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ABSTRACT

We study the subgraph matching problem, which is to �nd all sub-

graph isomorphisms of a given pattern graph Ħ in a data graph

ă . Traditional approaches typically use a backtracking search ap-

proach or worst-case optimal join, both of which directly operate

on Ħ . In this paper, we revisit the tree decomposition based ap-

proach. For a complex pattern graph Ħ , we �nd its optimal tree

decomposition Đ based on the fractional hypertree width, where

a node in Đ represents a subgraph of Ħ , which is also called a bag,

and a node in Ħ may appear in multiple bags in Đ . The tree de-

composition based approach initially computes and materializes

the matches of subgraphs speci�ed by the bags, then treats these

matches as new relations and employs an acyclic join to compute

the matches of Ħ itself. However, previous approaches fail to inte-

grate the tree decomposition with e�ective join attribute orders,

and conversely, previous join attribute ordering approaches do not

consider the need to share computations in multiple bags. Addition-

ally, the materialization strategies in previous tree decomposition

based approaches can lead to high computation costs. In this pa-

per, we propose a new subgraph matching algorithm ASDMatch

(Adaptive Shared Decomposition-based matching). We propose a

new dynamic programming approach that �nds optimal attribute

orders for each bag based on a cost model that incorporates the

computation sharing. Furthermore, we introduce a new adaptive

materialization strategy to reduce the computation cost. We con-

�rmed that our ASDMatch outperforms state-of-the-art algorithms

and can process many challenging queries that previous algorithms

can not �nish within the time limit.
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1 INTRODUCTION

Subgraph matching is one of the fundamental problems in graph

analysis and graph database systems. Given a large data graphă

and a pattern graph Ħ , subgraph matching is to �nd all subgraphs of
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ă that are isomorphic to Ħ . This problem has a wide range of appli-

cations such as motif discovery [54], fraud detection [39], question

answering [49], and functional prediction [6]. The challenge arises

from the fact that the subgraph isomorphism problem is NP-hard.

Most of the existingworks follow a �ltering-ordering-enumerating

framework [46, 60]. Here, �ltering is to eliminate data nodes and

edges that cannot be potential matches. A data structure known as

the candidate set is used to maintain candidate data nodes/edges for

each query node/edge. Various techniques have been proposed to

tighten this data structure [4, 5, 18, 19, 28, 47, 61]. The ordering in-

volves selecting a total order of pattern graph nodes. Most previous

works use some heuristics to select the node order for a single query,

such as prioritizing attributes with larger degrees and fewer candi-

dates [6, 20, 47]. In [37], a cost model is proposed for node orders,

along with a dynamic programming approach to optimize the cost.

For the enumerating phase, most existing works directly process the

pattern graph Ħ as a single query. There are two main categories in

the enumeration-based approaches, namely the exploration-based

approaches and join-based approaches. The exploration-based ap-

proaches [5, 19, 25, 28, 34, 42] follow the classic Ullmann’s back-

tracking algorithm [51]. For join-based approaches, while some ear-

lier works [30, 31, 50] use binary joins, recent approaches [2, 37, 47]

use the worst-case optimal join algorithm (WCOJ) [36]. Ullman’s

backtracking and WCOJ are essentially equivalent for subgraph

matching under certain assumptions [47].

As surveyed in [60], in the literature, the focus of subgraph

matching research [3, 9, 23, 25, 28, 34, 47] is on enhancing back-

tracking searches for a query Ħ . They accelerate the enumeration

by pruning futile search branches, identifying symmetric search

branches or reducing backtracking levels. In this paper, we focus on

decomposition-based enumeration. Here, a decomposition-based

approach [30, 31, 38, 50], instead of processing a pattern graph as a

single query, divides the query intomultiple sub-queries {Ħğ } and as-

sembles the sub-queries to get the result of the query Ħ . A powerful

tool to decompose a query is tree decomposition [14]. For a complex

pattern Ħ , tree decomposition produces a tree-shaped pattern, Đ ,

where a tree node inĐ , also called a bag, represents a subgraph of Ħ ,

and a node in Ħ may appear inmultiple bags inĐ . The representative

approach that uses tree decomposition to process subgraph match-

ing is EmptyHeaded [2]. We explore such tree decompositions in

this paper. We address the issues in EmptyHeaded and develop a

new tree decomposition based approach that is signi�cantly faster

than the state-of-the-art enumeration-based approaches for sub-

graph matching. The �rst issue of EmptyHeaded is its ine�cient

computation of a tree decomposition with good quality. We have

proposed a new algorithm to compute a good tree decomposition

e�ciently [21]. Second, it does not select good attribute orders. A

simple solution is to use existing approaches like [37] to �nd an
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optimal attribute order. However, in the context of tree decomposi-

tion, we need to process multiple bags, where some computations

can be shared. The attribute order of one bag a�ects not only the

computation of itself, but also the computation in other bags that

contain common attributes. To address this issue, we optimize the

attribute orders of all bags together, taking the e�ect of computation

sharing into consideration. We propose a dynamic programming

approach that e�ciently �nds the optimal attribute orders with the

minimum overall computation costs. Third, a tree-decomposition-

based approach needs to materialize subgraph matches of bags in

memory. To materialize all such matches is not realistic for large

graphs. Some recent works on local subgraph counting propose new

strategies to only materialize some attributes in memory [33, 59].

However, they choose materialized attributes before executing the

query, which does not make full use of the memory and can increase

computation costs. We study an adaptive materialization strategy to

choose materialized attributes at runtime and materialize as much

as possible, which is much more e�cient.

MainContributions: First, we revisit the tree decomposition based

approach for subgraph matching. We identify and address its issues

and explore this framework. Second, we study a new optimization

problem that minimizes the cost of computing all bags in the tree

decomposition, where we consider both the computation cost in a

bag and the cost that can be shared across bags. It is challenging to

optimize as the two costs are interrelated. We discuss the optimal

substructure property and give a dynamic programming approach

to address it. Third, we propose a new adaptive approach to ma-

terialize subgraph matches of bags, which makes full use of the

memory and reduces the computations in existing solutions [33, 59].

Fourth, we compare our ASDMatch with the state-of-the-art sub-

graph matching algorithms in 8 real large data graphs. ASDMatch

outperforms existing algorithms signi�cantly. ASDMatch can pro-

cess many hard queries that previous algorithms can not, and in

three large data graphs, it is the only algorithm that can compute

all pattern graphs within the time limit.

Organizations. We give preliminaries and the problem statement

in Section 2. In Section 3, we discuss the existing tree-decomposition-

based approaches and outline our new algorithm. We study a new

query optimization problem and propose a new dynamic program-

ming algorithm to solve it in Section 4 and propose a new adaptive

multi-join algorithm in Section 5. We discuss related works in Sec-

tion 6. We conduct comprehensive experimental studies and report

the results in Section 7, and conclude this paper in Section 8.

2 PRELIMINARIES

Wemodel a graph as a simple labeled undirected graphă = (Ē , ā, Ĉ, Σ).

Here, Ē is a set of nodes, ā is a set of undirected edges, Σ is a set

of labels, and Ĉ is the mapping function that maps a node ī ∈ Ē

to a label denoted as Ĉ(ī). We denote neighbors of node ī in ă as

Ċ (ī) = {Ĭ | (ī, Ĭ) ∈ ā}. There are no self-loops or multiple edges

between two vertices.

Given a data graph ă = (Ē , ā, Ĉ, Σ) and a pattern graph Ħ =

(ĒĦ , āĦ , Ĉ, Σ). A homomorphism of Ħ toă is a function Ĝ : ĒĦ ↦→ Ē

such that (1) for every ī ∈ ĒĦ , Ĉ(ī) = Ĉ(Ĝ (ī)), and (2) for every

(ī, Ĭ) ∈ āĦ , (Ĝ (ī), Ĝ (Ĭ)) ∈ ā. A subgraph isomorphism of Ħ to

ă is a homomorphism of Ħ to ă under the condition that Ĝ is an
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Figure 1: A pattern graph, a data graph, and tree decomposi-

tion

injective function, where Ĝ (ī) ≠ Ĝ (Ĭ) for any pair of ī and Ĭ in ĒĦ
if ī ≠ Ĭ . A homomorphism (or subgraph isomorphism) function

Ĝ of Ħ induces a subgraph ă Ĝ = (ĒĜ , āĜ , Ĉ, Σ) in ă , where ĒĜ is

the set of nodes, Ĝ (ī), for every ī in ĒĦ , and āĜ is the set of edges,

(Ĝ (ī), Ĝ (Ĭ)), for every edge (ī, Ĭ) in āĦ . We say ă Ĝ is a subgraph

matching of Ħ to ă by subgraph isomorphism if Ĝ is a subgraph

isomorphism function.

ProblemStatement: In this work, we study the subgraphmatching

problem. Given a pattern graph Ħ and a data graph ă , subgraph

matching returns all subgraph isomorphisms of Ħ toă . As we will

discuss later, our techniques can be extended to handle general

cyclic join queries.

Example 2.1: Fig. 1 shows an example of the subgraph matching

problem.We show a pattern graph Ħ in Fig. 1(a) and a toy data graph

ă in Fig. 1(b). Here, nodes with di�erent labels are distinguished

by colors. There are three subgraph isomorphisms of Ħ to ă , i.e.

