cores 2x16
GPU NVIDIA A100 40GB NVIDIA H100 80GB NVIDIA H200 96GB NVIDIA RTX3090 24GB
GPU Mem. Bandwidth 1.55 TB/s 4 TB/s 4 TB/s 0.936 TB/s
GPU clock (base–boost) 765–1410 MHz 1080–1785 Mhz 1980–1980 Mhz 1395-2100 MHz
Power cap 400W 400W 624.15W / 900W 350W
Interconnect (IC) PCIe 3.0 PCIe 5.0 NVLink 4.0 PCIe 4.0
IC Bandwidth (1-way) 16 GB/s 64 GB/s 450 GB/s 32 GB/s

This proof is constructive and provides a method for finding the
device and query characterization sets, as given by Definition 4.3.

In more general cases, when the slope matrix 𝐴 has rank 𝑘 , we
can define a more general characterization, by considering the first
𝑘 singular values in the SVD decomposition. Concretely, each slope
𝑎𝑞,𝑑 could be decomposed into:

𝑎𝑞,𝑑 =
∑︂

𝑖=1,....𝑘

𝜒
(𝑖)
𝑞

𝜒
(𝑖)
𝑑

, (7)

where 𝜒
(𝑖)
𝑞 is 𝑖−th characteristic query complexity and 𝜒

(𝑖)
𝑑

is 𝑖−the
characteristic device efficiency. Intuitively, each 𝜒

(𝑖)
𝑑

represents a
feature or characteristic of the device and 𝜒

(𝑖)
𝑞 represents how

sensitive the query is to the corresponding device feature.

4.5 Theoretical Limits
This cost model and the characterizations allow us to investigate
the theoretical limits of costs as the data size tends to infinity. This
further allows us to compare how the costs behave for different
hardware configurations and to find the overhead of data transfers
for an arbitrary hardware configuration.

The theoretical limits derived in this section are written in terms
of characteristic efficiency and characteristic complexity, assuming
the conditions of Theorem 4.4 hold. However, this condition is not
necessary. All the formulas in this section can also be derived in
terms of the slopes 𝑎𝑞,𝑑 (see Equation (3)) and the peak bandwidth
𝐵𝑚𝑎𝑥 (see Equation (1)).

Hardware Configurations Comparison. Let us assume that
we are given two different hardware configurations,𝐶′ and𝐶′′. The
configuration 𝐶′ consists of an interconnect 𝑖𝑐1 with characteristic
efficiency 𝜒𝑖𝑐1 and a GPU device 𝑑1 with characteristic efficiency
𝜒𝑑1 and similarly for𝐶′′. We are interested in the speedup that can
be achieved when switching from configuration 𝐶′ to 𝐶′′ when
executing a query 𝑞 with characteristic complexity 𝜒𝑞 . Let 𝑇 ′ (𝑠) =
𝑇 ′𝑞,comm (𝑠) + 𝑇 ′𝑞,op (𝑠) be the total time (including data transfers +
operators time) for executing the query 𝑞 on hardware 𝐶′, and let
𝑇 ′′ (𝑠) = 𝑇 ′′𝑞,comm (𝑠) + 𝑇 ′′𝑞,op (𝑠) be the total time for executing the
same query on hardware 𝐶′′. We are interested in the speedup
S𝐶1→𝐶2
𝑞 = lim𝑠→∞𝑇 ′′ (𝑠)/𝑇 ′ (𝑠). Following the cost model and the

characterization definitions, we can derive:

S𝐶1→𝐶2
𝑞 = lim

𝑠→∞

𝑇 ′′𝑞,comm (𝑠) +𝑇 ′′𝑞,op (𝑠)
𝑇 ′𝑞,comm (𝑠) +𝑇 ′𝑞,op (𝑠)

=
𝜒𝑖𝑐2 𝜒𝑑2

𝜒𝑖𝑐1 𝜒𝑑1
·
𝜒𝑑1 + 𝜒𝑞 𝜒𝑖𝑐1

𝜒𝑑2 + 𝜒𝑞 𝜒𝑖𝑐2
(8)

Data Transfers Overhead. In a similar fashion, we can estimate
the data transfers overhead. For a given hardware configuration,
consisting of an interconnect 𝑖𝑐 , with efficiency 𝜒𝑖𝑐 , a GPU device 𝑑 ,
with efficiency 𝜒𝑑 , and a given query 𝑞, with characteristic complex-
ity 𝜒𝑞 , we can derive the ratio of time 𝛼comm𝑞 spent in data transfers,
with respect to the total execution time, as data size tends to infinity.
Similarly, as in the previous section, we have:

𝛼comm𝑞 = lim
𝑠→∞

𝑇𝑞,comm (𝑠)
𝑇𝑞,comm (𝑠) +𝑇𝑞,op (𝑠)

=
𝜒𝑑

𝜒𝑑 + 𝜒𝑞 · 𝜒𝑖𝑐
(9)

In the same way, we can derive the ratio of time spent on the GPU
execution, 𝛼op𝑞 , as:

𝛼
op
𝑞 = lim

𝑠→∞
𝑇𝑞,op (𝑠)

𝑇𝑞,comm (𝑠) +𝑇𝑞,op (𝑠)
=

𝜒𝑞 · 𝜒𝑖𝑐
𝜒𝑑 + 𝜒𝑞 · 𝜒𝑖𝑐

(10)

In practice, we are often interested in the speedup when execut-
ing multiple queries from some query set 𝑄 over a common dataset
of size 𝑠 . In that case, we have to be careful, as not each query is
using the same size of the dataset. Let 𝑤𝑞 be the data volume of
query 𝑞 relative to the full dataset size 𝑠 . In that case, the limit of the
ratio of time spent in data transfers 𝛼comm

𝑄
, for executing all queries

in the query set 𝑄 , using the per-query copy policy, is:

𝛼comm
𝑄

=
𝑊 · 𝜒𝑑

𝑊 · 𝜒𝑑 + 𝜒𝑖𝑐 ·
∑︁
𝑞∈𝑄 𝑤𝑞 𝜒𝑞

, (11)

where𝑊 =
∑︁
𝑞∈𝑄 𝑤𝑞 . In the same way, we can derive the limit of

the ratio of time spent on the GPU execution 𝛼
op
𝑄

, when executing
all queries from the query set 𝑄 :

𝛼
op
𝑄

=
𝜒𝑖𝑐 ·

∑︁
𝑞∈𝑄 𝑤𝑞 𝜒𝑞

𝑊 · 𝜒𝑑 + 𝜒𝑖𝑐 ·
∑︁
𝑞∈𝑄 𝑤𝑞 𝜒𝑞

(12)

In the previous derivations, we assumed a per-query CPU↔GPU
copy policy, meaning that the required data is copied for each
query. However, the equations for the per-dataset copy policy can
be derived in the same manner. As previously mentioned, all the
formulas in this section can be written in terms of the slopes 𝑎𝑞,𝑑
(see Equation (3)) and the peak bandwidth 𝐵𝑚𝑎𝑥 (see Equation (1)),
in case the conditions of Theorem 4.4 do not hold.

5 EXPERIMENTAL ANALYSIS
Using MaxBench, together with the cost model and the characteri-
zations described above, we have analyzed a number of relevant
combinations of GPUs and interconnects.

4354

Table 2: Runtime breakdown per query for each benchmark and hardware configuration. The slowdown w.r.t. to the fastest
configuration (C3) is shown in brackets. OOM denotes out-of-memory errors.

TPC-H BENCHMARK, SF=10 (≈12 GB, CSV)

Total Time [ms] Compute Time [ms] Communication Time [ms]
C1 C2 C3 C4 A100 H100 H200 RTX3090 PCIe3 PCIe5 NVLink4 PCIe4

Q1 704 (9.53x) 202 (2.74x) 74 (1x) 268 (3.63x) 122 (1.81x) 74 (1.11x) 67 (1x) 137 (2.04x) 582 (86.50x) 128 (18.97x) 7 (1x) 131 (19.48x)
Q2 77 (10.29x) 22 (2.96x) 7 (1x) 46 (6.18x) 12 (1.86x) 7 (1.10x) 6 (1x) 22 (3.47x) 65 (59.33x) 15 (13.81x) 1 (1x) 24 (21.94x)
Q3 455 (30.10x) 108 (7.18x) 15 (1x) 137 (9.08x) 19 (1.89x) 11 (1.08x) 10 (1x) 19 (1.92x) 436 (82.43x) 98 (18.48x) 5 (1x) 118 (22.34x)
Q4 298 (25.05x) 63 (5.28x) 12 (1x) 88 (7.44x) 17 (2.03x) 9 (1.09x) 9 (1x) 17 (1.99x) 280 (85.59x) 53 (16.31x) 3 (1x) 71 (21.78x)
Q5 516 (20.26x) 128 (5.03x) 25 (1x) 154 (6.05x) 43 (2.18x) 22 (1.10x) 20 (1x) 39 (1.97x) 473 (82.34x) 106 (18.55x) 6 (1x) 115 (20.05x)
Q6 364 (38.48x) 86 (9.04x) 9 (1x) 89 (9.40x) 10 (1.82x) 6 (1.09x) 5 (1x) 9 (1.66x) 355 (87.32x) 80 (19.64x) 4 (1x) 80 (19.71x)
Q7 534 (30.06x) 125 (7.01x) 18 (1x) 147 (8.27x) 24 (2.01x) 12 (1.05x) 12 (1x) 25 (2.11x) 511 (84.63x) 112 (18.61x) 6 (1x) 122 (20.24x)
Q8 614 (28.50x) 148 (6.86x) 22 (1x) 188 (8.74x) 30 (2.05x) 16 (1.09x) 15 (1x) 31 (2.12x) 584 (84.96x) 132 (19.18x) 7 (1x) 157 (22.87x)
Q9 765 (21.94x) 185 (5.32x) 35 (1x) 229 (6.58x) 58 (2.17x) 29 (1.09x) 27 (1x) 57 (2.15x) 707 (86.41x) 156 (19.09x) 8 (1x) 172 (21.04x)
Q10 496 (34.77x) 115 (8.08x) 14 (1x) 218 (15.27x) 16 (1.92x) 9 (1.08x) 9 (1x) 20 (2.41x) 479 (83.51x) 106 (18.47x) 6 (1x) 197 (34.35x)
Q11 295 (18.10x) 73 (4.51x) 16 (1x) 91 (5.61x) 23 (1.74x) 14 (1.08x) 13 (1x) 27 (2.11x) 272 (82.85x) 59 (18.10x) 3 (1x) 64 (19.50x)
Q12 2195 (56.26x) 495 (12.70x) 39 (1x) 606 (15.53x) 24 (1.76x) 15 (1.08x) 14 (1x) 28 (2.05x) 2171 (85.81x) 481 (19.00x) 25 (1x) 578 (22.85x)
Q13 644 (5.40x) 223 (1.87x) 119 (1x) 635 (5.32x) 208 (1.83x) 126 (1.10x) 114 (1x) 495 (4.34x) 436 (83.48x) 97 (18.55x) 5 (1x) 139 (26.70x)
Q14 1858 (61.32x) 416 (13.72x) 30 (1x) 485 (16.02x) 17 (1.83x) 10 (1.07x) 9 (1x) 21 (2.27x) 1841 (86.85x) 406 (19.14x) 21 (1x) 464 (21.91x)
Q15 1797 (62.15x) 405 (14.02x) 29 (1x) 465 (16.10x) 15 (1.74x) 9 (1.05x) 8 (1x) 18 (2.19x) 1782 (86.73x) 397 (19.30x) 21 (1x) 447 (21.75x)
Q16 388 (12.00x) 105 (3.24x) 32 (1x) 246 (7.60x) 60 (2.12x) 31 (1.10x) 28 (1x) 168 (5.95x) 329 (78.47x) 74 (17.63x) 4 (1x) 78 (18.70x)
Q17 1864 (51.29x) 433 (11.91x) 36 (1x) 526 (14.48x) 27 (1.85x) 16 (1.09x) 14 (1x) 37 (2.53x) 1838 (84.02x) 417 (19.07x) 22 (1x) 490 (22.40x)
Q18 2240 (63.23x) 499 (14.08x) 35 (1x) 564 (15.93x) 17 (1.90x) 10 (1.09x) 9 (1x) 22 (2.39x) 2222 (84.75x) 489 (18.64x) 26 (1x) 542 (20.69x)
Q19 2089 (13.79x) 557 (3.68x) 151 (1x) OOM 249 (1.92x) 143 (1.10x) 130 (1x) OOM 1840 (86.02x) 414 (19.37x) 21 (1x) OOM
Q20 2141 (53.05x) 494 (12.23x) 40 (1x) 750 (18.57x) 30 (1.89x) 17 (1.09x) 16 (1x) 40 (2.54x) 2111 (86.21x) 476 (19.45x) 24 (1x) 709 (28.96x)
Q21 OOM 761 (2.55x) 299 (1x) OOM OOM 298 (1.09x) 273 (1x) OOM OOM 464 (18.24x) 25 (1x) OOM
Q22 448 (37.92x) 105 (8.86x) 12 (1x) 156 (13.20x) 12 (1.95x) 7 (1.09x) 6 (1x) 23 (3.73x) 436 (78.88x) 98 (17.71x) 6 (1x) 132 (23.97x)

