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ABSTRACT
Graph Neural Networks (GNNs) have achieved remarkable suc-

cess in various graph-related tasks. However, training GNNs on

large-scale graphs is hindered by the neighbor explosion problem,

rendering full-batch training computationally infeasible. Mini-batch

training with neighbor sampling is a widely adopted solution, but it

introduces gradient estimation errors that slow convergence and re-

duce model accuracy. In this work, we identify two primary sources

of these errors: (1) missing gradient contributions from unsampled

target nodes, and (2) inaccuracies in messages computed from sam-

pled nodes. While existing methods largely focus on mitigating

the second source, they often overlook the first, resulting in in-

complete gradient estimation. To address this gap, we propose the

Pseudo Full Neighborhood Compensation (PFNC) framework,

which leverages historical information to simultaneously compen-

sate for both errors. PFNC is designed to integrate seamlessly with

any neighbor sampling technique and significantly lowers memory

demands by maintaining only a partial cache of historical embed-

dings and gradients. Theoretical analysis demonstrates that PFNC

provides a closer approximation to the ideal gradient, enhancing

convergence. Extensive experiments across multiple benchmark

datasets confirm that PFNC accelerates convergence and improves

generalization across diverse neighbor sampling strategies.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have achieved great success in

many graph-related applications, such as recommendation sys-

tems [9], fraud detection [33], biochemistry [11] and combinatorial

optimization [21]. These real-world applications can involve large-

scale graphs with billions of edges [15].
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Training GNNs on large-scale graphs necessitates the use of

mini-batch training due to the limited memory capacity of modern

GPUs, which cannot accommodate the entire graph. The funda-

mental idea of GNNs is leveraging a message-passing mechanism

to iteratively aggregate information from neighboring nodes. An

𝐿-layer GNN is used to obtain information from neighbors within

𝐿 hops, where the representation (embedding) of a node in the

current layer is computed by aggregating the representations of

all its neighbors from the previous layer. However, even when

only a small mini-batch of labeled nodes is sampled, the iterative

dependency on neighbors grows exponentially with 𝐿. If exact mini-

batch training is employed—i.e., retaining the full set of neighbors

within 𝐿-hops for the sampled labeled nodes—the process remains

computationally expensive and memory-intensive. This is known

as the neighbor explosion problem [14, 44] and poses a significant

challenge for training GNNs on large-scale graphs.

To tackle the neighbor explosion problem, several neighbor sam-

pling methods have been developed, including node-wise sam-

pling [14, 37], layer-wise sampling [5, 19, 46], and subgraph sam-

pling [7, 40]. These techniques aim to construct mini-batches by

sampling a subset of neighbors for each node involved in the for-

ward propagation of each layer. During the corresponding back-

ward propagation, the model parameters’ gradients are computed.

Notably, as the number of sampling layers increases, all neighbors

of unsampled nodes at layer 𝑙 are not sampled at layer 𝑙 − 1.

Although these sampling methods enable scalable GNN training

on large graphs, the growing scale of real-world applications has

made training efficiency a critical concern. This issue has received

increasing attention in the data management community, where

graph data management and mining are long-standing and impor-

tant research topics. Recent studies in this area predominantly focus

on system-level optimizations—for example, reducing the overhead

of CPU-GPU or remote data transfers [3, 4, 13, 20, 32, 36, 39, 41, 42],

improving sampling efficiency [12, 29], or applying advanced par-

allelization techniques [1, 22, 30, 35]. In contrast, our work ad-

dresses this challenge from a complementary algorithmic perspec-

tive. Specifically, we observe that mini-batch training introduces

significant gradient estimation errors due to neighbor sampling.

It omits the contributions from unsampled nodes during both the

forward and backward passes of each layer, in contrast to exact

mini-batch training. This omission introduces error into gradient

estimation, negatively impacting the convergence speed and gener-

alization performance of GNNs [6, 8].

Figure 1 provides an empirical example illustrating how the error

affect convergence. As detailed in Eq. 6 of Section 3.1, we decompose

the error into two sources: 1○ the inaccuracies in individual message
item from each target node and 2○ the missing item in gradient
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Figure 1: Comparison of training loss curves for neighbor
sampling with and without Message Inaccuracy Correction
and Gradient Composition Enhancement. The baseline (blue
dashed line) uses the default neighbor sampling setup. Ap-
plying bias correction or variance reduction individually
improves convergence speed, while combining both achieves
the best performance. The three subplots on the right are
zoomed-in views of the gray dashed rectangular regions in
the main plot, providing a detailed comparison of conver-
gence behavior.

composition. Therefore, we compared the effects on convergence

when mitigating these two factors individually and together.

In Figure 1, we trained a three-layer GraphSAGE [14] model

with node-wise sampling using a fanout of [1,1,1] and a batch

size of 1024 on the ogbn-arxiv [16] dataset. Other training configu-

rations followed the default settings in the official implementation
1
.

The loss curves shown in Figure 1 represent the averages over 10

independent training runs to ensure statistical robustness. The de-

fault loss curve for neighbor sampling training is shown as the

blue dashed line in Figure 1. Building upon this default neighbor

sampling setup, we can apply two ideal methods—Gradient Compo-

sition Enhancement and Message Inaccuracy Correction—to miti-

gate the two error sources. Although these methods are impractical

due to prohibitive computational costs, they enable us to explore

changes in convergence properties. By applying these methods

both individually and simultaneously, we generate three additional

loss curves. The two ideal methods are described as follows:

• Message Inaccuracy Correction: The node embeddings in-

volved are replaced by values computed using the current pa-

rameters and all neighbors. However, the computation graph

is still constructed on the sampled mini-batch of nodes, so no

additional items in the gradient composition are added.

• Gradient Composition Enhancement: For each mini-batch,

the gradient is averaged over five different neighbor-sampled

mini-batches for the same set of training nodes. This approach

involves multiple samplings to obtain more gradient terms than

a single sampling would provide, but it does not alter the inaccu-

racy of the message.

1
examples/pytorch/graphsage/node_classification.py of https://github.com/dmlc/dgl/

Using the loss value at the 50th epoch of the default training curve

as the target, we observe that mitigating inaccuracies in messages

alone results in a 4.55x convergence speedup, while addressing

the missing items in gradient composition alone results in a 2.63x

speedup. Addressing both factors simultaneously achieves an 8.33x

convergence speedup compared to the default training setup. This

demonstrates that both factors significantly influence convergence

and that their effects are additive.

Substantial effort has been made to utilize historical informa-

tion on node embeddings to reduce the error in gradient estima-

tion [6, 10, 28, 38]. However, these efforts primarily address message

inaccuracy (part 1○), overlooking opportunities to further reduce

error from part 2○. Additionally, their approach of maintaining

historical embeddings across all layers for every node imposes

significant memory demands. For instance, considering the ogbn-

papers100M dataset [15], if a three-layer GNN model is used with

a hidden dimension of 128 for each layer, approximately 162 GB of

memory is required to cache the historical embeddings when using

float32 representation.

To comprehensively and efficiently reduce the overall error, there

are several significant challenges:

• Maintaining and utilizing historical information. Effi-

ciently maintaining historical information and constructing

critical compensation for part 2○ is a non-trivial challenge.

• Scalability.Maintaining historical information for all nodes

in a straightforward manner incurs prohibitive memory

costs, especially for large-scale graphs. This introduces a

fundamental data management tension between the rapidly

accumulating volume of reusable historical information and

the limited memory budget available during training. Thus,

it is critical to devise strategies for filtering or reducing the

amount of historical information to ensure scalability.

• Theoretical guarantee. Leveraging historical information

in training introduces new dynamics to the optimization

process, and it is essential to provide theoretical guarantees

for the estimation error reduction.

In this paper, we propose a novel framework, Pseudo Full Neigh-

borhood Compensation (PFNC), to provides a comprehensive so-

lution to the gradient estimation errors inherent in mini-batch

training of GNNs with neighbor sampling. These errors stem from

two key sources: inaccuracies in messages derived from sampled

nodes and missing gradient contributions from unsampled target

nodes. PFNC tackles both by maintaining caches of historical node

embeddings andmodel parameter gradients. During training, it uses

this cached data to correct inaccuracies in current computations

and approximate missing gradient terms, effectively simulating a

fuller neighborhood without the prohibitive cost of sampling all

neighbors. This approach reduces both the variance and bias in

gradient estimation and is compatible to any sampling strategy

employed, making PFNC broadly applicable. Additionally, by prior-

itizing the retention of historical data based on node importance,

PFNC achieves significant memory efficiency compared to methods

requiring full embedding storage.

In summary, we have made the following contributions:
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• We introduce PFNC, a framework that incorporates two

innovative components: (1) a selective historical embed-

ding cache to correct message inaccuracies with minimal

memory overhead, and (2) a historical gradient cache to

approximate missing gradient contributions.

• We provide theoretical analyses and guarantees for identi-

fying and reducing gradient estimation error.