Ĝ1 = {ī0 ↦→ Ĭ0, ī1 ↦→ Ĭ1, ī2 ↦→ Ĭ2, ī3 ↦→ Ĭ3, ī4 ↦→ Ĭ4, ī5 ↦→

Ĭ5, ī6 ↦→ Ĭ6, ī7 ↦→ Ĭ7}, Ĝ2 = {ī0 ↦→ Ĭ0, ī1 ↦→ Ĭ8, ī2 ↦→ Ĭ2, ī3 ↦→

Ĭ3, ī4 ↦→ Ĭ4, ī5 ↦→ Ĭ5, ī6 ↦→ Ĭ6, ī7 ↦→ Ĭ7}, and Ĝ3 = {ī0 ↦→ Ĭ0, ī1 ↦→

Ĭ8, ī2 ↦→ Ĭ2, ī3 ↦→ Ĭ3, ī4 ↦→ Ĭ4, ī5 ↦→ Ĭ5, ī6 ↦→ Ĭ6, ī7 ↦→ Ĭ11}.

3 A TREE DECOMPOSITION APPROACH

Tree decomposition is a powerful tool [14]. With a bound by tree

decomposition, deciding whether a graphă has a subgraph isomor-

phic to a pattern graph Ħ becomes �xed-parameter tractable [12, 35].

EmptyHeaded [2] is the �rst graph system that uses tree decompo-

sition for subgraph matching, and tree decomposition is also used

in local subgraph counting [33, 59]. Below, we discuss hypergraph,

tree decomposition, fractional hypertree decomposition used in

EmptyHeaded, its issues, possible solutions, and challenges.

A hypergraph is de�ned as H = (V, E), where V is a set of

nodes and E is a set of hyperedges, where a hyperedge ě ∈ E is a

subset ofV . A pattern graph Ħ = (ĒĦ , āĦ ) is a special hypergraph

where every hyperedge only has two nodes.

Given a hypergraphH = (V, E), a tree decomposition ofH is

a tree Đ = (ĒĐ , āĐ ). We use ăğ (simply ă) to denote a tree node in

ĒĐ , where ăğ maintains a nonempty subset ofV , called a bag and

denoted asV(ăğ ) (¦ V), with which an induced subgraph ofH
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can be constructed, denoted asH(ăğ ). We say a node Ĭ inV appears

in ăğ if Ĭ ∈ V(ăğ ). The three conditions onĐ are as follows. (1) Every

node inH is covered byĐ such thatV =
⋃

ăğ ∈VĐ V(ăğ ). (2) Every

edge inH is covered byĐ such that for every edge (ī, Ĭ) ∈ E, both

ī and Ĭ appear in at least one ăğ . (3) Nodes inĐ are connected if they

all contain a pattern graph node. That is, if a node Ĭ ∈ V appears in

both ăğ and ă Ġ , then Ĭ appears in every ăġ on the path that connects

ăğ and ă Ġ in Đ . In the following, we use Ēď (ăğ ) to denote the nodes

in a bag ăğ that also appear in neighbors of ăğ .

A fractional hypertree decomposition (FHD) of a hypergraphH

is (Đ,Ą) where Đ is the tree decomposition and Ą is the function

that assigns each bag ăğ ∈ Đ a fractional edge cover Ą (ăğ ) [16]. The

quality of a tree/hypertree decomposition is measured by the size

of the bag, which is called the width. The width of a fractional

hypertree decomposition (Đ,Ą) is maxăğ ∈Đ Ą (ăğ ). The fractional

hypertree width ofH , denoted as fhtw(H), is the minimum width

of a FHD of H , and is known as the tightest upper bound of H .

With the bound of fhtw(Ħ) for a pattern graph Ħ = (ĒĦ , āĦ ), a

subgraph matching algorithm over a data graphă = (Ē , ā) can be

bounded by ċ ( |ā |fhtw(Ħ) +ċđĐ ), where ċđĐ refers to the output

size of the subgraph matching [2, 36].

Example 3.1: Consider the pattern graph Ħ with 8 nodes in Fig. 1(a).

The tree Đ by fractional hypertree decomposition for Ħ is shown in

Fig. 1(c). InĐ , there are �ve tree nodes or bags, ăğ , for 0 f ğ f 4, that

represent �ve subgraphs, Ħ (ăğ ). Every node and edge of the query

graph is contained in at least one bag, and for each node, the bags

containing that node are connected. For the bag ă1, nodes ī0, ī4
and ī7 are shared with its neighbor bags, so Ēď (ă1) = {ī0, ī4, ī7}.

Below, we discuss how EmptyHeaded [2] handles a complex

pattern graph Ħ = (ĒĦ , āĦ ) over a massive graph ă = (Ē , ā) for

subgraph matching. EmptyHeaded storesă in edge tables. For each

edge (ī,ī ′) in Ħ , it can �nd its edges in a relation R(Ĉ(ī), Ĉ(ī ′)),

where R(Ĉ(ī), Ĉ(ī ′)) = {(Ĭ, Ĭ ′) |Ĉ(ī) = Ĉ(Ĭ), Ĉ(ī ′) = Ĉ(Ĭ ′), (Ĭ, Ĭ ′)

∈ ā}. Such relations can be preprocessed to �lter some data edges

that can not appear in a subgraph match [60]. Then EmptyHeaded

takes a join approach to process subgraph matching. w It �nds a

hypertree decompositionĐ for Ħ with which EmptyHeaded decom-

poses a complex pattern graph Ħ into several smaller patterns Ħ (ăğ )

for every tree node ăğ inĐ . In other words, instead of conducting sub-

graph matching for Ħ overă directly, EmptyHeaded �rst conducts

subgraph matching for every Ħ (ăğ ) over ă . The time complexity

can be downgraded to ċ ( |ā |fhtw(Ħ) +ċđĐ ). x EmptyHeaded pro-

cesses every pattern graph Ħ (ăğ ) by a WCOJ algorithm [36] over

a data graph ă = (Ē , ā). Note that a WCOJ algorithm [36] con-

ducts a multiway join following a join attribute order (JAO) in a

pattern graph Ħ (ăğ ). Here, JAO refers to the order of computing all

nodes in Ħ (ăğ ). Note that a data graph ă is stored in edge relations,

where an edge relation has two attributes and stores edges having

the same node labels. A survey ofWCOJ algorithms can be found

in [36]. The output of the WCOJ algorithm for a pattern graph

Ħ (ăğ ) is materialized in an edge relation R(ăğ ). y Given all Ħ (ăğ )

for every tree node ăğ in Đ are computed, EmptyHeaded computes

subgraph matching for Ħ overă by join all R(ăğ ) using Yannakakis’

algorithm [58], which is known the best for processing acyclic join

queries.

Example 3.2: A data graphă = (Ē , ā) can be stored in edge tables,

where an edge table corresponds to a pair of node labels. Recon-

sider Example 3.1. The pattern graph Ħ = (ĒĦ , āĦ ) in Fig. 1(a) has

8 nodes and 13 edges. The edges in ă that match the edge (ī0, ī4)

in Ħ can be found in a relation Ď(ý, ā) as the label of ī0 is A and

the label of ī4 is E. For simplicity, we may use an edge relation

Ď(īğ , ī Ġ ) to refer to a relation Ď(Ĉ(īğ ), Ĉ(ī Ġ )). There are 13 edge

relations to be used for subgraph matching of Ħ over ă . Here, the

tree Đ by hypertree decomposition is shown in Fig. 1(c) with 5

tree nodes, ă0, ă1, ă2, ă3, and ă4. To process a tree node, ăğ , in Đ ,

EmptyHeaded uses aWCOJ algorithm. Take ă1 as an example. Its

pattern graph Ħ (ă1) is an induced subgraph of Ħ over {ī0, ī3, ī4, ī7}

with 4 edges as presented in Fig. 1(c). EmptyHeaded processes

R(ī0, ī3) Z R(ī0, ī4) Z R(ī3, ī4) Z R(ī3, ī7) or more precisely

R(ý, Ā) Z R(ý, ā) Z R(Ā, ā) Z R(Ā,Ą ), where Z is a natural join,

using a WCOJ algorithm. A WCOJ algorithm is a multiway join al-

gorithm following JAO. Such a JAO isī0ī3ī4ī7. EmptyHeadedma-

terializes the join result in a relation R(ă1). Finally, EmptyHeaded

computes a join query, Ď(ă0) Z Ď(ă1) Z Ď(ă2) Z Ď(ă3) Z Ď(ă4)

to get the �nal result of subgraph matching for Ħ . The last join

query is an acyclic join query and is computed by Yannakakis’

algorithm [58].

The three main issues: In the literature [60], the approach taken

by EmptyHeaded is not an up-to-date algorithm. There are many

algorithms that outperform EmptyHeaded signi�cantly. There are

some main reasons that the tree decomposition based approach,

as presented in EmptyHeaded, is not used for subgraph matching.

(Issue-1) It is NP-hard to �nd an optimal tree Đ by hypertree de-

composition for a large pattern graph Ħ [16]. That is, the size of a

pattern graph cannot be large, which limits its usage. Therefore, the

tree decomposition approach by hypertree decomposition is not the

�rst choice, even though the performance can be bounded. (Issue-

2) EmptyHeaded computes a pattern graph Ħ (ăğ ) for a tree node in

Đ , using aWCOJ algorithm with a JAO in Ħ (ăğ ), which is not the

optimal. Therefore, EmptyHeaded does not perform well [37, 45].

(Issue-3) The relations, R(ăğ ), for 0 f ğ f 4, can be large to be

joined at the end, and will incur high computing cost.

To address Issue-1, we proposed a novel branch-&-bound algo-

rithm to compute fractional hypertree decomposition (FHD) [21].

We show that FHD can be computed using a dynamic program-

ming (DP) algorithm, and we give a branch-&-bound algorithm

with several upper/lower bounds, which makes our DP algorithm

much more e�cient. Our branch-&-bound algorithm is an anytime

algorithm that can terminate at any time. In other words, we can

give a feasible solution within the time limit, and we can give a

better solution if we have more time. Togeter with the techniques

to reduce the cost of computing some fundamental operations used

in FHD computing, we con�rm that our algorithm is e�ective and

e�cient by testing all 3,648 hypergraphs given in Hyperbench [11].