H2O-G BENCHMARK, G1_1e8_1e2_5_0 (≈4.9 GB, CSV)

Total Time [ms] Compute Time [ms] Communication Time [ms]
C1 C2 C3 C4 A100 H100 H200 RTX3090 PCIe3 PCIe5 NVLink4 PCIe4

Q1 284 (24.88x) 66 (5.81x) 11 (1x) 100 (8.77x) 14 (1.75x) 6 (0.75x) 8 (1x) 18 (2.28x) 269 (82.12x) 60 (18.33x) 3 (1x) 81 (24.85x)
Q2 481 (30.26x) 113 (7.08x) 16 (1x) 138 (8.70x) 23 (2.20x) 11 (1.07x) 11 (1x) 25 (2.40x) 458 (86.18x) 101 (19.08x) 5 (1x) 113 (21.26x)
Q3 660 (14.85x) 168 (3.79x) 44 (1x) 408 (9.19x) 73 (1.95x) 38 (1.03x) 37 (1x) 168 (4.50x) 587 (82.08x) 130 (18.15x) 7 (1x) 241 (33.64x)
Q4 463 (18.11x) 112 (4.36x) 26 (1x) 172 (6.73x) 33 (1.61x) 16 (0.80x) 20 (1x) 29 (1.43x) 430 (83.46x) 95 (18.44x) 5 (1x) 143 (27.71x)
Q5 484 (20.61x) 116 (4.92x) 23 (1x) 265 (11.29x) 49 (2.71x) 19 (1.04x) 18 (1x) 137 (7.48x) 435 (83.23x) 97 (18.50x) 5 (1x) 129 (24.62x)
Q6 1262 (3.41x) 482 (1.30x) 369 (1x) 2140 (5.79x) 915 (2.51x) 405 (1.11x) 365 (1x) 2061 (5.64x) 346 (83.83x) 77 (18.57x) 4 (1x) 79 (19.07x)
Q7 561 (15.59x) 141 (3.91x) 36 (1x) 368 (10.23x) 59 (1.94x) 31 (1.04x) 30 (1x) 145 (4.82x) 503 (85.93x) 109 (18.72x) 6 (1x) 223 (38.07x)
Q9 531 (11.89x) 140 (3.13x) 45 (1x) 257 (5.76x) 85 (2.17x) 43 (1.08x) 39 (1x) 101 (2.57x) 446 (84.42x) 97 (18.41x) 5 (1x) 156 (29.51x)
Q10 2045 (8.48x) 626 (2.60x) 241 (1x) 1774 (7.36x) 460 (2.33x) 215 (1.09x) 197 (1x) 940 (4.77x) 1586 (35.91x) 412 (9.33x) 44 (1x) 835 (18.90x)

CLICKBENCH BENCHMARK, ATHENA (≈14.8 GB, CSV)

Total Time [ms] Compute Time [ms] Communication Time [ms]
C1 C2 C3 C4 A100 H100 H200 RTX3090 PCIe3 PCIe5 NVLink4 PCIe4

Q4 42 (6.48x) 14 (2.09x) 7 (1x) 27 (4.15x) 8 (1.35x) 6 (0.98x) 6 (1x) 14 (2.32x) 34 (84.60x) 8 (19.01x) 0.40 (1x) 13 (31.91x)
Q7 49 (4.23x) 19 (1.61x) 12 (1x) 21 (1.78x) 16 (1.37x) 11 (1.00x) 11 (1x) 10 (0.86x) 34 (82.95x) 8 (18.43x) 0.41 (1x) 11 (27.25x)
Q9 113 (4.66x) 37 (1.51x) 24 (1x) 177 (7.26x) 63 (2.64x) 26 (1.08x) 24 (1x) 160 (6.73x) 51 (83.93x) 11 (18.63x) 0.60 (1x) 17 (27.96x)
Q10 132 (5.24x) 41 (1.64x) 25 (1x) 182 (7.22x) 65 (2.64x) 26 (1.08x) 24 (1x) 163 (6.68x) 68 (82.65x) 15 (18.58x) 0.82 (1x) 19 (23.11x)
Q11 60 (12.87x) 16 (3.37x) 5 (1x) 34 (7.29x) 8 (2.11x) 4 (1.07x) 4 (1x) 16 (4.00x) 51 (78.79x) 11 (17.45x) 0.65 (1x) 18 (27.46x)
Q12 69 (12.80x) 18 (3.37x) 5 (1x) 35 (6.46x) 9 (1.99x) 5 (1.09x) 5 (1x) 15 (3.30x) 60 (79.61x) 13 (17.51x) 0.75 (1x) 20 (25.96x)
Q13 97 (21.25x) 23 (5.03x) 5 (1x) 50 (10.96x) 6 (2.20x) 3 (1.05x) 3 (1x) 7 (2.34x) 91 (54.44x) 20 (11.95x) 2 (1x) 43 (25.98x)
Q14 185 (7.38x) 45 (1.80x) 25 (1x) 209 (8.32x) 95 (4.05x) 25 (1.08x) 23 (1x) 156 (6.66x) 91 (53.15x) 20 (11.63x) 2 (1x) 53 (31.19x)
Q15 106 (21.46x) 27 (5.54x) 5 (1x) 45 (9.18x) 7 (2.17x) 3 (1.05x) 3 (1x) 7 (2.34x) 100 (54.79x) 24 (13.29x) 2 (1x) 38 (20.99x)
Q16 56 (13.58x) 14 (3.38x) 4 (1x) 38 (9.32x) 7 (2.22x) 3 (1.00x) 3 (1x) 16 (5.18x) 49 (46.55x) 11 (10.31x) 1 (1x) 23 (21.36x)
Q17 124 (13.71x) 35 (3.85x) 9 (1x) 88 (9.75x) 12 (2.00x) 7 (1.05x) 6 (1x) 23 (3.64x) 111 (39.90x) 28 (10.10x) 3 (1x) 65 (23.41x)
Q22 1311 (2.53x) 672 (1.30x) 519 (1x) 1404 (2.71x) 865 (1.68x) 575 (1.12x) 513 (1x) 1254 (2.44x) 446 (85.31x) 97 (18.57x) 5 (1x) 150 (28.72x)
Q23 1214 (6.30x) 397 (2.06x) 193 (1x) 871 (4.52x) 318 (1.74x) 204 (1.12x) 182 (1x) 652 (3.58x) 897 (85.06x) 193 (18.34x) 11 (1x) 219 (20.73x)
Q24 1341 (2.59x) 672 (1.30x) 518 (1x) 1363 (2.63x) 875 (1.71x) 571 (1.11x) 513 (1x) 1254 (2.45x) 466 (85.96x) 101 (18.55x) 5 (1x) 109 (20.09x)
Q25 99 (23.52x) 26 (6.24x) 4 (1x) 51 (12.13x) 5 (2.09x) 2 (1.08x) 2 (1x) 7 (3.06x) 94 (48.11x) 24 (12.16x) 2 (1x) 44 (22.55x)
Q26 148 (7.07x) 37 (1.78x) 21 (1x) 187 (8.89x) 88 (4.54x) 21 (1.09x) 19 (1x) 141 (7.25x) 60 (39.42x) 16 (10.65x) 2 (1x) 45 (29.86x)
Q27 102 (17.94x) 28 (4.85x) 6 (1x) 57 (9.95x) 8 (2.07x) 4 (1.07x) 4 (1x) 14 (3.66x) 94 (48.82x) 24 (12.23x) 2 (1x) 43 (22.20x)
Q31 102 (18.18x) 26 (4.68x) 6 (1x) 44 (7.90x) 9 (2.02x) 5 (1.07x) 4 (1x) 13 (3.13x) 93 (67.78x) 22 (15.75x) 1 (1x) 31 (22.55x)
Q32 132 (19.22x) 34 (4.93x) 7 (1x) 66 (9.64x) 10 (2.03x) 5 (1.07x) 5 (1x) 18 (3.58x) 122 (64.71x) 28 (15.13x) 2 (1x) 48 (25.65x)
Q33 182 (6.00x) 65 (2.15x) 30 (1x) 247 (8.13x) 66 (2.58x) 28 (1.08x) 26 (1x) 150 (5.87x) 116 (24.36x) 38 (7.92x) 5 (1x) 97 (20.28x)
Q34 578 (23.61x) 137 (5.61x) 24 (1x) 248 (10.14x) 30 (2.18x) 15 (1.07x) 14 (1x) 30 (2.18x) 548 (51.29x) 122 (11.47x) 11 (1x) 218 (20.42x)
Q35 584 (23.93x) 137 (5.61x) 24 (1x) 267 (10.96x) 31 (2.23x) 15 (1.08x) 14 (1x) 30 (2.17x) 553 (52.17x) 122 (11.51x) 11 (1x) 237 (22.40x)
Q36 25 (8.88x) 8 (2.74x) 3 (1x) 24 (8.72x) 5 (2.16x) 2 (0.99x) 2 (1x) 14 (5.70x) 20 (45.62x) 5 (12.29x) 0.43 (1x) 11 (25.22x)

5.1 Experimental Setup
Hardware. We performed the experiments on 4 different con-
figurations, including different interconnects and NVIDIA GPUs:
𝐶1 = PCIe3 + A100,𝐶2 = PCIe5 + H100,𝐶3 = GH200 (NVLink4 +
H200) and 𝐶4 = PCIe4 + RTX3090 (Table 1). The GPUs in configu-
rations 𝐶2 and 𝐶3 are often both denoted as H100. However, some
of their characteristics are slightly different, such as the GPU clock
rate or the power cap. We denote the GPU in configuration𝐶3 with
H200 to differentiate it from the H100 in 𝐶2.

