
TreeCat: Standalone Catalog Engine for Large Data Systems
Keonwoo Oh

University of Maryland

College Park, Maryland, USA

koh3@umd.edu

Pooja Nilangekar

University of Maryland

College Park, Maryland, USA

poojan@umd.edu

Amol Deshpande

University of Maryland

College Park, Maryland, USA

amol@umd.edu

ABSTRACT
With ever-increasing volume and heterogeneity of data, advent of

new specialized compute engines, and demand for complex use

cases, large-scale data systems require a performant catalog system

that can satisfy diverse needs. We argue that existing solutions,

including recent lakehouse storage formats, have fundamental lim-

itations and that there is a strong motivation for a specialized

database engine, dedicated to serve as the catalog. We present

the design and implementation of TreeCat, a database engine that
features a hierarchical data model with a path-based query lan-

guage, a storage format optimized for efficient range queries and

versioning, and a correlated scan operation that enables fast query

execution. A key performance challenge is supporting concurrent

read and write operations from many different clients while provid-

ing strict consistency guarantees. To this end, we present a novel

MVOCC (multi-versioned optimistic concurrency control) protocol

that guarantees serializable isolation. We conduct a comprehen-

sive experimental evaluation comparing our concurrency control

scheme with prior techniques, and evaluating our overall system

against Hive Metastore, Delta Lake, and Iceberg.
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1 INTRODUCTION
The catalog is an important component of a database management

system that is responsible for storing and maintaining metadata

such as the properties of logical entities like databases, tables, views,

triggers, and schemas; mapping of these entities to the underlying

physical storage; and access control information. Metadata oper-

ations are in the hot path of most, if not all, database operations.

Take, for example, the query execution process of a relational data-

base. The table schema is necessary to first semantically validate the

query. Once the query is validated, the query planner uses various

metadata, including table schema, storage information, and statis-

tics, to optimize and build a physical query plan that is executed by

the execution engine (which usually needs access to the metadata
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as well). Without a high-performance catalog that provides fast

access to metadata, a database management system cannot operate

efficiently.

In a monolithic data system, the catalog is typically tightly cou-

pled with the rest of the system, which works for one or a few data

systems. But in a typical enterprise setting, organizations often

use many specialized engines, each serving a different function,

since no single one-size-fits-all system can meet the requirements

of all use cases. Meanwhile, there has been a growing trend toward

disaggregation of large-scale data systems into smaller subsystems.

This includes the separation of compute and storage layers, the

increasing adoption of common table formats (parquet, ORC), and

the use of “connectors" to link different systems. These efforts aim

to achieve a composable data stack, enabling organizations to store

data in a shared storage layer and choose from multiple compute

engines. However, as long as each system maintains its own catalog

such that the metadata about the “managed" data remain separate,

different systems cannot easily share data even if it is stored in

the same storage system. For data management systems to be truly
composable, the catalog functionality has to be disaggregated from the
rest of the system. This issue is now widely recognized in the data

systems industry, and there are multiple active projects, including

lakehouse storage formats [25, 27, 30], and, most recently, catalog

services [14, 15, 59, 66], mainly driven by the industry.

We further argue that not only should the catalog functionality

exist as a standalone service, but also that it should be unified and

not span multiple (semi-)autonomous systems or storage modules.

As we show, unified architecture not only leads to significantly

reduced latencies, but also reduces duplication of metadata across

different data engines, and enables multi-table transactions as well

as other complex operations on metadata without sacrificing con-

sistency guarantees. A unified design also makes it possible to build

a specialized engine, as we develop in this work, that can meet the

specific requirements of a catalog in terms of both functionality

and performance.

To this end, the proposed catalog itself can be seen as an inde-

pendent database (sub-)system specialized for handling metadata

operations. We characterize the primary use cases and present

our prototype catalog engine, TreeCat, with the following design

choices. (1) Given the hierarchical nature of metadata logical mod-

eling and query access patterns, we adopt a hierarchical data model
along with a path navigation query language. (2) For efficient query

execution, we employ a storage layout inspired by file systems,

implemented using write-optimized key-value stores, and leverage

batch correlated scan operations. (3) We use versioned storage to

support MVCC (multi-version concurrency control) for improved

read performance, as well as version control operations such as

time travel queries, clone, and snapshot. (4) We present a novel

MVOCCmechanism that combines scan range locking and precision
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Figure 1: Disaggregating the catalog functionality for higher
composability

locking techniques. This approach efficiently manages predicate

dependencies while minimizing validation costs. Additionally, we

adopt a commit-time update technique to avoid aborts caused by

conflicts on frequently updated fields, such as statistics. Although

we focus on catalogs in this paper, some of our techniques are

more generally applicable in any hierarchical database manage-

ment system. TreeCat is implemented in about 12000 lines of C++

code, and exposes a gPRC interface to serve remote client requests.

We present a comprehensive set of experiments illustrating the

significant performance benefits of our new MVOCC protocol. We

also show that TreeCat outperforms other state-of-the-art systems,

including Delta Lake, HMS, and Iceberg.

2 BACKGROUND AND PRIORWORK
In this section, we categorize and classify existing catalog systems

and highlight their shortcomings, which motivate the key require-

ments and features of TreeCat. The discussion of prior work related

to more specific design and implementation details is interspersed

in other relevant parts of the paper for better context.

We first distinguish between data catalogs and operational cat-

alogs. Data catalogs serve as an organization-level database of

metadata about data assets across various systems. They can be

viewed as an “information retrieval system" for data assets. The

main goal is to make the data assets of an organization more man-

ageable and accessible, providing functions such as keyword search

and retrieval of important contextual information. Data catalogs

are typically implemented as federated systems that are updated

asynchronously through data discovery processes or metadata in-

gestion pipelines [17, 44, 61, 73]. Because they do not directly serve

database engines, they generally lack strict consistency or perfor-

mance guarantees. There are numerous commercial data catalog

software products, including those by Alation, Collibra, Informatica,

AWS (Glue), Google (Dataplex), and Microsoft (Azure Data Catalog),

as well as open source projects, such as Apache Atlas [23], Meta-

cat [53], and DataHub [16]. Operational catalogs, on the other

hand, store metadata that are directly accessed by database engines

during updates, query planning, and query execution. Although op-

erational catalogs can be a part of, or serve as the main data source

for, data catalogs, their primary functions are clearly different. In

this paper, we focus exclusively on operational catalogs.

Figure 2: Classification of different catalog systems.

Catalogs can be either embedded or standalone. An embedded
catalog is integrated within a single data system, and external

access to its metadata is restricted to the interfaces provided by the

parent system. A standalone catalog, on the other hand, exists as

an independent service that is accessible by any compatible data

system via a standard interface. Catalogs can be further differenti-

ated based on their architectural designs. A catalog with amodular
architecture is composed of components spread across multiple

autonomous services and systems. On the other hand, a catalogwith

a unified architecture consists of tightly integrated components

forming a single system. It is important to note that a unified system

is not necessarily centralized; it can have a distributed architecture

for scalability.

Traditional RDBMSs, including both transactional and analytical

systems, have embedded catalogs with unified architectures. In

transactional RDBMSs, catalog metadata is stored as a predefined

set of relations [34, 48, 58]. Apart from a specialized in-memory

cache for low-latency reads, all metadata use the same underly-

ing storage representation and concurrency control mechanism

as the data. Analytical RDBMSs and data warehouses have differ-

ent implementations designed to handle increasingly decentralized

scenarios. The catalog of a typical data warehouse functions as a

specialized subsystem that decouples metadata from data, since the

primary data processing infrastructure is not optimized for trans-

actional workloads. For example, Snowflake, a cloud-native data

warehouse, stores its metadata in FoundationDB [78], a distributed

transactional key-value store. Many of its features, including auto-

matic data clustering, data pruning during query execution, access

control, and zero-copy clone, rely on catalog objects persisted in

FoundationDB [47, 67]. Regardless of system performance, tight

integration with the rest of the system makes it difficult to extend
the catalog functionality beyond a single system [6, 47, 74].