To address Issue-2, Mhedhbi and Salihoglu in [37] propose a DP

algorithm to compute the cost-based optimal join attribute order for

all nodes in a pattern graph Ħ . TheDP algorithm can get the optimal

for the entire pattern graph Ħ , and can be applied to Ħ (ăğ ) for every

tree node ăğ in the tree Đ by fractional hypertree decomposition.

But, the DP algorithm given in [37] cannot be e�ectively used to

compute the optimal node order for the pattern graph Ħ given the
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Algorithm 1: ASDMatch (Ħ , ă)

Input: pattern graph Ħ , data graphă

Output: Subgraph isomorphisms of Ħ toă

1 ÿ ← generate and �lter candidate data nodes and edges;

2 Đ ← optimal fractional hypertree decomposition of Ħ ;

3 Đ ∗
ý
← DPTree(ÿ, Ħ,Đ ) ;

4 ASDJoin(Đ ∗
ý
,ÿ) ;

hypertree decomposition tree Đ . That is, it does not necessarily

mean optimal for Ħ if every Ħ (ăğ ) has an optimal node order to be

computed.

We explain it using an example. Consider Example 3.2. By frac-

tional hypertree decomposition, we have 5 tree nodes, ăğ , for 0 f

ğ f 4 in the tree Đ for a pattern graph Ħ . We can apply the DP

algorithm in [37] to obtain the optimal join attribute order for each

pattern graph Ħ (ăğ ), and then use a WCOJ algorithm to compute

Ħ (ăğ ) over a data graphă . However, it may not be the optimal still,

as we repeat computing something that can be possibly shared. For

example, we have ī0, ī4 in both Ħ (ă1) and Ħ (ă2). By reducing the

cost for nodes, ī0 and ī4, that can be shared across di�erent tree

nodes, say ă1 and ă2, we can signi�cantly reduce the cost further.

The issue of sharing across di�erent tree nodes in Đ has not been

studied, which we study in this work.

To address Issue-3, instead of computing every Ħ (ăğ ) with a

WCOJ algorithm followed by computing all the materialized rela-

tions R(ăğ ) in the second step, we propose a new approach that is

to compute the �rst and the second step simultaneously by maxi-

mizing the usage of main memory in an adaptive manner.

Our New Tree Decomposition Based Algorithm: We present

our new algorithm named ASDMatch in Algorithm 1. First, we

compute and �lter candidate data nodes and edge relations using

an existing approach [5]. Second, to address Issue-1, we compute

the optimal fractional hypertree decomposition using our branch-

&-bound algorithm [21] (line 2). Third, to address Issue-2, we �nd

the optimal join attribute order by taking sharing into consideration

(line 3). Fourth, to address Issue-3, we compute the pattern graph Ħ

and Ħ (ăğ ) simultaneously by maximizing the usage of main memory

in an adaptive manner.

4 OPTIMIZING JAOWITH SHARING

In this section, we �rst introduce the cost model used in [37], and

theDP algorithm to �nd the optimal JAO in [37] for a single pattern

graph Ħ without the issue of sharing. Then, we focus on how to �nd

the optimal JAO for multiple interrelated pattern graphs Ħ (ăğ ) for

all tree nodes, ăğ , in a treeĐ by fractional hyper tree decomposition

for a pattern graph Ħ .

4.1 The Optimal JAO without sharing

We introduce multiway join algorithms on whichWCOJ is designed

to process subgraph matching for a given single pattern graph

Ħ = (ĒĦ , āĦ ) over a data graph ă = (Ē , ā) which does not have

the sharing issue. The core idea of a multiway join is to process an

induced subgraph Ħġ ¦ Ħ with ġ nodes by extending an induced

subgraph Ħġ−1 ¦ Ħġ with ġ − 1 nodes in a way to join the ġ-th

node that does not appear in Ħġ−1 with the subgraph Ħġ−1 found

following a JAO until ġ = |ĒĦ |.

The join attribute order, multiway join algorithms, and the

bottleneck: Let ÿ be a JAO and ÿğ be the ğ-th node in the JAO order

for ğ g 1 for all nodes in a pattern graph Ħ = (ĒĦ , āĦ ). The length of

ÿ is |ĒĦ |. Suppose that we �nd a subgraph Ħġ−1 in ă following the

JAO ÿ [1..ġ − 1]. Such a subgraph Ħġ−1 found can be represented

as Ħġ−1 = Ĝ (ÿ1) Ĝ (ÿ2) · · · Ĝ (ÿġ−1), where Ĝ (ÿğ ), for 1 f ğ f ġ − 1,

denotes the node Ĝ (ÿğ ) ină that ÿğ in Ħġ−1 matches. To extend Ħġ−1
to Ħġ , it needs to further join Ĕÿġ over each edge relation Ď(ÿĢ , ÿġ )

if Ģ ∈ ÿ [1..ġ − 1]. Let the relation ČĢ be the relation by projecting

ÿġ from relation Ď(ÿĢ , ÿġ ) if its ÿĢ value in Ď(ÿĢ , ÿġ ) matches Ĝ (ÿĢ ).

As there are possibly multiple ČĢ projected relations, the ġ-th match

of ÿġ , indicated by Ĝ (ÿġ ), in a subgraph Ħġ = Ĝ (ÿ1) Ĝ (ÿ2) · · · Ĝ (ÿġ )

found is taken from the intersection of all projected relations ČĢ . The

bottleneck of a multijoin algorithm is the cost of the intersection.

Example 4.1: Let a pattern graph Ħ be Ħ (ă1) in Fig. 1(c), and suppose

the JAO is ÿ = ÿ1ÿ2ÿ3ÿ4 = ī4ī3ī0ī7. A match of subgraph Ħ2
is Ĝ (ÿ1) Ĝ (ÿ2) = Ĝ (ī4) Ĝ (ī3) = Ĭ4Ĭ3 in ă (Fig. 1(b)). To extend

Ħ2 to Ħ3 it needs to further join ÿ3 = ī0. Here, it has two edge

relations, R(ī3, ī0) and R(ī4, ī0), to �nd matches. It computes Č0 =

Πī0 (Ăī3=Ĭ3R(ī3, ī0)) ∩ Πī0 (Ăī4=Ĭ4R(ī4, ī0)) where Π and Ă are

projection and selection operators. Here, Ĭ4Ĭ3Ĭ0 is a match of Ħ3 as

Ĭ0 ∈ Č0.

The cost model and the optimal JAO: We introduce the cost

model with which the optimal JAO can be found by DP for a single

pattern graph Ħ in [37].With the optimal JAO, namely, ÿ = ÿ1ÿ2 · · · ,

the cost of intersections in a multijoin algorithm can be signi�cantly

reduced. The cost for ÿ1 is as follows.

cost(ÿ1) = |ÿ (ÿ1) | (1)

Here, ÿ (ÿğ ) is the set of nodes in ă that have the same label Ĉ(ÿğ )

in the data graph ă . Given a partial match Ħġ−1 by ÿ [1..ġ − 1] for

some ġ > 1. To match Ħġ by extending ÿ [1..ġ − 1] to ÿ [1..ġ], for

each (ÿĢ , ÿġ ) ∈ āĦ , where Ģ < ġ , the cost estimated is as follows.

č
ÿĢ
ÿġ = |R(ÿĢ , ÿġ ) |/|ÿ (ÿġ ) | (2)

Let Rġ−1 be relation storing all partial matches for ÿ [1 : ġ − 1] and

č (Rġ−1) be the estimated cardinality of Rġ−1. Then the candidates

for ÿġ is computed č (Rġ−1) times. When there is no such Ģ < ġ

such that (ÿĢ , ÿġ ) ∈ āĦ , it estimates it by ÿ (ÿġ ) as candidates. The

cost is as follows.

cost(ÿġ ) = č (Rġ−1) |ÿ (ÿġ ) | (3)

Eq. (1) is a special case of Eq. (3) where č (R0) = 1. When there

exists Ģ < ġ such that (ÿĢ , ÿġ ) ∈ āĦ , the cost for computing each

intersection is estimated as the total size of the sets. By multiplying

the number of intersections, the cost is as follows.

cost(ÿġ ) = č (Rġ−1)
∑

Ģ<ġ,(ÿĢ ,ÿġ ) ∈āĦ

č
ÿĢ
ÿġ (4)

The total cost estimated is the sum of cost for each ÿğ .

cost(ÿ) =
∑

ğ=1, · · · |ÿ |

cost(ÿğ ) (5)

Example 4.2: Consider matching the subgraph in ă1 in Fig. 1(c).

Let ÿ = ī4ī3ī0ī7. For ÿ1 = ī4, cost(ī4) = |ÿ (ī4) |. For ÿ2 = ī3,
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it matches ī3 for every match of Ĝ (ī4) in ă by traversing the set

Πī3 (Ăī4=Ĝ (ī4)R(ī3, ī4)). It estimates the number of such matches

as č (R1), and cost(ī3) = č (R1)č
ī4
ī3
. In a similar manner, cost(ī0) =

č (R2) (č
ī3
ī0
+ č

ī4
ī0
), where č (R2) is the esitamted cardinality of the

subgraph induced by {ī4, ī3}. For ī7, cost(ī7) = č (R3)č
ī3
ī7
. The

total cost is the total cost is cost(ī4) +cost(ī3) +cost(ī0) +cost(ī7).

