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ABSTRACT

SSDs are hardware and software systems whose design involves

complex and undocumented trade-o�s between cost, energy con-

sumption and performance. This complexity is hidden behind stan-

dard interfaces and a few headline speci�cations, such as capacity,

sequential, and random performance. As a result, database system

designers often assume that SSDs are interchangeable commodities

and regularly use a single SSD model to evaluate database per-

formance. Does it matter which SSD model is provisioned for a

database system? If yes, how to choose the right one? These are

the questions we address in this paper. We study the performance

characteristics of commercial data center SSDs, highlighting the lim-

itations of current standard metrics in capturing their true behavior.

We conduct experiments on nine SSDs from major vendors, reveal-

ing signi�cant di�erences in performance despite similar headline

speci�cations. We show that the choice of SSD matters for database

system performance. We propose a new benchmark, SSD-iq, which

introduces four additional metrics to better characterize SSD per-

formance, particularly for write-intensive workloads. Incidentally,

our work should encourage vendors to optimize SSD controllers

using more comprehensive and transparent performance criteria.
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1 INTRODUCTION

Flash has taken over. Over the past ten years, most data-intensive

systems have switched from magnetic hard disk drives to �ash-

based SSDs. This transition has been fueled by increasing SSD

performance and power e�ciency at comparable cost, and eased

by standards and software-level backward compatibility: SSDs em-

ulate hard disk drives, even though the underlying architecture
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Table 1: Speci�cations of �ve data center NVMe SSDs.

Samsung Hynix Intel D7 Micron WD DC

PM9A3 PE8110 P5520 7450PRO SN640

960GB 960GB 1,920GB 960GB 960GB

Seq. Read [MB/s] 6,500 6,500 5,300 6,800 3,330

Seq. Write [MB/s] 1,500 1,700 1,900 1,400 1,190

Rnd. Read [MB/s] 580 900 700 530 434

Rnd. Write [MB/s] 70 70 114 85 49

Read Latency [µs] ? 75 75 80 78

Write Latency [µs] ? ? 15 15 ?

and storage media have nothing in common. While the character-

istics of hard disk drives were uniform across vendors, the same

is not true for SSDs. SSD models that have the same capacity and

the same underlying NAND �ash technology (e.g., MLC or TLC)

embody varying undocumented trade-o�s between cost, energy

consumption and performance [41].

SSD models are di�erent. Vendors downplay the idiosyncrasies of

speci�c SSD models by marketing their devices using four “head-

line” throughput metrics: sequential read, sequential write, random

read, and random write. The silent assumption is that SSDs can be

meaningfully compared using these metrics. Table 1 shows the spec-

i�cations for �ve data center NVMe SSDs containing TLC �ash. All

vendors specify the four aforementioned throughput metrics, and

some additionally provide the latency of read and write operations,

though this is far from universal. It is also often not clear under

which settings one can achieve the stated performance, with some

vendors qualifying their metrics as “Up To”. While the super�cial

problems of existing metrics could be addressed by standardizing

benchmarking settings, a more fundamental problem is that these

standard metrics cannot capture the complex nature of �ash SSDs.

Neither write ampli�cation nor latency under load is captured by

these metrics, although being essential for the lifespan of the de-

vices and the end-to-end performance of the system.

Write Ampli�cation.Magnetic hard disk drives support in-place

writes. NAND �ash does not. Hence, writes are performed out-of-

place in SSDs. To create the illusion of in-place writes, the SSD

controller internally implements complex logic, which handles

tasks such as logical-to-physical mapping and Garbage Collection

(GC) [41]. GC kicks in once the internal capacity is exhausted. The

GC process selects and erases multi-megabyte blocks consisting of

hundreds of pages. If a block contains valid pages, these need to

be moved to a new location before erasing, which results in write
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ampli�cation. In an analysis of 20 cloud storage workloads [44],

Alibaba observed write ampli�cation factors (WAF) as high as 8.0,

with a median WAF of 2.5 and an average WAF of 3.0. A recent

study of NetApp’s enterprise storage systems reports WAFs of over

10 for more than a third of their SSDs [45]. Such high WAFs mean

that every logical write causes multiple additional internal writes,

reducing write throughput and device lifetime. SSD lifetime is di-

rectly linked to the sustainability of the entire system [50]. Thus, it

is a crucial consideration for database system architects. Note that

we do not claim that vendors ignore write ampli�cation. Recent

vendor white papers and research papers (e.g., [2, 17]) focus on it, in

connection with the introduction of NVMe Flexible Data Placement

(FDP). Our point is that write ampli�cation is still not part of the

standard metrics used in datasheets.

Latency under Load. Besides write ampli�cation, SSDs also ex-

hibit complex latency characteristics under load. For example, to

hide high physical write latency on NAND �ash (around 0.5ms),

writes are bu�ered in DRAM on the SSD [41]. This results in a

user-observable write latency of around 15 µs on the host. However,

depending on the current write throughput and on how bu�ering

is implemented, interferences occur that cause write tail latency

to spike in unpredictable ways. This is especially problematic for

database system write-ahead logging (WAL). Interferences not only

impact other writes, but also reads [42]. One major source of tail la-

tency is the �ash erase operation, which takes several milliseconds.

While reads normally take around 80 µs, if the target data resides on

a �ash chip currently performing an erase operation, read latency

may increase to several milliseconds. To mitigate this issue, some

SSDs have support for suspending ongoing erase commands [37].

How SSDs handle these complex interactions is also not captured

by standard metrics.

Existing metrics are not enough. Can simple experiments be

used to characterize the way a SSD handles write ampli�cation

and latency under load? Do they matter for database performance?

How can one decide which SSD model is best-suited for a particular

workload? The goal of this paper is to better understand the be-

havior of commercial data center SSDs, provide more transparency

when choosing devices, and set better incentives for SSD vendors.

Since commercial SSDs are largely black boxes, we perform care-

fully designed experiments to understand their internal behavior. In

this endeavour, we are helped by the Open Compute Project (OCP)

NVMe interface which provides insights into SSD internals, like

physical media writes [57]. This interface is supported by recent

data center SSD models.

Our key �nding: SSDs behave very di�erently in practice. Our

experiments with nine commercial data center SSDs from all �ve

major vendors show that they behave very di�erently, despite simi-

lar headline metrics and �ash technologies. For example, Table 1

shows �ve SSD models with comparable performance characteris-

tics. However, our study shows that two of these �ve SSD models

actually exhibit much worse latency behavior under load—making

them suboptimal choices for latency-critical applications such as

OLTP database systems. You could not tell which ones from the

datasheet numbers. We also �nd that many SSD models rely on sim-

ple (Greedy-like) garbage collection algorithms rather than more

sophisticated algorithms proposed in the literature. For skewed

write-intensive workloads, the models that implement more intelli-

gent algorithms bene�t substantially in terms of performance and

device lifetime.