Large-scale data processing engines [5, 62, 71] from the big data

community use standalone catalogs with modular architectures.

These systems originally emergedwith a highly disaggregated archi-

tecture consisting of an independent compute engine, a distributed

storage system, and a metadata service, each designed to be highly

scalable. As part of the Hive ecosystem, HMS (Hive Metastore) [71]
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was commonly used as the standalone catalog system. Backed by

a transactional RDBMS (typically MySQL or PostgreSQL), HMS

stores information about databases, tables, access control informa-

tion, statistics, and partitions (groups of file objects organized by

common attribute values). However, HMS does not store file-level

metadata in the back-end RDBMS. Instead, it uses the shared stor-

age system (distributed file system or object store) as an index on

the files by grouping them in the same partition under the same

directory (hence, it is modular). To scan a table, HMS must retrieve

the paths of relevant partitions from the back-end RDBMS and call

list() on each partition directory to obtain the list of files to scan.

In an environment where a single dataset contains over a million

files, the high latency of list() operation of cloud object stores like

S3 becomes a serious performance bottleneck [3]. In addition, even

retrieving the list of a large number of partitions from HMS is slow

due to an inefficient Thrift server implementation and suboptimal

back-end database schema [42].

As the limitations of HMS became clear, lakehouse storage for-

mats, namely Delta Lake, Hudi, and Iceberg [3, 25, 27] emerged as

alternatives. The specific implementations differ, but the common

idea is to store metadata about file objects as separatemetadata
files along with the data files in shared storage. By directly fetching

and processing these metadata files, the performance bottlenecks

of HMS can be avoided. Furthermore, additional file metadata, such

as statistics, can be stored in metadata files and utilized for opti-

mizations like file pruning, further improving system performance.

Delta Lake uses a data structure called Delta log, which consists of

a sequence of delta JSON files (with incrementing numerical IDs)

and periodic checkpoint files [3]. Iceberg organizes metadata into a

hierarchy of files: a metadata file contains a list of manifest list files;

a manifest list file contains a list of manifest files; and a manifest

file contains a list of file objects [29]. Hudi identifies files by the

timestamps at which they are first added and stores metadata in

HFile format, enabling fast file pruning and listing [24].

Storing the metadata alongside the data has benefits such as a

simplified architecture, good scalability due to the shared storage

system, and speedup from parallel metadata processing. However,

the notion that the adoption of the lakehouse storage format results

in a simpler architecture than HMS is only partially true. A sepa-

rate system must still be deployed to manage the metadata about

high-level catalog objects, such as databases and tables; lakehouse

storage formats simply offload most of the catalog functions to the

shared storage system. More recently, several efforts have focused

on providing these services through Hive-compatible APIs or REST

APIs [14, 15, 59, 66]. Due to the modular architecture, it is still quite
difficult to maintain consistency of the metadata. As discussed in Sec-

tion 5.4, no lakehouse storage format currently supports multi-table

transactions. Lastly, every metadata operation involves reading and

writing metadata files in the shared storage system, which has non-

trivial overhead. The high latency of these operations can limit the

write throughput under high contention [38].

3 HIGH-LEVEL DESIGN
In this section, we present the high-level data model and the basic

API of TreeCat. We also characterize the primary use cases with

concrete examples.

Figure 3: An example retail database, which contains hetero-
geneous assets, including relational data and ML models.

3.1 Data Model
A catalog needs to managemetadata about numerous logical objects

and their relationships, which are almost always organized into

nested logical groups, naturally forming a multi-level hierarchy. It

also needs to maintain arbitrary statistics and clustering informa-

tion (for cost-based optimizations) and must incorporate explicit

versioning semantics to support operations such as time-travel and

cloning. Further, it should support a sufficiently powerful query

language and/or API so that the clients don’t end up replicating the

functionality, while being flexible and extensible enough to support

diverse data sets and database engines. This naturally leads us to

adopt a hierarchical data model for TreeCat. We use an example

Retail database shown in Figure 3 to illustrate this point.

Example 1: The retail database primarily contains relational data,
but also includes other types of assets, such as MLmodels. Furthermore,
different types of assets have different nested substructures. While an
ML model consists of different versions, each identified by a tag, data
in a relational table are partitioned by a set of attribute values. Leaf
objects correspond to physical data objects in the storage system.

We further note that: (1) Each group has common contextual

information that is important for handling the constituent entities.

(2) A predicate is often evaluated against such information, allowing

entire groups of irrelevant objects to be pruned out during the data

retrieval process. (3) There is data locality where entities in the

same group are likely to be accessed together. These points are

illustrated by the example use case that we present later. We now

proceed with formal definitions of TreeCat’s data model.

(1) Every node in the hierarchy corresponds to an object of a type

with a set of properties.

(2) There are 2 types of objects:

(a) A non-leaf object has a parent and a set of children objects.

It is uniquely identified by its path, /𝑜𝑖𝑑1/𝑜𝑖𝑑2/../𝑜𝑖𝑑𝑛 ,
where 𝑜𝑖𝑑𝑛 is its object id and the object with the path of

/𝑜𝑖𝑑1/𝑜𝑖𝑑2/.../𝑜𝑖𝑑𝑛−1 is its parent.
(b) A leaf object has one or more parents, but does not have

any child object. A leaf object with multiple parents has

multiple paths. Given one of its paths, /𝑜𝑖𝑑1/𝑜𝑖𝑑2/../𝑜𝑖𝑑𝑛 ,
𝑜𝑖𝑑𝑛 is one of its object ids and the object with the path of

/𝑜𝑖𝑑1/𝑜𝑖𝑑2/.../𝑜𝑖𝑑𝑛−1 is one of its parents. Unlike non-leaf
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objects, a leaf object is immutable and can only be added

or removed.

(3) Every change (object addition, removal, or update) is associated

with a 𝑣𝑖𝑑 (version id) that determines its globally consistent

chronological order.

We highlight a few important design decisions that deviate from

standard practices. (1) Immutable leaf objects: Leaf objects, which
usually correspond to physical data objects (e.g., Parquet files), are

treated as immutable to enable seamless versioning and sharing —

updates can be handled as delete-plus-insert if needed. (2) Shared
parents:Allowing leaf objects to havemultiple parents lets datasets

be shared, cloned or branched, without duplicating physical files or

metadata. (3) Global chronological versions: A single, consistent

timeline underlies our concurrency control and powers version-

control features such as time-travel queries, snapshots, and clones.

Note that, while Figure 3 shows one possible instantiation of

metadata schema, the engine imposes no fixedmetadatamodel—users

choose whatever schema best fits their use case.

3.2 Query Language
TreeCat’s query language is based on top-down path navigation,

where a query takes the form of a path expression, a sequence of 𝑛

predicates, each of which is evaluated against the children of context

objects that satisfy the preceding path subexpression. A predicate

is either a wildcard character or an expression (enclosed with [])
that may be evaluated against the object id or object properties. We

extend the example in Figure 3 to demonstrate how client systems

can utilize TreeCat. Consider how a relational database system

would execute the following simple query.

SELECT count(*)
FROM retail.sales
WHERE region = 'US' AND date > '2025-01-01'
AND price > 5;

After parsing the query, the system has to semantically validate

it. First, it retrieves the metadata of the Sales table from TreeCat,

using the following metadata query.

/[obj_id='retail']/[obj_id='sales'
and obj_type='table']

A nonempty query result also validates that the table with the

specified database name and table name indeed exists. After the

table metadata is retrieved, the system uses it to further check

whether column names and types are valid, etc. During the query

planning phase, the paths and statistics of the data files that must

be scanned during the query execution have to be retrieved. The

following query is submitted to retrieve the file-level metadata that

satisfy the appropriate predicate filters.