• The empirical experiments validate that this dual compensa-

tion strategy achieves superior convergence speed without

sacrificing model performance.

The rest of this paper is structured as follows. Section 2 intro-

duces preliminary concepts and related works. In Section 3, we an-

alyze the sources of gradient estimation error in neighbor sampling

to motivate our approach. Section 4 details the PFNC framework,

including its components and theoretical foundations. Section 5

presents experimental results that showcase the effectiveness of

PFNC. Finally, Section 6 concludes the paper and outlines future

research directions.

2 PRELIMINARY AND RELATEDWORK
2.1 Notations and Concepts
The notations are summarized in Table 1. Let G = (V, E) represent
a undirected graph, whereV is the set of vertices and E is the set of

edges.V = {𝑣1, · · · , 𝑣𝑁 } with |V| = 𝑁 . Each node 𝑣𝑖 has a feature

vector 𝒙𝑣𝑖 ∈ R𝑑0
.

We denote the complete 1-hop neighbors of node 𝑣𝑖 as N(𝑣𝑖 ) ={︁
𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) ∈ E

}︁
. The complete 𝑘-hop neighbors of node 𝑣𝑖 is

denoted as

N (𝑘 ) (𝑣𝑖 ) =
{︂
𝑣 𝑗 | ∃𝑣 𝑗 ′ ∈ N (𝑘−1) (𝑣𝑖 ), (𝑣 𝑗 ′ , 𝑣 𝑗 ) ∈ E

}︁
, 𝑘 ≥ 2,

N (1) (𝑣𝑖 ) = N(𝑣𝑖 ), N (0) (𝑣𝑖 ) = 𝑣𝑖 .
For a set of nodes 𝑆 ⊆ V , we denote its 𝑘-hop neighbors as

N (𝑘 ) (𝑆) = ⋃︁
𝑣∈𝑆 N (𝑘 ) (𝑣).

2.1.1 Graph Neural Networks (GNNs). In the message passing per-

spective, a GNN layer is constructing and passing messages from

source nodes N(𝑣) to target node 𝑣 .

For a GNN model with 𝐿 layers, the representation of node 𝑣

after 𝐿 layers of message passing, denoted as 𝒉(𝐿)𝑣 ∈ R𝑑𝐿 , is utilized
for various downstream graph-related tasks. 𝑣 ’s representation at

the 𝑙-th layer is computed using an update function 𝑓 (𝑙 ) , as follows:

𝒉(𝑙 )𝑣 = 𝑓 (𝑙 ) (𝒉(𝑙−1)
𝑣 , 𝐻

(𝑙−1)
N(𝑣) ), 𝑙 ∈ {1, . . . , 𝐿}, (1)

where 𝑓 (𝑙 ) is parameterized by learnable parameters 𝜃 (𝑙 ) , and
𝐻
(𝑙−1)
N(𝑣) = {𝒉

(𝑙−1)
𝑢 | 𝑢 ∈ N (𝑣)} represents the set of representations

of 𝑣 ’s neighbors after the (𝑙 − 1)-th layer. The initial representation

𝒉(0)𝑣 corresponds to the original node feature 𝒙𝑣 .
During training, the GNN model is optimized to minimize the

following loss function:

min

𝜃 (1) ,...,𝜃 (𝐿) ,𝑤
LS =

∑︂
𝑣∈S

ℓ (𝑤 ;𝒉𝐿𝑣 ), (2)

where S ⊂ V is the subset of nodes used for supervised learning,

𝑤 represents the parameter of output layer giving the prediction

based on 𝒉𝐿𝑣 and ℓ is a function to calculate loss.

Table 1: General Notations with Corresponding Descriptions

Notation Description
Graph Structure
G = (V, E) A graph node set V and edge set E.
V The set of vertices with size |V | = 𝑁 .

E The set of edges.

𝑣𝑖 The 𝑖-th vertex in V .

𝒙𝑣𝑖 Feature vector of node 𝑣𝑖 , 𝒙𝑣𝑖 ∈ R𝑑0 .

N(𝑣𝑖 ) The 1-hop neighbors of node 𝑣𝑖 .

N (𝑘 ) (𝑣𝑖 ) The 𝑘-hop neighbors of node 𝑣𝑖 .

N (𝑘 ) (𝑆 ) The 𝑘-hop neighbors of node set 𝑆 .

Graph Neural Networks
𝐿 The number of layers in the GNN.

𝒉 (𝑙 )𝑣 The node representation at the 𝑙-th layer.

𝒉 (0)𝑣 The initial representation corresponding to the origi-

nal node feature 𝒙𝑣 .

𝑓 (𝑙 ) The update function parameterized by 𝜃 (𝑙 ) for the
𝑙-th layer.

𝐻
(𝑙−1)
N(𝑣) The set of representations of node 𝑣’s 1-hop neigh-

bors at layer (𝑙 − 1) .
Mini-Batch Training
VB A mini-batch of training nodes.

g
𝜃 (𝑙 ) The gradient of the parameter 𝜃 (𝑙 ) during backward

propagation of exact mini-batch training.
ĝA,𝜃 (𝑙 ) The stochastic gradient estimator of the parameter

𝜃 (𝑙 ) using neighbor sampling algorithm A in neigh-
bor sampling mini-batch training.

N (𝐿−𝑙+1)A,𝑠𝑟𝑐
(𝑣𝑖 ) Source nodes in layer 𝑙 for node 𝑣𝑖 using sampling

algorithm A.

N (𝐿−𝑙 )A,𝑡𝑎𝑟
(𝑣𝑖 ) Target nodes in layer 𝑙 for node 𝑣𝑖 using sampling

algorithm A.

𝒉ˆ
(𝑙 )
𝑣 The node representation in neighbor sampling mini-

batch training.

𝐻̂
(𝑙−1)
NA (𝑣) The set of neighbor sampling version embeddings of

node 𝑣’s sampled 1-hop neighbors at layer (𝑙 − 1) .
Analysis and Method
Δ̂ g

𝜃 (𝑙 ) − ĝA,𝜃 (𝑙 ) .

𝒄 (𝑣𝑗 ) ,𝒄̂ (𝑣𝑗 ) The items within the summation of g
𝜃 (𝑙 ) and ĝA,𝜃 (𝑙 ) .

𝐾ℎ, 𝐾𝑔 The sizes of historical embedding cache and historical

gradient cache.

2.1.2 Mini-batch Training of GNNs.

Definition 2.1 (Exact Mini-batch Training). In exact mini-batch

training, the computation graph of the 𝑙-th layer forward propaga-

tion for mini-batchVB is a bipartite graph from the set of source

nodes N (𝐿−𝑙+1) (VB) to the set of target nodes N (𝐿−𝑙 ) (VB).

Definition 2.2 (Neighbor Sampling Mini-batch Training). In neigh-

bor sampling mini-batch training, the computation graph of the

𝑙-th layer forward propagation for mini-batch VB is a bipartite

graph from a random subset of N (𝐿−𝑙+1) (VB) to a random subset

of N (𝐿−𝑙 ) (VB) sampled by a neighbor sampling algorithm A.

Remark 1. Simply put, compared to exact mini-batch training,
neighbor sampling mini-batch training uses a randomly degraded
input subgraph for gradient computation to update the parameters of
the GNN model. We can explicitly derive the formulas for calculating
the parameter gradients of both methods, as shown in Eq. 3 and Eq. 4.
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For exact mini-batch training, the gradient of the parameter 𝜃 (𝑙 ) ,
denoted as ∇𝜃 (𝑙 )LVB , is computed during backward propagation

as follows:

g𝜃 (𝑙 ) = ∇𝜃 (𝑙 )LVB =∑︂
𝑣𝑗 ∈N (𝐿−𝑙 ) (VB )

∇𝜃 (𝑙 ) 𝑓
(𝑙 )
𝜃 (𝑙 )
(𝒉(𝑙−1)
𝑣𝑗 , 𝐻

(𝑙−1)
N(𝑣𝑗 ) ) · ∇𝒉 (𝑙 )𝑣𝑗

LVB (3)

For neighbor sampling mini-batch training with the neighbor

sampling algorithm A, we can use N (𝐿+1−𝑙 )A(𝜉 ),𝑠𝑟𝑐 (𝑣𝑖 ) ⊆ N
(𝐿+1−𝑙 ) (𝑣𝑖 )

and N (𝐿−𝑙 )A(𝜁 ),𝑡𝑎𝑟 (𝑣𝑖 ) ⊆ N
(𝐿−𝑙 ) (𝑣𝑖 ) to denote the source nodes and

target nodes in the 𝑙-th layer for 𝑣𝑖 ∈ VB . These are stochastic

subsets defined byA, where 𝜉 and 𝜁 represent the randomness and

are omitted in subsequent expressions for simplicity. The corre-

sponding stochastic estimator of g𝜃 (𝑙 ) is then given by:

ĝA,𝜃 (𝑙 ) =∑︂
𝑣𝑗 ∈N (𝐿−𝑙 )A,𝑡𝑎𝑟

(VB )

∇𝜃 (𝑙 ) 𝑓
(𝑙 )
𝜃 (𝑙 )
(𝒉ˆ (𝑙−1)
𝑣𝑗

, 𝐻̂
(𝑙−1)
NA (𝑣𝑗 ) ) · ∇𝒉ˆ (𝑙 )𝑣𝑗

LVB , (4)

where the symbol ·̂ denotes the neighbor sampling version of model

parameters’ gradients or node embeddings.