Introducing the SSD-iq benchmark. Our �ndings indicate that

for write-intensive workloads, the experiments associated to the

six standard performance metrics are insu�cient. Note that there

is no standard industry benchmark for SSDs comparable to TPC-

C [60] for OLTP. Customer-grade SSD benchmarks from specialized

websites (e.g., Tom’s Hardware, Anandtech, Storage Review) have

evolved to become long-running processes, but they are designed

to replicate I/O-intensive desktop usage, not write-intensive data

center workloads. For instance, the Destroyer benchmark from

Anandtech [61], would not overwrite any of the SSDs we evaluated

and therefore fail to achieve a steady state. There is no popular

testbed either, comparable to FileBench [59] for �le systems, or

Benchbase [14] for database systems. There is a popular tool, �o [4],

for generating synthesized workloads as well as submitting I/Os

and measuring their latency. This tool, developed by Jens Axboe,

is widely used for SSD performance analysis in the industry and

in academia [16, 20, 21, 36, 67]. It is trivial to use �o to measure

the six standard metrics. However, as Bouganim et al. observed

long ago [7], characterizing SSD performance in a meaningful and

reproducible way is more challenging. We therefore propose the

SSD-iq benchmark, which not only standardizes the benchmarking

setup but also provides simple experiments and new metrics for

evaluating and comparing SSDs.

2 RELATED WORK

Understanding SSD performance. Characterizing the perfor-

mance of SSDs has been a topic of interest for many years. Works

like [7, 25, 32] share a common goal with us in aiming to better un-

derstand the performance and internal behavior of black-box SSDs.

They were introduced during the early development of �ash SSDs,

and are designed to assess SSD performance under various access

settings such as alignment, granularity, locality, order, bursts. He et

al. [25] de�ne these access patterns in an unwritten contract that is

based on the SSD speci�c design. Violations of this contract will lead

to suboptimal SSD performance. They evaluated the performance

of �lesystems and storage engines on an SSD and looked at contract

violations in their simulator. However, they only use 1GB partition

of an SSD and did not investigate the steady-state (sustained) im-

pact of these access patterns. Kakaraparthy et al. [32] tried to learn

the internal SSD design by black-box testing. For example, they do

this by observing how block size and alignment in�uences latency

and bandwidth. These learnings they then applied to optimize the

write (and hence read) patterns of database systems. Our study on

the other hand, evaluates state-of-the-art SSD models using work-

loads chosen to expose subtle di�erences in garbage collection and

operation execution in steady-state condition.

Long-running Workloads. The workloads used to characterize

SSD performance range from synthetic, to traces and applications

in production. A key characteristic of these workloads is their du-

ration, measured in hours, power-on years or number of times an

SSD is overwritten. Long-running experiments have been of partic-

ular interest to exhibit interesting characteristics (e.g., throughput
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�uctuations [36], write ampli�cation [27], or garbage collection

behavior [67]).

JEDEC. The industry standard JESD218 [28] by JEDEC de�nes en-

durance testing requirements and methods for SSD vendors to eval-

uate SSD endurance. JESD219 [29] contains detailed descriptions

and clearly de�nes workloads for enterprise-grade and customer-

grade SSDs. The enterprise workload is synthetic, with varying

access granularity from 512 Byte to 64 KB, with most access being

4KB. Further, it divides the LBA space in three constant groups

with di�erent access frequencies, similar to our Two-Zone and

Read-Only workload. The advantage of our patterns is that it can

be adjusted using a single parameter (e.g., shifting from 60/40 to

90/10) to expose resulting variations in performance and WAF. The

client endurance workload is based on a trace which we discuss

in Section 3.2. These standards were created to establish a de�ned

way to measure SSD endurance with two static workloads. They

were not intended to show other di�erences in SSD behavior. We

further consider the role of the workload in SSD benchmarking

methodology in Section 3.

WA studies. Since write ampli�cation is one of the most in�uen-

tial factors in SSD performance, various e�orts have been made

to understand its behavior within SSDs. The foundational works

like [27] explores write ampli�cation and the impact of spare factor

on WAF. In an attempt to better understand the impact of garbage

collection on write ampli�cation, extensive research [11, 13, 40, 68]

provides theoretical models of write ampli�cation, while others

[10, 34, 36, 58, 67] propose improved garbage collection strategies

or data placement techniques to mitigate WA. While our paper also

simulates several garbage collection algorithms, our main objective

is to demonstrate that these algorithms yield di�erent WAF values

under the same workloads. We also present opportunities for im-

proving these strategies by comparing WAF with the optimal value

(refer to Figure 3b and Figure 4b). Additionally, we show that the

e�ectiveness of garbage collection algorithms is highly dependent

on workload skewness, as evidenced not only in simulated WAF

but also on real SSDs.

Wear leveling. Although we left wear leveling out of the scope of

this paper, as we focus on write-intensive workloads, it is worth

noting that wear leveling can signi�cantly impact WAF under read-

heavy workloads. This is because cold data must be relocated to

balance wear on �ash blocks during periods of low write activity.

As a result, various studies have proposed wear leveling-aware data

placement strategies from the application level [8, 9], or studied

wear leveling algorithms for �ash SSDs [31, 49].

Host-side hinting interfaces. SSD vendors have also proposed

various architectures and data placement interfaces to reduce WAF

at the SSD level. Open-channel SSDs [6] provide full host visibility

into device topology, while ZNS SSDs [5] allow the host to man-

age data placement and garbage collection. Both designs aim to

improve performance and predictability by leveraging the host’s

greater knowledge of the stored data. In terms of data placement,

multistream SSDs [33] utilize stream IDs provided by the user as

hints for more intelligent data placement. FDP-enabled SSDs [47]

also focus on host-aware data placement, o�ering even more infor-

mation to the host. We believe benchmarking these SSDs would

also provide valuable insights, and hence leave this exploration as

future work.
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Figure 1: Steady-state performance vs. initialization.

SSD tail latency studies. Various studies have focused on storage

tail latency, as it is a key concern for end users. To address this

issue, several works [6, 15, 24, 35] present measured tail latency on

SSDs in both on-premise and cloud environments. To improve SSD

latency itself, TTFlash [66] attempts to reduce garbage collection-

induced tail read latency, while [62] proposes ways to reduce read

latency by reducing the overhead of the P/E suspension scheme.

Summary.Despite this large body of work, there is still no industry

benchmark for data center SSDs. With SSD-iq, our goal is to de�ne

a framework for systematically comparing commercial SSDs in a

way that is relevant for database architects.

3 METHODOLOGY

In this Section, we describe how write-intensive SSD benchmarks

must be done to achieve conclusive and reproducible results.

3.1 How to Benchmark SSDs

Complex internal state. SSDs have complex internal logic to man-

age NAND �ash memory and to try to hide the resulting undesir-

able properties from users. This is the responsibility of the �ash

translation layer (FTL). The internal state determines performance

characteristics; for instance, an empty SSD will have much higher

write bandwidth compared to a fully written SSD that must perform

Garbage Collection (GC) before new data can be written.