/[obj_id='retail']/[obj_id='sales' and
obj_type='table']/[part_val='US']
/[part_val > '2025-01-01']/[stats.price.min > 5]

The physical plan can finally be executed, once it is constructed.

We briefly discuss related work, including the APIs of existing

standalone catalogs and query languages of similar, more general-

purpose database systems. Standalone catalogs, such as HMS and

lakehouse storage formats, provide basic RPC routines, such as

getTable() and getPartitions(), via Thrift or the REST API for retriev-

ing high-level catalog objects. Retrieving file-level metadata of a

given table involves iterating the list of file paths via an iterator

interface with an optional predicate filter, rather than a unified

query language like TreeCat. Meanwhile, the query languages of

general graph databases, including Cypher [50], Gremlin [28], and

GSQL [72], and those of XML databases, including XPath [9] and

XQuery [76], are more powerful than TreeCat’s query language

and can express a wider range of path queries. However, advanced

semantics makes efficient implementation of a strong transaction

isolation level very difficult. To our knowledge, there are currently

no efficient graph database or XML database that fully support

serializable isolation level. In our design, we sacrifice the query

expressivity, so we can guarantee serializability using techniques

that are discussed in Section 5.

3.3 System API
Basic API: Next, we list a basic API that TreeCat supports.

• startTransaction(mode): Starts a new transaction in the spec-

ified mode. If the mode is read-only, it returns the latest 𝑣𝑖𝑑

at which a snapshot of the catalog can be read. If the mode

is read-write, it creates a new transaction session and returns

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑖𝑑 and 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 .

• executeQuery(query, optional transaction_id, optional
vid): Executes a read query on the catalog using the query lan-

guage defined above.

• commit(transaction_id, write_set): Validates and commits

the transaction identified by 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑖𝑑 , applying modifica-

tions specified by the given𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡 .

• snapshot(snapshot_name, vid): Creates an immutable snap-

shot of the catalog data at 𝑣𝑖𝑑 and names it 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡_𝑛𝑎𝑚𝑒 .

• clone(src_path, dest_path, optional vid): Clones/copies
the object at 𝑠𝑟𝑐_𝑝𝑎𝑡ℎ and all of its descendants to the 𝑑𝑒𝑠𝑡_𝑝𝑎𝑡ℎ.

Note that this is a metadata-level operation, and does not involve

cloning the physical objects.

Updates: TreeCat can be updated via commit() function, which
takes the modifications in the form of a write set. A write set is a

collection of (path, value, type) tuples, where path specifies
the object to modify, value contains the updated value, and type
specifies the operation type, as listed below:

(1) Add: a new object of the given path and initialize it with the

given value. The operation has a precondition that the parent

object exists, but an object with the same path does not.

(2) Update: the object with the given path with the given value. A

new object is created if the path does not exist.

(3) Remove: the object with the given path and all its descendants.

(4) Merge: Also known as the commit-time update operation [35],

merge operation turns a read-modify-write operation into a

single blind write operation that is performed at commit time.

The given object value is a delta, rather than the new object

value, and is applied to the existing object value at commit time.

The operation has a precondition that the object already exists.

We describe the merge operation in more detail and highlight its

importance. Merge operation is useful when objects are frequently
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updated by commutative read-modify-write operations (e.g., coun-

ters), which may result in many conflicts. An important use case

in TreeCat is applying changes in statistics that propagate up the

hierarchy, which can result in contention on high-level statistics

objects. We present an example of an update to table statistics that

follows data insert:

Original Value: {...size:1487..min:3...}
Delta: {...size:{op:+,val:124}..min:{op:min,val:0}...}
Final Value: {...size:1611..min:0...}
Currently, the types of delta operations TreeCat supports include

addition, subtraction, min, and max for a limited number of types.

4 SYSTEM ARCHITECTURE
We first outline the high level architecture of TreeCat, then elabo-

rate on the core system components. We discuss the concurrency

control mechanism in Section 5 in greater detail.

4.1 High Level Architecture
TreeCat is designed as a single-server database engine that han-

dles incoming requests from remote client systems via the gRPC

interface. Key components include:

(1) Backend Server: Provides the API described in the previous

section and schedules client tasks to the main thread pool.

(2) Executor: Contains utilities for creating the execution plan of

a read query and executing it.

(3) TransactionManager:Manages the overall concurrencymech-

anism. It keeps track of ongoing transaction states and launches

a validation and commit process of the transaction upon receiv-

ing a commit request.

(4) Storage: All catalog data is stored in the storage layer, which

provides APIs to get an object by path and traverse all children

of an object. The underlying storage engine is RocksDB [57].

This architecture allows a single TreeCat instance (possibly repli-

cated, see Section 7) to handle the metadata for several different

logical databases, and concurrently serve many execution engines

while ensuring metadata consistency. Multiple TreeCat instances

could be spun to serve different logical databases for administrative

autonomy; however, any logical database (i.e., a collection of logi-

cally related tables or datasets) should ideally be served by a single

TreeCat instance so that cross-table consistency can be enforced.

4.2 Backend Server
We use gRPC [33], a Remote Procedure Call (RPC) framework devel-

oped by Google, to provide the APIs listed in the previous section.

gRPC is language-agnostic and offers portability across different

languages. While REST API is another option with good portability,

gRPC provides better performance due to its use of pre-compiled

serialization and deserialization routines and support for server-

side streaming, especially for large data loads (it is not uncommon

for reads in this context to return MBs of data).

4.3 Storage Engine
When selecting the underlying storage engine, we considered sev-

eral key requirements, including (1) optimizations for efficient tra-

versal of hierarchical data, (2) efficient implementation of explicit

Figure 4: High-level architecture of TreeCat

versioning semantics, (3) fine-grained concurrency control with

strong guarantees that can efficiently handle frequent updates to

hierarchical data, and (4) embedded storage for low latency.

Numerous options exist for full-fledged database systems, rang-

ing from RDBMS with XML [56, 63, 68] and graph [70] extensions,

to graph databases [2, 18, 20, 31, 37, 40, 49, 51, 79], and document

stores [2, 13, 46]. However, meeting all the requirements, especially

(2) explicit versioning and (3) fine-grained concurrency control,

proves to be difficult, as these systems are designed and imple-

mented for more general use cases. As discussed before, lack of

efficient support for serializable isolation level is especially prob-

lematic for graph databases and document stores.

After careful consideration, we built TreeCat on top of RocksDB,

a write-optimized key-value store. Inspired by file systems built

on top of write-optimized key-value stores [21, 39, 64], we adopt a

storage layout where objects are sorted by the full object path, first

by the path depth, then lexicographically. This layout allows fast

listing of sibling objects by performing a range scan on the common

prefix. It has advantages over storing the parent-child relation as

a separate set of edges, which incurs the overhead of joining the

objects (vertices) with edges during traversals. Although each range

scan incurs a seek cost, the expense is amortized since objects

typically have multiple children; as we show later, query cost is

bounded by the query’s selectivity because most irrelevant objects

are pruned early. This layout is also more suited for versioning and

transactional updates compared to the scheme where an object’s

children are stored together as a single list. With the latter, installing

a new object version forces installation of an updated version of the

parent’s children list, potentially cascading changes to the root and

causing read–write conflicts that severely limit concurrency under

serializable isolation. This also imposes a fundamental limitation of
Iceberg for supporting multi-table transactions.

Object values are stored in BSON format [12], a binary JSON

format that originated from MongoDB, is queriable, and can easily

be converted to JSON format.While other efficient JSON-compatible

binary formats exist (e.g., PostgreSQL’s JSONB), we chose BSON

for its robust library support and rich feature set, which enables

faster system development. We use two separate storage systems,
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Figure 5: Example storage layout of the Sales table from Fig-
ure 3 in InnerObjectStore.