The optimal JAO is the order by minimizing Eq. (5). Letđ be a

subset ofĒĦ with ġ nodes, ČěĨģ(đ ) be the set of all permutations of

nodes in đ , and cost∗ (đ ) = minÿ ∈ČěĨģ (đ ) cost(ÿ). Furthermore,

let ÿ∗ (đ \ {ī}) be the optimal permutation ofđ \ {ī} and [ÿ∗ (đ \

{ī}), ī] be a permutation made by putting ī at the end of ÿ∗ (đ \

{ī}). The cost of matching ī is cost[ÿ∗ (đ \{ī }),ī ] (ī) An important

property of the cost function is that both the cardinality č (Rġ−1)

and the set sizes are determined by the set đ \ {ī} itself, and is

independent of how the setđ \ {ī} is permuted. Therefore, for the

optimal JAO ofđ , denoted as ÿ∗ (đ ), where the last node is ī, the

optimal JAO forđ \ {ī} must be the order that deletes ī at the end

of ÿ∗ (đ ). The DP state transition formula is as follows.

cost∗ (đ ) = min
ī∈đ
(cost∗ (đ \ {ī}) + cost[ÿ∗ (đ \{ī }),ī ] (ī)) (6)

Based on Eq. (6), a DP algorithm to �nd the optimial JAO with the

minimum cost is proposed [37].

4.2 The optimal JAO with sharing

To deal with sharing over bags in a tree Đ by FHD, we use an

attribute tree, which is de�ned below.

De�nition 4.1: (The Attribute Tree) Given a set of bags Đ (ă) =

{ă1, ă2, . . . , ăġ } in a tree Đ by FHD, an attribute tree is denoted as

Đý = (Ēý, āý) where every bag ăğ is represented as an entire path

from the root to the leaf, denoted as Ħğ = path(ăğ ). The order of

the attributes on Ħğ is the order from the root to the leaf, denoted

as ÿ (ğ) = ord(Ħğ ). In particular, we use leaf (Ħğ ) to denote the leaf

attribute in Ħğ , and Ħğ [ī] to denote the pre�x of the path Ħğ from

the root to the attribute ī. The root can be § if no two paths for

two bags have a common pre�x to share, and can be an attribute

shared by all bags.

Example 4.3: Fig. 2 shows three attribute trees for the tree Đ by

FHD in Fig. 1. There are �ve bags in the tree Đ . Fig. 2(a) shows an

attribute three without sharing among bags. This is an attribute tree

where the JAO order for each bag is optimal from the root to the

leaf computed by the DP algorithm given in [37]. Fig. 2(b) shows

an attribute three with sharing where two paths for two bags may

have some common pre�x. Fig. 2(c) shows the best attribute tree

with the sharing. In this attribute tree, ī0 is shared by all �ve bags.

Here, the matches of the induced subgraph over {ī0, ī4, ī1} can

be shared by two bags, ă2 and ă3. On the other hand, the induced

subgraph over {ī0, ī4, ī1} in the attribute tree in Fig. 2(a) needs to

be computed twice.

The cost for an attribute treeĐý = (Ēý, āý) is de�ned as follows.

cost(Đý) =
∑

ī∈Ēý

cost(ī) (7)

where cost(ī) is either Eq. (3) if ī is the �rst attribute in a bag or

Eq. (4) otherwise. The optimal attribute tree Đý = (Ēý, āý) is the

one with the minimum cost among all possible attribute trees as

follows.

minimize cost(Đý) =
∑

ī∈Ēý

cost(ī)

subject to Đý ∈ T (8)

where T is the set of all possible attribute trees for a given hypertree

decomposition Đ .

Hardness of the Optimization Problem: The optimization prob-

lem to minimize Eq. (8) is a harder problem compared to the prob-

lem of optimizing the attribute order for a single bag [37], as it

introduces the sharing issue. We discuss it below. w Given a set

of bags ă = {ă1, ă2, . . . , ăġ } for a tree Đ by FHD, the number of

possible attribute trees to consider is extraordinarily large. This

number grows exponentially with both the number of bags and

the number of attributes within each bag. Speci�cally, merely con-

sidering the combinations of attributes orders within each bag,

i.e, ÿ (1) , ÿ (2) , . . . , ÿ (ġ) , entails up to Π
ġ
ğ=1 |ăğ |! possible combina-

tions, where ÿ (ğ) corresponds to a bag ăğ and |ăğ | is the number

of attributes in ăğ . x Constructing the optimal attribute tree, Đý ,

requires to consider both optimization of the attribute order within

each bag and optimization of the sharing across bags. And the two

issues are interdependent. In other words, the optimization of the

attribute tree Đý needs to consider both simultaneously, and can-

not be done in two steps, that is, either optimizing the attribute

order for each bag followed by optimizing sharing or optimizing

the sharing for all bags followed by optimizing attribute order for

each bag.

The DP algorithm: we propose a dynamic programming (DP)

algorithm to optimize the attribute tree Đý . We �rst discuss two

properties of the optimal attribute tree, namely, the pre�x inde-

pendent property and the subset property, and then explore the

optimal substructure based on the two properties.

Let ÿ ′′ and ÿ ′ be two attribute orders. We say ÿ ′′ is a pre�x of

ÿ ′ denoted as: ÿ ′′ ¯ ÿ ′. The longest common pre�x is the longest

attribute order ÿ satis�es ÿ ¯ ÿ ′′ and ÿ ¯ ÿ ′. We denote the

operator of longest common pre�x as ', i.e., ÿ = ÿ ′′ ' ÿ ′. For a set

of attribute orders Π = {ÿ (1) , ÿ (2) , . . . , ÿ (ġ) }, the longest common

pre�x of Π is Λġğ=1ÿ
(ğ) .

Lemma 4.1: (The Pre�x Independent Property)

Let ă = {ă1, ă2, . . . , ăġ } be a set of bags, where each ăğ has an attribute

order ÿ (ğ) . The optimal attribute tree Đ ∗
ý
on ă , must be shared on the

longest common pre�x Λăğ ∈ăÿ
(ğ) where possible.
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Figure 4: State transition optimization

Proof Sketch: See [1]. □

Lemma 4.2: (The Subset Property) Let ă = {ă1, ă2, . . . , ăġ } be a

set of bags, where each ăğ has an attribute order ÿ (ğ) . Let S ¦ ă . We

have Λăğ ∈ăÿ
(ğ) ¯ Λă Ġ ∈Sÿ

( Ġ) .

We omit the proof as it is obvious. The Lemma 4.1 implies a

property that makes the attribute order and the attribute sharing

irrelevant in the sense that the longest common pre�x on the at-

tribute tree can be independent with the remaining attribute order

determined by combinations and sharing. The Lemma 4.2 further

implies how to construct the optimal attribute tree by considering

the longest common pre�x if the optimal attribute tree is known on

the subset. Thus, we can design the optimal substructure as below.

Below, we useĐý (S, ÿ) to denote an attribute treeĐý , which has

a longest common pre�x ÿ over a set of bags S.

Lemma 4.3: Given a set of bags S and let the attribute Đý for S has

the longest common pre�x on S. The optimal attribute tree Đ ∗
ý
(S, ÿ)

can be constructed by merging two optimal attribute treesĐ ∗
ý
(S′, ÿ ′)

andĐ ∗
ý
(S′′, ÿ ′′), whereS = S′∪S′′,S′∩S′′ = ∅, and ÿ = ÿ ′'ÿ ′′.

The cost of Đ ∗
ý
(S, ÿ) can be computed by:

cost∗ (S, ÿ) = min
S=S′∪S′′,
S′∩S′′=∅,
ÿ=ÿ ′'ÿ ′′

(cost∗ (S′, ÿ ′) + cost∗ (S′′, ÿ ′′) − cost(ÿ))

(9)

Proof Sketch:We prove this lemma by contradiction. Suppose that

there exists an optimal attribute tree Đ ∗
ý
(S, ÿ) with |S| g 2 that

cannot be constructed by merging two optimal attribute trees. Note

that, since ÿ is the longest common pre�x, the nodes at level |ÿğ | +1

onĐ ∗
ý
(S, ÿ) must have di�erent attributes, thusĐ ∗

ý
(S, ÿ) can be di-

vided into two attribute treesĐý (S
′, ÿ ′) andĐý (S

′′, ÿ ′′) (as shown

in Fig. 3). Then, we only need to discuss the optimality ofĐý (S
′, ÿ ′)

and Đý (S
′′, ÿ ′′), where Đý (S

′, ÿ ′) is on set of bags S′ with the

longest common pre�x ÿ ′, and Đý (S
′′, ÿ ′′) is an attribute tree on

S′′ with the longest common pre�x ÿ ′′. Without loss of generality,

we assume that Đý (S
′, ÿ ′) is not the optimal attribute tree with

(ď ′, ÿ ′). Then there exists another optimal attribute tree Đ ∗
ý
(ď ′, ÿ ′)

such that cost∗ (Đ ∗
ý
(ď ′, ÿ ′)) < cost∗ (Đý (S

′, ÿ ′)). An attribute tree

Đ ′ can be constructed by merging Đ ∗
ý
(ď ′, ÿ ′) and Đý (S

′′, ÿ ′′) with

cost:

cost(Đ ′) = cost(Đ ∗ý (ď
′, ÿ ′)) + cost(Đý (ď

′′, ÿ ′′)) − cost(ÿ)

< cost(Đý (ď
′, ÿ ′)) + cost(Đý (ď

′′, ÿ ′′)) − cost(ÿ)

= cost(Đ ∗ý (S, ÿ))

Therefore, Đ ′ is a better attribute tree and Đ ∗
ý
(S, ÿ) is not optimal,

which contradicts the assumption. □

Example 4.4: Fig. 4 shows a state and some state transitions. The

tree decomposition is the same as in Fig. 1(c). Here, ÿ = [ī0, ī4],S =

{ă1, ă2, ă3, ă4}, which aims to �nd the best attribute tree for the four

bags where the longest common pre�x is [ī0, ī4]. Following Eq (9),

to compute Đ ∗
ý
(S, ÿ), we need to consider all S′,S′′ and all pairs

of ÿ ′, ÿ ′′ for each S′,S′′, and merge two subtrees as its attribute

tree. Consider S′ = {ă1, ă2},S
′′
= {ă3, ă4}. There are two pre�xes

that can extend ÿ for S′, [ī0, ī4] and [ī0, ī4, ī7], and two in S′′,

so there are 4 transitions. An example of the transition is shown in

the upper right. Overall, there are 21 transitions.