Reproducibility. To achieve reproducible results when experiment-

ing with SSDs, it is essential to control the initial state of the ex-

periment. However, SSDs do not provide any control over physical

data placement or garbage collection, which makes it impossible to

know the current state. Therefore, the only way to ensure a known

and consistent state across all SSDs is to completely reset it. Hence,

before every experiment, the SSD must be fully erased, including

all �ash blocks and the FTL mappings. This can be done using the

NVMe sanitize block erase action [54].

Steady state. By erasing the SSD, we ensure that all benchmarks

start from a well-de�ned and comparable state. The next considera-

tion is how to run benchmarks to achieve consistent and conclusive

results, speci�cally it is important to determine the time required

for workloads to converge to a steady state. Figure 1 shows the write

performance over several hours for random and skewed workloads.

When the SSD is fully written sequentially ("Seq. init" in the �gure)

before the actual workload, the performance converges quickly.
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Without this initialization step ("None"), convergence takes signi�-

cantly longer. In particular, when running the Zipf (0.8) distribution,

it takes an unfeasibly long time. For uniform access patterns, con-

vergence without initialization takes more than 4 hours, equivalent

to over 6 full disk writes. With sequential initialization, steady state

is reached in less than 1 hour with fewer than 1 additional disk over-

write beyond the initial sequential write. Sequential initialization is

bene�cial, as it prevents GC from making use of unwritten pages.

Unwritten pages (Logical Block Addresses, or LBAs) can otherwise

be utilized by the GC process just like Over-Provisioned (OP) space.

In all experiments in this paper, we use the sequential initialization

method up to the desired �ll level, after successful erasure. This

approach allows the workloads to reach steady state much faster,

reducing benchmark duration and wear on the SSD.

3.2 Traces and Workloads

I/O traces. To bridge the gap between the internal behavior of SSDs

and the applications that run on them, many studies rely on I/O

block traces. These traces are utilized under the assumption that

they represent real-world workloads. However, many commonly

used open-source traces [30, 39, 52, 56] were created when hard

disks were primarily used as storage devices and have been used

ever since. To better re�ect modern SSD-based I/O workloads, more

recent traces have been provided [44, 45, 63, 65, 68], including those

from cloud storage environments [43, 55].

Choosing synthetic workloads over I/O traces. We analyzed ex-

isting traces to determine whether they are suited for observing

how each SSD behaves under such workloads. The following ta-

ble shows the most important characteristics of these traces (total

number of writes, the unique pages that are accessed in the trace,

and the di�erence between highest and lowest page):

Trace Total Writes Dataset Size Data Range

(GB) (GB) (GB)

MSR [48] 144.5 1.7 16.2

FIU [38] 1,561.0 8.4 278.5

RocksDB [64] 1,342.8 161.9 476.5

Alibaba [55] 7,443.8 346.9 500.0

JEDEC client [29] 781.3 49.0 128.0

Based on these numbers, we can conclude that these traces are

inadequate for our purposes. First, the traces have a static size,

making them unsuitable for testing SSDs with varying capacities.

For instance, running the same Alibaba trace on a 1,920 GB Intel D7

P5520 and a 960 GB Micron 7450PRO SSD would lead to an unfair

comparison due to di�erences in the relative �ll factor. Second,

except for the Alibaba trace, none of the traces contained su�cient

number of write requests to reach a steady state, or even cover a

signi�cant portion of the LBA range. The JEDEC JESD219A [29]

SSD Endurance Workloads speci�cation de�nes a synthetic enter-

prise and a trace-based client workload. The client workload shown

in the table, is based on 7 months of SSD activity on a 128GB SSD.

The speci�cation also includes instructions on how the trace can

be scaled to larger SSDs, by expanding the cold (read-only) areas,

keeping the written data constant at 49GB. In the era of multi-

Tera-Byte SSDs, these workloads are unsuitable for our research,
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Figure 2: TPC-C with LeanStore on Samsung PM9A3 (64GB

bu�er pool, 128 worker threads, 6550 warehouses ≈ 800GB).

as we are interested in write-heavy, enterprise workloads. Inter-

estingly, the JESD219A standard itself also de�nes the enterprise

workload in a synthetic manner with multiple groups of di�erent

access frequency. In conclusion, every trace is obtained from a

di�erent application with varying levels of skewness, I/O request

sizes, and read/write ratios; this makes it di�cult to reason about

internal SSD behavior from it.

Micro-benchmarks vs. macro-benchmarks. TPC-C is a write-

heavy workload that models an order-processing system for a

wholesale supplier and YCSB mimics a simple key/value workload.

While both are often used to benchmark OLTP database systems,

we argue that they are not ideal for SSD benchmarking. The TPC-C

database grows during the benchmark run, which makes it impossi-

ble to measure steady-state write ampli�cation. Figure 2 shows this

behavior, with the system running the growing TPC-C workload

for only an hour until the SSD is full. To get around this, we devel-

oped a variant of TPC-C that truncates growing tables as part of

the workload, so that space usage remains constant. The �gure also

shows that Steady TPC-C can be run inde�nitely and we can get to

a steady-state, where database throughput settles. While this is an

interesting result, it is di�cult to further adapt TPC-C to expose

SSD-internal behavior. Further, this introduces application speci�c

noise that is di�cult to disentangle from SSD behavior. For example,

most database system will be CPU bound before an NVMe drive

will be saturated, which makes it unclear what is actually being

measured. Similarly for the YCSB workload, which uses the Zipf

distribution for skewed accesses, it is easier to directly model the

Zipf access pattern directly on the SSD without a database on top.

Thus, instead of using complex workloads, we intentionally opt to

use well-de�ned and understandable synthetic workloads in the

�rst part of the paper. This will enable us to expose and understand

di�erences in SSD behavior. We will then con�rm these behaviors

in Section 6.3 using end-to-end TPC-C and YCSB benchmarks.

3.3 Tool & experimental setup

Benchmarking Tool: iob.We are using our own, custom bench-

marking tool iob, which collects a wide range of statistics, including

detailed latency statistics, SMART [23] and OCP counters. iob is

a lightweight and e�cient tool that handles high IOPS per thread.

iob is very �exible and supports many access patterns and cus-

tomizations like threads, I/O-depth, bu�ered I/O, block size, etc.

It also supports multiple I/O backends, like, libaio, io_uring, and
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SPDK. SSD-iq is composed of bash scripts that call iob with spe-

ci�c I/O patterns and characteristics. The bash scripts we used

for the paper and the iob tool are available in the SSD-iq reposi-

tory: https://github.com/gabriel-haas/ssdiq. The extensibility and

maintainability of SSD-iq is based on the �exibility of the iob bench-

marking tool and the simplicity of the scripts.

NVMe setup & aging. We consider NVMe SSDs directly attached

to the host over PCIe. In addition to the �ve PCIe 4.0 SSDs with TLC

NAND �ash, listed in Table 1, the server contains Kioxia CM7-R

(PCIe 5.0) and Micron 7450 Max (PCIe 4.0) SSDs, which are included

in the results in Table 2. At the start of this work, all SSDs were

essentially new. Throughout this work they were used extensively

with their percentage used in SMART now ranging from 40% to 60%.

To understand the e�ect of aging we run a long running experiment

on a 2 TB Intel D7 P5520 SSD until it switched into read-only mode.

