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ABSTRACT

Graph processing underpins a vast array of data-centric appli-
cations, serving as a crucial component in fields such as social
network analysis, recommendation systems, bio-informatics, and
search engines. As graph data grows in scale and complexity, high-
performance graph processing is increasingly essential. Many graph
processing tasks depend on efficient data structures to manage the
sparsity typical of real-world graphs, where most vertices have
limited connectivity. This sparsity poses challenges for memory
and computational efficiency in large-scale graph processing, and
conventional sparse formats like Compressed Sparse Row (CSR)
often struggle with memory and computation inefficiencies when
handling massive graphs. To address these challenges, we introduce
GRAPHCSR, a degree-equalized CSR format specifically tailored to
enhance the spatio-temporal efficiency of distributed graph pro-
cessing across various tasks. GRAPHCSR aggregates low-degree
vertices into synthetic high-degree ones and applies group-wise
compression to reduce storage overhead by recording only the start-
ing index for each aggregated group. This reduces memory usage
and supports batch-memory access to improve performance. Our
extensive evaluations in various graph processing algorithms and
datasets demonstrate that GRAPHCSR not only reduces the mem-
ory footprint required for large-scale graphs, but also improves
performance across multiple types of graph processing tasks, out-
performing popular sparse storage formats. Furthermore, when
deployed on a production-scale supercomputer with 79,024 nodes,
GRrAPHCSR achieved a graph processing throughput that exceeded
the top-ranked system on the Graph500 benchmark.
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1 INTRODUCTION

Graph processing has emerged as a fundamental paradigm in mod-
ern data analytics, particularly in systems where relationships be-
tween entities play a central role. Many core graph algorithms,
such as breadth-first search (BFS) and depth-first search (DFS),
serve as essential building blocks for executing complex analytical
queries over graph-structured data. These operations are increas-
ingly supported in graph-aware database systems to enable efficient
exploration and pattern discovery. Typical applications include epi-
demic trajectory analysis [35], influence maximization in social
networks [5], and graph-based ranking mechanisms used in search
engines [17, 25]. In such scenarios, graph processing tasks often
resemble recursive query evaluation, subgraph matching, or transi-
tive closure computations, challenges traditionally addressed in the
database community. As graph workloads become more prominent
in large-scale distributed systems [4, 13, 29, 32, 36, 46, 50], bridging
the gap between graph analytics and database query processing
has become increasingly important.

To support such diverse applications efficiently, graph data must
be represented and processed in a way that aligns with both algorith-
mic requirements and system-level performance goals. A common
approach in graph systems and graph-aware databases is to rep-
resent relationships between entities using adjacency structures.
Among them, the adjacency matrix offers a simple yet expressive
representation that supports a wide range of computations. How-
ever, leveraging this structure effectively requires addressing the
inherent sparsity of real-world graphs, where most vertices are
connected to only a small subset of others, leading to adjacency
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matrices that are large but mostly empty [5, 7, 9, 48]. This spar-
sity introduces challenges for storage efficiency and computational
performance, particularly in distributed settings where memory
footprint and communication overhead are critical constraints.

Efficient representation of sparse matrices is critical for large-
scale data processing, especially in memory-bound scenarios, such
as graph analysis. Among various formats, the compressed Sparse
Row (CSR) format has gained widespread adoption due to its com-
pact structure, which avoids storing zero entries. By maintaining
only the essential components, namely, the values of nonzero el-
ements, along with their corresponding column indices and row
delimiters, CSR significantly reduces memory usage. Although sev-
eral other sparse matrix formats are optimized for computational
throughput in operations such as Sparse Matrix Vector (SpMV) or
Matrix-Matrix Multiplications (SpMM) [10, 34, 39], or designed to
leverage heterogeneous computing platforms [26, 40], CSR mainly
emphasizes storage compactness. This characteristic makes it espe-
cially advantageous in graph processing workloads [38, 42, 45, 48],
where handling massive adjacency structures within limited mem-
ory budgets is often the main bottleneck.