InnerObjectStore and LeafObjectStore, which store non-leaf

objects and leaf objects respectively. LeafObjectStore stores one
object value for each path and the 𝑣𝑖𝑑 range during which the

object is visible. Unlike leaf objects, multiple past versions of non-

leaf objects are persisted. For non-leaf objects, we adopt the “time-

travel" storage scheme [77] where the most recent version is stored

in themain SnapshotStore and the chain of past versions are stored
in a separate DeltaStore, as illustrated in Figure 5. SnapshotStore
has the following mapping:

path→ delta_vid, cur_vid, object value

where 𝑐𝑢𝑟_𝑣𝑖𝑑 is the 𝑣𝑖𝑑 from which the current snapshot is valid,

and 𝑑𝑒𝑙𝑡𝑎_𝑣𝑖𝑑 is the 𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑 of the previous object value. DeltaS-
tore has the following mapping:

start_vid, end_vid, path→ object value

where the object value is visible between 𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑 and 𝑒𝑛𝑑_𝑣𝑖𝑑 .

In DeltaStore, the objects are sorted by the object path, then by

𝑠𝑡𝑎𝑟𝑡_𝑣𝑖𝑑 in descending order, so past object values can be traversed

through a range scan. Retrieving the object value of a non-leaf

object involves first checking the SnapshotStore for the current
value and traversing the past values in DeltaStore, if necessary.
Retrieving past versions incurs the cost of version traversal, but

we expect most operations will access the most recent version.

LeafObjectStore has the following mapping:

path→ create_vid, tombstone_vid, object value/primary path

where the object is visible between 𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑖𝑑 and 𝑡𝑜𝑚𝑏𝑠𝑡𝑜𝑛𝑒_𝑣𝑖𝑑 .

Because leaf objects can have multiple parents, there could be a

layer of indirection where the path could map to the primary path,

which, in turn, maps to the object value.

4.4 Query Execution
A read query is executed as a sequence of physical operators anal-

ogous to the correlated join operator from RDBMSs (also called

CROSS APPLY or LATERAL JOIN), which passes each value from

the outer query to a user-defined function or a subquery and eval-

uates it. Unlike other standard join operators, the correlated join

operator allows for early pruning of objects in the inner query by

only scanning objects that join with objects that satisfy the outer

query. We use this mechanism to avoid scanning large number of

leaf objects whose ancestors do not satisfy the preceding predicates

in the path expression. For example, while executing /[obj_id =

‘retail’]/[obj_id = ‘sales’]/*/*/*, file objects that belong
to the Customer table need not be scanned.

Given a path expression of depth 𝑛, the execution plan is con-

structed as a single chain of 𝑛 execution nodes, each with the cor-

responding predicate, a fixed-sized output buffer, a pointer to its

child node, and handles to the object store. The query plan follows

a standard batch iterator model where each node invokes 𝑛𝑒𝑥𝑡 () on
its child node, retrieving a batch of context object paths. For each

context object path, the executor scans and evaluates the predicate

against every child object visible in the 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 . If the object satis-

fies the predicate, its path (or its value if the last execution node) is

appended to the output buffer. The execution of a simple example

query is illustrated in Figure 6. The planner currently applies one

optimization rule where the lower and/or upper bounds of the ob-

ject store iterator are set if the predicate is only satisfied by a range

of object ids (e.g. [1 < obj_id < 100]).
Assuming that the underlying data takes the form of a balanced

tree 𝑇 with a constant fan-out 𝑓 and height ℎ, we can compute the

cost of a path query𝑞 of depth𝑑 where 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑞) = (𝑠1, 𝑠2, .., 𝑠𝑑 )
specifies the list of predicate selectivities. We also assume indepen-

dent selectivities for simplicity. The two main cost components

are the scan cost and seek cost of every range scan. We first com-

pute the total number of scan operations. At 𝑖𝑡ℎ level of the query

evaluation, the number of scanned objects increases by a factor of

𝑠𝑖+1 𝑓 :

𝑛𝑠𝑐𝑎𝑛 = 𝑓 + 𝑠1 𝑓 2 + ... +
𝑑−1∏
𝑖=1

𝑠𝑖 𝑓
𝑑 ≤ 𝑠𝑑 𝑓 𝑑+1

𝑠 𝑓 − 1 ≤ 𝑠𝑑 𝑓 𝑑+1

where 𝑠 = max
𝑑−1
𝑖=1

𝑠𝑖 and 𝑠 𝑓 ≥ 2. The number of seek operations

is equal to the number of scan operations of the preceding path

sub-expression and can be computed to be 𝑠𝑑−1 𝑓 𝑑 in a similar

manner. Because there is no closed form formula for 𝑓 in terms

of |𝑇 |, we approximate 𝑓 to |𝑇 |1/ℎ . Finally, the total cost can be

approximated to 𝑠𝑑−1 · |𝑇 |𝑑/ℎ (𝑠 · |𝑇 |1/ℎ · 𝑐𝑠𝑐𝑎𝑛 + 𝑐𝑠𝑒𝑒𝑘 ) where 𝑐𝑠𝑐𝑎𝑛
and 𝑐𝑠𝑒𝑒𝑘 represent the cost of a single scan operation and that of a

seek operation, respectively. We observe that the multiplier effect

of selectivity 𝑠 effectively bounds the number of scan and seek

operations necessary for executing the given query, which aligns

with the intuition about “early pruning" of objects. This contrasts

with more popular join operators, such as sort-merge join or hash

join that require at least one scan of the entire table, which can be

costly for a large table size (analogously tree size).

4.5 Version Control Operations
The system supports globally consistent chronological versioning

of the entire catalog data, using monotone increasing 𝑣𝑖𝑑 associated

with every transaction. 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 () operation is implemented by

maintaining an additional mapping between the snapshot name and

the 𝑣𝑖𝑑 , which can be used to retrieve the correct version. 𝑐𝑙𝑜𝑛𝑒 ()
operation copies the source object and all of its descendants (except

for the leaf objects) at some 𝑣𝑖𝑑 to the destination path. For cloned

leaf objects, the system adds a mapping from the new destination

paths to the primary paths, so they are shared between the source

and destination parents, saving the storage costs of duplication.
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Figure 6: Query Execution of a Simple Example Query:
/[obj_id = retail]/[obj_id = sales]/*. The output buffer
in the top most node holds the final result set.

5 CONCURRENCY CONTROL
In this section, we present TreeCat’s concurrency control mech-

anism, which guarantees serializability. Besides our use case in

TreeCat, the scheme is also of independent interest in a more gen-

eral context of databases with a hierarchical data model.

5.1 Discussion
We first discuss the background and primary motivations, followed

by an in-depth description of the implementation details. We adopt

the MVOCC scheme where read-only transactions operate on a

versioned snapshot of the data, and read-write transactions follow

a protocol similar to the standard OCC mechanism. Because we

implemented MVOCC on top of the existing version system, 𝑣𝑖𝑑 is

synonymous with 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 as commonly discussed in the con-

currency control literature. For read-only transactions, we follow

the common practice of assigning a 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 , the version up to

which data are safe for read, at the start of the transaction, and

executing queries against the versions of objects visible at the as-

signed 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 . Since this aspect of the mechanism aligns with

other existing systems, our main focus is on the OCC, which utilizes

a predicate-based method, often overlooked by standard schemes.

The important feature of TreeCat is that read queries involve

predicate read operations. Unlike simple key-value read and write

operations, predicate read operations can introduce predicate depen-
dencies [1, 10], which are distinguished from the item dependencies
(write-read, write-write, and read-write) that are commonly dis-

cussed in the concurrency control literature. The infamous phantom
read anomaly is one example of a predicate anomaly that can occur

if predicate dependencies are not handled correctly by the concur-

rency control mechanism [22]. Unlike item dependencies—which

are based on conflicting operations on the same item—predicate

dependencies occur when an update alters whether an object sat-

isfies a given predicate. Specifically, if a write operation’s before-

image satisfies the predicate of a predicate read operation but its

after-image does not, or vice versa, a predicate dependency exists

between the two operations [1]. Item-based approaches, including

record locks in 2PL (2-Phase Locking), read and write sets in OCC,

and time stamps on individual items in TO (timestamp ordering),

lack semantics for predicate reads, and cannot handle predicate

dependencies without additional mechanisms.