This happened after more than 6 months, with more than 4000

logical, uniform random drive writes, or 8 PB written to the SSD.

The most interesting fact about this was that it achieved double

the guaranteed 1800 drive writes (5 years * 1 DWPD) and this

with 26 PB of physical writes (WAF of 3.2). For the duration of the

experiment we did not observe any signi�cant di�erences in read or

write latency, nor write-ampli�cation, until it went into read-only

mode (where writing at 2MB/s is still possible).

Hardware & so�ware setup. Most of the experiments in this

paper are conducted on a server equipped with an AMD EPYC

9654P 96-Core processor and 384GB DRAM running Linux v6.8.0.

Some additional experiments were run on a similar remote server

equipped with Samsung PM1733 SSDs (PCIe 4.0) and i4i instances

in AWS with NVMe instance storage. For all experiments in this

paper we used iob with the io_uring backend and non-bu�ered

I/O (O_DIRECT) directly on the block device using 4 KiB pages.

4 WRITE AMPLIFICATION

Most of the complex performance characteristics exhibited by SSDs

are directly or indirectly caused by writes and how they are man-

aged by the SSD controller. In this Section, we experimentally in-

vestigate the write ampli�cation factors (WAF) on data center SSDs

caused by di�erent workloads. For this we designed a series of

experiments to dissect the behavior of SSDs.

4.1 Background

Device lifetime. Since �ash storage has a limited number of pro-

gram/erase cycles, the total volume of physical writes determines

the device’s lifetime. With a write ampli�cation factor (WAF) of 2,

the SSD internally writes twice as much data as it receives from

the host, which e�ectively halves the SSD lifespan. SSD manufac-

turers generally provide warranties in terms of Disk Writes Per

Day (DWPD) over a period of �ve years. For example, most devices

in this paper guarantee 1 logical DWPD, implying that customers

may overwrite the disk 1× 365× 5 = 1825 times. However, the true

number of overwrites may substantially vary depending on WAF.

Causes of write ampli�cation.Write ampli�cation is determined

by the workload, the over-provisioning capacity, and the garbage

collection algorithm.While the workload and the over-provisioning

capacity are outside the control of the SSD controller, the garbage

collection algorithm is a key component of the FTL and has a

signi�cant impact on WAF.

Measuring write ampli�cation with OCP. The Open Compute

Project (OCP) [57] recently introduced an NVMe extension that

provides insights into SSD internals. Many data center SSDs sup-

port OCP, including several devices that we compare in this paper.

OCP speci�es metrics for physical �ash writes, �ash block erases,

number of error corrections at various levels, and bad blocks. For

our purposes, the physical write counter is particularly useful, as it

allows calculating WAF as follows:

WAFmeasured =
physWrites

hostWrites

Implied write ampli�cation. For SSDs that do not support OCP,

we can estimate WAF by observing the drives write performance.

Speci�cally, we compare the maximumwrite bandwidth for a partic-

ular access pattern with the maximum sequential write bandwidth:

WAFimplied =
1Fseq

1Fmeasured

This can be done because sequential write performance is close to

the internal write bandwidth (1Fseq ≈ 1Fphy ). SSD vendors want to

achieve high sequential write performance in micro-benchmarks

and their datasheet, close to what is physically possible. There

are other factors that reduce host writes throughput, like wear

leveling, but that has a small impact on WAF [26]. Hence, the

formula assumes that WAF is close to 1 for sequential writes and

that the slowdown in the measured workload is caused by write

ampli�cation. Using the SSDs that do support OCP, we found the

former assumption to be true for all tested SSDs, and the latter

assumption holds well enough to be useful. The following �gure

visualizes this on the example of the Intel SSD:
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In this case, the sequential write spec and the physical writes mea-

sured using OCP counters are comparable. The estimation results

in an implied WAF of 3.81, compared to the WAF measured through

OCP of 3.47. Thus, while this estimation technique is not perfect, it

is still useful and works for any SSD.

GC algorithms. Themost salient aspect of a GC algorithm is the de-

cision on which block to erase next. A straightforward approach is

to select the blockwith the fewest valid pages. This greedy algorithm

has been shown to be optimal for uniform random workloads [40]

but does not perform well for skewed workloads [34]. More sophis-

ticated algorithms based on hot/cold data separation, explicit data

placement, and explicit partitioning of over-provisioning capac-

ity [10, 11, 13, 34, 40, 58, 68] exploit skew in the access distribution

and have been shown to reduce WAF substantially. Given the exis-

tence of these algorithms, the importance of WAF, and the fact that

many real-world workloads are skewed [65], one would expect that

state-of-the-art data center SSDs employ intelligent GC algorithms.
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Figure 3: Write ampli�cation with increasing skew on two-zones workload.

4.2 Two-Zones Workload

Workload de�nition. To investigate how skew a�ects GC, we

de�ne a simple workload consisting of two zones and a single pa-

rameter that determines the level of skew. This parameter governs

both the write frequency and the size of each zone. For example, a

70/30 setting means that 70% of all writes are directed to the �rst

zone, which occupies 30% of the storage space. A 50/50 two-zone

setting is equivalent to uniform random writes, where 50% of the

writes are directed at 50% of the SSD capacity, and the other half

receives the rest. As a result, writes are uniformly distributed across

the entire SSD capacity. A 95/5 setting represents the other extreme

with very high skew, there, 95% of all writes target only 5% of the

storage. Within each zone, writes are uniformly distributed, but the

two zones are not placed sequentially on the SSD. Instead, they are

randomly scattered across the entire SSD range. The scrambling

prevents frequently accessed pages from clustering in the same LBA

range, making the workload slightly more challenging for SSDs.

Underwhelming SSDs. Figure 3a shows the absolute WAF for

the �ve SSDs listed in Table 1 across increasingly skewed two-

zone workloads. The SSDs are abbreviated by manufacturer name:

Samsung (s), SK Hynix (h), Intel (i), Micron (m), and WD (w). Even

for uniform workloads, we observe signi�cant WAF di�erences,

primarily due to varying over-provisioning levels. This is expected

and discussed further in Section 4.6. More notably, except for the

Intel and WD drives, all SSDs exhibit progressively higher WAF

as skew increases. This is a surprising result and contradicts the

expectation that modern SSDs employ intelligent GC algorithms.

Despite decades of research into GC algorithms, many data center

SSDs fail to exploit skew, even in this simple two-zone workload.

Simulator. To better understand this unexpected result, we devel-

oped an SSD simulator with the following algorithms:

• Naive Greedy: Selects the block with the fewest valid pages,

compacts it, and then adds new host writes to the same block.

• 2R-Greedy (2R-G) [34]: Similar to Naive Greedy, but uses two

regions; data moved by GC is written to di�erent blocks than

host writes. It performs garbage collection on one region at a

time to prevent mixing hot host writes with cold GC data.

• 2R-FIFO (2R-F) [34]: Expands on 2R-G by managing SSD blocks

in a FIFO list to avoid the false promotion of cold blocks, while

giving hot blocks more time for pages to become invalidated.