Many widely adopted sparse matrix formats, including CSR and
its successors [7, 9, 45], were not originally crafted with graph pro-
cessing in mind. Although effective for general sparse data, these
representations fail to scale efficiently when applied to real-world
graph workloads. This shortfall stems from the unique nature of
graph data that large graphs are not only sparse but also exhibit
extreme degree imbalance, with a significant portion of vertices
connected to just a handful of neighbors. These low-degree vertices,
while lightweight in computation, create overhead in memory be-
cause of the inefficient way they are encoded. As the size of the
graph increases, such inefficiencies accumulate, becoming a domi-
nant bottleneck in processing performance.

Efforts to minimize the memory footprint in sparse representa-
tions have led to several CSR-based enhancements recently. DCSR [7,
21] tackles redundant zero entry storage by introducing two offset-
related metadata arrays, JC and AUX, allowing for more compact
index calculations. CSCSR [9, 21] further refines this approach by
consolidating these auxiliary arrays into a single structure Skiplist,
improving storage efficiency without sacrificing access patterns.
Taking it a step further, BCSR [45] combines design elements from
both predecessors and introduces additional compression meta-
data OFFSET and BITMAP, which further reduces memory usage,
albeit with added computational overhead [21]. However, despite
these layered optimizations, a key limitation remains that all these
formats treat each vertex identically, regardless of its degree. In
real-world graphs dominated by low-degree vertices, this undiffer-
entiated encoding strategy misses critical opportunities for targeted
memory savings.

After understanding the memory footprint and the execution
time of current paralle] CSR-based applications, a optimizing par-
titioned CSR-based SpMM is designed to to fully exploit the pow-
erful computing capability of the Sunway TaihuLight supercom-
puter [12]. SuperCSR [21], along with its extensions tailored for
scalable graph construction [19] and large-scale web graph query-
ing [20], introduces a degree-aware design that distinguishes be-
tween high- and low-degree vertices. This enables constant-time
access to auxiliary metadata structures, an advantage particularly
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suited to supercomputing platforms. However, SuperCSR-like for-
mats [19-21] are all tightly coupled with BFS-based processing
pipelines and do not take advantage of batching acceleration, se-
verely limiting their broad applicability to general-purpose sparse
matrix operations such as SpMV and SpMM.

This lack of generality hinders its applicability across a broader
range of graph computing tasks. SuperCSR applies a fixed threshold
to separate vertex degrees, but does not explain the rationale for
its choice, which limits its flexibility in adapting to various graph
structures. However, current state-of-the-art CSR-based optimiza-
tions face the challenge of handling high-throughput or batched
graph operations effectively within general machines other than
supercomputers.

In contrast, we introduce GRAPHCSR!, a new sparse matrix stor-
age format engineered to be versatile and efficient for general graph
tasks, including SpMV and SpMM in diverse systems. Designed
as an enhancement to the conventional CSR format, GRAPHCSR
maintains compatibility with existing graph algorithm implemen-
tations, yet introduces greater flexibility and significantly reduces
memory consumption. By incorporating design elements suitable
for broader scenarios, GRAPHCSR extends the application scope
beyond the BFS on supercomputers, making it feasible for more
general graph-based processing tasks such as database transactions.

A central observation underpinning our design is that real-world
graphs contain a disproportionately large number of vertices with
identical, low degrees. Instead of storing these vertices individu-
ally, GRAPHCSR takes advantage of this structural redundancy to
achieve a memory-efficient representation. In particular, many par-
allel graph frameworks [8, 17, 24, 25, 37, 38, 51] already rely on
degree-based vertex sorting as a pre-processing step.