Software. We used Maximus v0.2, compiled with Apache Arrow
v17.0.0 [46] for CPU processing, cuDF v24.08.03 [3] for GPU
processing, and Caliper v2.12.1 [7] for code instrumentation. The
libraries were compiled using the GNU GCC compiler v13.3 and
the CUDA v12.5 (driver v550.54.15).

Workloads. The experiments include all supported queries
from the TPC-H, H2O-G (G1_1e8_1e2_5_0 dataset) and ClickBench
(Athena) benchmarks. This is a total of 54 queries: 22 TPC-H queries,
9/10 H2O-G queries and 23/43 ClickBench queries (Table 2). The
omitted queries involve some of the unsupported expressions like

4355

A100
H100

H200

RTX3090
0

75

150

Ru
nt

im
e

[m
s]

TPC-H: Q1

A100
H100

H200

RTX3090
0

12

24
TPC-H: Q2

A100
H100

H200

RTX3090
0

12

20
TPC-H: Q3

A100
H100

H200

RTX3090
0

9

18
TPC-H: Q4

A100
H100

H200

RTX3090
0

24

48
TPC-H: Q5

A100
H100

H200

RTX3090
0

6

12
TPC-H: Q6

A100
H100

H200

RTX3090
0

15

30
TPC-H: Q7

A100
H100

H200

RTX3090
0

18

36
TPC-H: Q8

A100
H100

H200

RTX3090
0

45

75
TPC-H: Q9

A100
H100

H200

RTX3090
0

12

24
TPC-H: Q10

A100
H100

H200

RTX3090
0

15

30
TPC-H: Q11

A100
H100

H200

RTX3090
0

15

30

Ru
nt

im
e

[m
s]

TPC-H: Q12

A100
H100

H200

RTX3090
0

300

600
TPC-H: Q13

A100
H100

H200

RTX3090
0

12

24
TPC-H: Q14

A100
H100

H200

RTX3090
0

12

20
TPC-H: Q15

A100
H100

H200

RTX3090
0

90

180
TPC-H: Q16

A100
H100

H200

RTX3090
0

24

40
TPC-H: Q17

A100
H100

H200

RTX3090
0

12

24
TPC-H: Q18

A100
H100

H200

RTX3090
0

150

300

O
O

M

TPC-H: Q19

A100
H100

H200

RTX3090
0

24

48
TPC-H: Q20

A100
H100

H200

RTX3090
0

180

360

O
O

M

O
O

M

TPC-H: Q21

A100
H100

H200

RTX3090
0

15

25
TPC-H: Q22

A100
H100

H200

RTX3090
0

12

20

Ru
nt

im
e

[m
s]

H2O-G: Q1

A100
H100

H200

RTX3090
0

15

30
H2O-G: Q2

A100
H100

H200

RTX3090
0

90

180
H2O-G: Q3

A100
H100

H200

RTX3090
0

18

36
H2O-G: Q4

A100
H100

H200

RTX3090
0

75

150
H2O-G: Q5

A100
H100

H200

RTX3090
0

1200

2400
H2O-G: Q6

A100
H100

H200

RTX3090
0

90

180
H2O-G: Q7

A100
H100

H200

RTX3090
0

60

120
H2O-G: Q9

A100
H100

H200

RTX3090
0

600

1000
H2O-G: Q10

A100
H100

H200

RTX3090
0

7

15
CLICKBENCH: Q4

A100
H100

H200

RTX3090
0

9

18
CLICKBENCH: Q7

A100
H100

H200

RTX3090
0

90

180

Ru
nt

im
e

[m
s]

CLICKBENCH: Q9

A100
H100

H200

RTX3090
0

90

180
CLICKBENCH: Q10

A100
H100

H200

RTX3090
0

9

18
CLICKBENCH: Q11

A100
H100

H200

RTX3090
0

9

18
CLICKBENCH: Q12

A100
H100

H200

RTX3090
0

4

7
CLICKBENCH: Q13

A100
H100

H200

RTX3090
0

90

180
CLICKBENCH: Q14

A100
H100

H200

RTX3090
0

4

9
CLICKBENCH: Q15

A100
H100

H200

RTX3090
0

9

18
CLICKBENCH: Q16

A100
H100

H200

RTX3090
0

15

25
CLICKBENCH: Q17

A100
H100

H200

RTX3090
0

750

1500
CLICKBENCH: Q22

A100
H100

H200

RTX3090
0

450

750
CLICKBENCH: Q23

A100
H100

H200

RTX3090
0

750

1500

Ru
nt

im
e

[m
s]

CLICKBENCH: Q24

A100
H100

H200

RTX3090
0

4

7
CLICKBENCH: Q25

A100
H100

H200

RTX3090
0

75

150
CLICKBENCH: Q26

A100
H100

H200

RTX3090
0

7

15
CLICKBENCH: Q27

A100
H100

H200

RTX3090
0

7

15
CLICKBENCH: Q31

A100
H100

H200

RTX3090
0

12

20
CLICKBENCH: Q32

A100
H100

H200

RTX3090
0

90

180
CLICKBENCH: Q33

A100
H100

H200

RTX3090
0

18

36
CLICKBENCH: Q34

A100
H100

H200

RTX3090
0

18

36
CLICKBENCH: Q35

A100
H100

H200

RTX3090
0

7

15
CLICKBENCH: Q36

Filter Project Join GroupBy OrderBy

Figure 2: The breakdown of the GPU execution, when the data resides on the GPU.

PARTITION-BY or unsupported data types, which is why they are
not included. Each query is repeated 10 times and the best time is
reported to provide a lower bound on performance.

5.2 Data Transfers vs. Operators Time
The times spent on data transfers and on GPU query execution
are shown in Table 2, including the following benchmarks:TPC-H
with scaling factor 10 (≈12GB dataset), H2O-G (G1_1e8_1e2_5_0
≈4.7GB dataset) and ClickBench Athena (≈14GB dataset), on hard-
ware configurations 𝐶1,𝐶2,𝐶3 and 𝐶4. For each query, the data
starts and ends on a CPU, using the per-query copy policy. The
results contain the breakdown of the total runtime on data trans-
fers and operators time. The difference between the total time and
the sum of the compute and communication time represents the
scheduling and execution overheads (less than 1% of the runtime).
The observed variability in total time over repetitions (omitting the
warm-up run), measured as a weighted average coefficient of varia-
tion (CV), averaged over all queries from all workloads is: 3.48% on
C1, 24.2% on C2, 4.98% on C3 and 23.09% on C4.

Data Transfer Overhead with PCIe. For PCIe configurations ,
𝐶1, 𝐶2, 𝐶3 and 𝐶4, the total runtime is dominated by CPU↔GPU
data transfers. In the TPC-H benchmark, on 𝐶1, data transfers take
from 67% of the total runtime (Q13) up to more than 98% of the total
runtime (Q12, Q14, Q15, Q18, Q20), and even staying out of the GPU
memory for Q21. On 𝐶2, data transfers take from 33% of runtime
(Q13), but still go up to 97% (Q15, Q18). The data transfer time on
𝐶2 (PCIe 5.0) is faster than the data transfers on 𝐶1 (PCIe 3.0) by
factors ranging from 3.83x to 4.56x. This roughly corresponds to
the ratio of the peak bandwidths of these interconnects. Similarly,
in the H2O-G benchmark, in 8 out of 9 queries, data transfers take
from 77% (Q10) up to 95% (Q2) of the total runtime on 𝐶1, while
taking from 65% to 90% of the total runtime on𝐶2. In the ClickBench
benchmark, in 18 out of 23 queries, data transfers take from 51%
(Q10) – 95% (Q25) on 𝐶1. On 𝐶2, data transfers are dominant in 15
out of 23 queries, taking from 55% (Q4) – 90% (Q25).

Insight 1: For the majority of queries, data transfers dom-
inate the total runtime with PCIe. Extrapolating, for many

4356

gpu hybrid
0

100

200

300

400

Ti
m

e

σFILTER = 0.02

4.7 GB/s

11.4 GB/s

TPCH-Q6 [C1]

gpu hybrid
0

20

40

60

80

100
σFILTER = 0.02

21.1 GB/s

27.6 GB/s

TPCH-Q6 [C2]

gpu hybrid
0

10

20

30

40

50
σFILTER = 0.02

415.5 GB/s

47.1 GB/s

TPCH-Q6 [C3]

gpu hybrid
0

20

40

60

80

100

σFILTER = 0.02

21.0 GB/s

24.5 GB/s

TPCH-Q6 [C4]

gpu hybrid
0

500

1000

1500

2000

2500
σFILTER = 0.18

4.7 GB/s

12.8 GB/s

TPCH-Q12 [C1]

gpu hybrid
0

200

400

600 σFILTER = 0.18

21.3 GB/s

47.2 GB/s

TPCH-Q12 [C2]

gpu hybrid
0

50

100

150
σFILTER = 0.18

407.6 GB/s

96.5 GB/s

TPCH-Q12 [C3]

gpu hybrid
0

200

400

600

800
σFILTER = 0.18

17.7 GB/s

38.4 GB/s

TPCH-Q12 [C4]

gpu hybrid
0

500

1000

1500

2000

σFILTER = 0.04

4.7 GB/s

31.8 GB/s

TPCH-Q14 [C1]

gpu hybrid
0

100

200

300

400

500 σFILTER = 0.04

21.5 GB/s

67.2 GB/s

TPCH-Q14 [C2]

gpu hybrid
0

50

100

150

σFILTER = 0.04

413.3 GB/s

65.9 GB/s

TPCH-Q14 [C3]

gpu hybrid
0

200

400

600 σFILTER = 0.04

18.8 GB/s

58.8 GB/s

TPCH-Q14 [C4]

gpu hybrid
0

500

1000

1500

2000

σFILTER = 0.04

4.7 GB/s

23.3 GB/s

TPCH-Q15 [C1]

gpu hybrid
0

100

200

300

400

500 σFILTER = 0.04

21.3 GB/s

52.4 GB/s

TPCH-Q15 [C2]

gpu hybrid
0

50

100

150 σFILTER = 0.04

413.4 GB/s

75.5 GB/s

TPCH-Q15 [C3]

gpu hybrid
0

200

400

600 σFILTER = 0.04

18.9 GB/s

36.9 GB/s

TPCH-Q15 [C4]

gpu hybrid
0

500

1000

1500

2000

2500
σFILTER = 0.26

4.7 GB/s

10.1 GB/s

TPCH-Q20 [C1]

gpu hybrid
0

200

400

600 σFILTER = 0.26

21.0 GB/s

27.5 GB/s

TPCH-Q20 [C2]

gpu hybrid
0

50

100

150

200

250
σFILTER = 0.26

411.9 GB/s

50.3 GB/s

TPCH-Q20 [C3]

gpu hybrid
0

200

400

600

800

σFILTER = 0.26

14.1 GB/s

18.8 GB/s

TPCH-Q20 [C4]

gpu hybrid
0

200

400

600 σFILTER = 0.90

4.8 GB/s
4.3 GB/s

TPCH-Q22 [C1]

gpu hybrid
0

50

100

150 σFILTER = 0.90

21.4 GB/s
18.4 GB/s

TPCH-Q22 [C2]

gpu hybrid
0

5

10

15

20

25 σFILTER = 0.90

396.7 GB/s

136.7 GB/s

TPCH-Q22 [C3]

gpu hybrid
0

50

100

150

200

σFILTER = 0.90

15.7 GB/s
11.9 GB/s

TPCH-Q22 [C4]