The most common way to augment these schemes to handle

predicate dependencies is to lock the entire scan range of the predi-

cate read operation. If an index scan is used, the scan range can be

limited to a range of values of the indexed attribute on which the

predicate is defined. However, this optimization cannot be applied

to arbitrary predicates, which may be a complex expression or in-

volve attributes on which an index does not exist. The scheme is, at

best, a coarse-grained approximation that may lock an irrelevant

range of values, resulting in unnecessary conflicts.

We illustrate this point with a simple example. Let 𝑅 be a logical

table that is partitioned into multiple files. Transaction 𝑇1 performs

a predicate read operation on 𝑅’s file metadata with the predicate 𝑝

on the file statistics. Because there is no index on the file statistics,

𝑇1 scans the entire file metadata of 𝑅. Meanwhile,𝑇2 inserts a file 𝑓

with file metadata that does not satisfy 𝑝 into 𝑅. There is no reason

for the two operations to conflict, because the new file 𝑓 is never

visible to 𝑇1’s predicate read, regardless of the order of operations.

However, with scan range locking,𝑇1 would lock the entire range of

𝑅’s file metadata. In a pessimistic scheme (S2PL), either of the two

transactions would block the other. In an optimistic scheme (OCC),

if 𝑇2 is submitted for validation before 𝑇1, 𝑇1 would be aborted.

There are predicate-based methods that can precisely detect any

predicate dependency. One scheme is to re-execute the scan op-

erations to observe any changes in the visible objects [43]. While

precise, re-executing scans can be costly for large ranges. Preci-

sion locking [41] is a form of predicate locking that evaluates the

predicate directly against posted write operations. This technique

detects predicate dependencies accurately and avoids the satisfiabil-

ity test problem of conventional predicate locking. But in TreeCat,

a read query is correlated whence an object satisfies the entire path

expression only if all of its ancestors also satisfy the corresponding

path sub-expressions. A naive implementation that only considers

the predicates in a given query can, in fact, result in false conflicts.

In our scheme, we combine scan range locking with precision

locking, leveraging the strengths of both methods. We first apply

optimistic prefix-based scan range locking to detect candidate con-

flicts, i.e., write operations that fall within the scan range, but may

not necessarily cause conflicts. Then, we use optimistic precision

locking to confirm whether the candidate is actually a conflict. This

scheme achieves the granularity of precision locking while improv-

ing efficiency by pruning unnecessary predicate evaluations with

scan range locking. In addition, we make use of an in-memory index

structure to quickly locate only the log records that fall in the scan

range, rather than applying precision locking on the entire set.

5.2 Implementation
The concurrency control is handled by the TransactionManager,
which keeps track of 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 , the latest version up to which, the

catalog can be read safely, and 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 , which is the monotone

increasing vid assigned to a transaction before final commit. Key

in-memory data structures include:

(1) 𝑆𝑐𝑎𝑛𝑆𝑒𝑡 : Maintained by each transaction. Stores pairs of the

scan range (in the form of the context object path) and the

4329



predicate of the predicate read operations executed as part of

the transaction.

(2) 𝐿𝑜𝑔𝐵𝑢𝑓 𝑓 𝑒𝑟 : Maintained by each transaction. Stores before- and

after-images of all recent write operations.

(3) 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝: Used by TransactionManager for validation.

Maps object path to the most recent 𝑣𝑖𝑑 of its children.

(4) 𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 : Used by TransactionManager for validation. Index
on the 𝐿𝑜𝑔𝐵𝑢𝑓 𝑓 𝑒𝑟 , mapping pairs of object path and 𝑣𝑖𝑑 to the

log records. The index is implemented using a lock-free skip

list and is sorted by the parent path, then 𝑣𝑖𝑑 .

When 𝑠𝑡𝑎𝑟𝑡𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛() is called, a new transaction session is

created and 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 is loaded as the vid at which all read queries

are executed in the session. During query execution, pairs of pred-

icates and parent paths (prefix) of objects scanned for predicate

evaluation are added to the 𝑆𝑐𝑎𝑛𝑆𝑒𝑡 . Also, a private copy of thewrite

set is constructed on the client side. When the transaction is submit-

ted for the commit process, the write set is sent to the server and

undergoes preprocessing, where it is copied to the 𝐿𝑜𝑔𝐵𝑢𝑓 𝑓 𝑒𝑟 and

preconditions are checked. If the transaction passes these checks,

the transaction is scheduled for the main commit process.

The main commit process consists of two phases: validation

and batch write. For each phase, there is a dedicated thread pool

of a fixed size, with each thread handling a single hash parti-

tion of the 𝑆𝑐𝑎𝑛𝑆𝑒𝑡 and the write set. At the start of the valida-

tion,TransactionManager executes a 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑛𝑑_𝑎𝑑𝑑 () operation
on the 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 and assigns it to the transaction. Then, each

worker thread validates the scan ranges in the 𝑆𝑐𝑎𝑛𝑆𝑒𝑡 against

the 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝 to determine whether any objects scanned by

predicate read operations have changed. If potential conflicts are

detected, an iterator on 𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 is set to scan and apply precision

locks on corresponding recent writes with 𝑣𝑖𝑑 greater than the

transaction’s 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 and fall in the scan range. If any conflict

is detected through precision locking, the transaction is aborted.

After all threads pass validation, they update the 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝 and

𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 based on their respective write set partitions for the trans-

action. The validation phase (omitting the initial 𝑣𝑖𝑑 assignment

and latter updates to in-memory data structures) proceeds as per

Algorithm 1. Note that for merge operation, before- and after-image

may have to be constructed as they are not available until the final

commit. However, once constructed, the images are cached so they

are accessible during the validation of subsequent transactions.

Once validation is complete, the transaction proceeds to the write

phase. During this phase, each thread processes its assigned write

partition, evaluating the final values of merge operations (commit-

time updates) and applying the writes as an atomic batch write

operation to the underlying RocksDB instance. After every thread

finishes its batch write, WAL records of the transaction are flushed

to disk along with those of other transactions via 𝑆𝑦𝑛𝑐𝑊𝐴𝐿() op-
eration, which calls 𝑓 𝑠𝑦𝑛𝑐 () on the WAL files. The 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 is also

updated, making the committed changes visible for subsequent

reads. Transactions are processed one at a time in each phase, but

parallelism is achieved via hash-partitioning the workload and

pipelining different phases of the commit process.

Old 𝐿𝑜𝑔𝐵𝑢𝑓 𝑓 𝑒𝑟s and entries in 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝 and 𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 that

are no longer needed are asynchronously garbage collected by a

background thread. For this purpose, the TransactionManager

Algorithm 1 Validation Algorithm

1: for (𝑝𝑎𝑡ℎ, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) ∈ 𝑡𝑥𝑛.𝑆𝑐𝑎𝑛𝑆𝑒𝑡
2: // scan range locking

3: if 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝 [𝑝𝑎𝑡ℎ] > 𝑡𝑥𝑛.𝑟𝑒𝑎𝑑_𝑣𝑖𝑑

4: 𝑖𝑡𝑒𝑟 ← 𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 .𝑛𝑒𝑤𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟 ()
5: 𝑖𝑡𝑒𝑟 .𝑠𝑒𝑒𝑘 (𝑝𝑎𝑡ℎ, 𝑡𝑥𝑛.𝑟𝑒𝑎𝑑_𝑣𝑖𝑑)
6: while 𝑖𝑡𝑒𝑟 .𝑝𝑎𝑡ℎ.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑝𝑎𝑡ℎ

7: if 𝑖𝑡𝑒𝑟 .𝑡𝑦𝑝𝑒 =𝑚𝑒𝑟𝑔𝑒 and 𝑖𝑡𝑒𝑟 .𝑖𝑚𝑎𝑔𝑒.𝑒𝑚𝑝𝑡𝑦 ()
8: 𝑖𝑡𝑒𝑟 .𝑖𝑚𝑎𝑔𝑒.𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 ()
9: // precision locking

10: if 𝑖𝑡𝑒𝑟 .𝑖𝑚𝑎𝑔𝑒.𝑏𝑒 𝑓 𝑜𝑟𝑒 |= 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

11: 𝑎𝑏𝑜𝑟𝑡 (𝑡𝑥𝑛)
12: else if 𝑖𝑡𝑒𝑟 .𝑖𝑚𝑎𝑔𝑒.𝑎𝑓 𝑡𝑒𝑟 |= 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

13: 𝑎𝑏𝑜𝑟𝑡 (𝑡𝑥𝑛)

keeps track of𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 , the oldest 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 among the current

transactions. After each transaction commit, the𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 is up-

dated and all entries in the aforementioned data structures with

𝑣𝑖𝑑 below the𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 are garbage collected.