2.2 Related Works
Gradient Compensation Methods. The most closely related

works to our research are GAS [10], GraphFM [38], and LMC [28],

which enhance subgraph sampling in GNN training. GAS includes

all 1-hop in-batch neighbors during forward propagation and uses

historical embeddings for out-batch nodes. GraphFM adds edges

between in- and out-batch nodes to update historical embeddings

with momentum, reducing staleness. LMC preserves 1-hop neigh-

borhoods in sampled subgraphs and uses historical compensation in

both forward and backward propagation. However, these methods

mainly address message inaccuracy, neglecting missing gradient

components caused by unsampled target nodes.

Historical Embeddings for Efficiency. Other works like SAN-
CUS [26] and FreshGNN [17] use historical embeddings to reduce

computational cost rather than estimation error. SANCUS applies

staleness-aware updates in full-graph training to reduce commu-

nication, at the cost of bounded approximation. FreshGNN uses

historical embeddings to prune subgraphs post-sampling, minimiz-

ing memory usage while accepting some accuracy degradation.

Other Complementary Approaches. Recent works improve

GNN training efficiency through message or feature compression

(e.g., BiFeat [24], AMQP [31], F2CGT [23]) and distributed com-

putation frameworks (e.g., DistDGL [43], SALIENT++ [18], Ali-

Graph [45]). These methods address system-level bottlenecks like

feature loading and communication, but not the algorithmic error

due to sampling. In contrast, PFNC targets this error and is orthog-

onal to both lines: it can be combined with compression methods

to improve convergence while preserving system efficiency, and

integrated into distributed training pipelines as a lightweight, local-

cache-based module without interfering with the system design.

3 MOTIVATION
In this section, we conduct a thorough analysis of the difference Δ̂
between gA,𝜃 (𝑙 ) and ĝA,𝜃 (𝑙 ) , which quantifies the error in gradient

estimation during mini-batch training with neighbor sampling.

This error can be decomposed into two parts, as illustrated in Eq. 6

and explained in Remark 2. The mean and variance of the error

Δ̂ are detailed in Eq. 7. From this analysis, we observe that the

gradient estimator ĝA,𝜃 (𝑙 ) exhibits bias due to the part 1○, while

both part 1○ and 2○ contribute to the variance of the error. This

insight motivates us to identify the limitations of existing methods

and simultaneously address both sources of error.

3.1 Analysis of Gradient Estimation Error
3.1.1 Mean and Variance of Δ̂. For simplicity, we denote 𝒄 (𝑣 𝑗 )
and 𝒄A (𝑣 𝑗 ) as the items under summation in Eq. 3 and Eq. 4, re-

spectively. We first define an auxiliary estimator g′A,𝜃 (𝑙 ) for the
convenience of analysis:

g′A,𝜃 (𝑙 ) =
∑︂

𝑣𝑗 ∈N (𝐿−𝑙 )A,𝑡𝑎𝑟
(VB )

|N (𝐿−𝑙 ) (VB ) |

|N(𝐿−𝑙 )A,𝑡𝑎𝑟
(VB ) |

𝒄 (𝑣 𝑗 ). (5)

This auxiliary estimator preserves the computational graph of

neighbor sampling mini-batch training but replaces the stochastic

messages 𝒄 (𝑣 𝑗 ) with their exact counterparts 𝒄 (𝑣 𝑗 ).
Assume that algorithm A conducts unbiased sampling from

N (𝐿−𝑙 ) (VB) and then we have EA
[︂
g𝜃 (𝑙 ) − g′A,𝜃 (𝑙 )

]︂
= 0. The vari-

ance VarA
[︂
g𝜃 (𝑙 ) − g′A,𝜃 (𝑙 )

]︂
= VarA [g′A,𝜃 (𝑙 ) ].

Then the difference we aim to analyze, Δ̂, can be decomposed

into two parts as follows:

Δ̂ = g𝜃 (𝑙 ) − ĝA,𝜃 (𝑙 ) =
(︂
g′A,𝜃 (𝑙 ) − ĝA,𝜃 (𝑙 )

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

1○

+
(︂
g𝜃 (𝑙 ) − g

′
A,𝜃 (𝑙 )

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

2○

,

1○ =
∑︂

𝑣𝑗 ∈N (𝐿−𝑙 )A,𝑡𝑎𝑟
(VB )

(︃
|N (𝐿−𝑙 ) (VB ) |

|N(𝐿−𝑙 )A,𝑡𝑎𝑟
(VB ) |

𝒄 (𝑣 𝑗 ) − 𝒄 (𝑣 𝑗 )
)︃

2○ =
∑︂

𝑣𝑗 ∈N (𝐿−𝑙 ) (VB )/N (𝐿−𝑙 )A,𝑡𝑎𝑟
(VB )

𝒄 (𝑣 𝑗 ) + (1 − |N
(𝐿−𝑙 ) (VB ) |

|N(𝐿−𝑙 )A,𝑡𝑎𝑟
(VB ) |
)

∑︂
𝑣𝑗 ∈N (𝐿−𝑙 )A,𝑡𝑎𝑟

(VB )

𝒄 (𝑣 𝑗 ).

(6)

The expectation and variance of Δ̂ are as follows:

EA
[︁
Δ̂
]︁
= EA [ 1○] + EA [ 2○] = EA [ 1○] ,

VarA
[︁
Δ̂
]︁
= VarA [ 1○] + VarA [ 2○] + 2CovA [ 1○, 2○] .

(7)

In Eq. 7, the expectation EA
[︁
Δ̂
]︁
is equal to EA [ 1○], which indi-

cates that part 2○ does not contribute to the bias of the gradient

estimation under the assumption of unbiased sampling.

Remark 2. The decomposition is intended to better illustrate the
sources of gradient estimation error. Part 1○ represents the inaccu-
racies in the item 𝒄 (𝑣 𝑗 ) during backpropagation, which stems from

inaccuracies of 𝒉ˆ
(𝑙−1)
𝑣𝑗

when sampled computational graph is fixed.
Part 2○ primarily accounts for the contributions to the gradient from
target nodes that were not sampled and corresponds to the missing
items in gradient composition, as illustrated in Figure 2.

To intuitively demonstrate part 2○, Figure 2 compares the back-

propagation of a 3-layer GNN using neighbor sampling mini-batch

training and exact mini-batch training on an example graph. In Fig-

ure 2a, the orange nodes {𝑣1, 𝑣2} represent the current mini-batch
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(a) Node-wise sampling on an example graph. (b) Backward propagation of neighbor samplingmini-batch trainingwith node-wise sampling.

(c) Comparison of backward propagation between exact mini-batch training and neighbor sampling mini-batch
training with node-wise sampling, illustrating the impact of part 2○.

Figure 2: Comparison of neighbor sampling mini-batch training and exact mini-batch training.

VB . The blue, red, and green nodes represent the 1-hop, 2-hop, and

3-hop neighbors ofVB , respectively. The dashed circles indicate

nodes that were not sampled by the node-wise neighbor sampling

algorithm. Figure 2b visually illustrates the composition of param-

eter gradients in each layer of the GNN during backpropagation

in neighbor sampling mini-batch training, which corresponds to

Eq. 4. Figure 2c shows the composition of parameter gradients dur-

ing backpropagation in exact mini-batch training, as described in

Eq. 3, with a focus on comparing the differences in backpropaga-

tion and gradient composition between the two mini-batch training

methods. It can be observed that for neighbor sampling mini-batch

training, since 𝑣3 was not sampled as a 1-hop neighbor ofVB , it is
absent from the target nodes in the forward propagation of layer

2. Consequently, compared to exact mini-batch training, ∇𝜃 (2)L
lacks the gradient contribution from 𝑣3. Similarly, because 𝑣3 and 𝑣5

were not sampled as 2-hop neighbors, ∇𝜃 (1)L in layer 1 also misses

the gradient contributions from 𝑣3 and 𝑣5. These missing gradient

contributions are highlighted by dashed rectangles in Figure 2c.

3.2 Improvement Objectives
Our work aims to address two critial limitations of existing ap-

proaches for gradient estimation.

First, existing solutions for addressing part 1○ require maintain-

ing full historical embeddings 𝒉ˆ
(𝑙 )
𝑣 for all nodes across all layers,

resulting in prohibitive memory overhead for large graphs. This

design arises from their strategies, which are coupled with specially

crafted subgraph-wise sampling methods that explicitly mandate

the participation of all 1-hop neighbors in the message passing

process and the embeddings of out-batch 1-hop neighbor nodes

depend solely on their historical embeddings.