CPU �ltering GPU Execution CPU↔GPU Data Tranfers

Figure 3: The actual and perceived bandwidths when the CPU-side filtering is employed before offloading the data to GPU.

queries (e.g., transfer time is > 90%), PCIe 7.0 (doubling the
unidirectional bandwidth) will still be a major factor in the
execution time, especially for less powerful GPUs.

Data Transfer Overhead with NVLink. For configuration 𝐶3
(NVLink4), for most queries, the time spent executing the operators
on the GPU is larger than the time spent in data transfers. In the
TPC-H benchmark, in configuration 𝐶3, the communication takes
as low as 4.38% of the total runtime for query Q13, 8-15% for Q1,
Q2, Q16, Q19, Q21, 15-30% for Q4, Q5, Q9, Q11, 30-50% for Q3, Q6,
Q7, Q8, Q10, Q22 and goes up to 73% for Q18, which has the largest
data volume. With NVLink 4.0 and H200, there are only 6 out of
22 queries, in which the data transfers take more than 50% of the
total runtime. In the other 16 TPC-H queries, the data transfers
take on average 24% of the total runtime. Similarly, in the H2O-G
benchmark, in configuration𝐶3, the data transfers take as low as 1%
(Q6) – 33% (Q2) of the total runtime. In the ClickBench queries, the
data transfers take from 1% (Q24) – 45% (Q25) of the total runtime.

Insight 2: With high-bandwidth interconnects, we transi-
tion from being interconnect-bound to most queries being
GPU-bound, changing the optimizations needed to improve
performance.

Comparing GPU Execution Times. The time spent in the exe-
cution of the operators on the GPU varies significantly for different
GPU types. The H200 GPU was faster than the A100 by 1.74–2.18x
(TPC-H), 1.6–2.7x (H2O-G) and 1.34–4.54x (ClickBench). The re-
sults indicate that the GPU model can have an increasing impact
on performance with faster interconnects.

Insight 3: The GPU efficiency will impact performance when
used in conjunction with fast interconnects boosting data
transfers by a factor of 80x or more.

The Breakdown of Operators. To understand how the GPU
execution time is distributed, we used the breakdown of operator’s
profiling. Observe that some of the benchmarked queries also in-
volve the distinct and the limit operators, but their runtimes were
negligible, which is why they are omitted (Figure 2). On A100, the
TPC-H Q21 was out of memory, as marked in the figure.

The results indicate that the join operator is a bottleneck in more
than a half of the TPC-H queries (Q2, Q3, Q4, Q5, Q7, Q8, Q9, Q10,
Q11, Q17, Q19, Q21). The group-by is a bottleneck in some TPC-H
queries (Q1, Q16, and Q18), 8 out of 9 H2O-G queries (Q1–Q9) and

14 out of 23 ClickBench queries (Q4 – Q17, Q34–Q36). The order-by
was a bottleneck in 1 out of 9 H2O-G queries and 6 out of 23 Click-
Bench queries. Surprisingly, in a substantial number of queries,
the filter operator is a bottleneck (TPC-H: Q6, Q12, Q13, Q14, Q15,
Q20, Q22, ClickBench: Q22–Q24). These filters often involve ex-
pressions with string comparisons or regex matching. For example,
TPC-H Q12 involves comparing the o_orderpriority attribute to
string literals 1-URGENT or 2-HIGH within an if_else expression,
in addition to checking l_shipmode in (’MAIL’, ’SHIP’). Simi-
larly, TPC-H Q13 involves string regex matching in order to check
o_comment not like ’%special%requests%’, whereas TPC-H
Q14 involves checking p_type like ’PROMO%’. Computing these
expressions on GPUs is challenging as they might involve irregular
memory access patterns, which are not coalesced. This is especially
problematic when combined with branching expressions, such as
the if_else expression, as found in TPC-H Q12.

Insight 4: Although joins are the most studied operator in
GPUs, they are not the only bottleneck.

Insight 5: Efficient filtering is challenging on GPUs if string
comparisons or regex matching are involved, especially when
used within branching expressions such as the if_else ex-
pression. These expressions involve irregular memory access
patterns, which are not necessarily coalesced.

5.3 Optimizations: Selective Data Transfers
In this section, we assess the impact of executing selection predi-
cates on the CPU, which can potentially reduce the data transferred
as well as the GPU execution time. We ran the queries where fil-
tering was a bottleneck, using the per-query copy policy (Figure
3 showing the actual and the perceived bandwidth, as well as the
the filter selectivity (𝜎)). The results indicate that high selectivity
queries, such as Q6 (𝜎 = 0.02), on slow interconnects such as PCIe
3.0 (C1), the CPU filtering can improve the performance more than
2x, by increasing the perceived bandwidth from 4.7GB/s to 11.4GB/s.
On fast interconnects, such as NVLink 4.0 (C3), performance de-
grades by more than 2x. For low selectivity queries, such as Q22
(𝜎 = 0.9), CPU filtering degrades performance on all configurations.

Insight 6: For high selectivity predicates, selective data
transfers improve the performance on slow interconnects,

4357

NVLink4 (pinned)
NVLink4
PCIe5 (pinned)
PCIe5
PCIe4 (pinned)
PCIe4
PCIe3 (pinned)
PCIe3

10−4 10−2 100 102 104 106

Table Size [MB]

10−1

100

101

102

Ba
nd

w
id

th
[G

B/
s]

397.19 GB/s (95.7%)
413.47 GB/s (99.6%)

12.32 GB/s (99.8%)
4.73 GB/s (38.3%)

22.89 GB/s (97.7%)
10.55 GB/s (45.0%)

57.54 GB/s (99.2%)
21.77 GB/s (37.5%)

re
gi

on

na
tio

n

su
pp

lie
r

cu
st

om
er

pa
rt

pa
rts

up
p

or
de

rs

lin
ei

te
m

Figure 4: The achieved CPU↔GPU data transfers bandwidth
for different TPC-H tables (SF=10) when tables are stored in
pinned and non-pinned CPU memory regions.

but degrade performance on fast interconnects. For low selec-
tivity predicates, selective data transfers degrade performance
regardless of interconnect.

5.4 Cost Modeling & Characterization
Data Transfers. To measure the interconnect bandwidth, we trans-
ferred the TPC-H tables (SF = 10) from the CPU to the GPU, enabling
the breakdown of the data transfers profiling level in MaxBench.
The TPC-H tables cover a wide spectrum of sizes, ranging from 4KB
(the region table) up to 8.445 GB (the lineitem table). Moreover, table
schemas involve various types, including int32, int64, float64,
date32 and string. The copy is performed using an asynchronous
cudaMemCpyAsync, one for each column. For variable-length data
types, such as strings, an additional offset array is copied. Addi-
tionally, when dealing with nullable columns, a separate null mask
array must be transferred.

We considered two different scenarios: one where all the tables
are initially stored in a non-pinned CPU memory region and the
other one where the tables are stored in a pinned memory. We
performed this benchmark on each of the four different hardware
configurations: 𝐶1 , 𝐶2, 𝐶3, and 𝐶4. The achieved bandwidth was
compared with the bandwidth measured in isolation, using the
NVIDIA nvbandwidth benchmark [34] (Figure 4).

The maximum achieved bandwidth with PCIe 3.0 was 12.32 GB/s
(out of theoretical 16 GB/s), with PCIe 4.0 was 22.89 GB/s (out of
theoretical 32GB/s, with PCIe 5.0 was 57.52 GB/s (out of theoretical
64 GB/s), and with NVLink 4.0 was 413.45 GB/s (out of theoretical
450 GB/s). The achieved maximum bandwidth was more than 97%
of the peak bandwidth achieved in isolation on all configurations.

Observe that the expected peak bandwidths on configurations
𝐶1, 𝐶2, 𝐶3 and 𝐶4, with PCIe interconnects, are only achievable
when the data is stored in a page-locked (pinned) memory region
on the CPU. This is expected because Direct Memory Access (DMA)
requires the data to be page-locked before the transfer to the GPU
can start. If the memory region is not pinned, an additional step is
required where the data is first copied to an intermediary pinned
buffer before transferring it to the GPU. This effect may be minimal

in database engines where the buffer cache is typically pinned but is
an important design consideration (as the private memory of query
threads with intermediate results might not be pinned). The config-
uration 𝐶3 with GH200 features an NVLink-C2C interconnect that
enables direct, high-bandwidth, and cache-coherent memory access
between the Grace CPU and the Hopper GPU. In this configuration,
the GPU can directly access system memory without the memory
being pinned. For this reason, there was no significant performance
difference between pinned and non-pinned memory.

Insight 7: On configurations with PCIe, the peak bandwidth
can only be achieved with pinned memory, which drops to
less than 40% of the peak bandwidth without pinned mem-
ory. On NVLink configurations, memory does not need to be
pinned. This is an important insight for the database archi-
tectures needed for CPU-GPUs data processing.

Another important observation is that faster interconnects re-
quire large data sizes to achieve the peak bandwidth. PCIe 3.0
requires 0.43 MB size to reach 90% of the peak bandwidth, PCIe 4.0
requires 0.62 MB size to reach its peak, PCIe 5.0 requires 1.2 MB
to reach 90% of its peak, whereas NVLink 4.0 requires 280 MB to
reach 90% peak bandwidth.

Insight 8: NVLink interconnects offer more bandwidth than
PCIe for any data size, but require two orders of magnitude
larger data sizes to reach the peak bandwidth.

For modeling purposes, we derived an individual curve for each
interconnect using the formula 𝐵(𝑠) = 𝐵𝑚𝑎𝑥 ·𝑠/(𝑠 +𝑠0), as specified
in Equation (1), to fit the experimental data. We then used the 𝐵𝑚𝑎𝑥

value to calculate the characteristic interconnect efficiencies 𝜒𝑃𝐶𝐼𝑒3,
𝜒𝑃𝐶𝐼𝑒4, 𝜒𝑃𝐶𝐼𝑒5 and 𝜒𝑁𝑉𝐿𝑖𝑛𝑘4, for each hardware configuration.