• Optimal: This is a theoretical lower bound, obtained by exhaus-

tively enumerating all possible ways of partitioning available

over-provisioning space to groups with similar access frequency.

Revealing the hidden side. Figure 3b compares the SSDs with

the GC algorithms implemented in the simulator. To highlight

algorithmic di�erences rather than the in�uence of OP, we nor-

malize the WAF by the WAF observed in the uniform workload

(,��G/,��unif ). For most SSDs (Micron (m), SK Hynix (h), and

Samsung (s)), WAF increases with higher skew, exhibiting behavior

that falls between the Naive Greedy and semi-naive (2R-Greedy)

algorithms. Only the Intel (i) andWS (w) SSDs manage to somewhat

exploit the skew of the two-zone workload to reduce WAF.

4.3 Zip�an Workload

Zipf implementation. A frequently used distribution to emulate

real-world access patterns is Zipf. While many implementations

approximate it, the lack of detailed explanations in most research

papers makes reproducibility di�cult. We use the Rejection Inver-

sion Zipf (RJI) sampler [12], ported from the Apache Commons

implementation [3]. We also experimented with the Zipf generator

from the �o I/O benchmarking tool [4], but found that its imple-

mentation does not access all pages. The access patterns generated

by �o and RJI Zipf samplers are shown in a histogram in the �g-

ure below, based on 500 million pages (equivalent to a 2 TB SSD

capacity) and 10×500M accesses:
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While the distribution from the RJI sampler resembles the expected

Zip�an distribution, the �o Zipf implementation introduces no-

ticeable discrete steps. More critically, it leaves 14% of the pages

untouched, which results in inaccurate performance and WAF.
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Zipf results. Figure 4 shows the WAF with increasing Zipf factors.

Similar to the two-zone workload, higher Zipf factors initially result

in higher WAF on most SSDs. The Western Digital SSD (w) again

shows good performance, while the Intel SSD (i), which performed

well in the two-zone workload, fares particularly poorly here. How-

ever, the biggest di�erence between the two workloads is that at a

high Zipf factor of 1.0, WAF suddenly drops for all SSDs except for

Micron (m). We hypothesize that this occurs because most SSDs

have a DRAM write bu�er capable of capturing frequently writ-

ten pages. With a Zipf factor of 1.0, 52% of accesses target only

0.05% of the pages, which can be cached by the SSD’s small write

bu�er, drastically reducing WAF. We validated our hypothesis by

implementing an LRU-like write bu�er in the simulator, setting

its size to 0.02% of the SSD’s total capacity. The resulting curves

in Figure 4b follow the pattern observed in real SSDs. Overall, as

with the two-zone workload, the comparison with the simulator

indicates that smarter algorithms could signi�cantly reduce WAF.

However, under very high skew, write bu�ering can o�er similar

bene�ts for SSDs that invest in and implement such bu�ers.

4.4 Read-Only Area Workload

Another important workload pattern in database systems involves

data that is only written once and then remains unchanged, e�ec-

tively making it read-only. To capture this behavior, we design a

simpli�ed workload model that simulates this scenario. The experi-

ment begins with a full sequential write to the SSD, ensuring an

initialized state. After this, we randomly select a subset of the logi-

cal block address (LBA) range (scrambled and aligned to page size,

i.e., 4 KB) that will be updated uniformly, while the remaining data

is never modi�ed. Figure 5 illustrates the impact of increasing read-

only area on SSD behavior, starting from a uniform random write

pattern (as in previous experiments). We only simulate writes; no

actual read operations are performed in this workload. Ideally, GC

should bene�t from the fact that read-only data can be grouped into

the same erase blocks, allowing the SSD to allocate more OP space

to manage the data that is updated. However, the results show that

only the Intel (i) and WD (w) SSDs adapt, bene�ting from read-only

areas (∼ 40%). The other SSDs only start showing improvements

when large portions of the data (∼ 80%) are read-only, suggesting

that their GC algorithms are not tuned to e�ectively exploit this.

4.5 Sequential Workloads

WAF = 1. The observations so far have been sobering — few SSDs

can e�ectively leverage high skew to reduce Write Ampli�cation

Factor (WAF). This raises the question: is there any other write

pattern that consistently results in predictably low WAF? Conven-

tional wisdom suggests that large sequential writes are bene�cial

not only for HDDs but also for �ash-based SSDs. Sequential writes

are prevalent in various applications, including database systems,

where they are commonly used for log writing and LSM-tree data

structures. To assess the SSD’s ability to exploit sequential writes,

we designed an experiment where the Logical Block Addressing

(LBA) range is divided into large zones, with writes occurring se-

quentially within each zone. In the �rst experiment, a random zone

is selected, trimmed (BLKDISCARD), and then written sequentially.

This process is repeated by selecting zones randomly, with only

one zone written at a time (i.e., a single write front) As shown in

Figure 6a, this approach results in a lower WAF compared to our

baseline scenario of uniform random writes. However, achieving

signi�cant WAF reduction requires very large zones (>1GB).

ZNS-like workload. This pattern essentially emulates a Zoned

Namespace (ZNS) write pattern on top of a standard SSD. Consid-

ering that this is exactly the pattern that ZNS enforces, it is clear

that this pattern should result in a WAF of 1 regardless of zone size,

as long as the zones are large enough. The results are promising,

showing WAF values below 2 for all SSDs for which we have access
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Figure 6: ZNS-like write workload (write size: 512KB, io-

depth: 1, threads: 1, 4×capacity).

to OCP counters when the zone size exceeds 2GB. However, unlike

ZNS, there is no guarantee that WAF will remain consistently low.

While this pattern could be relatively easy to adopt for log writ-

ing and LSM-tree merging, applications requiring in-place updates

would need to implement their own garbage collection—just like

when using ZNS devices.

Multiple writers. A major limitation of using a single active write

front is that only one application or tenant can write at a time. This

constraint poses challenges even for single-application scenarios,

particularly in database systems. Bu�er managers can optimize

write patterns to some extent, but they still need to manage con-

current writes, such as the Write-Ahead Log (WAL) and bu�er

evictions. For LSM-tree-based systems, this restriction implies that

only one merge operation can be performed at any given moment.

To address this, we conducted a follow-up experiment with multi-

ple concurrent write fronts, as illustrated in Figure 6b. Even with

a large zone size of 8GB, increasing the number of active write

zones substantially worsens WAF. Notably, on the Intel SSD (i),

WAF degrades beyond that observed with uniform random writes.

For other SSDs, WAF remains slightly better but is still far from the

optimal value (WAF = 1).

No universal solution. Importantly, we conduct all experiments

directly on the raw block device, bypassing the �le system. In real-

world deployments, �le systems introduce additional complexities

such as metadata writes, allocation policies, and fragmentation,

further increasing WAF unpredictability. Even under our controlled

setup, only a few SSDs could leverage sequential writes to reduce

WAF. When additional real-world factors come into play, achieving

consistently low WAF becomes even more di�cult. Ultimately,

�nding awrite pattern that consistently delivers low and predictable

WAF on standard SSDs remains a challenge.