It is su�cient to consider merging two subtrees on the longest

common pre�x in an iterative manner. All possible cases of sharing

will be considered. We explain it using Fig. 3. Suppose that the third

attribute of ÿ ′ is ī and ī does not appear in ÿ ′′ but appears in

the left subtree of Đý (ď
′′, ÿ ′′). By merging two subtrees iteratively,

it is possible that the left subtree of Đý (ď
′′, ÿ ′′) in the form of

Đý (ďī , ÿ
′′ī), where ďī ¢ ď ′′ and ÿ ′′ī is appending ī to ÿ ′′, can be

merged with Đý (ď
′, ÿ ′) in some iteration if it leads to the optimal.

State Transition Optimization: As discussed, for a state (S, ÿ),

with S is divided into S′ and S′′. As shown in Fig. 4, for S′ =

{ă1, ă2},S
′′

= {ă3, ă4}, it is needed to traversal all pairs of per-

mutations, i.e, {[ī0, ī4], [ī0, ī4, ī7]} × {[ī0, ī4], [ī0, ī4, ī2]}. The

pairwise transitions must be considered because we require that

the chosen ÿ ′ on S′ must exactly satisfy ÿ ′ ' ÿ ′′ = ÿ with the

chosen ÿ ′′ on S′′. This strict condition forces us to traverse all

attribute orders on S′ and S′′ to �nd all pairs of attribute orders

that meet the condition. However, such pairwise traversal would

result in a high computational cost of ( |ăğ |!)
2 for each transition,

which is prohibitively expensive and unsustainable.

To reduce this computational overhead, we consider a weaker

condition, namely, ÿ ′ ' ÿ ′′ ° ÿ . This weaker condition does not

break the optimal substructure property, and the optimal attribute

tree can still be constructed by merging two optimal attribute trees

that satisfy this condition. Under this weaker condition, the pre�xes

of the attribute order, ÿ ′ on S′ and ÿ ′′ on S′′, only need to satisfy

ÿ ′ ° ÿ and ÿ ′′ ° ÿ , which allows for independent traversal. Eq. (9)
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Algorithm 2: DPTree(ă)

Input: A set of bags ă = {ă1, ă2, . . . , ăġ }
Output: An optimal attribute treeĐ ∗

ý
for ă with its cost cost∗ (ă)

1 foreach ăğ ∈ ă do
2 foreach ÿ ∈ Perm(ăğ ) do
3 compute cost∗ ( {ăğ }, ÿ ) using cost(ÿ ) (Eq. (5));

4 Đ ∗
ý
( {ăğ }, ÿ ) ← InitialTree(ÿ ) ;

5 foreach ÿ ′ ¯ ÿ do
6 if cost∗ ( {ăğ }, ÿ ) < cost( {ăğ }, ÿ

′) then
7 cost( {ăğ }, ÿ

′) ← cost∗ ( {ăğ }, ÿ ) ;

8 Tý ( {ăğ }, ÿ
′) ← Đ ∗

ý
( {ăğ }, ÿ ) ;

9 foreach Ġ = 2 to ġ do
10 foreach S ¢ ă, |S | = Ġ do
11 ýĪĪĨ ← ∩ăğ ∈Săğ ;

12 foreach S′ ¦ S, S′′ = S \ S′, ÿ ∈ ∪ý¦ýĪĪĨ Perm(ý) do
13 ĊěĭÿĥĩĪ ← cost(S′, ÿ ) + cost(S′′, ÿ ) − cost(ÿ ) ;

14 if cost∗ (S, ÿ ) > ĊěĭÿĥĩĪ then
15 cost∗ (S, ÿ ) ← ĊěĭÿĥĩĪ ;

16 Đ ∗
ý
(S, ÿ ) ← ĉěĨĝěĐĨěě (Tý (S

′, ÿ ) , Tý (S
′′, ÿ )) ;

17 foreach ÿ ∈ ∪ý¦ýĪĪĨ Perm(ý), ÿ
′ ¯ ÿ do

18 if cost∗ (S, ÿ ) < cost(S, ÿ ′) then
19 cost(S, ÿ ′) ← cost∗ (S, ÿ ) ;

20 Tý (S, ÿ
′) ← Đ ∗

ý
(S, ÿ ) ;

21 ýĪĪĨ ← ∩ăğ ∈ăăğ ;

22 foreach ÿ ∈ ∪ý¦ĚýĪĪĨ Perm(ý) do
23 if cost∗ (ă, ÿ ) < cost∗ (ă) then
24 cost∗ (ă) ← cost∗ (ă, ÿ ),Đ ∗

ý
(ă) ← Đ ∗

ý
(ă, ÿ ) ;

is rewritten as:

cost∗ (S, ÿ) = min
S′∪S′′=S,
S′∩S′′=∅

( min
ÿ ′°ÿ

cost∗ (S′, ÿ ′)

+ min
ÿ ′′°ÿ

cost∗ (S′, ÿ ′′) − cost(ÿ))
(10)

Note that minÿ ′°ÿ cost∗ (S′, ÿ ′) and minÿ ′′°ÿ cost∗ (S′′, ÿ ′′) are

independent, where the former depends only on S′ and ÿ ′, and

the latter depends only on S′′ and ÿ ′′. We can precompute and

maintain the results of each of them in advance to avoid redundant

calculations. We introduce a cost function cost(S, ÿ) to represent it,

and Tý (S, ÿ) accordingly for the attribute tree built on cost(S, ÿ).

cost(S, ÿ) = min
ÿ ′°ÿ

cost∗ (S′, ÿ ′)

Tý (S, ÿ) = argmin
ÿ ′°ÿ

cost∗ (S′, ÿ ′)
(11)

Here, Eq. (11) holds if we replace S′ and ÿ ′ with S′′ and ÿ ′′.

Finally, the optimized state transition function is written as:

cost∗ (S, ÿ) = min
S′∪S′′=S,
S′∩S′′=∅

(cost(S′, ÿ) + cost(S′′, ÿ) − cost(ÿ))

(12)

As shown in Fig. 4, using the optimized state transition, when

S′ = {ă1, ă2},S
′′

= {ă3, ă4}, as we do not have to consider all

per�xes extending ÿ = {ī0, ī4}, there is only 1 transtition, whereas

there are 4 transitions based on Eq. (9). Overall, the number of

transitions is reduced from 21 to 14.

We show ourDP algorithm, DPTree, in Algorithm 2, which takes

the set of bags, denoted as ă . It �rst initializes the states for every

bag ăğ (lines 1-8). Notices that, for each single bag ăğ , the longest

common pre�x can only be any permutation of ăğ , i.e, ÿ ∈ Perm(ăi)

(line 2). The attribute tree is initialized as a linear tree with the order

ÿ , and the cost is initialized as the cost of ÿ (lines 3-4). Next, DPTree

calculates the optimal attribute tree and cost for each subset S ¦ ă
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Figure 5: Materialization strategies

following Lemma 4.3 and Eq. (12) with increasing the size of S

(lines 9-20). In the process of computing S, the algorithm computes

the shared attributes, ýĪĪĨ (line 11). Note that the possible longest

common pre�x ÿ can only be a permutation of some subset ofýĪĪĨ ,

i.e, ÿ ∈ ∪ý¦ýĪĪĨPerm(ý) (line 12). The algorithm outputs the opti-

mal attribute tree and cost for the whole bag set ă by traversing all

permutations of shared attributes (lines 21-24). The time complexity

isċ (ġ · 3ġ · (Īĭ (Đ ) + 1)! + 2ġ · (tw(Đ ) + 1) · (Īĭ (Đ ) + 1)!), and the

space complexity isċ (ġ · 3ġ · (Īĭ (Đ ) + 1)!. The detailed complexity

analysis is in [1].

5 ADAPTIVE COMPUTATION

As discussed in Section 3, the last step in EmptyHeaded is to join

all the materialized relations, R(ă1) Z · · · Z R(ăġ ), if there are ġ

bags (or tree nodes) in the tree Đ by FHD, or ġ leaf attributes in

the corresponding attribute tree Đý . We illustrate it in the upper

left in Fig. 5. The I/O cost to join can be high, in particular, in the

case that we cannot hold all such materialized relations in main

memory. We call it an ċ (∞)-memory approach. To avoid such a

possible high I/O cost, some techniques used in local subgraph

counting can be used [33, 59]. In [59], it takes an ċ (1)-memory

approach, which does not materialize bags, and does not make

use of the main memory, even if it is available. We illustrated it in

the lower left in Fig. 5. For every match of ă0, it enumerates the

matches of ă1 and produces a match of ă0 ∪ ă1, and so on for the

remaining bags. As a result, the enumeration cost can be high, as it

needs to repeat enumerating all matches of bags, and the number

of repetitions is large. In [33], it takes an ċ (ģ)-memory approach

that materializes the last two attributes of each bag if these two

attributes are an edge in Ħ or only the last one. Therefore, the

szie of materailized matches is bounded byģ whereģ = |ā | for a

data graph ă = (Ē , ā). We illustrated it in the right part in Fig. 5.

For ă1, ă2, ă3, ă4, it does not materialze ī4, ī3, ī0 but materializes

other attributes. For ă1, for a match Ĝ of ī4, ī3, ī0, it materializes

all matches of ī7 given Ĝ (ī4), Ĝ (ī3), Ĝ (ī0). For another match of

ī4, ī3, ī0, it materializes new matches of ī7 and discards old ones.

Similarly, it only materializes some attributes in other bags. Then

it joins all such materialized tables for all bags. To compute the

full result, it traverses all matches of ī4, ī3, ī0 and all such partially

materialized tables.