Figure 3: Empirical relative variance of gradients for different
layers and parameters over training iterations.

Second, current methods like [10, 28, 38] fundamentally neglect

themissing items in gradient composition (part 2○) caused by unsam-

pled target nodes. This limitation stems from the computation graph

constraints in backpropagation: gradient contributions can only be

collected when target nodes are explicitly sampled during forward

propagation, as demonstrated in Figure 2. This results in high vari-

ance in gradient estimation, as illustrated in Figure 3, which shows

the empirical relative variance of gradients computed using ten

different neighbor samplings under the same experimental condi-

tions as “+Message Inaccuracy Correction” in Figure 1. It is evident

that the variance of the gradients is significantly large relative to

the gradients themselves, especially for layers handling neighbors

from farther hops, as these layers experience exponentially more

missing gradient contributions.
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Therefore, our objectives are twofold: first, to develop a frame-

work that utilizes a more economical historical node embedding

cache to address the inaccuracies in the item 𝒄 (𝑣 𝑗 )ˆ
, which contribute

to the bias in gradient estimation; and second, to introduce a design

that reduces the error arising frommissing items in gradient compo-

sition, thereby mitigating the high variance in gradient estimation.

4 PSEUDO FULL NEIGHBORHOOD
COMPENSATION

In this section, we propose the Pseudo Full Neighborhood Compen-

sation (PFNC) framework to achieve the improvement objectives.

PFNC consists of two components: 1) a Historical Embedding Cache

to address message inaccuracies (error 1○) during forward propa-

gation, as illustrated in Figure 4; and 2) a Historical Gradient Cache

to enhance gradient composition (error 2○) during backward prop-

agation, as shown in Figure 7.

Algorithm 1 outlines the details of mini-batch GNN training us-

ing the PFNC framework. Unlike conventional training processes,

PFNC leverages historical information to refine both the node em-

beddings obtained during the forward pass and themodel parameter

gradients calculated during the backward pass. Furthermore, after

completing the model update, the caches of historical information

are refreshed based on the data from the current iteration.

In the following sections, we will introduce these two compo-

nents individually, explaining how each component mitigates its

respective sources of error while providing the corresponding the-

oretical foundations.

4.1 Message Inaccuracy Correction via
Historical Embedding Cache

4.1.1 Correction Strategy. To address error 1○, we adopt a mixing

operation similar to existing works [28, 38], which integrates his-

torical values into the computed node embedding during forward

propagation. The update procedure can be defined as follows:

𝒉ˆ
(𝑙 )
𝑣 = 𝑓 (𝑙 ) (𝒉ˆ (𝑙−1)

𝑣 , 𝐻̂
(𝑙−1)
NA (𝑣) ) (8)

𝒉ˆ
(𝑙 )
𝑣 ← 𝛽𝒉ˆ

(𝑙 )
𝑣 + (1 − 𝛽)𝒉¯

(𝑙 )
𝑣 [If 𝒉¯ (𝑙 )𝑣 not in cache, skip.] (9)

𝒉¯ (𝑙 )𝑣 ← 𝒉ˆ
(𝑙 )
𝑣 [If cache overflows, evict by importance.] (10)

Here, Equation 8 computes the initial embedding 𝒉ˆ
(𝑙 )
𝑣 for node

𝑣 at layer 𝑙 by applying GNN message passing on the previous

layer’s embeddings. Equation 9 then mixes this with the cached

historical embedding 𝒉¯ (𝑙 )𝑣 , using 𝛽 ∈ (0, 1) as a weighting factor

to balance current and past information, improving accuracy if

the historical value exists in the cache; otherwise, it skips this

step. Finally, Equation 10 updates the cache by storing the new

embedding 𝒉ˆ
(𝑙 )
𝑣 , evicting less important entries if the cache is full,

with importance detailed in Section 4.1.2.

Cache Update Policy. Let 𝑆
cache

denote the set of nodes currently

stored in the cache, and let 𝐾ℎ be the cache size. The newly com-

puted node embeddings at the current step, obtained via Eq. 8,

correspond to the set N (𝑙 )A𝑡 ,𝑡𝑎𝑟
(VB𝑡 ), denoted as 𝑆new. To update

Algorithm 1 Mini-batch Training with PFNC

1: Input: Sampling algorithmA, cache sizes𝐾𝑔, 𝐾ℎ , mixing ratios

{𝛼 (𝑙 ) }, {𝛽}
2: Output: Optimized parameters Θ𝑇+1
3: Initialize caches {Q (𝑙 )𝑔 }, {Q

(𝑙 )
ℎ
} and parameter index

4: Initialize model parameters Θ1

5: for 𝑡 = 1 to 𝑇 do
6: Sample batchVB𝑡 and construct computation graph via A
7: // Forward Pass:
8: for each layer 𝑙 and each target node 𝑣 in layer 𝑙 do
9: Compute embeddings 𝒉ˆ

(𝑙 )
𝑣 via Eq. 8

10: if 𝒉¯ (𝑙 )𝑣 ∈ Q
(𝑙 )
ℎ

then

11: Apply mixing: 𝒉ˆ
(𝑙 )
𝑣 ← 𝛽𝒉ˆ

(𝑙 )
𝑣 + (1 − 𝛽)𝒉¯

(𝑙 )
𝑣

12: end if
13: end for
14: // Backward Pass:
15: for each layer 𝑙 do
16: Compute gradients ĝA𝑡 ,𝜃

(𝑙 ) via Eq. 4

17: Retrieve historical gradients {ĝA𝜏 ,𝜃
(𝑙 ) }𝜏∈S𝑡 from Q

(𝑙 )
𝑔

18: Compute enhanced gradient: ĝ𝑃𝐹𝑁𝐶𝑡 ,𝜃
(𝑙 ) = 𝛼

(𝑙 ) ĝA𝑡 ,𝜃
(𝑙 ) +

(1−𝛼 (𝑙 ) )
|S𝑡 |

∑︁
𝜏∈S𝑡 ĝA𝜏 ,𝜃

(𝑙 )
𝜏

19: end for
20: // Parameter Update:
21: Update Θ𝑡 using ĝ𝑃𝐹𝑁𝐶𝑡

22: // Cache Maintenance:
23: for each layer 𝑙 do
24: Update Q (𝑙 )

ℎ
with new embeddings and importance

25: Update Q (𝑙 )𝑔 by enqueuing the new gradient and dequeu-

ing the oldest one

26: end for
27: end for

the cache, we first update the historical embeddings and impor-

tance of the nodes in the intersection 𝑆
cache

∩ 𝑆new. Subsequently,
the cache is updated to retain the top 𝐾ℎ nodes with the highest

importance scores from the union 𝑆
cache

∪ 𝑆new. This policy guar-

antees that when a historical node embedding is accessed, it reflects

the latest computation while maintaining efficiency by prioritizing

nodes based on their importance.

Figure 4 illustrates an example where the historical cache retains

embeddings and their associated importance for nodes 𝑣2 and 𝑣7.

After the message passing in layer 2, node 𝑣2 utilizes the cache to

mix its historical value. For cache updating, we first update 𝒉¯ (2)𝑣2

and

importance for 𝑣2 in the cache , and then compare the importance

of 𝑣1, 𝑣2, 𝑣4, and 𝑣7 to retain the two with the highest importance.

Theorems 4.1 and 4.2 support this mixing operation in Eq. 9 can

reduce error 1○.

Theorem 4.1. Assume that (i) ∇𝜃 (𝑙 ) 𝑓
(𝑙 )
𝜃 (𝑙 )

is 𝛾-Lipschitz continuity;

(ii) norms ∥∇𝜃 (𝑙 ) 𝑓
(𝑙 )
𝜃 (𝑙 )
(𝒉(𝑙−1)
𝑣𝑗 , 𝐻

(𝑙−1)
N(𝑣𝑗 ) )∥𝐹 is bounded by 𝐺1 > 0;

(iii) ∥∇
𝒉ˆ
(𝑙 )
𝑣𝑗

LVB ∥2 and ∥∇
𝒉 (𝑙 )𝑣𝑗
LVB ∥2 are both bounded by 𝐺2 > 0
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Figure 4: Forward propagation with historical embedding
cache and cache update.

and 𝐺2 → 0 as the optimization process approaches convergence;
Then, the bias of gradient estimation ĝA,𝜃 (𝑙 ) is bounded by the vari-
ance of ∥𝒉ˆ 𝑣𝑗 ∥2.