Using this approach, GRAPHCSR partitions low-degree vertices
into degree-based groups and fuses complementary degrees to
form synthetic high-degree vertices. This design achieves compact
representation through group-wise storage and offset-based in-
dexing, significantly cutting redundancy while maintaining access
efficiency. At runtime, edge existence checks and traversals can be
computed using lightweight arithmetic, without decompressing the
full structure. This design not only shrinks the memory required
to store the adjacency matrix but also enables efficient memory ac-
cess patterns through group-wise batching, ultimately accelerating
large-scale graph computation.

We evaluated GRAPHCSR by applying it to representative graph
algorithms from typical graph datasets [18, 47, 52, 53]. Our baselines
include six main sparse matrix storage formats [7, 17, 24, 25, 48, 51].
We tested GRAPHCSR on a large-scale HPC system using up to
79,024 nodes with more than 1.2 million processor cores. The ex-
perimental results show that GRAPHCSR consistently outperforms
the baseline methods with higher storage efficiency and fewer pro-
cessing times. When applying GRAPHCSR to the Graph 500 BFS
benchmark, we can outperform the top-ranked supercomputer on
the Graph500 list (June 2023), achieving 1.6X greater throughput
while consuming less 25% memory and using fewer CPU cores.
Extensive empirical evaluations show that GRAPHCSR consistently
outperforms state-of-the-art sparse matrix formats in both process-
ing speed and memory efficiency.

1Code available at https://anonymous.4open.science/r/GraphCSR-450E/README.md



This paper makes the following contributions.

e We present GRAPHCSR, a degree-equalized CSR format
specifically tailored to enhance space and time efficiency
by aggregating low-degree vertices into balanced groups,
enabling memory reduction and batching access.

o Extensive evaluations show the effectiveness and efficiency
of GRAPHCSR. More specifically, GRAPHCSR leads the leader-
board in Graph500 BFS ranking using up to 77.2K nodes
with 57.8% higher GTEPS and 75% lower memory footprint.

2 BACKGROUND AND MOTIVATION
2.1 Large-scale Graph Processing

A typical large-scale graph processing pipeline usually comprises
four main stages: raw data ingestion, graph preprocessing, graph
construction, and graph application. The pipeline begins with raw
data ingestion, which refers to any dataset that can be modeled
as a graph, such as logs, relational records, or interaction data. In
the graph preprocessing stage, we perform vertex sorting, typically
based on vertex degrees, to enhance storage locality and computa-
tional efficiency. The graph construction phase transforms the data
into a distributed graph structure. At this stage, the choice of graph
storage format and partitioning strategy is critical, much like data
layout design in distributed databases.

Both real-world and synthetic graphs are often characterized by
extreme sparsity and skewed degree distributions, with a substan-
tial fraction of vertices having few or no neighbors. To address this,
existing storage formats such as CSR and its variants [7, 9, 45, 48]
adopt strategies that explicitly record vertex degrees while omitting
zero-degree vertices to reduce storage overhead. This is particu-
larly important because zero-degree vertices, though structurally
present, occupy non-trivial space in the RST array of the CSR format
without contributing to actual connectivity information. Eliminat-
ing such redundant metadata is therefore a common technique to
optimize memory usage during graph initialization. However, CSR-
like formats failed to exploit low-degree vertices while there is an
overwhelming majority of the low-degree vertices over high-degree
vertices in a given graph [24].

Our work focuses on designing an efficient, compressed storage
format tailored for large-scale graph data, enabling fast access and
minimizing communication overhead. Finally, graph application
includes typical analytics tasks such as subgraph query, pattern
mining, and neighborhood search, which are closely aligned with
graph query processing in modern graph-aware database systems.

2.2 CSR-like Formats for Graph Representation

The CSR format has become a de facto standard for representing
sparse matrices in large-scale graph processing due to its balance of
storage efficiency and access performance. In contrast to alternative
formats such as Dictionary of Keys (DOK), List of Lists (LIL), and Co-
ordinate List (COO) [11, 34, 39], CSR offers more compact memory
layouts and faster traversal for common matrix operations. A CSR
encoded sparse matrix is made up of three primary one-dimensional
arrays: val, RST, and COL. The val array holds all nonzero elements
in row-major order, while the RST array records the offset of each
row within the val array. The COL array stores the column indices
corresponding to the nonzero entries. For graph-based applications,
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Figure 1: CSR representation (C) of the graph adjacency ma-
trix (B) for a graph G (A).