We discuss their costs as follows. Let ăğ be a bag in the attribute

tree Đý , and let Ĥ(ăğ ) be the attributes of ăğ . In the ċ (∞)-memory

approach, the enumeration cost to materialize the entire bag ăğ
is #(Ĥ(ăğ )), where #(Ĥ(ăğ )) is the number of matches of ăğ in the
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Algorithm 3: ASDJoin (Đý , ÿ)

Input: the attribute treeĐý for a treeĐ with bags ă1, · · · , ăġ , the

set of candidates to matchÿ

Output: the result of subgraph matching

1 let ÿ (Đý) be the order of preorder tree traversal ofĐý ;

2 TJoin(ÿ1,ÿ (ÿ1) , ∅);

3 output R(ă1) Z · · · Z R(ăġ ) ;

4 Procedure TJoin(ÿę , ąę , Ĝ )

5 mvector← MoveOrKeep(ÿę ) ;

6 while ąę ≠ ∅ do

7 Ĭ ← Inext(ąę ) ; ąę ← ąę \ {Ĭ };

8 Ĝ ← Ĝ ∪ {ÿę ↦→ Ĭ };

9 if ÿę is the leaf of ăğ then

10 Materialize(R(ăğ ),mvector, Ĝ ) ;

11 ÿĤ ← Tnext(ÿę ,mvector) ;

12 if ÿĤ ≠ ∅ then

13 ąĤ ← Intersect (ÿĤ , Ĝ );

14 TJoin(ÿĤ , ąĤ , Ĝ );

15 if memory is limited and all bags are computed then

16 partialJoin(ÿ (Đý),mvector,R(ă1), · · · ,R(ăġ )) ;

17 Ĝ ← Ĝ \ {ÿę ↦→ Ĭ };

18 ÿĤ ← Tnext(ÿę ,mvector) ;

19 if ÿĤ ≠ ∅ then

20 ąĤ ← Intersect (ÿĤ , Ĝ );

21 TJoin(ÿĤ , ąĤ , Ĝ );

data graph ă that needs to enumerate. In the ċ (∞)-memory ap-

proach, the total enumeration cost is
∑
ăğ #(Ĥ(ăğ )) together with ę Ġ ,

where ę Ġ is the cost of joining all the materialized bags. With the

ċ (1)-memory approach, the enumeration cost becomes #(∪ăğĤ(ăğ )),

and the cost ę Ġ = 0. For example, in Fig. 5, the cost for ă1 is

#(ă0 ∪ ă1)=#(ī0, ī6, ī4, ī3, ī7). With the ċ (ģ)-memory approach,

if two attributes of a bag ăğ is materailized, they are enumerated

for #(∪ăğ (Ĥ(ăğ ) − 2)) times, where Ĥ(ăğ ) − 2 is the attributes on the

path from the root to the leaf of ăğ excluding the two materialized

attributes. For example, the cost for ă2 is #(ī4, ī3, ī0, ī1, ī7). Its cost

of ę Ġ is smaller compared to that for the ċ (∞)-memory approach.

In this paper, to maximize the usage of main memory and reduce

repetitions in the enumeration, we propose an approach to reduce

the enumeration cost signi�cantly. Our approach is to materialize

as much as possible. Let prefixğ be the pre�x of the path from

the root to the leaf for a bag ăğ in Đý , where prefixğ f Ĥ(ăğ ). For

ăğ , we traverse all matches of prefixğ , and compute a materialized

table for each match. When prefixğ = 0, the enumeration cost is

the same as the ċ (∞)-memory approach. When prefixğ = Ĥ(ăğ ),

the enumeration cost is the same of the ċ (1)-memory approach.

And prefixğ = Ĥ(ăğ ) − 2, the enumeration cost is the same of the

ċ (ģ)-memory approach. In general, a smaller prefixğ has a smaller

enumeration cost. Although the state-of-the-art ċ (ģ)-approach

bounds the memory usage, the bound is loose and its prefixğ can be

large. Both the ċ (1) approach and the ċ (ģ) approach determine

prefixğ at the query planning time. We determine the initial prefixğ
in the execution and take a novel approach to make prefixğ as small

as possible by adjusting prefixğ dynamically.

Our new algorithm, ASDJoin (Adaptive Shared Decomposition-

based join), is given in Algorithm 3 to compute a pattern graph Ħ =

Ã
1

Ã
2

Ã
3
Ã
4
Ã
5

(a) shortest pre�x

Ã
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Ã
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Figure 6: Selecting pre�xes

(ĒĦ , āĦ ) over a data graph ă = (Ē , ā). ASDJoin takes two inputs,

the optimal attribute tree Đý constructed for the tree Đ by FHD

assuming that there are ġ bags inĐý , and the candidate setsÿ . First,

we determine a tree traversal order of Đý , denoted as ÿ (Đý), which

is a preorder tree traversal (line 1). Next, it calls a TJoin procedure to

compute bags with parameters, namely, the �rst attribute in ÿ (Đý)

denoted as ÿ1, its candidate setÿ (ÿ1), and the partial matchwhich is

empty initially. Assume that the results by TJoin are fully or partially

materialized in R(ă1), · · · ,R(ăġ ), it outputs R(ă1) Z · · · Z R(ăġ )

if needed (line 3). Next, we explain TJoin, which focuses on the

current attribute ÿę in Đý with its candidate set ąę , where Ĝ is a

partial match that matches all attributes from the root of Đý to

ÿę . At line 5, MoveOrKeep(ÿę ) determines if ÿę can be a pre�x

given the size of memory available, and mvector is a vector for

all attributes in Đý , which keeps the information on the attributes

that are a part of the pre�x. At line (6-17), it takes a candidate, Ĭ ,

from ąę by Inext iteratively (line 7), and appends it to the partial

match Ĝ . If ÿę is the leaf of a bag ăğ , we materialize it regarding

mvector, if memory is available (line 9-10). To extend it a partial

match further, the next attribute of ÿę to extend is ÿĤ (line 11). We

use a function Tnext that uses mvector to decide which attribute

to traverse to, or return ∅ if it should not go to the next attribute.

We will introduce the rules later. When there is an attribute to

traverse, an intersection is needed to compute ąĤ , which is the same

as in Leapfrog. With ÿĤ , ąĤ , and Ĝ , we call TJoin recursively. When

we go back from the next attribute or there is no next attribute,

if we cannot materialize the entire bags, we will check whether

we have computed full or partially materialized relations for all

bags. If so, we conduct a partial join using currently materialized

R(ă1), · · · ,R(ăġ ) (line 15-16). At line 17, we remove the last match

of ÿę ↦→ Ĭ from the current partial match Ĝ . After enumerating all

candidates in ąę , if Tnext returns the next attribute to traverse, we

continue the traversal (line 18-21).

Adaptive materialization: When we �nd that the memory can

not a�ord to materialize a bag ăğ , we identify a pre�x, prefixğ , for

ăğ , and attempt to materialize as much as possible for the bag ăğ .

We explain it by illustrating it in Fig. 6(a). Initially, we try to

materialize an entire bag, ăğ . Here, assume the attribute order to

process ăğ is ÿ1ÿ2ÿ3ÿ4ÿ5 following ÿ (Đý). At runtime, suppose that

we cannot materialize all matches in R(ăğ ). We will determine a

prefix, for example, ÿ1ÿ2, and we materialize all the matches by

ÿ3ÿ4ÿ5 for a single match Ĭ1Ĭ2 in ă , if ÿ1 ↦→ Ĭ1 and ÿ2 ↦→ Ĭ2, as

illustrated in Fig. 6(b). Since we can not materialize all ÿ2ÿ3ÿ4ÿ5,

ÿ1ÿ2 is the shortest pre�x that we can select. During the run time,

there is only one partially materialized table for it. When we are

at the second match of {ÿ1ÿ2}, we delete the �rst table (green box
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Figure 7: The next attribute in the traversal

with dots) and materialize the corresponding table (orange box with

vertical dashed lines) for this new match. Suppose that we cannot

still materialize it for some Ĭ1Ĭ2, where ÿ1 ↦→ Ĭ1 and ÿ2 ↦→ Ĭ2
at runtime, we will temporarily enlarge the prefixğ from ÿ1ÿ2 to

ÿ1ÿ2ÿ3. When we �nd that it can materialize more, we will reduce

prefixğ from ÿ1ÿ2ÿ3 to ÿ1ÿ2, as illustrated in Fig. 6(c).

Traversal of the attribute tree Đý: We explain the traversal in

Algorithm 3 using Fig. 7. It uses the query graph and tree decompo-

sition in Fig. 1 and the attribute tree in Fig. 2(b). There are several

bags ăğ in an attribute tree Đý . We process the bags following the

preorder tree traversal ofĐý . Here, we have 5 bags, and the order to

process those bags is ă0, ă2, ă1, ă4, and ă3. Suppose that in mvector,

the attributeī4 of the bag ă1 (i.e., the one below§) is the prefix, and

others are materialized. In Algorithm 3, the traversal is controlled

by Tnext called in lines 11 and 18, and we explain the rules of these

two cases.

In line 11, we have not traversed all candidates to match ÿę , and

Tnext goes to the �rst child or returns ∅ if ÿę is a leaf. In Fig. 7, if

we matched the ī0 of ă0, the next attribute ÿĤ will be the ī6 of ă0.

For the ī6 of ă0, since there is no child, ÿĤ = ∅ at line 11. It repeats

lines 6-17 and materializes all tuples of ă0 for a given match of ī0.