Proof. As ∥Aa − Bb∥2 ≤ ∥A∥𝐹 ∥a − b∥2 + ∥A − B∥𝐹 ∥b∥2, we can
bound ∥ 1○∥2 by

∥ 1○∥2 ≤
∑︂

𝑣𝑗 ∈N (𝐿−𝑙+1)A,𝑡𝑎𝑟
(VB )

∥︁∥︁∥︁∥︁ |N (𝐿−𝑙 ) (VB ) ||N(𝐿−𝑙 )A,𝑡𝑎𝑟
(VB ) |

𝒄 (𝑣 𝑗 ) − 𝒄 (𝑣 𝑗 )
∥︁∥︁∥︁∥︁

2

≤ |N (𝐿−𝑙 ) (VB) | max

𝑣𝑗 ∈N (𝐿−𝑙 )A,𝑡𝑎𝑟
(VB )

∥︁∥︁∥︁∥︁∇𝜃 (𝑙 ) 𝑓 (𝑙 )𝜃 (𝑙 )
(𝒉 (𝑙−1)

𝑣𝑗
,𝐻
(𝑙−1)
N(𝑣𝑗 )

) ·∇
𝒉
(𝑙 )
𝑣𝑗

LVB

− |N
(𝐿−𝑙 )
A,𝑡𝑎𝑟

(VB ) |

|N(𝐿−𝑙 ) (VB ) |
∇
𝜃 (𝑙 ) 𝑓

(𝑙 )
𝜃 (𝑙 )
(𝒉ˆ (𝑙−1)

𝑣𝑗
,𝐻̂
(𝑙−1)
NA (𝑣𝑗 ) ) ·∇𝒉ˆ (𝑙 )𝑣𝑗

LVB

∥︁∥︁∥︁∥︁
2

≤ |N (𝐿−𝑙 ) (VB) |𝐺1𝐺2 + 𝛾𝐺1 |N (𝐿−𝑙 )A,𝑡𝑎𝑟 (VB) |∥𝑯
(𝑙 ) − 𝑯̂ (𝑙 ) ∥𝐹

≤ |N (𝐿−𝑙 ) (VB) |𝐺1𝐺2 + 𝛾𝐺1 |N (𝐿−𝑙 )A,𝑡𝑎𝑟 (VB) |
∑︂
𝑣𝑗 ∈V

Var[∥𝒉ˆ 𝑣𝑗 ∥2]

□

Theorem 4.2. Provided that the variance of the historical embed-
ding satisfies Var[∥𝒉¯𝑣𝑗 ∥2] <

1+𝛽
1−𝛽Var[∥𝒉ˆ 𝑣𝑗 ∥2], mixing historical

values 𝒉¯𝑣𝑗 into 𝒉ˆ 𝑣𝑗 can reduce its variance.

Proof. Given the convexity of the norm and the fact that 𝒉¯𝑣𝑗 and

𝒉ˆ 𝑣𝑗 are independent prior to mixing, we have

Var[∥𝛽𝒉ˆ (𝑙 )𝑣𝑗 + (1 − 𝛽)𝒉¯
(𝑙 )
𝑣𝑗
∥2]

≤(𝛽)2Var[∥𝒉ˆ (𝑙 )𝑣𝑗 ∥2] + (1 − 𝛽)
2Var[∥𝒉¯ (𝑙 )𝑣𝑗 ∥2] < Var[∥𝒉ˆ (𝑙 )𝑣𝑗 ∥2]

□

4.1.2 Importance of Historical Embeddings. A significant aspect of

our design is the selective maintenance of historical values to save

memory. Consequently, in Eq. 9, the mixing operation is executed

only when 𝒉¯ (𝑙 )𝑣 is currently present in the cache.

The decision not to retain historical embeddings for all nodes is

based on two key observations:

First, given the sampling parameters (such as fan-out), many

nodes have a limited number of neighbors. Therefore, the variance

introduced by neighbor sampling at these nodes can be minimal.

Figure 5 depicts the neighbor count distribution for the ogbn-arxiv

dataset, revealing that most nodes have a relatively small number

of neighbors. For instance, with node-wise sampling and a fan-out

of 5 in the current GNN layer, nearly half of all nodes experience

minimal randomness from neighbor sampling.

Second, as training progresses, the model may learn robust pat-

terns that mitigate the effects of sampling. This indicates that, for

certain nodes, the computed embeddings for the next layer may

not vary significantly, even when different subsets of neighbors are

sampled. We observe a trend where embeddings with a larger gra-

dient norm tend to exhibit smaller variance. Figure 6 illustrates the

relationship between empirical embedding variance (calculated us-

ing ten neighbor sampling) and the gradient norm (averaged across

these sampling) for the node embeddings of last layer, recorded

over five epochs of training a three-layer GraphSAGE model on

ogbn-arxiv with fan-outs of [5,5,5].
Based on these observations, we use the norm of embedding gra-

dients as a valuable metric for assessing the importance of historical

embeddings in reducing error. This is because the bias EA [ 1○] is
upper bounded by the variance of node embeddings, and utilizing

historical embeddings with smaller variance can further reduce

the bias. Consequently, during the maintenance of the historical

embedding cache, we employ this importance measure to evict less

significant historical information, resulting in a more economical

historical node embedding cache. We also have Theorem 4.3 to

ensure the advantages of cache eviction in the worst case compared

to maintaining historical embedding caches for all nodes.

Theorem 4.3. In the worst case, the variance resulting from cache
eviction is smaller than that obtained by maintaining historical caches
for all nodes.

Proof Sketch. In the worst case, where the historical embeddings

have a variance that does not satisfy the condition Var[∥𝒉¯𝑣𝑗 ∥2] <
1+𝛽
1−𝛽Var[∥𝒉ˆ 𝑣𝑗 ∥2], mixing with these historical values will lead to

an increase in the variance of 𝒉ˆ 𝑣𝑗 . By retaining only the historical

embeddings with the smallest variance in the cache, as dictated by

our cache update policy, we can achieve a smaller variance in the

worst case.

4.2 Gradient Composition Enhancement via
Historical Gradient Cache

To reduce the high variance caused by error 2○ in Δ̂. Ideally, we

can use ĝ(𝐾 )A,𝜃 (𝑙 ) =
1

𝐾

∑︁𝐾
𝑖=1

ĝA𝑖 ,𝜃
(𝑙 ) , which represents the average

estimation based on 𝐾 neighbor samplings, as a more accurate

estimator. Compared with Eq. 7, Δ̂
(𝐾 )

= g𝜃 (𝑙 ) − ĝ(𝐾 )A,𝜃 (𝑙 ) has the
same expectation and smaller variance:

EA
[︂
Δ̂
(𝐾 ) ]︂

= EA
[︁
Δ̂
]︁
,VarA

[︂
Δ̂
(𝐾 ) ]︂

=
1

𝐾
VarA

[︁
Δ̂
]︁
.

It is worth noting that using Δ̂
(𝐾 )

is orthogonal to efforts aimed

at addressing the estimation bias from part 1○.

Although ĝ(𝐾 )A,𝜃 (𝑙 ) is a better gradient estimation, it is an idealized

version since each estimation requires 𝐾 samplings, resulting in 𝐾

times the computational cost (i.e., 𝐾 forward and backward passes).

In practice, we can reduce the computational cost by using the

historical values of ĝA,𝜃 (𝑙 ) from previous iterations to provide an

approximation for the current iteration at the cost of some staleness.
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Figure 5: Neighbor count distri-
bution of ogbn-arxiv.

Figure 6: Embedding variance
and embedding gradient norm.

Figure 7: Backward propagation with historical gradient
cache and cache update.

Here LetVB𝑡 be the batch of training nodes at iteration 𝑡 and

ĝA𝑡 ,𝜃
(𝑙 )
𝑡

be the gradient estimation at layer 𝑙 at iteration 𝑡 . The PFNC

gradient estimator at iteration 𝑡 , ĝ𝑃𝐹𝑁𝐶𝑡
, is defined as follows:

ĝ
𝑃𝐹𝑁𝐶𝑡 ,𝜃

(𝑙 )
𝑡

= 𝛼 ĝA𝑡 ,𝜃
(𝑙 )
𝑡

+ (1 − 𝛼) 1

|S𝑡 |
∑︂
𝜏∈S𝑡

ĝA𝜏 ,𝜃
(𝑙 )
𝜏
. (11)

S𝑡 is the set of the most recent iterations in which some 𝑣 in

VB𝑡 has been sampled, i.e.

S𝑡 =
{︃
𝜏𝑣

|︁|︁|︁|︁|︁𝜏𝑣 = max { 𝜏 | 𝜏 ∈{𝑡 − 𝐾𝑔, . . . , 𝑡 − 1}
and 𝑣 ∈ VB𝜏 } , 𝑣 ∈ VB𝑡

}︃
The set S𝑡 is restricted to the most recent 𝐾𝑔 iterations to control

the staleness, so the historical gradient cache is just a 𝐾𝑔-sized

queue. 𝛼 is also introduced to balance the trade-off between the

staleness and the variance reduction.

Figure 7 illustrates an example where the training nodes in the

sampled mini-batch are 𝑣1 and 𝑣2. The cache contains historical

gradients for training nodes {𝑣1, 𝑣3} and {𝑣2, 𝑣4}. To compensate

for the missing gradients in ∇𝜃 (2)L{𝑣1,𝑣2 } , we access historical gra-
dients that contain supervisory information from 𝑣1 and 𝑣2. For the

corresponding historical gradient ∇¯𝜃 (2)LVB of the training nodes

batch that includes 𝑣1 or 𝑣2, we compute the mean and mix it with

the currently computed gradient. The gradient queue is updated by

adding the new gradient associated with the batchVB = {𝑣1, 𝑣2}
and pop the oldest one associated withVB = {𝑣1, 𝑣3}.