Operators Time. To model the operators time, we ran the TPC-
H, H2O-G and ClickBench benchmarks for a variety of dataset sizes.
The TPC-H benchmark was run for scaling factors ranging from
1 to 30, which corresponds to the dataset sizes ranging from 1 GB
to 30 GB on all configurations. Since the H2O-G and ClickBench
benchmarks have a fixed data size, we sampled datasets of different
sizes, uniformly at random, from their full datasets. For H2O-G
benchmark the sample sizes varied from 10%, 20%,. . . ,100% of the
full dataset size (4.9GB). For ClickBench, the sample sizes varied
from 10%, 12%, 14%, . . . , 30% of the full dataset size (74GB), due to the
GPU memory constraints. Due to memory constraints, not all GPUs
could execute all queries. For example, for TPC-H scaling factor
30, even H200 was not able to execute queries Q12-Q22. Figure 5
shows the time spent in executing the operators on each GPU with
respect to the input data size of each query. The points where the
system ran out of memory are omitted.

The results indicate a linear relationship between GPU execution
time and data volume across all benchmarked GPUs. This linearity
is not surprising. Due to the massive parallelism offered by thou-
sands of CUDA cores, combined with the limited compute intensity
inherent in these workloads, execution becomes constrained by
how quickly data can be transferred between memory and compute
units rather than by computational complexity. Consequently, these
workloads are memory bandwidth-bound, causing the runtime to
be proportional to the ratio of data size to GPU memory bandwidth,

4358

0.3 2.9 5.6 8.3
Total Size [GB]

0

50

100

150

200

250

GP
U

Ex
ec

ut
io

n
Ru

nt
im

e
[m

s]

A100

H100
H200

RTX3090

TPC-H: Q1

0.0 0.3 0.6 1.0
Total Size [GB]

5

10

15

20

25

A100

H100
H200

RTX3090

TPC-H: Q2

0.2 2.2 4.2 6.2
Total Size [GB]

10

20

30

40

A100

H100
H200

RTX3090

TPC-H: Q3

0.1 1.4 2.7 4.0
Total Size [GB]

10

20

30

40

A100

H100
H200

RTX3090

TPC-H: Q4

0.2 2.4 4.6 6.7
Total Size [GB]

0

20

40

60

80

100

A100

H100
H200

RTX3090

TPC-H: Q5

0.2 1.8 3.4 5.0
Total Size [GB]

5

10

15

20

25

A100

H100
H200

RTX3090

TPC-H: Q6

0.2 2.6 4.9 7.3
Total Size [GB]

10

20

30

40

50

A100

H100
H200

RTX3090

TPC-H: Q7

0.3 3.0 5.7 8.4
Total Size [GB]

20

40

60

A100

H100
H200

RTX3090

TPC-H: Q8

0.3 3.6 6.8 10.0
Total Size [GB]

0

50

100

150

A100
H100
H200

RTX3090

TPC-H: Q9

0.2 2.4 4.7 6.9
Total Size [GB]

10

20

30

40

A100

H100
H200

RTX3090

TPC-H: Q10

0.1 0.9 1.8 2.6
Total Size [GB]

10

20

30

40

A100

H100
H200

RTX3090

TPC-H: Q11

1.0 4.8 8.5 12.3
Total Size [GB]

5

10

15

20

25

30

GP
U

Ex
ec

ut
io

n
Ru

nt
im

e
[m

s]

A100

H100
H200

RTX3090

TPC-H: Q12

0.2 2.1 4.0 5.8
Total Size [GB]

0

200

400

600

800

1000

A100
H100
H200

RTX3090

TPC-H: Q13

0.9 4.1 7.3 10.5
Total Size [GB]

5

10

15

20

A100

H100
H200

RTX3090

TPC-H: Q14

0.8 3.9 7.1 10.2
Total Size [GB]

5

10

15

20

A100

H100
H200

RTX3090

TPC-H: Q15

0.2 1.2 2.1 3.1
Total Size [GB]

0

100

200

300

A100
H100
H200

RTX3090

TPC-H: Q16

0.9 4.1 7.3 10.5
Total Size [GB]

10

20

30

40

A100

H100
H200

RTX3090

TPC-H: Q17

1.1 4.9 8.8 12.6
Total Size [GB]

5

10

15

20

25

A100

H100
H200

RTX3090

TPC-H: Q18

0.9 4.1 7.3 10.5
Total Size [GB]

50

100

150

200

250

300

A100

H100
H200

RTX3090

TPC-H: Q19

1.0 4.7 8.3 12.0
Total Size [GB]

10

20

30

40

A100

H100
H200

RTX3090

TPC-H: Q20

1.0 4.8 8.6 12.3
Total Size [GB]

100

200

300
A100

H100

H200

RTX3090

TPC-H: Q21

0.2 2.1 4.0 5.8
Total Size [GB]

10

20

30

A100

H100
H200

RTX3090

TPC-H: Q22

0.1 0.5 0.9 1.3
Total Size [GB]

5

10

15

GP
U

Ex
ec

ut
io

n
Ru

nt
im

e
[m

s]

A100

H100

H200

RTX3090

H2O-G: Q1

0.2 0.9 1.5 2.2
Total Size [GB]

5

10

15

20

25

A100

H100
H200

RTX3090

H2O-G: Q2

0.3 1.1 1.9 2.8
Total Size [GB]

0

50

100

150

A100

H100
H200

RTX3090

H2O-G: Q3

0.2 0.8 1.4 2.1
Total Size [GB]

5

10

15

20

25

30 A100

H100

H200

RTX3090

H2O-G: Q4

0.2 0.8 1.4 2.1
Total Size [GB]

0

25

50

75

100

125

A100

H100
H200

RTX3090

H2O-G: Q5

0.2 0.7 1.1 1.6
Total Size [GB]

0

500

1000

1500

2000

A100

H100
H200

RTX3090

H2O-G: Q6

0.2 0.9 1.7 2.4
Total Size [GB]

0

25

50

75

100

125

150

A100

H100
H200

RTX3090

H2O-G: Q7

0.2 0.8 1.5 2.1
Total Size [GB]

20

40

60

80

100

A100

H100
H200

RTX3090

H2O-G: Q9

0.6 2.3 4.0 5.8
Total Size [GB]

0

200

400

600

800

A100

H100
H200

RTX3090

H2O-G: Q10

0.10.1 0.20.2
Total Size [GB]

5

10

15

20

A100

H100
H200

RTX3090
CLICKBENCH: Q4

0.10.1 0.20.2
Total Size [GB]

5

10

15

20

A100

H100
H200

RTX3090

CLICKBENCH: Q7

0.1 0.2 0.30.3
Total Size [GB]

0

50

100

150

200

GP
U

Ex
ec

ut
io

n
Ru

nt
im

e
[m

s]

A100

H100
H200

RTX3090
CLICKBENCH: Q9

0.2 0.3 0.40.4
Total Size [GB]

50

100

150

200

A100

H100
H200

RTX3090
CLICKBENCH: Q10

0.1 0.2 0.30.3
Total Size [GB]

5

10

15

20

A100

H100

H200

RTX3090
CLICKBENCH: Q11

0.1 0.2 0.3 0.4
Total Size [GB]

5

10

15

20

A100

H100

H200

RTX3090
CLICKBENCH: Q12

0.2 0.3 0.4 0.5
Total Size [GB]

2

4

6

8 A100

H100

H200

RTX3090
CLICKBENCH: Q13

0.2 0.3 0.4 0.5
Total Size [GB]

50

100

150

200

A100

H100
H200

RTX3090
CLICKBENCH: Q14

0.2 0.3 0.5 0.6
Total Size [GB]

2

4

6

8

A100

H100

H200

RTX3090
CLICKBENCH: Q15

0.1 0.20.2 0.3
Total Size [GB]

5

10

15

20

A100

H100
H200

RTX3090
CLICKBENCH: Q16

0.2 0.3 0.5 0.6
Total Size [GB]

5

10

15

20

25

30

A100

H100
H200

RTX3090
CLICKBENCH: Q17

1.1 1.5 2.0 2.5
Total Size [GB]

400

600

800

1000

1200

1400

A100

H100
H200

RTX3090
CLICKBENCH: Q22

2.1 3.0 3.8 4.7
Total Size [GB]

100

200

300

400

500

600

700

A100

H100
H200

RTX3090
CLICKBENCH: Q23

1.1 1.6 2.1 2.6
Total Size [GB]

400

600

800

1000

1200

1400

GP
U

Ex
ec

ut
io

n
Ru

nt
im

e
[m

s]

A100

H100
H200

RTX3090
CLICKBENCH: Q24

0.2 0.3 0.4 0.5
Total Size [GB]

2

4

6

8

A100

H100

H200

RTX3090
CLICKBENCH: Q25

0.1 0.2 0.30.3
Total Size [GB]

50

100

150

200

A100

H100
H200

RTX3090
CLICKBENCH: Q26

0.2 0.3 0.4 0.5
Total Size [GB]

5

10

15

20

A100

H100

H200

RTX3090
CLICKBENCH: Q27

0.2 0.3 0.5 0.6
Total Size [GB]

5

10

15

20

A100

H100
H200

RTX3090

CLICKBENCH: Q31

0.30.4 0.6 0.8
Total Size [GB]

5

10

15

20

25

A100

H100

H200

RTX3090
CLICKBENCH: Q32

0.2 0.3 0.40.4
Total Size [GB]

50

100

150

200

A100

H100
H200

RTX3090
CLICKBENCH: Q33

0.9 1.4 1.8 2.2
Total Size [GB]

10

15

20

25

30

35 A100

H100

H200

RTX3090

CLICKBENCH: Q34

0.9 1.4 1.8 2.2
Total Size [GB]

10

15

20

25

30

35
A100

H100

H200

RTX3090

CLICKBENCH: Q35

0.0 0.10.10.1
Total Size [GB]

5

10

15

A100

H100
H200

RTX3090
CLICKBENCH: Q36

A100 H100 H200 RTX3090

Figure 5: GPU execution time [ms] across various GPU types relative to the input data size [GB].

which is a linear function of data size. This justifies our assumption
of linearity when modeling the operator cost, as defined by Eq. (3).

Insight 9: For all benchmarked TPC-H, H2O-G and Click-
Bench queries, the GPU execution time of each query scales
linearly with respect to the input data size.

Figure 5 shows that RTX3090 was sometimes faster than the A100
GPU (see, e.g., TPC-H Q4), generally considered more powerful.
This is caused by an architectural difference between these two
GPUs: the L2 cache of A100 is split into two parts, as opposed to the
single unit found in RTX3090. This can result in a NUMA effect in
the L2 cache of A100. This can further lead to a higher cache miss
rate on A100 [35]. This explains why the hash join was sometimes
faster on RTX3090 (Figure 2) than on A100.