In line 18, we have traversed all ąę . If ÿę is materialized, Tnext

goes to the next sibling if there is one. When ÿę does not have the

next sibling, if the parent is not the prefix, Tnext returns ∅ to make

the traversal go back; if the parent is a prefix, it goes to the next bag,

and ÿĤ is its �rst materialized attribute in ÿ (Đý). If ÿę is a pre�x,

ÿĤ = ∅. We explain it in Fig. 7. For ī6 of ă0, in line 18, ÿĤ = ∅ and

it goes back to ī0 of ă0. For ī0 of ă0, ÿĤ is its next sibling, i.e. ī4 of

ă1. For the ī5 of ă4, when we are at line 18, since ī4 is a prefix, we

have computed the partial relation of ă4, which materializes ī5ī0ī2.

We need to compute the next partial relation of the next bag ă3, so

ÿĤ is the ī1 of ă3. When ī1 of ă3 comes to line 18, since it does not

have the next sibling, ÿĤ = ∅. The algorithm goes back to line 18

in the TJoin of ī5 of ă4, then line 18 of ī3 of ă1, then line 14 of ī4
of ă1. At this time, ă0 and ă2 have materialized their full table, ă1,

ă4, ă3 have materialized partial matches for the given match of ī4,

so we execute the partialJoin in line 16. When ī4 of ă1 is at line 18,

since it has already traversed its next sibling ī1 of ă3, it does not

go to the next sibling, and ÿĤ = ∅.

6 RELATED WORK

In-memory Subgraph Matching. Due to its importance and

wide applications, subgraph matching has been studied for decades.

Manyworks follow the classic �ltering-ordering-enumerating frame-

work [46]. For pre-computing and �ltering the search space, rules

have been proposed based on vertex labels, query graph structures

and isomorphic constraints [4, 5, 10, 18, 19, 28, 29, 47, 61]. To select

a good matching order, various heuristics based on prioritizing

dense nodes in the pattern graph and nodes with infrequent labels

have been proposed [5, 18, 19, 28, 29, 37, 42, 45, 47]. There are also

cost-based approaches that �nd attribute orders with minimum

cost [37]. [5, 47] use decompositions to compute the attribute order.

The subgraph matching is processed once for Ħ . In our approach,

by tree decomposition, each bag is a smaller subgraph matching

query, and the bags are materialized and processed to get the �nal

results. Recent works improve the backtracking enumeration by

pruning invalid search branches [3, 18] or reusing previous results

[22, 28, 29, 34]. On top of the classic Ullmann’s backtracking or

WCOJ, new algorithms have been proposed to reduce the recursion

levels using independent sets of the pattern graph [25, 34, 45, 56].

In [40], it studies optimizing multiple subgraph matching queries.

It assumes that the larger the shared subgraph is, the more bene-

�cial it will be. The heuristic is not as e�ective as our cost-based

approach. In [17], it studies the computation reuse with a vertex

order for a given query, which is di�erent from the reuse of di�er-

ent bags (sub-queries), and it does not optimize attribute orders.

Some works also use a decomposition-based approach to process

subgraph queries, but their decompositions are not tree decompo-

sitions. [24, 44] study preprocessing the query during the visual

construction by making use of query fragments. [55] studies a par-

tial topology query to address the di�culty for users to formulate

a subgraph matching query, which takes a set of disconnected sub-

graphs as input and returns graphs connecting them. Some recent

surveys and experimental studies can be found in [46, 60].

Parallel and Distributed Subgraph Matching. There are also

distributed approaches that focus on increasing parallelism, balanc-

ing workloads, and reducing communication costs. Some earlier

works propose various sub-structures, joining the sub-structures

�rst and then assembling the matches of sub-structures to obtain

the pattern’s results [30, 31, 38, 41]. HUGE [57] switch between

BFS and DFS to strike a balance between memory e�ciency and

parallelism, and use a push-pull hybrid communication model to

reduce the communication cost. TenGraph [32] uses binary joins

and Pytorch tensor operators to process subgraph queries. Sub-

graph matching has also been studied in new hardware such as

GPU [8, 17, 48], FPGA [26] and PIM [7].

Tree decomposition andQuery Processing.Tree-decomposition

and its variants (e.g. FHD) have been widely used for constraint

satisfying problems [15], cyclic conjunctive queries [14] and their

extensions [52]. The state-of-the-art approach to computing an

optimal FHD is BB4FHD [21]. For applying tree decompositions

to query processing, EmptyHeaded [2] follows a classic two-phase

approach that computes bags �rst and then joins the materialized

views of bags. However, it materializes all bags and has a high

memory cost. DISC [59] and SCOPE [33] use tree decomposition

for local subgraph counting. They convert the input counting query

to the sum of a set of queries, where each query becomes decom-

posable, and then process each query based on tree decomposition.

CacheTrieJoin [27] uses tree decomposition to accelerate theWCOJ

of the full query rather than decomposing the query. To avoid ma-

terializing bags, it maintains caches for each bag instead of storing

all tuples. However, it is hard to predict whether tuples in the
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Table 1: Data graphs

Category Dataset Name |+ | |� | |Σ| 3

Biology Yeast [46] ~B 3,112 12,519 71 8.0

Biology Human [46] ℎ< 4,674 86,282 44 36.9

Lexical Wordnet1 [46] F=1 76,853 120,399 5 3.1

Lexical Wordnet2 [60] F=2 146,005 656,999 15 9.0

Social DBLP [46] 31 317,080 1,049,866 15 6.6

Web Stanford [60] B 5 281,903 1,992,636 30 14.1

Social Youtube [46] ~C 1,134,890 2,987,624 25 5.3

Social Twitch [60] CF 168,114 6,797,557 60 80.9

Web eu2005 [46] 4D 862,664 16,138,468 40 37.4

Citation US Patents [46] D? 3,774,768 16,518,947 20 8.8

Table 2: Number of un�nished queries

Algorithm ~B F=1 F=2 ℎ< 31 B 5 ~C CF 4D D?

RM 363 439 698 866 634 546 443 443 701 380

VEQ 2 473 0 721 78 56 50 147 428 5

GuP 2 535 9 832 287 444 82 199 688 38

BICE 4 492 6 827 311 397 96 248 779 29

IVE 3 335 0 788 156 32 3 18 474 0

Circinus 7 271 1 696 92 17 11 27 331 1

BSX 1 483 0 681 1 6 28 34 220 0

ASDMatch 2 278 0 677 30 0 0 0 213 0

cache will be used later and set caching strategies and sizes. Our

new approach handles the repeated computations in di�erent tree

nodes and also makes full use of materialization to reduce repeated

computations.

7 EXPERIMENTS

Algorithms: We compare with seven representative baselines that

have emerged in recent years: RapidMatch [47], VEQ [28], GuP [3],

BICE [9], IVE [23], Circinus [25] and BSX [34]. We omit earlier

subgraph matching approaches since they are considered as out-

dated [46, 60]. InASDMatch, we use the branch-&-bound algorithm

in [21] to compute a fractional hypertree decomposition, and the

strati�ed graph sampling proposed in [43] for cardinality estima-

tion. We incorporate the �ltering method in CFL [5] due to its

simplicity and e�ciency. It �rst obtains a BFS tree of @. Next, it

builds candidates for each pattern graph node D level-by-level in

this BFS tree and �lters candidates E ′ of pattern nodes D ′ in the

previous level that (D,D ′) ∈ �Ħ but � (D) ∩ # (E ′) = ∅. Lastly, it

re�nes � (D) in a bottom-up order based on this �ltering rule. As

indicated in [13, 53], for acyclic joins, WCOJ demonstrates good

performance, especially if the join results become larger as more

relations and attributes are joined. Therefore, we also use WCOJ

for joining the materialized relations.

Dataset graphs: Our evaluation includes ten data graphs from a

diverse range of categories, including web graphs, lexical graphs,

biological networks, collaboration networks, and social networks.

Table 1 shows the statistics. The last four columns are the number of

nodes, the number of edges, the number of labels, and the average

degree, respectively. All data graphs are taken from [46, 60]. We

use two di�erent versions of the Wordnet graph, F=1 from [46]

andF=2 from [60].

Pattern graphs: Following previous works [9, 23, 25, 28, 46, 47, 60],

we generate pattern graphs by extracting subgraphs from the data

�
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(b) costs of Fig. 2(c)

Attribute tree Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(a) Fig. 2(a)

Materialization $ (∞) $ (∞) $ (∞) $ (1) $ (<)

Time (s) 0.083 0.082 0.060 6.892 0.109

(c) Execution times

Figure 8: A case study

graph by a random walk process. For each data graph, we generate

�ve sets of queries corresponding to �ve pattern graph sizes = ∈

{8, 10, 12, 14, 16}, where each set has 200 queries.

Settings: All experiments are conducted on a machine running

CentOS 9.4, equipped with an Intel Xeon E7-8891 v3 80-core CPU

and 256GB of memory. GuP is implemented in Rust and built using

cargo 1.72.1 with the –release �ag enabled. All other algorithms

are written in C++ and compiled using g++ 11.4.1 with the -O3

optimization �ag. The source codes for all baseline methods were

obtained directly from the authors. Consistent with previous work

[25], we report the time of enumerating all subgraph matches. We

terminate a query if it can not be completed in 1 hour. All algo-

rithms were executed in a single thread using one physical core

exclusively. By default, we set the memory budget of ASDMatch

as 16 GB. To reduce the experiment time, we used up to 16 cores

to run 16 experiments simultaneously. We also count the number

of set intersections, which is an important metric used in previous

works [25, 46, 47] that re�ects the computation cost.

7.1 A simple case study

As a simple case study to start, we use the pattern graph in Fig 1.

The data graph is B 5 . We have discussed three query plans in Fig. 2.