4.3 Complexity Analysis
We compare the memory requirements of several methods, includ-

ing GAS [10], GraphFM [38], LMC [28], and PFNC.

GAS, GraphFM, and LMC all maintain historical node embed-

dings 𝒉ˆ
(𝑙−1)
𝑣𝑗

for every node in every layer, which requires at least

𝑂 (𝑁𝑑𝐿) memory, where 𝑑 is the dimension of node embeddings

and 𝐿 is the number of layers. Additionally, LMC requires extra

memory to store the historical ∇
𝒉ˆ
(𝑙 )
𝑣𝑗

LVB , resulting in a total mem-

ory requirement of 𝑂 (2𝑁𝑑𝐿).
In contrast, PFNC significantly reduces memory requirements.

PFNC maintains only a 𝐾ℎ-sized historical embedding cache and

a 𝐾𝑔-sized queue of historical gradients and tow index structure

with Index.shape = [𝑁, ], leading to a memory complexity of

𝑂 (𝐾ℎ𝑑𝐿 +𝐾𝑔𝑀 + 2𝑁 ), where𝑀 is the number of model parameters

and 𝑁 is the number of nodes in the graph. This design makes

PFNC more memory-efficient, especially in scenarios with a large

number of nodes or layers, as shown in Table 2.

Table 2: Comparison of Additional Memory Costs

GAS GraphFM LMC PFNC

𝑂 (𝑁𝑑𝐿) 𝑂 (𝑁𝑑𝐿) 𝑂 (2𝑁𝑑𝐿) 𝑂 (𝐾ℎ𝑑𝐿 + 𝐾𝑔𝑀 + 2𝑁 )

Since the parameter size of GNN models is typically very small

compared to the feature vectors of input nodes and𝐾𝑔 is usually not

large, the memory overhead for maintaining the gradient queue is

minimal. Additionally, significant memory savings are achieved for

the historical embedding cache, as 𝐾ℎ ≪ 𝑁 . The index structure,

which serves as a pointer for each training node, incurs negligible

memory overhead relative to other training memory requirements.

Consequently, the time overhead for calculating ĝ𝑃𝐹𝑁𝐶𝑡
is also

minimal in the context of the overall training process, a fact that

will be further substantiated by the runtime results in subsequent

experiments. For example, in the ogbn-products dataset, with pa-

rameters 𝑁 = 2.4 × 10
6
, 𝑑 = 128, 𝐿 = 3, 𝐾ℎ = 10

4
, 𝐾𝑔 = 16, and

𝑀 ≈ 𝐿𝑑2 ≈ 10
4
, PFNC uses less than 1% of memory to cache

historical information.

5 EXPERIMENTS
In this section, we first elaborate on the experimental settings in Sec-

tion 5.1. Then, we demonstrate the benefits of equipping PFNCwith

existing gradient compensation methods in Section 5.2. Next, we

show the improvements PFNC can bring to standard neighbor sam-

pling methods in Section 5.3. Finally, we conduct an ablation study

in Section 5.5 and perform hyperparameter analysis in Section 5.6.

5.1 Experimental Settings
5.1.1 Datasets. We perform node classification benchmark on six

datasets, including three small citation network datasets: Cora,
Citeseer, and Pubmed [27], and three large datasets: ogbn-arxiv [16],
ogbn-products [16], and Yelp[40]. The statistics of the datasets are
summarized in Table 3. These node classification datasets all use

accuracy as the evaluation metric.

5.1.2 Baselines. To thoroughly evaluate the effectiveness of PFNC,

we select a variety of baseline methods, including existing gradient

compensation methods and standard neighbor sampling methods

without gradient compensation.

The gradient compensation method baselines include GAS [10],

GraphFM [38], and LMC [28]. For standard neighbor sampling

method baselines, we choose GraphSAGE [14], LADIES [47], LA-

BOR [2] and Cluster-GCN [7] as representatives of node-wise, layer-

wise, and subgraph-wise sampling methods.
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Table 3: Dataset statistics.

Datasets Classes Nodes Edges Features

Cora 7 2,708 5,278 1,433

CiteSeer 6 3,327 4,552 3,703

PubMed 3 19,717 44,324 500

Yelp 100 716,847 6,977,409 300

ogbn-arxiv 40 169,343 1,157,799 128

ogbn-products 47 2,449,029 61,859,140 100

ogbn-papers100M 172 111M 1.6B 128

Figure 8: The estimation error of gradients.

Table 4: Comparison of the effects of incorporating PFNC into existing
gradient estimation improvement methods on large graph datasets.
The comparison focuses on three aspects: the final converged test ac-
curacy, the number of epochs and the training time to reach the target
test accuracy. The target test accuracy is the lower final converged test
accuracy with and without PFNC, indicated by an underscore.

Yelp ogbn-arxiv ogbn-products

GAS

acc 40.18 ± 0.16 71.46 ± 0.24 76.01 ± 0.17

epoch 488 244 235

time (s) 518.30 44.19 428.40

GAS+PFNC
acc 40.64 ± 0.20 (+0.46) 71.71 ± 0.18 (+0.25) 76.25 ± 0.43 (+0.14)

epoch 351 (↓ 28%) 244 (↓ 0%) 200 (↓ 15%)

time (s) 376.13 (↓ 27.4%) 44.58 (↓ −0.9%) 365.32 (↓ 14.7%)

GraphFM

acc 42.64 ± 0.60 71.41 ± 0.09 74.16 ± 0.20

epoch 447 249 180

time (s) 863.47 86.03 657.74

GraphFM+PFNC
acc 42.89 ± 0.32 (+0.25) 71.51 ± 0.13 (+0.10) 74.32 ± 0.35 (+0.16)

epoch 439 (↓ 2%) 206 (↓ 17%) 128 (↓ 29%)

time (s) 845.34 (↓ 2.1%) 72.20 (↓ 16.0%) 481.87(↓ 26.7%)

LMC

acc 41.64 ± 1.28 71.49 ± 0.10 74.20 ± 0.52

epoch 498 296 246

time (s) 519.41 44.61 520.86

LMC+PFNC
acc 42.12 ± 1.58 (+0.48) 71.58 ± 0.14 (+0.09) 74.66 ± 0.28 (+0.46)

epoch 437 (↓ 12%) 284 (↓ 4%) 194 (↓ 21%)

time (s) 466.63 (↓ 10.2%) 44.47 (↓ 0.3%) 417.24 (↓ 19.9%)

Average epoch reduction 14.0% 7.0% 21.7%
Average acceleration 13.23% 5.13% 20.43%

For the three gradient compensation methods, we use the official

implementations and configurations from their official reposito-

ries
234

. For the standard neighbor sampling methods, we use the

implementations and configurations provided in the DGL [34] li-

brary’s example code.

5.1.3 Metrics. Our experiments evaluate the effectiveness of PFNC

by comparing both the convergence speed and the final model per-

formance before and after integrating PFNC into baseline methods.

To establish a fair baseline, models are trained for a sufficient num-

ber of epochs to ensure convergence.

For assessing convergence speed, ametric similar to those used in

existing studies [28] is adopted. Specifically, the model performance

achieved by the baseline method at convergence serves as the target

value. Under identical training conditions, the number of epochs

required for both PFNC and the baseline method to first reach this

target performance is compared.

For comparing final model performance, the models trained with

the PFNC method and the baseline method are evaluated based on

their performance at convergence after being trained for the same

number of epochs.

5.1.4 Hyperparameters. We set 𝛼 to 0.9 and 𝐾𝑔 to min{bn, 16},
where bn represents the number of batches in one epoch. Addition-

ally, we set 𝛽 to 0.95 and 𝐾ℎ to 0.01𝑁 , where 𝑁 is the number of

nodes in the graph. Other training configurations can be found in

our artifact. Analysis of these hyperparameters are in Section 5.6.

5.1.5 Implementation Details. We implement our method as a pack-

age based on the PyTorch [25]. In addition, our hardware experi-

ments are NVIDIA A100-SXM4-80GB and AMD EPYC 7413 24-Core.

2
https://github.com/MIRALab-USTC/GNN-LMC

3
https://github.com/rusty1s/pyg_autoscale

4
https://github.com/divelab/DIG/tree/dig/dig/lsgraph

5.2 Comparison with Other Gradient
Compensation Methods

In this section, we primarily investigate whether PFNC can further

improve the gradient estimation compared to other existing gra-

dient compensation methods, thereby enhancing the convergence

speed and generalization performance of GNN models.