For modeling purposes, we derived a separate linear curve for
each query and each GPU type, as given by Equation (3), to fit
the experimental data. We then constructed a slope matrix 𝐴, as
given by Definition 4.1 and performed an SVD decomposition of
this matrix, as described in Theorem 4.4, to get characteristic ef-
ficiencies 𝜒𝑅𝑇𝑋3090, 𝜒𝐴100, 𝜒𝐻100 and 𝜒𝐻200, for each GPU device
and characteristic query complexity for each query.

Cost Model Evaluation. To evaluate the cost model (Section
4), we compared data transfers time and operators time predicted
by the model, using Equations (2) and (3), with the empirically
measured times for TPC-H (SF=10), H2O-G (4.9GB dataset size)
and ClickBench (14.8GB Athena dataset size) queries. We evaluated
different configurations: (1) when the query inputs and outputs are
on the CPU and the per-query policy is used; (2) when the query
inputs and outputs are on the CPU and the per-dataset policy is used;
(3) when the query inputs are already preloaded in a GPU memory
and the outputs are kept on the GPU. The results are shown in
Figure 6. The results indicate that the cost model is able to estimate
both the data transfers and the operators time with less than 10%
error in most cases. The only case where the error was larger, was
estimating the communication cost with the PCIe4 interconnect on
TPC-H queries. The interconnect bandwidth on this machine varied
between 20 and 25GB/s, resulting in less predictable behavior.

Insight 10: The cost model presented in Section 4 is able to
accurately predict the performance of the supported TPC-H,
H2O-G and ClickBench queries on given hardware.

4359

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt

im
e

[s
]

TPC-H

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0

1

2

3

4

5

6

7

H2O-G

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0

1

2

3

4

5

6

7

CLICKBENCH

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

TPC-H

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0

1

2

3

4

H2O-G

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0

1

2

3

4

5

6

CLICKBENCH

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0.0

0.2

0.4

0.6

0.8

1.0

1.2

TPC-H

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H2O-G

PCIe3+A100

PCIe5+H100

NVLink4+H200

PCIe4+RTX3090
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CLICKBENCH

Data Location: CPU, Copy Policy: Per-�ery Data Location: CPU, Copy Policy: Per-Dataset Data Location: GPU, Dataset Preloaded

GPU Execution Time CPU↔GPU Data Transfer Time Estimated GPU Execution Time Estimated CPU↔GPU Data Transfer Time

Figure 6: Comparison of the empirical performance data vs. the performance estimated by the cost model.

PCIe3 PCIe4 PCIe5 NVLink4

H
20

0
H

10
0

A
10

0
R

TX
30

90

1.05x
faster

2.25x
faster

5.08x
faster

23.68x
faster

1.05x
faster

2.24x
faster

5.01x
faster

22.24x
faster

1.02x
faster

2.12x
faster

4.48x
faster

14.59x
faster

1.00x
faster

2.03x
faster

4.08x
faster

11.09x
faster

TPC-H

5

10

15

20

PCIe3 PCIe4 PCIe5 NVLink4

H
20

0
H

10
0

A
10

0
R

TX
30

90

1.43x
faster

2.81x
faster

5.31x
faster

11.97x
faster

1.42x
faster

2.77x
faster

5.15x
faster

11.18x
faster

1.25x
faster

2.18x
faster

3.44x
faster

5.37x
faster

1.00x
faster

1.52x
faster

2.04x
faster

2.60x
faster

H2O-G

2

4

6

8

10

PCIe3 PCIe4 PCIe5 NVLink4

H
20

0
H

10
0

A
10

0
R

TX
30

90

1.45x
faster

2.52x
faster

3.95x
faster

6.13x
faster

1.41x
faster

2.42x
faster

3.70x
faster

5.55x
faster

1.22x
faster

1.90x
faster

2.61x
faster

3.41x
faster

1.00x
faster

1.42x
faster

1.78x
faster

2.12x
faster

CLICKBENCH

1

2

3

4

5

6

PCIe3 PCIe4 PCIe5 NVLink4

H
20

0
H

10
0

A
10

0
R

TX
30

90

1.35x
faster

2.34x
faster

3.67x
faster

5.67x
faster

1.32x
faster

2.27x
faster

3.48x
faster

5.24x
faster

1.13x
faster

1.76x
faster

2.42x
faster

3.15x
faster

1.00x
faster

1.46x
faster

1.89x
faster

2.31x
faster

TPC-H

1

2

3

4

5

PCIe3 PCIe4 PCIe5 NVLink4

H
20

0
H

10
0

A
10

0
R

TX
30

90

1.99x
faster

3.39x
faster

5.16x
faster

7.66x
faster

1.95x
faster

3.28x
faster

4.91x
faster

7.13x
faster

1.49x
faster

2.15x
faster

2.75x
faster

3.33x
faster

1.00x
faster

1.26x
faster

1.45x
faster

1.59x
faster

H2O-G

1

2

3

4

5

6

7

PCIe3 PCIe4 PCIe5 NVLink4

H
20

0
H

10
0

A
10

0
R

TX
30

90

1.50x
faster

2.55x
faster

3.86x
faster

5.69x
faster

1.46x
faster

2.43x
faster

3.60x
faster

5.15x
faster

1.24x
faster

1.87x
faster

2.50x
faster

3.16x
faster

1.00x
faster

1.38x
faster

1.69x
faster

1.96x
faster

CLICKBENCH

1

2

3

4

5

Data Location: CPU, Copy Policy: Per-�ery Data Location: CPU, Copy Policy: Per-Dataset
Max. �eoretical Speedup (Data Size→∞)

Figure 7: Predicted speedups for different hardware configurations, w.r.t. the slowest configuration (PCIe3 + RTX3090).

5.5 Powerful GPUs vs. Fast Interconnects
To assess how different types of GPUs and interconnects affect the
end-to-end performance, we used the cost models derived in the pre-
vious section to estimate the performance for each hardware, work-
loads and copy-policy combination: {PCIe 3.0, PCIe 4.0, PCIe 5.0,
NVLink 4.0} × {RTX3090, A100, H100, H200} × {TPC-H, H2O-G,
ClickBench} × {per-query, per-dataset}. Within each benchmark,
the queries are assumed to be executed one after the other. We
used the theoretical limits from Section 4.5 to compare different
hardware configurations at limits, i.e., when the data sizes approach
infinity. Figure 7 shows the speedups achieved, compared to the
slowest configuration (PCIe 3.0 + RTX3090).

The results indicate that, with slow interconnects, such as PCIe
3.0, switching from the slowest (RTX3090) to the fastest (H200) GPU
would improve the performance from 1.05x (TPC-H) to 1.45x (H2O-
G) with the per-query copy policy and from 1.35x (TPC-H) to 1.99x
(H2O-G) with the per-dataset copy policy. With fast interconnects,
such as NVLink 4.0, switching from the slowest to the fastest GPU
would improve the performance from 2.13x (TPC-H) to 4.6x (H2O-
G) with the per-query copy policy and from 2.45x (TPC-H) to 4.82x
(H2O-G) with the per-dataset copy policy. This is expected, as the
runtime is dominated by data transfers on slow interconnects.

Insight 11: With slow interconnects, the GPU compute
power has less impact on performance than with fast in-
terconnects. For example, switching from the slowest to the
fastest GPU, would improve the performance by at most 1.99x
(H2O-G) with PCIe 3.0. The same change, with NVLink 4.0,
would improve the performance 4.82x.

The reason why H2O-G benchmark benefits more from a faster
GPU than, e.g., TPC-H, is because the ratio of the time spent in
operators execution vs. the time spent in data transfers is higher

for H2O-G than for TPC-H. The same trend can also be observed
when changing the copy policy: switching from a per-query to per-
dataset copy policy generally increases the impact a faster GPU has
on the performance. This is expected, since using the per-dataset
copy policy usually reduces the data transfer costs.

Insight 12: Improving the GPU compute power has more im-
pact when the ratio of computation vs. data transfers is high,
such as in H2O-G. Improving the interconnect bandwidth
has more impact when the ratio is lower, such as TPC-H.

5.6 Future Trends
In the previous analysis, we have only focused on interconnects
and GPUs that have been evaluated. However, the cost model is
not limited to these and can be used to predict the performance
for configurations with arbitrary efficiency. To explore how the
interconnect bandwidth (= interconnect efficiency 𝜒𝑖𝑐) and the GPU
device efficiency (𝜒𝑑) influence the trade-offs between data trans-
fer and GPU execution costs, we focus on two scenarios: (i) the
interconnect bandwidth is varied beyond current capabilities, while
keeping the GPU efficiency fixed, and (ii) the GPU efficiency is
varied beyond current capabilities, while keeping the interconnect
bandwidth fixed. In both of these scenarios, we focus on executing
all supported queries from TPC-H, H2O-G and ClickBench bench-
marks, using different copy policies, where the data size is assumed
to tend to infinity. We use the theoretical limits from Section 4.5
and, in particular, Equations (11) - (12).

Varying the Interconnect Efficiency. Here, we vary the in-
terconnect bandwidth from 0 to 1000 GB/s (unidirectional) while
keeping the GPU efficiency at the values of RTX3090, A100, H100,
and H200 GPUs. The upper limit of 1000 GB/s is more than 2x
faster than currently possible with NVLink 4.0. Figure 8 shows the

4360

0 200 400 600 800 1000

Interconnect (IC) Bandwidth [GB/s]

0.0

0.2

0.4

0.6

0.8

G
PU

Ex
ec

ut
io

n
Ti

m
e

/T
ot

al
Ti

m
e

137.30 GB/s

GPU-bound ↑

IC-bound ↓

PC
Ie

3

PC
Ie

4
PC

Ie
5

N
VL

in
k4

TPC-H

0 200 400 600 800 1000

Interconnect (IC) Bandwidth [GB/s]

0.0

0.2

0.4

0.6

0.8

1.0

38.57 GB/s

GPU-bound ↑

IC-bound ↓

PC
Ie

3

PC
Ie

4
PC

Ie
5

N
VL

in
k4

H2O-G

0 200 400 600 800 1000

Interconnect (IC) Bandwidth [GB/s]

0.0

0.2

0.4

0.6

0.8

1.0

16.11 GB/s

GPU-bound ↑

IC-bound ↓

PC
Ie

3

PC
Ie

4
PC

Ie
5

N
VL

in
k4

CLICKBENCH

0 200 400 600 800 1000

Interconnect (IC) Bandwidth [GB/s]

0.0

0.2

0.4

0.6

0.8

1.0

15.98 GB/s

GPU-bound ↑

IC-bound ↓

PC
Ie

3

PC
Ie

4
PC

Ie
5

N
VL

in
k4

TPC-H

0 200 400 600 800 1000

Interconnect (IC) Bandwidth [GB/s]

0.0

0.2

0.4

0.6

0.8

1.0

14.13 GB/s

GPU-bound ↑

IC-bound ↓

PC
Ie

3

PC
Ie

4
PC

Ie
5

N
VL

in
k4

H2O-G

0 200 400 600 800 1000

Interconnect (IC) Bandwidth [GB/s]

0.0

0.2

0.4

0.6

0.8

1.0

13.79 GB/s

GPU-bound ↑

IC-bound ↓

PC
Ie

3

PC
Ie

4
PC

Ie
5

N
VL

in
k4

CLICKBENCH

Data Location: CPU, Copy Policy: Per-�ery Data Location: CPU, Copy Policy: Per-Dataset
RTX3090 A100 H100 H200

Figure 8: The ratio of the GPU query execution time vs. the total execution time for different interconnect bandwidths.