5.3 Proof of Correctness
In this section, we prove that TreeCat’s concurrency control mech-

anism guarantees serializable isolation.

Concurrency Control Model:We first formalize the concurrency

control model. We follow Adya’s model [1], where every object in

the database has one or more versions. Every operation on an object

is mapped to exactly one version of that object. Given an object 𝑥 ,

𝑥𝑖 is a version with 𝑣𝑖𝑑 𝑖 , installed by transaction 𝑇𝑖 . Every object

is assumed to exist forever regardless of when they are inserted or

deleted. The unborn state is represented as version 𝑥𝑖𝑛𝑖𝑡 , while the

dead state is represented as 𝑥𝑖 , installed by the delete operation of

𝑇𝑖 . Every object is uniquely identified by its full path.

It is important to discuss how TreeCat’s query evaluation is

represented in this model. Evaluation of a path expression involves

performing a series of predicate range scans, each with respect to

a context parent object. For example, given the path expression,

/[obj_id = “retail"]/[name = “sales"], the evaluation of

the second predicate, 𝑛𝑎𝑚𝑒 = “𝑠𝑎𝑙𝑒𝑠”, is executed as a range scan

on the children of /retail. Each range scan can be modeled as a

predicate read operation, where the predicate is a conjunction of the

original predicate and the equivalence between the object parent

path and the context parent path. Following the above example,

evaluating 𝑛𝑎𝑚𝑒 = “𝑠𝑎𝑙𝑒𝑠” against /retail’s children objects can

bemodeled as a predicate read operation with the predicate,𝑛𝑎𝑚𝑒 =

“𝑠𝑎𝑙𝑒𝑠” ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 = /𝑟𝑒𝑡𝑎𝑖𝑙 . The evaluation of a single predicate

in a path query can correspond to multiple such predicate read

operations, as there can be multiple context parent objects with

which it is evaluated.

Main Proof: We now proceed with the main proof.

Lemma 1. For any two committed transactions 𝑇𝑖 and 𝑇𝑗 where
𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑𝑖 < 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 𝑗 , there is no dependency from 𝑇𝑗 to 𝑇𝑖 .

Proof. We prove the lemma by enumeration. First, there can-

not be any ww-dependency from 𝑇𝑗 to 𝑇𝑖 because write operations

are performed in the order of the 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 in the write phase.
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Second, wr-dependency from 𝑇𝑗 to 𝑇𝑖 is also not possible. Given

that 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑𝑖 < 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑𝑖 and 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑𝑖 < 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 𝑗 ,

𝑟𝑒𝑎𝑑_𝑣𝑖𝑑𝑖 < 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 𝑗 by transitivity. Because changes commit-

ted by 𝑇𝑗 become visible only after the 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 has been incre-

mented to 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 𝑗 ,𝑇𝑖 , which has a lower 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 , cannot ob-

serve any changes installed by𝑇𝑗 . Lastly, we show by contradiction

that there cannot be any rw-antidependency from𝑇𝑗 to𝑇𝑖 . Assume

that there is a rw-antidependency from 𝑇𝑗 to 𝑇𝑖 . Consider the state

when𝑇𝑖 passed validation, but𝑇𝑗 is about to enter validation. There

must be a write operation𝑤 executed by 𝑇𝑖 on an object 𝑜 , whose

before- or after-image satisfies the predicate of a predicate read

operation 𝑃 executed by 𝑇𝑗 , which scans𝑤 ’s before-image. Per our

earlier discussion, the predicate of 𝑃 is 𝑝∧𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑐 , where 𝑝 is the

predicate in the path query and 𝑐 is the context parent object. Dur-

ing the query execution of𝑇𝑗 , (𝑐, 𝑝) was added to𝑇𝑗 ’s 𝑆𝑐𝑎𝑛𝑆𝑒𝑡 . Also,
(𝑜.𝑝𝑎𝑟𝑒𝑛𝑡, 𝑖) was added to 𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝 and a mapping from 𝑜 to

𝑤 ’s before- and after-images was added to 𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 during the val-

idation of𝑇𝑖 . During the validation of𝑇𝑗 , 𝑐 is found in𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑀𝑎𝑝

because 𝑐 = 𝑜.𝑝𝑎𝑟𝑒𝑛𝑡 holds true. Since 𝑟𝑒𝑎𝑑_𝑣𝑖𝑑 𝑗 < 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑𝑖 ,

𝑝 is evaluated against 𝑜’s entries in 𝐿𝑜𝑔𝐼𝑛𝑑𝑒𝑥 . Because the before-

or after-image of 𝑤 satisfies 𝑝 , the rw-conflict is detected and 𝑇𝑗
is aborted, leading to a contradiction. We have now considered all

types of dependencies, so the lemma holds true. □

Theorem 1. Any schedule of committed transactions output by
TreeCat is conflict serializable.

Proof. We prove the theorem by contradiction. Assume that

there is a schedule 𝑠 , output by TreeCat, that is not conflict serial-

izable. Then, the corresponding precedence graph, 𝐺 (𝑠) = (𝑉 , 𝐸)
must contain at least one cycle. Consider a directed edge (𝑇𝑖 ,𝑇𝑗 ) in
the cycle. Because there is a dependency from𝑇𝑖 to𝑇𝑗 , 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑𝑖 <

𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 𝑗 by Lemma 1. Because (𝑇𝑖 ,𝑇𝑗 ) is in a cycle there is

a path from 𝑇𝑗 to 𝑇𝑖 . Using Lemma 1 and transitivity, we can

prove by induction (which we omit for brevity) that 𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑𝑖 >

𝑐𝑜𝑚𝑚𝑖𝑡_𝑣𝑖𝑑 𝑗 , resulting in a contradiction. □

5.4 Related Work
We first discuss the concurrency control mechanisms of other cata-

log systems and then examine how predicate reads are handled by

concurrency control mechanisms across more general data systems.

Catalog Concurrency Control: Traditional RDBMSs store the

catalog as a set of relations, relying on the same concurrency mech-

anism that is used for data. While data warehouses use proprietary

mechanisms, Snowflake is known to use FoundationDB to persist

transaction states and lock queues [47]. Even though resource locks

at the level of micro-partitions are available, most single table DML

queries require locking all micro-partitions [65]. Delta Lake uses

snapshot-based OCC where, during the final commit, it tries to

atomically write the next delta log record. If the underlying stor-

age system does not support atomic file rename, it has to resort

to another transactional system, such as DynamoDB [60]. Delta

Lake currently only supports single-table transactions. However,

there is early work on introducing a new commit protocol called

commit coordinator, an external system that is dedicated to handling

concurrency control, which may support multi-table transactions

in the future [69]. Iceberg also uses snapshot-based OCC where,

after writing all the metadata files (manifest files, manifest list files,

and metadata file), it does a final commit by switching the current

pointer in the catalog to the new metadata file. If there is a conflict,

the transaction undergoes a retry validation, so the entire operation

need not be repeated from scratch [55]. Like Delta Lake, Iceberg’s

commit protocol only supports single-table transactions. Recently,

multi-table transactions have been added to the Iceberg REST API.