Existing gradient compensation methods typically rely on spe-

cially crafted subgraph-wise sampling techniques that include all

1-hop neighbors of training nodes. These methods explicitly re-

quire the historical embeddings of all 1-hop neighbors to engage

in message passing, which cannot be omitted, necessitating the

maintenance of historical embeddings for all nodes. Consequently,

the historical embedding cache used by these methods cannot be

replaced by our more economical version. However, our historical

gradient cache, designed to enhance gradient composition, can be

integrated with these methods to potentially provide additional ben-

efits. We explore its impact in further reducing gradient estimation

errors and improving convergence.

5.2.1 PFNC accelerates convergence without sacrificing accuracy.
Table 4 presents a comparison of convergence accuracy and speed

before and after integrating PFNC into the GAS, GraphFM, and

LMC methods on four large datasets. The reported accuracy val-

ues are the mean and standard deviation across 5 runs. From the

table, we can observe that adding PFNC on top of existing gradient

compensation methods slightly improves convergence accuracy,

increasing accuracy by up to 0.48.

For comparing convergence speed, we compare the number of

epochs and training time required to first reach the target test

accuracy. The target test accuracy is the convergence accuracies

of baselines, indicated by an underline in the table. The training

time to reach the target accuracy is calculated by multiplying the
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Table 5: Comparison of small graph datasets. This table follows the same
structure as Table 4.

Cora CiteSeer PubMed

GAS

acc 82.16 ± 0.42 71.10 ± 0.83 78.96 ± 0.53

epoch 190 119 200

time (s) 2.74 1.74 2.82

GAS+PFNC
acc 82.26 ± 0.81 (+0.10) 71.61 ± 1.04 (+0.51) 79.08 ± 0.69 (+0.08)

epoch 70 (↓ 63.2%) 92 (↓ 22.7%) 141 (↓ 29.5%)

time (s) 1.36 (↓ 50.4%) 1.67 (↓ 4.2%) 2.54 (↓ 10.0%)

Table 7: PFNC performance on real-world
large graph ogbn-papers100M.

ogbn-papers100M

GraphSAGE

acc 61.19

epoch 40

time (s) 668.98

GraphSAGE+PFNC
acc 61.87 (+0.68)

epoch 26 (↓ 35.0%)

time (s) 443.69 (↓ 33.7%)

number of epochs by the time per epoch (averaged over 100 epochs).

From the table, we can see that PFNC significantly accelerates

convergence. On average, PFNC reduces the number of epochs to

reach the target accuracy by 14.0%, 7.0%, and 21.7% on the Yelp,

ogbn-arxiv, and ogbn-products datasets, respectively, and reduces

time to first reach target test accuracy by 13.23%, 5.13%, and 20.43%.

The average epoch reduction rate and the average acceleration rate

are very close, indicating that the time per epoch does not change

significantly when using PFNC, i.e. the computational overhead of

PFNC is negligible. It is worth noting that in Table 4, for the GAS

baseline on ogbn-arxiv, PFNC improves the final accuracy but

does not reduce the number of epochs required to reach the target

accuracy. This may be due to the characteristics of the ogbn-arxiv
dataset (e.g., a lower average degree leading to smaller gradient

variance), and the fact that GAS already partially mitigates message

inaccuracies, leaving limited room for further acceleration by PFNC.

We also conducted similar experiments on small-scale graph

datasets. Results are shown in Table 5. For small graphs, we only

used GAS as the baseline method because the repositories for

GraphFM and LMC do not provide configurations small graph

datasets. As seen in the table, the performance of PFNC on small

graphs is similar to that on large graph datasets, effectively accel-

erating convergence and improving accuracy. PFNC improves the

convergence accuracy of GAS by 0.10, 0.51, and 0.08 on the Cora,

CiteSeer, and PubMed datasets, respectively. Additionally, it reduces

the number of epochs required for convergence by 63.2%, 22.7%, and

29.5%, and decreases time to first reach target test accuracy by 50.4%,

4.2%, and 10.0%, respectively. The result in Cora stands out com-

pared to the other datasets, which may be attributed to the dataset’s

relatively simpler structure and lower complexity. This characteris-

tic makes it easier to fit, and when combined with the reduction

in bias and variance of gradient estimates achieved by PFNC, the

acceleration in convergence becomes particularly pronounced.

5.2.2 Gradient Estimation Error Comparison. To further illustrate

the improvement of PFNC on gradient estimation, we compare

the L2 errors between the mini-batch gradients computed by each

method and the exact full-batch gradients. Figure 8 shows the gra-

dient estimation errors on the Pubmed, Cora, and Citeseer datasets,

using GAS as the baseline, before and after applying PFNC. To

ensure controlled experimental conditions, we first load the model

parameters from the corresponding epoch’s checkpoint in full-

graph training before gradient computation, thereby eliminating

interference from model parameter differences. The displayed er-

rors are averaged across all batches at epochs 10, 20, 30, 40, and 50

to ensure statistical reliability. It is evident that PFNC consistently

reduces the gradient estimation errors.

5.3 PFNC accommodates diverse neighbor
sampling methods

As we mentioned in Section 5.2, existing gradient compensation

methods are typically restricted to their specially crafted subgraph-

wise sampling methods. A key advantage of PFNC is its flexibility to

be usedwith various neighbor samplingmethods. In this section, we

compare PFNCwith representative methods from three mainstream

neighbor sampling categories: node-wise, layer-wise, and subgraph-

wise. Specifically, the methods included in this comparison are

GraphSAGE, LADIES, LABOR and Cluster-GCN.

We conducted experiments on the largest graph in the datasets

used in this paper, ogbn-products, comparing convergence accuracy

and the number of epochs required to reach the target accuracy.

The results are shown in Table 6. PFNC effectively accelerates con-

vergence across all three types of sampling methods. It reduces the

number of epochs by 20.1%, 15.4%, 13.6% and 22.2% for GraphSAGE,

LADIES, LABOR and Cluster-GCN respectively. Additionally, PFNC

slightly improves convergence accuracy, with increases of 0.36, 0.15,

0.39 and 0.12 , respectively. These results demonstrate that PFNC

can accommodate various neighbor sampling methods well.

5.4 Scalability
To show the real-world applicability of PFNC at scale, we have

added an evaluation on the extremely large graph ogbn-papers100M,

which includes over 100 million nodes and 1.6 billion edges, thereby

pushing the scalability limits of GNN training. As described in Ta-

ble 7, PFNC improves both convergence speed and accuracy on this

massive graph: +0.68 accuracy gain, 35.0% fewer epochs, and 33.7%

reduction in training time, using a 3-layer GraphSAGE with fanout

[10,10,10] and learning rate 1 × 10
−4
. These results demonstrate

that PFNC remains effective and stable under large-scale settings,

affirming its real-world applicability.

5.5 Ablation Study
5.5.1 Component Ablation. To evaluate the contributions of PFNC’s
two components (historical embedding cache and historical gra-

dient cache), we conducted ablation experiments on the ogbn-

products dataset using the GraphSAGE model. The experimental

setup aligns with Section 5.3, and the results are summarized in

Table 8. The results indicate that each component independently

enhances both convergence speed and accuracy. However, their

combination within the full PFNC framework yields the best per-

formance, reducing the epochs required to achieve target accuracy

by 20.1% and improving model accuracy by 0.36.

5.5.2 Cache Policy Ablation. We compare our importance-based

eviction strategy with a naive First-In-First-Out (FIFO) policy under
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Table 6: The convergence accuracy of different
neighbor sampling methods on node classification
benchmarks.

Method Type ogbn-products

Node-wise

GraphSAGE

acc 76.32 ± 0.33

epoch 91

time(s) 134.30

GraphSAGE +PFNC
acc 76.68 ± 0.12 (+0.36)

epoch 72 (↓ 20.1%)

time(s) 111.07 (↓ 17.3%)

Edge-wise

LADIES

acc 77.85 ± 0.28

epoch 97

time(s) 1646.13

LADIES +PFNC
acc 78.02 ± 0.14 (+0.15)

epoch 82 (↓ 15.4%)

time(s) 1471.15 (↓ 10.6%)

LABOR

acc 79.19 ± 0.24

epoch 22

time(s) 159.31

LABOR +PFNC
acc 79.58 ± 0.18 (+0.39)

epoch 19 (↓ 13.6%)

time(s) 146.53 (↓ 8.0%)

Subgraph-wise

ClusterGCN

acc 76.26 ± 0.21

epoch 162

time(s) 662.78

ClusterGCN +PFNC
acc 76.38 ± 0.16 (+0.12)

epoch 126 (↓ 22.2%)

time(s) 537.54 (↓ 18.9%)

(a) Varying 𝛼 , grouped by 𝐾𝑔 . (b) Varying 𝐾𝑔 , grouped by 𝛼 .

Figure 9: Accuracy variation under different 𝛼 and 𝐾𝑔 configurations.

(a) Varying 𝛽 , grouped by 𝐾ℎ . (b) Varying 𝐾ℎ , grouped by 𝛽 .

Figure 10: Accuracy variation under different 𝛽 and 𝐾ℎ configurations.