The costs of each attribute of the plan with the optimal indepen-

dent costs and with the optimal overall cost are shown in Fig. 8(a)

and Fig. 8(b), respectively. Fig. 8(c) shows the execution times of

�ve algorithms using di�erent attribute trees and materialization

strategies. For these two attribute trees, the total costs are 64,003.6

and 47,699.9, respectively. For g3, the total cost of the optimal order

in Fig. 8(a) is 16,142.4. For the order in Fig. 8(b), the total cost is

16,886.1, but the costs of three attributes {D0, D4, D1} are shared

with others. Therefore, it is possible that sub-optimal orders with

more sharing can yield better attribute trees. Fig. 8(c) shows the

execution time of each attribute tree. The optimal attribute tree

is the fastest. Second, for materialization strategies, we compare

with the $ (1)-approach [59] and $ (<)-approach [33]. We use the

tree decomposition in Fig. 1(c) and the attribute tree in Fig. 2(a).

For the $ (1)-approach, no attribute is materialized. For the $ (<)-

approach, the pre�xes are {D0, D3, D4}, and the remaining attributes

are materialized. For this query, since the memory is su�cient, our

ASDJoin uses the $ (∞) approach, and it is the most e�cient.
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Figure 9: Running times on di�erent data graphs
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Figure 10: Number of intersections on di�erent data graphs

7.2 Performance evaluation

The overall performance. We compare our ASDMatchwith state-

of-the-art labeled subgraph matching algorithms. First, Table 2

shows the number of un�nished queries within the 1 hour time

limit across all dataset graphs and algorithms. Our ASDMatch has

the least number of un�nished queries, particularly for B 5 , ~C and

CF , where ASDMatch is the only approach that �nishes all queries.

The ℎ< graph is challenging due to its high density and skewed

label distribution. Here, our ASDMatch has the least number of

un�nished queries. An exception is that BSX performs exception-

ally well in the 31 graph. Fig 9 shows the running time across all

algorithms in all data graphs. Here, we collect all queries where

at least one algorithm can compute within the time limit, set the

time of timeout algorithms as 1 hour, and compute the average run-

ning time. We can see that ASDMatch is the fastest in most cases,

followed by BSX, and then Circinus. The running times increase

for larger query sizes, and our ASDMatch remains fast for various

query sizes. On average, our ASDMatch is 6.17× faster than BSX,

and 14.52× faster than the second-best baseline Circinus.

The number of set intersections. As discussed in previous works,

a key performance factor of the backtracking enumeration and

WCOJ is the set intersections [25, 46, 47]. We collect the number of

set intersections of all algorithms in four data graphs and plot them

in Fig. 10. Here, we collect queries that all algorithms can process

within the time limit. The trend is similar to that of the running

time in Fig. 9. In most cases, our ASDMatch has the least number

of set intersections. In our decomposition-based approach, we enu-

merate ? (g8 ) rather than ? . When joining R(g1) ²³ · · · ²³ R(g: ), we

only need to join on attributes that are contained in multiple bags.

Therefore, the tree-decomposition-based framework can use fewer

set intersections to compute the results. Additionally, we share com-

putations in di�erent bags and reduce the repeated computations

by adaptively selecting prefix, which further reduces the set inter-

sections. Our ASDMatch reduces the number of set intersections of

BSX by a factor of 15.90×, and 16.56× compared to Circinus. VEQ,

GuP, BICE, and IVE use pruning during the backtracking process.

While pruning is e�ective for reducing the number of intersections,

it su�ers from overheads such as maintaining the data structures

used for pruning. Therefore, they tend to have a small number of

intersections while having a long running time.

We analyze the cases where our ASDMatch does not perform the

best. First, for the data graph, BSX performs well in the 31 dataset.

We �nd that in the 31 graph, candidates are likely to have identical

neighbors in the candidate space, and the techniques of BSX make

use of this property. BSX matches a pattern graph node to a batch

of data graph nodes at a time. A batch of data graph nodes should

have identical neighbors in a subspace of the candidate sets. In the

31 graph, the average batch size is 1.69. Considering the product of

batch sizes of di�erent query nodes, the product is 43.5. Both the size

and the product are the largest among all data graphs. Therefore,

BSX becomes highly e�cient in 31. Second, from the perspective of

pattern graphs, ASDMatch may not perform well for queries with

large forest-structures [5]. Here, the forest-structure is induced by

the edges of ? that are not in the 2-core of ? , and therefore does

not have cycles. For such forest-structure, the fractional hypertree

decomposition produces bags with a single edge. Their matches are

simply the edge tables in the candidate set data structure. Therefore,

the tree decomposition is not e�ective for processing such forest-

structure. The online appendix [1] gives more details.

7.3 Query planning testings

E�ectiveness of Attribute Tree Optimization. Our analysis

demonstrates that optimizing attribute trees can enhance the algo-

rithm’s performance. We evaluate four attribute tree construction
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Figure 11: Speedups of computation sharing

methods: � directly using optimal per-bag attribute orders (no-

share); � simply merging optimal orders of bags (simple-share); �

selecting trees with minimal attributes (i.e. with maximal sharing)

(max-share); � identifying attribute trees with minimum overall

costs via DPTree (optimal-cost). Fig. 11 compares the speedup ratios

of ASDJoin using these methods across four data graphs, normal-

ized against no-share. The speedup of noshare to itself (the yellow

bar) is always 1.0. simple-share showsmodest improvement (1.078×

on average) by exploiting common pre�xes of the orders produced

by no-share. max-share exhibits degraded performance due to its

oversharing heuristic. The optimal-cost method achieves superior

results, validating our optimization approach. The average speedup

is 1.47×. optimal-cost is not always the fastest since the cardinality

estimatormay under/over-estimate cardinalities, leading to possibly

ine�cient query plans.

The e�ciency of the DPTree algorithm. Table 3 shows the plan-

ning time of the brute-force query optimizer and the DPTree algo-

rithm in Section 4. These times include the FHD computation and

cardinality estimation time. Here, the brute-force method enumer-

ates all attribute orders of bags, then merges common pre�xes for

each combination of the orders. The running time is proportional to

the product of factorials of the size of shared attributes. For queries

with 16 nodes, it often runs out of time. Simple-transfer is a dy-

namic programming algorithm that uses the simple pairwise state

transfer Eq. (10) given in the paper. DPTree further reduces the

number of state transfers following Eq. (11-12) in the paper. DPTree

is faster than simple-transfer, which veri�es the e�ectiveness of

our optimized state transfer. Opt-order is to �nd optimal orders

of bags using the approach in [37] and then merges the orders by

the common pre�xes to get an attribute tree. Note that Opt-order

does not �nd the optimal attribute tree, where optimizing the at-

tribute tree is a much harder problem. By comparing DPTree and

opt-order, we can see that DPTree does not incur much additional

computation cost in �nding the optimal attribute tree.

7.4 The e�ect of increasing materialization

We test the e�ect of materialization strategies (i.e., static or adap-

tive) and the impact of memory size on algorithm performance

using three data graphs and queries with 12 nodes. Table 4 shows

the results. For the adaptive approach, we vary the memory bud-

get from 512KB to 16GB. We show the absolute memory usage of

Table 3: Planning time(s) of di�erent methods

query size 8 10 12 14 16

opt-order [37] 0.003 0.004 0.006 0.008 0.011

brute-force 0.057 0.342 305 2,109 3,346

simple-transfer 0.070 0.026 0.063 2.00 11.0

DPTree 0.004 0.005 0.009 0.020 0.169

Table 4: Comparing materialization strategies

static adaptive

memory budget $ (1) $ (<) 512K 4M 32M 256M 2G 16G

31

time(s) 554.7 45.94 18.56 16.84 16.08 16.06 15.92 15.92

#pre�x 12 5.72 3.225 1.205 0.145 0.005 0 0

usage(KB) 0 107.5 110.3 167.6 197.1 203.8 1,101 1,101

~C

time(s) 413.5 0.869 18.439 2.654 7.431 0.517 0.521 0.504

#pre�x 12 5.17 3.36 1.51 0.615 0.13 0.01 0

usage(KB) 0 9.027 13.64 14.09 1,630 1,832 24,199 41,087

tw

time(s) 1,031 11.98 11.51 3.644 2.492 1.297 1.245 1.245

#pre�x 12 4.46 2.815 1.135 0.245 0.02 0 0

usage(KB) 0 20.90 21.02 21.62 21.92 22.25 1,645 1,645

all compared methods. We focus on the memory for materializing

tuples in bags, excluding the memory for the data graph, etc. We

normalize the memory usage by subtracting the memory usage

by the memory usage of the $ (1)-approach. The actual memory

usage is smaller than the memory budget since many queries do

not need that much memory. The normalized actual memory usage

re�ects the memory utilization, and our adaptive materialization

has better utilization than the static $ (<) approach. For the adap-

tive approach (i.e. ASDJoin), we record the maximum size of the

prefix during the execution and report the average of the maximum

numbers. In general, the adaptive approach outperforms the static

approach, and when the memory budget increases, we use smaller

prefix and the performance is better. There are exceptions where

increasing the budget leads to slower performance, such as increas-

ing memory from 4M to 32M results in slower performance in ~C .

The reason is that when there are bags that induce disconnected

subgraphs, a larger prefix could be better since we implement some

pruning by making use of the prefix. We leave the details in [1].

If we further increase the memory budget, prefix becomes smaller

and the performance becomes better.

8 CONCLUSION

We propose a novel decomposition-based approach ASDMatch for

subgraph matching. We study the new problem of optimizing join

attribute orders with computation costs sharing and propose a dy-

namic programming algorithm to solve it. Besides, we propose a

new adaptive multi-join algorithm to address the materialization

problem in previous decomposition-based approaches. We con�rm

the superiority of our tree-decomposition-based matching by com-

paring our ASDMatch with seven state-of-the-art approaches in 10

large data graphs, using pattern graphs of various sizes. ASDMatch

outperforms all baselines bymore than 6× on average. In three large

data graphs, ASDMatch is the only algorithm that can compute all

pattern graphs within the given time limit.
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