Algorithm 1: Determine if a two vertices i and j are con-
nected using CSR

Input: (i,j) // Vertex’s index in adjacency matrix

1 start « RST[i]

2 end < RST[i+1]

3 for index = start to end do
4 if j € COL[index] then
L L return 1

6 return 0

where adjacency structure rather than actual edge weights is typi-
cally of primary concern, the val array can be omitted without loss
of structural information, simplifying interpretation and reducing
memory usage.

Figure 1 gives an example of how an undirected graph (Fig-
ure. 1A) and its adjacency matrix (Figure 1B) can be represented
using CSR (Figure 1C). Algorithm 1 shows how to determine a
nonzero value between two vertices i and j, where a non-zero (one
in this example) indicates that the two vertices are directly con-
nected. Here, the COL array stores the column indices of nonzero
values. The RST array contains the starting index of each row in
the sparse matrix within the COL array and an additional element
indicating the end of the last row. To determine if the element
at position (i, j) is nonzero in CSR, we first examine the column
range of the RST array corresponding to row i. The starting index
is start=RST[i], and the ending index is end=RST[i+1]. Next, we
iterate through the indices between COL[start] and COL[end] in
the COL array. If a value in COL matches the desired column index
J, the element at position (i, j) is non-zero. Otherwise, it is a zero
value.

2.3 Graph 500 Benchmark

As concrete use cases, this work targets two fundamental graph
algorithms, BFS and SSSP, defined in the Graph500 benchmark [1].
Graph500 is the de facto standard for assessing the ability of a



computer system to process graphs [24, 37, 38, 43, 44]. Graph500
provides a graph generator to mimic real-life graph structures. This
tool takes two parameters, a graph factor and an edge factor. For
a graph size m and an edge factor n, it generates a graph of 2™
vertices and n x 2™ edges. In addition to the synthetic graph data
generated by Graph500, we also evaluated our GRAPHCSR on two
public graphs collected from real-life social networks [2, 3].

In accordance with the benchmarking methodology established
by the Graph500 ranking, we adopt Giga Traversed Edges Per Sec-
ond (GTEPS) as the primary performance metric to evaluate the
efficiency of graph traversal. GTEPS quantifies the number of graph
edges successfully visited per second during execution, serving as
a standard indicator of throughput in large-scale graph process-
ing tasks. As a performance-oriented metric, higher GTEPS values
reflect more efficient traversal capabilities, making it suitable for
comparing implementations across different systems and algorith-
mic frameworks.

2.4 Motivation

In real-world graphs, the majority of vertices have low degrees,
and graphs often exhibit high regularity when sorted accordingly.
Vertices with identical degrees tend to be frequently placed in con-
secutive positions within the storage arrays. Despite this regularity,
conventional CSR and its many extensions treat all vertices inde-
pendently, recording metadata for each row regardless of whether it
encodes useful connectivity information. In particular, vertices with
zero degree still occupy space in the indexing structures, and low-
degree vertices, though inexpensive to compute, can collectively
contribute significant memory overhead.

Current CSR-based extensions, such as DCSR [7], CSCSR [9], and
BCSR [45], aim to reduce space consumption by eliminating explicit
storage for zero-degree vertices or compressing row metadata. How-
ever, these methods continue to treat each vertex independently,
disregarding the potential for aggregation among equal-degree ver-
tices. As a result, they fail to fully exploit the regularity introduced
by graph sorting, missing opportunities for coalesced memory ac-
cess, and further memory reduction, particularly in large-scale
graphs where low-degree vertices dominate.