But as far as we know, Nessie [52], which supports git-like version-

ing, is the only compatible catalog that supports it. Even so, the

transactions operate at the level of a single branch of the whole

database. Lastly, Hudi also uses snapshot-based OCC and does con-

flict resolution based on the files modified by multiple writers [26].

Hudi requires an external lock provider for locking tables and can

only support single-table transactions.

Predicate Read: To guarantee serializable isolation, a data system

must account for any predicate dependencies [1]. The standard

solution is to lock the entire scan range of the predicate read oper-

ation, an example of which is next key locking [45], which locks

the current record and the gap until the next record. Since taking

many record locks can cause excessive overheads, multiple gran-

ularity locking [32] is commonly used to escalate locks to more

coarse-grained ones, such as table locks. Large scan range may

cause unnecessary conflicts, so it is crucial to minimize the scan

range. For simple predicates, performing an index scan can limit

the scan range. A more advanced technique may be used to better

approximate the minimum scan range for complex predicates. For

example, Spanner uses a runtime data structure called a filter tree

to compute the approximate scan range [7]. One way to precisely

handle predicate dependencies is to validate the scan operation

by re-executing it, which is adopted by Hekaton [19]. Another ap-

proach is to use predicate-based locking. Conventional predicate

locking involves satisfiability test problem, which is known to be

NP-complete [36]. However, precision locking avoids this problem

by directly evaluating predicate against before- and after-images

of posted writes [41]. The technique was not used in any real sys-

tem for a long time, but was later adopted by Neumann et al. for

implementing the MVOCC mechanism of Hyper [54].

6 EXPERIMENTAL EVALUATION
In this section, we present a comprehensive experimental evalu-

ation of TreeCat. We set up a cluster of 4 physical machines on

CloudLab [11], each equipped with a 10 core Intel Xeon Silver 4114

processor, 192GiB DDR4 memory, and a 64GB SATA SSD, inter-

connected by 10Gbps ethernet. We implemented a catalog API,

including 𝑔𝑒𝑡𝑇𝑎𝑏𝑙𝑒 () and 𝑙𝑖𝑠𝑡𝐹𝑖𝑙𝑒𝑠 () operations, in Apache Spark

3.4, allowing communication with a standalone instance of TreeCat.

6.1 Concurrency Control Mechanism
To evaluate the concurrency control mechanism, we implemented

two standard concurrency control protocols in TreeCat. The first is

OCCwith optimistic scan range locking (OSL), which also primarily

utilizes prefix-based scan range locks. However, instead of precision

locking, it uses more fine-grained range locks for bounded range

scans. For example, if only table partitions 1 to 100 are scanned, only

the range of object id, [1, 100], rather than the entire range of table

partitions, is optimistically locked. The second scheme implements
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(a) Read-Intensive (80-20) (b) Balanced (50-50) (c) Write-Intensive (20-80) (d) 30 Threads

Figure 7: Throughput and abort rate across different number of client threads and different types of workloads.

S2PL with multiple granularity locking (MGL). All three schemes

efficiently handle read-only transactions with an identical MVCC

protocol. Our new proposed concurrency control mechanism, i.e.,

TreeCat’s default protocol, is referred to as OSPL (optimistic scan

range and precision locking).

We used a microbenchmark largely derived from the TPC-DS

benchmark. While TPC-DS proceeds as a single fixed sequence of

phases, we design our benchmark so that multiple client threads

randomly select queries and perform the corresponding metadata

operations (against TreeCat) concurrently. Besides the original read

queries and data maintenance operations, which involve data inser-

tion and deletion on the fact tables, we introduce two new opera-

tions: an optimize operation, which selects and merges small files,

and dimension table insertion. These new operations allow the

simulation of real-world scenarios that require support formulti-
table transactions. The relative distribution of write operations is

adjusted with realistic assumptions about standard data warehouse

workloads. For example, we assume that fact table insertion occur

12 times more frequently than dimension table insertion (every 5

minutes vs. every hour) and 144 times more frequently than opti-

mize operations (every 5 minutes vs. every 12 hours). We adopted

the schema of the TPC-DS benchmark, but used a custom data

generator to generate relatively large amount of metadata. The

amount of metadata per table, the cardinality of surrogate keys and

business ids are in line with the TPC-DS specification for a scale

factor of 100 terabytes. In our experiment, we deployed TreeCat on

a single machine and client threads on the other three machines.

We first conducted a scalability experiment to measure overall

throughput, abort rate, and latency over a set time duration across

different numbers of client threads and percentages of read-write

transactions. For all three schemes, read-only transactions do not

cause any conflict as they follow the MVCC protocol. Consequently,

performance differences between the schemes are minimal for more

read-intensive workloads, as shown in Figure 7. However, for write-

intensive workloads, throughput diverges, with OSPL significantly

outperforming the other two as the number of client threads in-

creases. The main source of contention is read-write conflicts on the

customers table, which is one of the dimension tables to which data

is inserted periodically. Inserting into a fact table requires joining

the input data with dimension tables on the business ids (primary

key in the source OLTP database) and should only conflict with

dimension table insertion if the ranges of dimension table business

IDs overlap. However, both OSL and MGL apply coarse-grained

scan range lock on the dimension tables, leading to unnecessary

conflicts. As a result, the abort rate of OSL increases almost lin-

early with the number of threads, reaching 31.3% for the balanced

workload and 63.7% for the write-intensive workload at 30 client

threads. Similarly, MGL maintains low throughput since transac-

tions are blocked while waiting for lock acquisition. By contrast,

OSPL avoids false conflicts through precision locking on the file

statistics, achieving significantly higher throughput and a low abort

rate. The latter two plots of Figure 7 show this trend more clearly

as the percentage of read-write transactions increases for 30 client

threads. A considerable proportion of read-only transactions scan

entire fact tables and have longer latency than read-write transac-

tions, which is why the throughput of OSPL increases with more

write-intensive workloads.

Next, we compare latency across the different schemes for the

balanced workload. Because read-only operations have longer la-

tencies than read-write transactions and follow the same MVCC

protocol in all three schemes, we isolate and analyze the latencies of

read-write transactions. Figure 8 shows the 99th percentile latency

of read-write transactions across different number of threads and

for each operation type. While the latency remains consistent for

the two OCC schemes, it increases almost linearly with the number

of client threads for MGL as transaction lock queues build up. Cat-

egorizing transactions by operation type reveals that the latency of

dimension table insertion is almost as twice as long as that of fact

table insertion, indicating that the conflicts on the updated dimen-

sion table is the main source of contention for MGL. The latency of
optimize operation is significantly longer for OSPL compared to OSL
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Figure 8: 99th percentile operation latency of read-write
transactions across different number of client threads and
operation types for 30 threads, respectively. In the latter fig-
ure, we use abbreviations: Opt (optimize), Fact (fact table
insertion), Dim (dimension table insertion), and Del (delete).

because higher number of small files accumulate with less aborts on
insertion, resulting in larger optimize operation.

Lastly, we evaluate how two important structural properties of

the metadata schema, breadth and depth, affect performance. These

experiments use a separate microbenchmark designed to be more

generalizable. The workload consists of a mix of read and read-write

operations (50-50) on a single data set, which is range-partitioned

into 100000 data files by a set of independent clustering attributes.

Both types of operation perform a predicate read operation with

fixed selectivity, using range predicates on randomly selected clus-

tering attributes. Read-write operation additionally inserts a new

data file. A partition level is constructed by grouping data files by a

clustering attribute. Nested grouping by multiple attributes results

in a multi-level hierarchy where the number of such attributes

determines the overall partition level (depth) and the cardinality

determines the fan-out (breadth). As shown in Figure 9, throughput

is low across all schemes at low fan-out because of large scan ranges

(e.g., all 100000 files have to be scanned at the partition level of 1).