Table 8: Ablation experiment results on the ogbn-products
dataset using the GraphSAGE model.

Configuration Convergence Accuracy (%) Epochs to Target Accuracy

No PFNC (Baseline) 76.32 ± 0.33 91

Only Hist. Emb. Cache 76.51 ± 0.28 (+0.19) 78 (↓ 14.3%)

Only Hist. Grad. Cache 76.48 ± 0.10 (+0.16) 81 (↓ 11.0%)

Full PFNC 76.68 ± 0.12 (+0.36) 72 (↓ 20.1%)

Table 9: Comparison of importance-based vs. FIFO cache
eviction strategies on ogbn-products.

𝐾ℎ 0.001N 0.01N 0.05N 0.1N 0.5N N

FIFO 76.17 76.02 76.26 76.14 76.21 76.16
Importance 76.19 76.68 76.73 76.38 76.47 76.15

varying cache sizes. As shown in Table 9, the importance-based

strategy consistently outperforms FIFO in terms of final accuracy

across a wide range of cache sizes. The performance gain is espe-

cially notable in the moderate cache regimes (e.g., 0.01𝑁 to 0.5𝑁 ),

where eviction decisions have the most impact. These results em-

pirically validate that our design better prioritizes the historical

embeddings of nodes that are more critical for reducing gradient

estimation error, leading to more efficient use of cache space and

better model generalization.

5.6 Hyperparameter Analysis
5.6.1 𝛼 and 𝐾𝑔 in Historical Gradient Cache. We investigate the

impact of key parameters 𝛼 (gradient mixing weight) and 𝐾𝑔 (his-

torical gradient cache size) on the performance of PFNC, using GAS

with and without PFNC on the Cora dataset as an example. We

varied 𝛼 in the range [0.1, 0.5, 0.9, 0.99] and 𝐾𝑔 in [0.25bn, 0.5bn,
bn, 2bn], where bn represents the number of batches in one epoch.

The results for GAS with PFNC are presented in Figure 9, with

the highest values for each 𝐾𝑔 highlighted in red circle. For refer-

ence, the performance of GAS without PFNC is 82.16 and denoted

as the dash line. Figure 9a shows that, with 𝐾𝑔 fixed, the perfor-

mance of PFNC initially improves and then declines as 𝛼 increases.

This trend can be attributed to the role of 1 − 𝛼 , which determines

the weight of the historical gradients (Eq. 11). A smaller 𝛼 leads to

higher staleness, while a larger 𝛼 may inadequately correct inac-

curacies in the current gradient. Notably, 𝛼 = 0.9 yields the best

performance in the evaluated hyperparameter range and is set as

our default configuration. Regarding 𝐾𝑔 , a larger value can intro-

duce significant staleness to the compensation process, especially

when 𝛼 is small, leading to a noticeable decrease in performance.

Therefore, we recommend keeping 𝐾𝑔 at or below bn to ensure op-

timal performance. From Figure 9b, we observe that for all values

of 𝛼 , increasing 𝐾𝑔 from 0.25bn to 0.5bn consistently improves ac-

curacy. This suggests that maintaining a modest number of recent

gradients provides stable gains. However, further increasing 𝐾𝑔 to

1bn or 2bn leads to diminishing or slightly degraded performance,

particularly for smaller 𝛼 . This can be attributed to over-reliance

on stale gradients. It also supports our design choice of restricting

the historical gradient cache to the most recent 𝐾𝑔 iterations.

5.6.2 𝛽 and 𝐾ℎ Historical Embedding Cache. We analyzed 𝛽 (em-

bedding mixing weight) and 𝐾ℎ (historical embedding cache size)

using GraphSAGE with PFNC on the ogbn-products dataset. We

varied 𝛽 in [0.1, 0.5, 0.9, 0.95, 0.99] and 𝐾ℎ in [0.001𝑁 , 0.01𝑁 , 0.05𝑁 ,

0.1𝑁 , 0.5𝑁 , 𝑁 ], where 𝑁 is the number of nodes. In Figure 10a,

as 𝛽 decreases,
1+𝛽
1−𝛽 shrinks, making the condition in Theorem 4.2
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harder to satisfy. This increases gradient error when mixing with

more historical embeddings, explaining the poor accuracy at 𝛽 = 0.1

with full cache (𝐾ℎ = 𝑁 ). However, our importance-based caching

(Theorem 4.3) mitigates this worst-case scenario. At 𝐾ℎ = 0.01𝑁 ,

accuracy remains stable across 𝛽 , outperforming full cache con-

sistently, as selective retention of important embeddings filter out

those nodes with high variance. We recommend 𝛽 = 0.95 and

𝐾ℎ = 0.01𝑁 for optimal, robust performance. In Figure 10b, we vary

the embedding cache size 𝐾ℎ and group results by mixing weight 𝛽 .

With a properly chosen 𝛽 , the performance remains stable across

a wide range, and the highest accuracy is typically achieved with

medium-sized caches (e.g., 0.01𝑁 ∼ 0.05𝑁 ). When the cache is

too small (e.g., 0.001𝑁 ), there is insufficient historical information

to effectively reduce gradient estimation error, which leads to a

slight performance drop. On the other hand, an excessively large

cache may also slightly degrade performance due to the inclusion

of unimportant or noisy historical embeddings.

5.6.3 Summary. These results demonstrate that while the exact

choice of cache size affects peak performance, PFNC remains effec-

tive and stable across a reasonably well-defined range of cache sizes,

particularly near the recommended defaults (𝐾𝑔 = min(bn, 16),
𝛼 = 0.9; 𝐾ℎ = 0.01𝑁 , 𝛽 = 0.95). This suggests that PFNC is not

overly sensitive to cache hyperparameters, and can be used reliably

without extensive tuning.

5.7 Memory Cost
To empirically validate the memory efficiency of PFNC, we conduct

experiments to measure peak GPU memory usage during training.

First, we compare the peak GPU memory consumption of PFNC

with three representative baseline methods: GAS, GraphFM, and

LMC. All methods are tested using the same batch size, and all

caches are stored in GPU memory. As shown in Table 10, PFNC sub-

stantially reduces memory usage, requiring only 11.53 GB, in con-

trast to 19.58 GB (GAS), 30.57 GB (GraphFM), and 32.38 GB (LMC).

Second, we measure the peak GPU memory usage of PFNC on the

large-scale ogbn-papers100M dataset under varying cache sizes

𝐾ℎ . As shown in Table 11, PFNC remains highly memory-efficient

even at industrial scales, requiring only 7.47 GB with 𝐾ℎ = 0.01𝑁 ,

and remains feasible up to 𝐾ℎ = 0.2𝑁 , whereas baseline methods

encounter out-of-memory (OOM) errors due to their reliance on full

caching. These confirm PFNC’s practical memory advantage and

scalability beyond the theoretical analysis discussed in Section 4.3.

Table 10: Peak GPU Memory Usage on ogbn-products.

Method GAS GraphFM LMC PFNC

Peak GPU Memory (GB) 19.58 30.57 32.38 11.53

6 CONCLUSION
In this paper, we address the critical challenge of gradient estimation

errors inmini-batch GNN trainingwith neighbor sampling. Existing

methods predominantly focus on mitigating message inaccuracies

while overlooking the impact of missing gradient contributions

from unsampled nodes. To bridge this gap, we propose the Pseudo

Table 11: Peak GPU Memory Usage of PFNC on ogbn-
papers100M with Varying Cache Sizes.

Cache Size 𝐾ℎ 0.01𝑁 0.1𝑁 0.2𝑁 0.3𝑁

Peak GPU Memory (GB) 7.47 33.61 63.07 OOM

Full Neighborhood Compensation (PFNC) framework, which sys-

tematically compensates for both error sources through two novel

components: (1) a selective historical embedding cache that corrects

message inaccuracies with minimal memory overhead, and (2) a

historical gradient cache that enhances gradient composition using

stale gradients from previous iterations.

Theoretical analysis demonstrates that PFNC provides a bet-

ter approximation to the ideal gradient by reducing both variance

and bias in gradient estimation. Extensive experiments across six

benchmark datasets validate that PFNC accelerates convergence

compared to baseline neighbor sampling methods and improves

test accuracy. Notably, PFNC achieves these improvements with

only 1% of the memory required by existing gradient compensation

methods, making it particularly suitable for large graphs. The frame-

work’s compatibility with diverse sampling strategies—including

node-wise, layer-wise, and subgraph-wise approaches—further un-

derscores its practical utility.

As future work, we plan to extend PFNC to dynamic graphs

and heterogeneous GNN architectures. Since mini-batch training

with neighbor sampling is also critical in these settings, the asso-

ciated gradient estimation errors can similarly impact training.

Additionally, we plan to investigate adaptive strategies for cache

management and mixing coefficients to further optimize memory-

performance tradeoffs. By addressing fundamental limitations in

GNN training efficiency, this work paves the way for broader adop-

tion of graph neural networks in large-scale industrial applications.
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