To address this limitation, we propose GRAPHCSR, a lightweight
extension to CSR that exploits degree regularities in sorted graphs.
GrAPHCSR applies a degree-equalized grouping and fusion strat-
egy to compress low-degree vertices, storing only shared base po-
sitions for adjacency reconstruction. This approach substantially
reduces metadata overhead while enabling batched memory ac-
cesses that improve bandwidth utilization and cache performance.
Importantly, GRAPHCSR preserves compatibility with CSR-based
execution models, requiring minimal changes to existing graph al-
gorithms. By leveraging overlooked structural patterns, GRAPHCSR
achieves a more space- and access-efficient representation for large-
scale, traversal-centric graph processing.

3 GRAPHCSR PHILOSOPHY
3.1 Overview of GRAPHCSR

GraPHCSR is designed to reduce the memory overhead associated
with storing low-degree vertices in sparse graphs, building upon the
widely adopted CSR format. While traditional CSR and its variants
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efficiently eliminate zero-degree vertices by avoiding the storage
of empty rows, they do little to compress vertices with low but
non-zero degrees, such as those with only one or two neighbors. In
large graphs where such vertices dominate, their collective impact
on memory consumption can be significant, particularly in the RST
and COL arrays.

To improve storage efficiency for low-degree vertices, GRAPHCSR
introduces a degree-equalized fusion strategy that systematically
pairs vertices with complementary degrees to form synthetic high-
degree ones. By consolidating neighbor information into contiguous
memory regions, this approach enables more effective compres-
sion while preserving access locality. Unmatched vertices are han-
dled separately to maintain structural completeness, allowing the
method to balance compression effectiveness with algorithmic gen-
erality. This structural regularity, which arises naturally during the
preprocessing phase of many distributed graph processing frame-
works [24, 41, 44, 45, 49], allows GRAPHCSR to avoid redundant
storage while retaining addressability for all vertices in the group.

Specifically, GRAPHCSR partitions the vertex set into two cate-
gories based on a tunable degree threshold parameter, denoted as
Thr. Vertices with degrees higher than Thr are treated as in conven-
tional CSR and stored in a dedicated high_deg_RST array, which
mirrors the structure of the original CSR RST. In contrast, vertices
with degrees at or below Thr are compressed using a hybrid folding
and fusion scheme. In addition to grouping low-degree vertices
by identical degree values, GRAPHCSR further improves storage
efficiency by introducing a fusion mechanism that pairs vertices
with complementary degrees (e.g., 1-degree with 4-degree when
Thr = 4) to form synthetic high-degree vertices. The neighbor lists
of these fused vertices are reorganized into contiguous regions in
the COL array to maximize spatial locality and enable group-wise
compression. The number of such fused combinations is tracked to
ensure correct index reconstruction during traversal.

For the remaining unmatched low-degree vertices, GRAPHCSR
groups them by degree and compresses their representation using
a shared-offset scheme. Specifically, vertices with the same degree
are stored consecutively, and their group information is recorded in
low_deg_index, which marks the starting index of each group. Each
entry in low_deg RST then corresponds to the column offset of the
first vertex in the group within the original COL array. Since all
group members have identical degrees, their adjacency lists occupy
fixed-size blocks in memory and can be implicitly reconstructed
via arithmetic offset computation. However, because a subset of
vertices in each degree group may have already been fused into
synthetic vertices, GRAPHCSR maintains a fusion_count array to
track how many such vertices have been removed from the group
through fusion. This count is subtracted from the relative index to
obtain the adjusted position within the compressed layout. During
traversal, the neighbor list of any vertex is derived by combining
the group’s base offset with the vertex’s relative position, thus
eliminating the need for per-vertex row pointers.