0 10 20 30 40

Characteristic GPU E�ciency

0.0

0.2

0.4

0.6

0.8

1.0

D
at

a
Tr

an
sf

er
sT

im
e

(C
PU
↔

GP
U)

/T
ot

al
Ti

m
e

7.20

IC-bound ↑
GPU-bound ↓

H
20

0
H

10
0

A
10

0
RT

X3
09

0

TPC-H

0 10 20 30 40

Characteristic GPU E�ciency

0.0

0.2

0.4

0.6

0.8

1.0

IC-bound ↑
GPU-bound ↓

H
20

0
H

10
0

A
10

0
RT

X3
09

0

H2O-G

0 10 20 30 40

Characteristic GPU E�ciency

0.0

0.2

0.4

0.6

0.8

1.0

IC-bound ↑
GPU-bound ↓

H
20

0
H

10
0

A
10

0
RT

X3
09

0
CLICKBENCH

0 10 20 30 40

Characteristic GPU E�ciency

0.0

0.2

0.4

0.6

0.8

1.0

IC-bound ↑
GPU-bound ↓

H
20

0
H

10
0

A
10

0
RT

X3
09

0

TPC-H

0 10 20 30 40

Characteristic GPU E�ciency

0.0

0.2

0.4

0.6

0.8

1.0

IC-bound ↑
GPU-bound ↓

H
20

0
H

10
0

A
10

0
RT

X3
09

0

H2O-G

0 10 20 30 40

Characteristic GPU E�ciency

0.0

0.2

0.4

0.6

0.8

1.0

IC-bound ↑
GPU-bound ↓

H
20

0
H

10
0

A
10

0
RT

X3
09

0

CLICKBENCH

Data Location: CPU, Copy Policy: Per-�ery Data Location: CPU, Copy Policy: Per-Dataset
PCIe3 PCIe4 PCIe5 NVLink4

Figure 9: The ratio of communication vs. total execution time for different characteristic GPU efficiencies.

ratio of the GPU execution time and the total time, for a range of
interconnect bandwidths. The interconnect bandwidths of PCIe 3.0,
PCIe 4.0, PCIe 5.0, and NVLink 4.0 are marked on the x-axis.

Insight 13: For interconnect bandwidths > 137.30GB/s (uni-
directional), the execution is mostly GPU-bound, for all eval-
uated benchmarks (TPC-H, H2O-G, ClickBench) and copy
policies (per-query, per-dataset), even on H200.

Varying the GPU Efficiency. We vary the characteristic GPU
efficiency from 0 to 10, almost 3x more than 𝜒𝐻200, while keeping
the interconnect bandwidths to the values that correspond to PCIe
3.0, PCIe 4.0, PCIe 5.0, and NVLink 4.0. Figure 9 shows the ratio
of the data transfer time and the total time, for a range of GPU
efficiency values. The characteristic GPU efficiencies of A100, H100,
and H200 are marked on the x-axis for reference. For the TPC-H
benchmark with the per-query copy policy, the results indicate that
when the characteristic GPU efficiency is 7.2, the GPU execution
time is equal to the data transfer time for NVLink 4.0. This means it
would require the GPU to be almost 2x more efficient than H200 in
order for data transfer to match the operator time on NVLink 4.0.

Insight 14: With interconnects such as NVLink 4.0, a GPU
with characteristic efficiency almost 2x higher than H200 is
needed, for the execution not to be GPU-bound for the TPC-H
benchmark with the per-query copy policy. For H2O-G and
ClickBench, the execution remains GPU-bound even with
fast interconnects such as NVLink 4.0.

The Interconnect Outlook. The latest PCIe interconnect is
PCIe 7.0 with a maximum theoretical peak of 242 GB/s (unidirec-
tional). Taking into account Insight 7 and communication over-
heads, the expected maximum theoretical peak, without using

pinned memory would be at most 96 GB/s. For NVLink intercon-
nects, starting from NVLink 2.0 [30], the peak bandwidth is at least
150 GB/s (unidirectional).

Insight 15: For PCIe interconnects, the execution is likely to
remain interconnect-bound for some workloads, even with
the future PCIe 7.0 interconnect. For NVLink interconnects,
the execution is likely to remain GPU-bound.

6 CONCLUSION
We present MaxBench, a framework for benchmarking, profiling,
and modeling relational data analytics workloads. Using MaxBench,
we explore how different GPU models and interconnects affect the
performance for various data analytics workloads. We provide de-
tailed metrics on data transfers and GPU execution times, and esti-
mate query performance on different workloads, across different
combinations of GPUs and interconnects, with a cost model that
allows us to estimate the relative impact of the GPU computing
power and the interconnect bandwidth on query execution. Us-
ing this cost model, we explored how increasing the interconnect
bandwidth or the GPU efficiency beyond current capabilities would
affect the overall performance, while providing various insights to
help understand how powerful GPUs and fast interconnects are af-
fecting the performance for data analytics workloads. In the future,
more efficient GPU operators, such as [52], may also be considered.

ACKNOWLEDGMENTS
This work was supported by a grant from the Swiss National Su-
percomputing Centre (CSCS) under project ID sm94 on Alps. We
thank the whole CSCS team for their excellent technical support.

4361

REFERENCES
[1] Daniel Abadi, Anastasia Ailamaki, David G. Andersen, Peter Bailis, Magdalena

Balazinska, Philip A. Bernstein, Peter A. Boncz, Surajit Chaudhuri, Alvin Cheung,
AnHai Doan, Luna Dong, Michael J. Franklin, Juliana Freire, Alon Y. Halevy,
Joseph M. Hellerstein, Stratos Idreos, Donald Kossmann, Tim Kraska, Sailesh
Krishnamurthy, Volker Markl, Sergey Melnik, Tova Milo, C. Mohan, Thomas Neu-
mann, Beng Chin Ooi, Fatma Ozcan, Jignesh M. Patel, Andrew Pavlo, Raluca A.
Popa, Raghu Ramakrishnan, Christopher Ré, Michael Stonebraker, and Dan Su-
ciu. 2022. The Seattle report on database research. Commun. ACM 65, 8 (2022),
72–79.

[2] Azim Afroozeh, Lotte Felius, and Peter Boncz. 2024. Accelerating GPU Data
Processing using FastLanes Compression. In Proceedings of the 20th International
Workshop on Data Management on New Hardware (Santiago, AA, Chile) (Da-
MoN ’24). Association for Computing Machinery, New York, NY, USA, Article 8,
11 pages. https://doi.org/10.1145/3662010.3663450

[3] RAPIDS AI. [n.d.]. cuDF: A GPU DataFrame Library. https://github.com/rapidsai/
cudf. Accessed: 2025-02-19.

[4] Iya Arefyeva, David Broneske, Gabriel Campero Durand, Marcus Pinnecke, and
Gunter Saake. 2018. Memory Management Strategies in CPU/GPU Database
Systems: A Survey. In Beyond Databases, Architectures and Structures. Facing
the Challenges of Data Proliferation and Growing Variety - 14th International
Conference, BDAS 2018, Held at the 24th IFIP World Computer Congress, WCC 2018,
Poznan, Poland, September 18-20, 2018, Proceedings (Communications in Computer
and Information Science), Vol. 928. Springer, 128–142.

[5] Abhinav Bhatele, Stephanie Brink, and Todd Gamblin. 2019. Hatchet: pruning
the overgrowth in parallel profiles. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York, NY, USA,
Article 20, 21 pages. https://doi.org/10.1145/3295500.3356219

[6] BlazingDB. [n.d.]. BlazingSQL. https://github.com/BlazingDB/blazingsql. Ac-
cessed: February 27, 2025.

[7] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
performance introspection for HPC software stacks. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (Salt Lake City, Utah) (SC ’16). IEEE Press, Article 47, 11 pages.

[8] Nils Boeschen, Tobias Ziegler, and Carsten Binnig. 2024. GOLAP: A GPU-in-
Data-Path Architecture for High-Speed OLAP. Proc. ACM Manag. Data 2, 6,
Article 237 (Dec. 2024), 26 pages. https://doi.org/10.1145/3698812

[9] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[10] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. 2014. GPU-Accelerated Database Systems: Survey and Open Challenges.
Trans. Large Scale Data Knowl. Centered Syst. 15 (2014), 1–35.

[11] Sebastian Breß. 2014. The Design and Implementation of CoGaDB: A Column-
oriented GPU-accelerated DBMS. Datenbank-Spektrum 14, 3 (2014), 199–209.
https://doi.org/10.1007/s13222-014-0164-z

[12] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. 2023.
GPU Database Systems Characterization and Optimization. Proc. VLDB Endow.
17, 3 (2023), 441–454.

[13] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. 2023.
Revisiting Query Performance in GPU Database Systems. CoRR abs/2302.00734
(2023). https://doi.org/10.48550/ARXIV.2302.00734 arXiv:2302.00734

[14] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. 2019. HetExchange: encapsulating heterogeneous CPU-GPU paral-
lelism in JIT compiled engines. Proc. VLDB Endow. 12, 5 (Jan. 2019), 544–556.
https://doi.org/10.14778/3303753.3303760

[15] ClickHouse Inc. [n.d.]. ClickBench — a Benchmark For Analytical DBMS. https:
//benchmark.clickhouse.com/. Accessed: 2025-02-19.

[16] NVIDIA Corporation. [n.d.]. NVIDIA Nsight Systems. https://developer.nvidia.
com/nsight-systems. Accessed: 2025-02-19.

[17] Harish Doraiswamy, Vikas Kalagi, Karthik Ramachandra, and Jayant R. Haritsa.
2023. A Case for Graphics-Driven Query Processing. Proc. VLDB Endow. 16, 10
(June 2023), 2499–2511. https://doi.org/10.14778/3603581.3603590

[18] Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. 2007. GPUQP: query co-processing using graphics processors.
In Proceedings of the 2007 ACM SIGMOD International Conference on Management
of Data (Beijing, China) (SIGMOD ’07). Association for Computing Machinery,
New York, NY, USA, 1061–1063. https://doi.org/10.1145/1247480.1247606

[19] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined Query Processing in Coprocessor Environments. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,
1603–1618. https://doi.org/10.1145/3183713.3183734

[20] H2O.ai. [n.d.]. Database-like Ops Benchmark. https://h2oai.github.io/db-
benchmark/. Accessed: 2025-02-19.