However, both OSL and MGL are further affected by contention

from coarse-grained scan range locking. OSPL, on the other hand,

avoids false conflicts as it uses a predicate-based method. Through-

put converges with higher fan-out, as MGL and OSL benefit from

more fine-grained lock ranges. A similar trend can be observed with

different partition levels (depths) for the same reason. However,

throughput is divergent even at the highest partition level because a

subset of the clustering attributes do not form partitioning groups; a

predicate read operation only on these attributes requires scanning

all partition groups, resulting in higher contention for OSL and

MGL. Although OSL outperforms MGL in throughput, it suffers

from high abort rates.

6.2 Comparative Evaluation
Next, we compare TreeCat with HMS, Delta Lake, and Iceberg. An

apples-to-apples comparison is difficult because TreeCat does not

support a catalog API fully compatible with Spark and all the sys-

tems have different architectures and transactional guarantees. We

nonetheless try our best to compare the relative costs of metadata

operations and conduct an end-to-end experiment with an alter-

nate database engine. We set up HDFS (Hadoop Distributed File

System) and Spark on the 4 node cluster. We used Hive 2.3, Delta

Figure 9: Throughput for different breadths (fan-out) and
depths (partition level) of the metadata schema.

Lake 2.4, and Iceberg 1.5, all of which are compatible with Spark

3.4. We used a single table with a schema identical to that of the

Store Sales table in the TPC-DS, partitioned by the sales date, from

1998-01-01 to 2003-12-31. To test scalability of read performance,

we populated the table with varying numbers of files and measured

the latency of retrieving files with a range filter on the date. While

our primary implementation of the catalog API uses a single thread

to retrieve the query result via a single stream, both HMS and Ice-

berg leverage multiple cores on the client machine to retrieve the

result over multiple streams where HMS calls 𝑙𝑖𝑠𝑡𝐹𝑖𝑙𝑒 () and Iceberg
retrieves manifest files in parallel. Client-side parallelism can be

achieved with TreeCat quite easily by adding a partitioning predi-

cate to the path query, so that multiple threads can concurrently

submit queries and retrieve distinct result sets. Our implementation

applies the 𝑒𝑛𝑑𝑤𝑖𝑡ℎ() operation to the partition value due to the

limitations of the current query language. We used this parallel

implementation for the following experiments.

Figure 10: Median latency of file retrieval across different
number of files for 1 day and 365 days predicate ranges, re-
spectively.

As shown in Figure 10, we first analyze the scalability of the file

retrieval operation with high selectivity (date range of 1 day) and

with low selectivity (date range of 365) across different numbers

of files. For the 1-day predicate range, TreeCat consistently shows

low latency as it efficiently traverses the hierarchical data on the

server and only returns the file metadata in the given data parti-

tion. HMS also scales quite well as it calls 𝑙𝑖𝑠𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠𝑏𝑦𝐹𝑖𝑙𝑡𝑒𝑟 ()
to only retrieve the partitions in the given range from the thrift

server. Although Delta Lake benefits from Spark’s distributed pro-

cessing engine, the overhead of executing the job adds significant

latency, resulting in a relatively high minimum latency of around

600 ms. This contrasts with previous experimental results [3, 38]

and we suspect that performance could be significantly improved
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Figure 11: Median latency of file retrieval across different
predicate ranges and numbers of physical cores on client
machine, resp. File count is 500000 for both while predicate
range is 365 for the latter.

with a better-configured, larger Spark cluster. But the client-side

implementation of getting the end result appears to be a major

bottleneck. Although Iceberg utilizes multiple cores for processing

manifest files, the manifest file size can get large, resulting in the

longer latency for the higher file counts. TreeCat outperforms the

other systems and scales well also for the 365-days predicate range.

HMS beats both Delta Lake and Iceberg when the file count reaches

50000, which we mainly attribute to the low latency of HDFS.

Next, we analyze how the selectivity of the date range filter

affects the latency for the file count of 500000. Both TreeCat and

HMS effectively prune irrelevant date partitions, resulting in better

performance for narrower predicate ranges. Iceberg, on the other

hand, operates at the granularity of manifest files, so the latency

remains relatively high. Delta Lake also does not scale too well as

the number of retrieved files increases. We also evaluate how the

number of physical cores on the client machine affects the overall

performance, using 365-day date range and a file count of 500000.

As expected, the performance of HMS, Iceberg, and TreeCat, which

take advantage of client-side parallelism, degrades with limited

number of cores while that of Delta Lake remains consistent.

We conclude with an end-to-end experiment, using DuckDB 1.2

as the execution engine. The workload involves repeatedly insert-

ing data of constant size into an unpartitioned Store Sales table.

A single operation proceeds in three steps: (1) Retrieve the table

metadata, including the table directory and schema from the cat-

alog; (2) Parse the schema, generate data, and write the output to

a parquet file under the table directory, using DuckDB; (3) Invoke

the commit protocol on the catalog with the metadata of the new

data file. We measure both the total throughput over a set duration

and the end-to-end latency of each invocation across different data

file sizes, configured using the number of rows per file (powers

of 10, starting from 100). The results are shown in Figure 12. We

observe that the high latency of metadata operations can indeed

cause a performance bottleneck, especially for smaller file sizes. As

shown in the time breakdown of Figure 12, the main difference lies

in the commit protocol: Delta Lake’s commit protocol takes over

1.5 seconds, and Iceberg takes around 250 ms, while TreeCat only

takes around 10 ms. The commit protocol for lakehouse storage

formats involves retrieving the latest table snapshot (which may

require reading and processing metadata files), writing one or more

metadata files, and invoking a CAS (compare-and-swap) opera-

tion for ACID guarantees. The entire process involves one or more

operations on the shared storage system, which have non-trivial

Figure 12: Throughput of insert operations (log scale) for
different write sizes, and time breakdown for an insert oper-
ation of 10000 row data file (≈ 238 KB), respectively.

overhead. Delta Lake incurs extra overhead from launching a Spark

job for metadata processing. In contrast, TreeCat uses in-memory

data structures for validation, applies writes to RocksDB, which

is optimized for fast write, and is only delayed by fsync() opera-
tion on the WAL file, resulting in lower latency. The throughput

eventually converges with larger file sizes as the cost of the data op-

eration becomes more dominant. However, given applications such

as streaming systems [4, 8] that generate small data files at high

frequency, these results carry significant real-world implications.

7 CONCLUSION AND DISCUSSION
In this paper, we identified the primary use cases of a standalone

operational catalog and justified the key design decisions for our

catalog engine, TreeCat. Our experimental evaluation not only

exposes the limitations of existing solutions but also validates the

advantages of our design choices.

Looking ahead, we see a number of critical challenges in this

space that need further research. Some of these challenges lie out-

side the scope of the catalog itself. For instance, consistency be-
tween the data and the metadata (e.g., ensuring that a pointer

to a physical object is valid), is a major emerging challenge. Yet it is

not clear where that responsibility lies. Similarly, access control is
crucial but needs to be enforced by the layer that manages access

to the data itself. Garbage collection of data objects and their

metadata that are no longer visible may become necessary over

time. A TreeCat instance can be periodically scanned to find and

return leaf objects that are no longer reachable by any path from the

root. These objects can be quarantined in temporary storage until

the data layer invokes a final commit to remove them. Finally, scal-
ability and availability are important concerns in a distributed

setting. Given the relatively small volume of metadata and large

numbers of read queries, we propose the adoption of a single-writer,

multiple-reader architecture where all read-write transactions are

handled by a single server, and logs are shipped to and replayed by

read replicas [75]. This scheme would require minimum changes

to the concurrency control mechanism because a single server will

process all write operations. If the primary writer server fails, a

new writer server can be elected via a quorum-based mechanism,

ensuring availability.
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