4.6 Over-Provisioning

OP. All previous experiments utilized the full logical capacity of

the device. However, over-provisioning (OP) is a critical factor that

signi�cantly impacts write ampli�cation. OP refers to the extra

capacity reserved on the SSD to support garbage collection. For

workloads where the application can in�uence OP, such as multi-

tenant services that limit storage usage (e.g., to 80% of the SSD

capacity), this can greatly improve garbage collection e�ciency. In
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Figure 7: Impact of over provisioning (OP) / SSD �ll level on

write ampli�cation.

single-node database instances, SSDs are typically not fully occu-

pied, since spare space is needed for data growth. This can bene�t

GC when unused storage is correctly trimmed by the application.

Estimating OP. Interestingly, OP is never mentioned in SSD speci-

�cations, despite its signi�cant impact on SSD performance. Similar

to how implied WAF can be estimated, OP can also be inferred by

running a uniform random write workload. Consider a scenario in

which a SSD has an additional 10% of OP capacity, which is hidden

from the host. With random writes, the user can overwrite data

until the additional 10% OP is nearly �lled. At this point, the GC

algorithm has to pick blocks containing invalidated pages (i.e., logi-

cally overwritten) and compact those, to create new empty blocks.

The simplest GC strategy is to pick random blocks. Then, one would

expect each selected block on average to contain 10% invalid pages.

Compacting 10 blocks would then yield 1 empty block, resulting in

a WAF of 10. In reality, GC algorithms should implement a more ad-

vanced strategy than picking random blocks, like picking the ones

with the highest number of invalid pages, which is exactly what

Greedy does. In this scenario, the expected number of invalid pages

per block increases to approximately 20%, meaning that compacting

5 blocks will produce 1 empty block. This results in a reduced WAF

of 5. To estimate OP, we can use the WAF ≈ 1/(2 ∗ 0) formula

from Desnoyers [13], with 0 representing OP. By rearranging the

formula and substituting 0 with OP we get $% ≈ 1/(2 ∗WAF), e.g.,

a WAF of 5 results in an OP of 10%. Lange et. al. [40] proved that

for uniform random writes there is no strategy better than Greedy.

Our estimated OP is therefore a lower bound, the real OP could

be higher if the implemented GC algorithm performs worse than

Greedy in uniform random writes. Figure 7a shows the di�erence

between the formula and the simulated Greedy algorithm. With

low values of OP the di�erence is small, showing it can be used as

a simple approximation between WAF and OP.

OP on write-intensive SSD. SSD vendors often o�er two ver-

sions of SSDs with similar hardware speci�cations, where the

lower-capacity model is typically marketed as “write-optimized”

or “mixed-use”. One might expect that such write-optimized SSDs

would demonstrate improvedWAF characteristics due to specialized

internal designs. To investigate this, we compared two Micron SSD

models: the Micron 7450 PRO, designed for “read-intensive” work-

loads with a capacity of 960 GB, and theMicron 7450MAX, intended

for “mixed-use” workloads with a capacity of 800 GB. Both SSDs

were tested under identical workloads and dataset sizes, as shown
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in Figure 7b. The WAF results for both models were identical and

closely matched the results from the simulator. This suggests that

these Micron SSDs, despite being marketed for di�erent workloads,

are essentially identical in performance, with the only di�erence

being a larger OP on the “mixed-use” model. For these SSD models,

there appear to be no other hardware or algorithmic improvements.

As a result, users can achieve similar performance by manually re-

serving free space on the “read-intensive” SSD, o�ering a practical

alternative to purchasing the “mixed-use” model.

4.7 Take-Aways

Sequential writes aren’t enough. The common wisdom is that

sequential writes result in lowerWAF.While our experiments using

OCP counters con�rm this, it is only true for very large sequen-

tial writes when run in isolation. Once multiple write streams are

introduced, WAF worsens signi�cantly—even when all writes are

sequential.

Implications for LSM-trees. This is problematic for database sys-

tems, wherewrite patterns are rarely purely sequential. For instance,

LSM-tree-based databases seem optimal for this, as they continu-

ously perform merging operations that produce large sequential

writes. However, multiple merge operations may occur simulta-

neously, inevitably interleaving writes with each other and with

write-ahead log (WAL) writes, deteriorating the potential bene�t. In

practice, the expectation that sequential writes alone can minimize

WAF is overly simplistic.

Skew can worsen WAF. A surprising �nding from this section

is that skewed write distributions can worsen WAF rather than

improve it. This is the case with very simple, static access patterns

(e.g., Zipf, Two-Zone) and even when substantial fractions of data

is read-only. This suggests that the garbage collection algorithms

implemented in most commercial SSDs are essentially greedy vari-

ants that do not e�ciently leverage write skew. The exception is

the WD (w) SSD, whose behavior suggests that a more intelligent

algorithm is used.

5 LATENCY

5.1 Background

Users notice latency. Latency is critical for applications running on

SSDs because it directly in�uences throughput and it is also what

users can observe. In particular, cloud and web service providers

may prioritize tail latency over maximum bandwidth, as they must

ensure a certain degree of response time for their services. La-

tency is essentially a result of interference within the SSD [41]

as well as the duration of �ash operations, particularly program

and erase [66]. Consider a scenario where a database application

is running on an SSD: In such systems, the I/O workload gener-

ally involves background writes, latency-critical reads, and writes

from the write-ahead log (WAL). Background writes, such as evic-

tions from the bu�er pool, are typically performed asynchronously

and are not latency-critical. In contrast, latency-critical reads are

often involved in index lookups, which exhibit data dependencies—

meaning each lookup depends on the result of the previous one.

As a result, transactions involving multiple index lookups or I/O

operations are particularly susceptible to tail latency. Finally, writes

from the WAL are also latency-critical, as data is only considered

committed once the WAL entry is written to non-volatile storage.

Therefore, it is essential for SSDs to minimize tail latency.

Controlling latency. Despite the importance of latency, most SSD

speci�cations only include idle latency metrics for reads and writes,

and some omit latency metrics entirely, as shown in Table 1. Two

key factors contribute to I/O latency: the duration of operations

(especially �ash program/write and �ash erase times) and queuing

e�ects, which occur due to limited parallelism within the SSD. As

with any queuing system, latency is expected to increase when the

device approaches its saturation point. On the other hand, latency

should remain stable and predictable under moderate workloads.

Write bu�ering. For synchronous writes, it is crucial to mitigate

the impact of long �ash program times. To achieve durability with-

out these delays, data is initially written to a volatile on-SSD write

cache in DRAM. However, when a �ush operation occurs, the data

must be committed to non-volatile storage, which still involves

high program latency. Enterprise SSDs address this issue by incor-

porating capacitors that provide su�cient power during power loss

to �ush the write cache to �ash memory. This design ensures data

durability without requiring the system to wait for the longer pro-

gram times associated with �ash writes. As a result, write latency

is typically lower than read latency by an order of magnitude.

Suspension. Flash program durations are typically in the millisec-

ond range, while erase operations can take multiple milliseconds.