[21] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. 2009. Relational query coprocessing on graphics processors.
ACM Trans. Database Syst. 34, 4, Article 21 (Dec. 2009), 39 pages. https://doi.
org/10.1145/1620585.1620588

[22] Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur,
Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karana-
sos, and Matteo Interlandi. 2022. Query processing on tensor computation
runtimes. Proceedings of the VLDB Endowment 15, 11 (July 2022), 2811–2825.
https://doi.org/10.14778/3551793.3551833

[23] Jiong He, Mian Lu, and Bingsheng He. 2013. Revisiting Co-Processing for Hash
Joins on the Coupled CPU-GPU Architecture. Proc. VLDB Endow. 6, 10 (aug 2013),
889–900. https://doi.org/10.14778/2536206.2536216

[24] HEAVY.AI. [n.d.]. HeavyDB. https://www.heavy.ai/product/heavydb. Accessed:
February 27, 2025.

[25] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
2013. Hardware-oblivious parallelism for in-memory column-stores. Proc. VLDB
Endow. 6, 9 (July 2013), 709–720. https://doi.org/10.14778/2536360.2536370

[26] Marko Kabić, Shriram Chandran, and Gustavo Alonso. 2025. Maximus: A Modular
Accelerated Query Engine for Data Analytics on Heterogeneous Systems. Proc.
ACM Manag. Data 3, 3, Article 187 (June 2025), 25 pages. https://doi.org/10.1145/
3725324

[27] Tomas Karnagel, René Müller, and Guy M. Lohman. 2015. Optimizing
GPU-accelerated Group-By and Aggregation. In ADMS@VLDB. https://api.
semanticscholar.org/CorpusID:5017248

[28] Kinetica. 2024. Kinetica: The Database for Time & Space. https://www.kinetica.
com/ Accessed: 2024-12-02.

[29] Artem Kroviakov, Petr Kurapov, Christoph Anneser, and Jana Giceva. 2024.
Heterogeneous Intra-Pipeline Device-Parallel Aggregations. In Proceedings of the
20th International Workshop on Data Management on New Hardware (Santiago,
AA, Chile) (DaMoN ’24). Association for Computing Machinery, New York, NY,
USA, Article 3, 10 pages. https://doi.org/10.1145/3662010.3663441

[30] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Intercon-
nects. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, 1633–1649.

[31] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast
Interconnects. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1017–1032.

[32] Hubert Mohr-Daurat, Xuan Sun, and Holger Pirk. 2023. BOSS - An Architecture
for Database Kernel Composition. Proc. VLDB Endow. 17, 4 (Dec. 2023), 877–890.
https://doi.org/10.14778/3636218.3636239

[33] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anastasia Ailamaki.
2023. Hetcache: synergising NVMe storage and GPU acceleration for memory-
efficient analytics. In 13th Annual Conference on Innovative Data Systems Research
(CIDR 2023).

[34] NVIDIA. 2024. nvbandwidth. https://github.com/NVIDIA/nvbandwidth. Ac-
cessed: 26-Feb-2025.

[35] NVIDIA Developers Forum. [n.d.]. The L2 cache hit rate of A100(A800) is very
low compared to RTX3090. https://forums.developer.nvidia.com/t/the-l2-cache-
hit-rate-of-a100-a800-is-very-low-compared-to-rtx3090/320271. Accessed:
2025-02-19.

[36] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based Pipelined
Query Processing Engine. In Proceedings of the 2016 International Conference on
Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association
for Computing Machinery, New York, NY, USA, 1935–1950. https://doi.org/10.
1145/2882903.2915224

[37] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. 2021. MG-Join:
A Scalable Join for Massively Parallel Multi-GPU Architectures. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 1413–
1425. https://doi.org/10.1145/3448016.3457254

[38] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A reconfigurable
fabric for accelerating large-scale datacenter services. In ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA,
June 14-18, 2014. IEEE Computer Society, 13–24.

[39] Syed Mohammad Aunn Raza, Periklis Chrysogelos, Panagiotis Sioulas, Vladimir
Indjic, Angelos Christos Anadiotis, and Anastasia Ailamaki. 2020. GPU-
accelerated data management under the test of time. In Online proceedings of the
10th Conference on Innovative Data Systems Research (CIDR).

[40] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2023. Query Processing on
Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 2 (2023), 11:1–11:38.

4362

https://doi.org/10.1145/3662010.3663450
https://github.com/rapidsai/cudf
https://github.com/rapidsai/cudf
https://doi.org/10.1145/3295500.3356219
https://github.com/BlazingDB/blazingsql
https://doi.org/10.1145/3698812
https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.48550/ARXIV.2302.00734
https://doi.org/10.14778/3303753.3303760
https://benchmark.clickhouse.com/
https://benchmark.clickhouse.com/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://doi.org/10.14778/3603581.3603590
https://doi.org/10.1145/1247480.1247606
https://doi.org/10.1145/3183713.3183734
https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.14778/3551793.3551833
https://doi.org/10.14778/2536206.2536216
https://www.heavy.ai/product/heavydb
https://doi.org/10.14778/2536360.2536370
https://doi.org/10.1145/3725324
https://doi.org/10.1145/3725324
https://api.semanticscholar.org/CorpusID:5017248
https://api.semanticscholar.org/CorpusID:5017248
https://www.kinetica.com/
https://www.kinetica.com/
https://doi.org/10.1145/3662010.3663441
https://doi.org/10.14778/3636218.3636239
https://github.com/NVIDIA/nvbandwidth
https://forums.developer.nvidia.com/t/the-l2-cache-hit-rate-of-a100-a800-is-very-low-compared-to-rtx3090/320271
https://forums.developer.nvidia.com/t/the-l2-cache-hit-rate-of-a100-a800-is-very-low-compared-to-rtx3090/320271
https://doi.org/10.1145/2882903.2915224
https://doi.org/10.1145/2882903.2915224
https://doi.org/10.1145/3448016.3457254

[41] Viktor Rosenfeld, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2019. Performance Analysis and Automatic Tuning of Hash Aggregation on GPUs.
In Proceedings of the 15th International Workshop on Data Management on New
Hardware (Amsterdam, Netherlands) (DaMoN’19). Association for Computing
Machinery, New York, NY, USA, Article 8, 11 pages. https://doi.org/10.1145/
3329785.3329922

[42] Ran Rui, Hao Li, and Yi-Cheng Tu. 2020. Efficient Join Algorithms for Large
Database Tables in a Multi-GPU Environment. Proc. VLDB Endow. 14, 4 (dec
2020), 708–720. https://doi.org/10.14778/3436905.3436927

[43] Ran Rui and Yi-Cheng Tu. 2017. Fast Equi-Join Algorithms on GPUs: Design and
Implementation. In Proceedings of the 29th International Conference on Scientific
and Statistical Database Management (Chicago, IL, USA) (SSDBM ’17). Association
for Computing Machinery, New York, NY, USA, Article 17, 12 pages. https:
//doi.org/10.1145/3085504.3085521

[44] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1617–1632. https://doi.org/10.1145/3318464.3380595

[45] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Ap-
puswamy, and Anastasia Ailamaki. 2019. Hardware-Conscious Hash-Joins on
GPUs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
698–709. https://doi.org/10.1109/ICDE.2019.00068

[46] The Apache Software Foundation. [n.d.]. A cross-language development platform
for in-memory analytics. https://arrow.apache.org/. Accessed: 2025-02-19.

[47] The Transaction Processing Council. [n.d.]. The TPC-H Benchmark. https:
//www.tpc.org/tpch/. Accessed: 2025-02-19.

[48] Lasse Thostrup, Gloria Doci, Nils Boeschen, Manisha Luthra, and Carsten Binnig.
2023. Distributed GPU Joins on Fast RDMA-capable Networks. Proc. ACMManag.
Data 1, 1, Article 29 (may 2023), 26 pages. https://doi.org/10.1145/3588709

[49] Diego G. Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and Peter A. Boncz.
2018. Optimizing Group-By and Aggregation using GPU-CPU Co-Processing. In
ADMS@VLDB. https://api.semanticscholar.org/CorpusID:52895287

[50] Ben van Werkhoven, Jason Maassen, Frank J. Seinstra, and Henri E. Bal. 2014.
Performance Models for CPU-GPU Data Transfers. In 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGrid 2014, Chicago,
IL, USA, May 26-29, 2014. IEEE Computer Society, 11–20.

[51] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (April 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[52] Bowen Wu, Dimitrios Koutsoukos, and Gustavo Alonso. 2025. Efficiently Pro-
cessing Joins and Grouped Aggregations on GPUs. Proc. ACM Manag. Data 3, 1,
Article 39 (Feb. 2025), 27 pages. https://doi.org/10.1145/3709689

[53] Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating data
placement and query execution in heterogeneous CPU-GPU DBMS. Proc. VLDB
Endow. 15, 11 (July 2022), 2491–2503. https://doi.org/10.14778/3551793.3551809

[54] Yichao Yuan, Advait Iyer, Lin Ma, and Nishil Talati. 2025. Vortex: Overcoming
Memory Capacity Limitations in GPU-Accelerated Large-Scale Data Analytics.
Proc. VLDB Endow. 18, 4 (May 2025), 1250–1263. https://doi.org/10.14778/3717755.
3717780

[55] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Process-
ing Data Warehousing Queries on GPU Devices. Proc. VLDB Endow. 6, 10 (2013),
817–828.

[56] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. 2013. OmniDB: towards
portable and efficient query processing on parallel CPU/GPU architectures. Proc.
VLDB Endow. 6, 12 (Aug. 2013), 1374–1377. https://doi.org/10.14778/2536274.
2536319

[57] Marcin Żukowski et al. 2009. Balancing vectorized query executionwith bandwidth-
optimized storage. SIKS.

4363

https://doi.org/10.1145/3329785.3329922
https://doi.org/10.1145/3329785.3329922
https://doi.org/10.14778/3436905.3436927
https://doi.org/10.1145/3085504.3085521
https://doi.org/10.1145/3085504.3085521
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1109/ICDE.2019.00068
https://arrow.apache.org/
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/
https://doi.org/10.1145/3588709
https://api.semanticscholar.org/CorpusID:52895287
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/3709689
https://doi.org/10.14778/3551793.3551809
https://doi.org/10.14778/3717755.3717780
https://doi.org/10.14778/3717755.3717780
https://doi.org/10.14778/2536274.2536319
https://doi.org/10.14778/2536274.2536319

	Abstract
	1 Introduction
	2 Related Work
	3 MaxBench Architecture
	3.1 Input Layer
	3.2 Profiling Configuration Layer
	3.3 Analysis & Modeling Layer

	4 Cost Modeling & Characterization
	4.1 Data Transfers Cost (Communication)
	4.2 Operators Cost (Computation)
	4.3 Incorporating Optimizations
	4.4 Hardware & Query Characterization
	4.5 Theoretical Limits

	5 Experimental Analysis
	5.1 Experimental Setup
	5.2 Data Transfers vs. Operators Time
	5.3 Optimizations: Selective Data Transfers
	5.4 Cost Modeling & Characterization
	5.5 Powerful GPUs vs. Fast Interconnects
	5.6 Future Trends

	6 Conclusion
	Acknowledgments
	References