Erase operations occur asynchronously during GC, but their e�ects

become apparent when other operations are queued behind them.

This can lead to signi�cant read latency when a read operation

must wait for a program or erase operation to complete. In such

cases, read latency can increase from an average of less than 100 µs

to several milliseconds [66]. Flash controllers can mitigate this issue

by suspending write and erase operations to allow low-latency read

operations to proceed [37, 62]. This approach permits the controller

to temporarily pause a program or erase operation, execute the read,

and subsequently resume the suspended operation—signi�cantly

reducing read tail latency.

5.2 Latency Under Load

Writes under load workload. To investigate the write latency of

our SSDs under load, we measured latency while running a write

workload with varying write bandwidth. The results for writes with

average and tail latency (at the 99th and 99.999th percentiles) are

shown in the �rst two rows of Figure 8. The x-axis represents the

relative write speed compared to the maximum write bandwidth

speci�ed for each SSD model. The SSDs are ordered in the plot from

lowest/predictable to highest/unpredictable latency. The second

row of the �gure, highlighted with a gray background, provides a

zoomed-in view of the gray-shaded section from the �rst row of

plots. First and foremost, it is evident that signi�cant di�erences ex-

ist between SSD models that are not re�ected in their speci�cations.

For instance, although the random write performance of SK Hynix

(h) and Samsung (s) appear similar in their speci�cations (see Ta-

ble 1), the (h) SSD maintains lower average and P99 write latencies

(<25 µs) for higher write bandwidths compared to the other SSDs

relative to the SSD’s speci�ed random write throughput. The (s)

SSD exhibits comparable performance and trends to the (h) SSD as

the write speed increases. In contrast, the WD (w) and Intel (i) SSDs
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Figure 8: Write and read latency vs. normalized write bandwidth based on SSD speci�cation. (100% �ll, 4KiB uniform writes)

are less e�ective at leveraging their write cache, as indicated by

their consistently high tail latency even with low write throughput.

The Micron (m) SSD performs poorly from the outset, likely due to

either a lack of a write bu�er or an inadequately sized one.

Reads under load. Figure 8 also shows the same experiment but

for read latency under write load in the two lower rows. As antici-

pated, read latency is generally higher than write latency, and all

SSDs are relatively similar, as they use the same NAND technology.

The average read latency is approximately 100 µs, while the 99th

percentile latency ranges between 200 µs to 500 µs. Notably, the

increase in latency as write speed rises mirrors the trend observed

between di�erent SSD models in write latency. Additionally, the

high tail latency (99.999th percentile) is signi�cantly elevated for

the SKHynix (h) andMicron (m) SSDs, suggesting that these models

might not support erase/write suspension.

Take-aways. This section shows that latency under load cannot

be inferred from the speci�cations, and that it di�ers signi�cantly

across SSD models.

6 ACTIONABLE SSD METRICS

6.1 SSD-iq Results

SSD-iq.We now present the results of the SSD-iq benchmark for

9 SSDs from all major vendors, including state-of-the-art PCIe

5.0 drives and a cloud-based AWS instance. Table 2 shows both

the existing throughput and latency metrics from the datasheet

(denoted as Spec with a white background) and the numbers that

we measured (gray background).

New performance metrics. Table 2 also shows new metrics: (1)

Throughput under skewed access patterns, measured using both the

Two-Zone (TwoZ 80/20) pattern and Zipf (0.8) workloads, providing

insights into how well the SSD manages non-uniform data access.

(2) Latency under load (25% of the SSD speci�ed random write

bandwidth), with a dedicated probe thread (io-depth=1) for read

and write latency (average and 99.9th percentile).

Internal metrics. Table 3 additionally shows the following charac-

teristics: (3) Write Ampli�cation: Measured directly via the OCP

interface or estimated based on throughput reduction under uni-

form and skewed workloads as described in Section 4.1. (4) Over-

Provisioning (OP): Inferred from WA, OP can be estimated using

the method described in Section 4.6, revealing one of the most

important SSD characteristics.

6.2 SSD-iq Interpretation

Specs replication. For both sequential reads and writes, our mea-

surements match the numbers from the Spec. The random read

throughput we observe in our measurements with a uniform work-

load is largely similar to performance advertised in the datasheets.

If anything our measurements are slightly better than the adver-

tised performance. The random write throughput we observe for a

uniformworkload is also higher than the Spec by a few percent. One

hypothesis is that SSD manufacturers provide slightly conservative

numbers to account for variance in manufacturing quality.

Throughput under skewed access pa�erns. Throughput obtained

with a skewed write workload is lower than with a uniform work-

load for most SSDs, except for the Intel (i) and WD (w) SSDs, as

shown in Section 4. Out of nine state-of-the-art data center SSDs,

only two appear to implement a more sophisticated GC algorithm
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Table 2: SSD Performance Comparison

Samsung SK Hynix Intel WD Ultra. Micron Micron Samsung Kioxia AWS EC2

PM9A3 PE8110 D7-P5520 DC SN640 7450 PRO 7450 MAX PM1733 CM7-R i4i.4xlarge

s h i w m - - - -

Capacity [GB] 960 960 1920 960 960 800 3840 3840 3750

Seq. Read Spec 6500 6500 5300 3330 6800 6800 7000 14000 2800

[MB/s] 6696 6564 5236 3083 6700 6732 6973 14312 2844

Seq. Write Spec 1500 1700 1900 1190 1400 1400 3800 6750 –

[MB/s] 1441 1731 1957 1189 1393 1391 3538 6746 2258

Rnd. Read Spec 580 900 700 434 530 530 1500 2700 400

[k IOPS] 582 1016 731 460 549 549 1483 2775 393

Rnd. Write Spec 70 70 114 49 85 145 135 310 220

[k IOPS] Unif 71 84 118 47 94 160 146 330 146

TwoZ 67 79 129 50 85 141 134 301 134

Zipf 67 79 117 50 84 143 133 296 133

Read Lat. Spec – 75 75 78 80 80 – – –

under load Avg 62 58 61 75 66 67 59 65 126

[us] P99.9 487 521 734 471 532 485 571 1153 1179

Write Lat. Spec – – 15 – 15 15 – – –

under load Avg 13 11 11 17 10 10 16 8 27

[us] P99.9 17 15 178 36 10790 9504 131 272 715

Background colors: white: data based on the spec; gray: measured value. Other colors have di�erent interpretations depending on the metric: (1) For "Rnd. Write
Unif" it means conformity to the spec. (2) For "Rnd. Write TwoZ/Zipf" it is a comparison to the uniform workload. (3) For latency it is absolute measure: For "Read
Avg.": < 100 µs green else red; for "P99.9": < 500 µs green, < 1000 µs yellow, else red. For "Write Avg.": < 20 µs green, else yellow; for "P99.9": < 20 µs green, < 100 µs
yellow, else red.

Table 3: Additional SSD Characteristics

Samsung SK Hynix Intel WD Ultra. Micron Micron Samsung Kioxia AWS EC2

PM9A3 PE8110 D7-P5520 DC SN640 7450 PRO 7450 MAX PM1733 CM7-R i4i.4xlarge

OCP Support yes no yes no yes yes no yes no

WA Unif 4.2 5.3 3.5 6.5 3.2 1.9 6.2 4.4 4.0

TwoZ 4.5 5.6 3.4 6.1 3.4 2.1 6.7 4.8 4.3

Zipf 4.5 5.6 3.6 6.1 3.5 2.1 6.8 4.9 4.3

Estimated OP 11.9% 9.5% 14.3% 7.7% 15.7% 26.5% 8.1% 11.3% 12.6%

Background coloring interpretation: gray: measured or estimated value. For "WA TwoZ/Zipf" it is a comparison to the uniform workload (green: better, red: worse).

capable of exploiting skewed data access. Overall though, the ob-

served throughput under skewed access patterns is within a few percent

of the Spec for all SSDs, except for the AWS instance (i4i), which is

signi�cantly below the advertised random write bandwidth.

Latency under load. The average read latency under load that

we observe is lower than the latency numbers reported in the

datasheets. However, the P99.9 latency is an order of magnitude

higher. For writes, the P99.9 latency is substantially higher than av-

erage latency on most SSDs. Only the SSD from Samsung (PM9A3),

SK Hynix, and WD perform well. The Micron SSDs exhibit a P99.9

latency that is two orders of magnitude higher than average. The

SSD in the AWS instance has particularly problematic properties in

terms of latency (as is the case for throughput as we noted above).

Write Ampli�cation.WAF varies by a factor of 2.5 between the

SSDs with highest WAF (WD Ultra and Samsung PM1733) and the

SSD with the lowest WAF (Micron 7450 MAX).

Over-Provisioning.As explained in Section 4.6, the estimated Over-

Provisioning (OP) di�er across SSD models. Most interestingly, the

"mixed-used" SSD from Micron (26.5%) has 10% more OP than the

"read-intensive" model (15.7%).

6.3 Choosing an SSD: Implications for DBMS

Let us compare the Samsung PM9A3 (s) and Micron 7450 PRO (m)

SSDs in more detail. These two models have similar speci�cations,

the same capacity (960GB), and, at the time of writing, similar prices.

In terms of sequential throughput, m is slightly better for reads,
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Figure 9: Performance andWAFof steadyTPC-C in LeanStore

(64GB bu�er pool, 128 threads, 6550 warehouses ≈ 800GB).

while s is slightly better for writes. For random I/O, m performs

better on writes, whereas s is better for reads. From the speci�ca-

tions alone, it is impossible to make an informed decision regarding

which SSD to choose for a database workload. SSD-iq shows two

very signi�cant di�erences between these SSDs: (1) write latency

under load degrades by two orders of magnitude for m, while it

remains stable for s; (2) WAF is 25% higher for s than for m (WAF

is between 4.2 and 4.4 for s, while it is between 3.2 and 3.5 for m).

According to SSD-iq, the choice between these two SSDs matters

and it is a trade-o� between performance under load (s is better)

and write ampli�cation, i.e., lifetime (m is better).

TPC-C. Figure 9 illustrates the impact of SSD behavior on database

performance using TPC-C on LeanStore [1, 22, 53]. LeanStore uses

a �+-Tree based bu�er manager, conceptually similar to those in

PostgreSQL and MySQL. The advantage of LeanStore is that it is

a storage engine optimized for multi-core CPUs and NVMe SSDs,

and will therefore not be CPU-bound. Like with our previous micro-

benchmarks, SSD are erased and the experiment is run for multiple

hours until the steady state is reached. The code for steady TPC-C

and experiment can be found in [19] and for the YCSB latency exper-

iment in [18]. In this con�guration, the TPC-C workload results in

about 60% reads and 40% writes. The Figure shows that the choice of

SSD impacts database performance. First, the SSD is responsible for

the evolution of throughput over time. Initially, throughput is high

(about 35k transactions per second for the Samsung SSD (s) and

30k transactions per second for the Micron SSD (m)). Then Garbage

Collection (GC) kicks in. which causes a sharp decline in database

throughput. Performance recovers when WAF starts to stabilize

until it reaches a steady state. Second, the choice of SSD impacts

the steady state performance. LeanStore achieves a throughput of

20K transactions per second with s and 15K transactions per second

with m. At the same time, we observe that the WAF of s is about

2.8, while the WAF of m is about 2.4.

YCSB. SSD-iq shows signi�cant di�erences in latency under load.

To con�rm this, we measure end-to-end database latency using

the YCSB-A workload (50% lookups, 50% updates) under varying

throughput levels with LeanStore. Figure 10 shows that there is a

clear di�erence, with the m SSD showing higher median latency

under load. The p99 latency for m is especially problematic, with

values consistently worse than the s SSD at low throughput. These

results emphasize that the performance gap between m and s is

not just observable in synthetic I/O benchmarks but has real-world

implications under OLTP workloads. Overall, these experiments

provides evidence to support the predictions wemade with SSD-iq.
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Figure 10: Latency of YCSB-A in LeanStore. (64GB bu�er

pool, 96 threads, 3 billion tuples, 811GB data, 40GB WAL).

7 OUTLOOK

Insights.We proposed SSD-iq, a benchmark designed to measure

SSD write ampli�cation and latency under load with skewed and

mixed access patterns. We evaluated SSD-iq on nine commercial

SSDs and showed that the choice of SSD matters for database per-

formance. SSD-iq is well-suited to inform this choice. Our �ndings

also unveil fundamental ine�ciencies in existing SSDs when han-

dling write-intensive workloads. In particular, most of the SSDs

we tested behave as if they implement a simple, greedy garbage

collection algorithm, which negatively impacts write ampli�cation.

Future Interfaces. How about upcoming SSD architectures? How

will they impact database systems? What are the implications

for SSD-iq? Most of the performance penalty we observe in Sec-

tion 4 and Section 5 stems from interferences within SSDs with a

traditional block device interface. We expect that newer NVMe

interfaces, like ZNS [5] and FDP [47] will be useful to reduce

WAF for classes of workloads, especially those based on sequential

writes [2, 46]. ZNS and FDP allow the host some degree of control

over data placement. For instance, database systems could manually

manage data placement and GC for di�erent tables and objects or

use pre-existing statistics about page access. However, just moving

the task of data placement and GC from the device to the host is

not a panacea. If the garbage collector is not capable of exploiting

placement information, it does not matter whether the host or the

SSD �rmware is responsible for it. Quantifying the impact of ZNS

and FDP with SSD-iq remains a topic for future work.

Sustainability. SSD sustainability has become a key issue for SSD

designers. Recent work has shown that the number of SSDs used in

a system is the main factor with respect to sustainability (far more

important than energy consumption at rest or in operation) [51]. As

a result, there is increased focus on SSD utilization and SSD lifetime.

The latter is directly related to write ampli�cation. A question for

future work is whether the SSD-iq benchmark uncovers all relevant

aspects of write ampli�cation, or whether new developments of

the benchmark are needed to uncover SSD sustainability issues.
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