The threshold Thr serves as a tunable hyperparameter that bal-
ances the trade-off between compression ratio and computational
overhead. Lower values of Thr result in fewer folded vertices and
thus less compression, while higher values may introduce more
decoding cost. A detailed analysis of Thr’s impact on performance
is provided in Section 4.3.
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Figure 2: (A) the input graph from Figure 1; (B) vertex group-
ing after integrating multiple low-degree vertices into high-
degree vertices; (C) the graph representation with GRapHCSR.
Here, high_deg_RST records the RST values for high-degree
vertices, low_deg_RST records the starting offsets in COL for
the vertices with degrees smaller than Thr which are not been
fused, fusion_count counts the number of fusion vertices per
degree combination, and low_deg_index records the first ver-
tex id for each degrees.

By compressing structurally redundant entries, GRAPHCSR re-
duces the worst-case space complexity of storing low-degree rows
from O(Ny;) to O(1) per group, where Ny, denotes the number of
nonzero elements. The folded structure enables more cache-friendly
batched access and reduces metadata overhead without sacrificing
compatibility with CSR-based graph algorithms. In the remainder of
this section, we detail the algorithmic construction and runtime be-
havior of GRAPHCSR, demonstrating its applicability to real-world
graphs with skewed degree distributions.

3.2 GRAPHCSR Sparse Storage Format

To provide a concrete understanding of how GRAPHCSR encodes
sparse graph structures, we use the graph previously shown in
Figure 1 and illustrate its representation under GRAPHCSR in Fig-
ure 2. In this example, we set the edge-degree threshold parameter
Thr = 4, meaning that any vertex with a degree greater than 4 is
classified as a high-degree vertex, while those with a degree of 4 or
less are considered low-degree vertices.

Under this configuration, GRAPHCSR separates vertices into two
storage pathways. High-degree vertices are stored in the array
high_deg_RST, which adopts the conventional CSR row-pointer
structure. Low-degree vertices are grouped by their degrees and
managed using several auxiliary arrays: low_deg RST records the
starting offsets in the COL array for unmatched low-degree vertices,

4259

low_deg_index stores the first vertex ID in each degree group to
facilitate indexing, and fusion_count tracks the number of fused
vertices generated by combining low-degree vertices according to
degree pairings.

The fusion_count array records the number of fused vertex
pairs for each degree combination. For example, fusion_count[0]
= 1indicates that one pair of 4-degree and 1-degree vertices has been
fused, while fusion_count[1] = 1 indicates one pair of 3-degree
and 2-degree vertices has been fused. In addition, all low-degree
vertices are grouped by their degrees. The array low_deg_index
stores the starting vertex ID for each degree group. For instance,
low_deg_index[@] = 1 means that 4-degree vertices begin at ID
1, and low_deg_index[1] = 2 means 3-degree vertices begin at
ID 2. The low_deg_RST array maintains the starting COL offset
for unmatched vertices within each degree group. For example,
low_deg_RST[0@] = 15 denotes that the unmatched 1-degree ver-
tices begin at index 15 in the COL array, and low_deg_RST[1] =
18 indicates the end of the compressed region for low-degree ver-
tices. Together, these three arrays enable efficient determination
of whether a low-degree vertex has been fused, and allow accurate
reconstruction of its adjacency list.

Furthermore, GRAPHCSR supports batched access, which groups
the adjacency retrieval of multiple vertices into a single memory
operation. This improves data locality and cache utilization, partic-
ularly beneficial in large-scale distributed graph processing where
memory bandwidth often becomes a bottleneck.

Consequently, Figure 2 illustrates how GRAPHCSR leverages
degree-aware folding and fusion strategies to compactly represent
low-degree vertices while maintaining the conventional CSR layout
for high-degree vertices. This hybrid design ensures compatibil-
ity with existing CSR-based graph algorithms while significantly
improving storage efficiency and improving memory locality.

3.3 GraPHCSR-based Graph Processing

To demonstrate the practical applicability of GRAPHCSR in real-
world graph processing workloads, we provide two representative
examples that integrate the folded storage format into fundamental
graph algorithms. These examples not only validate the functional
correctness of the proposed method, but also highlight its advan-
tages in indexing efficiency, memory access locality, and computa-
tional throughput.

We begin with Algorithm 2, which illustrates how GRaPHCSR
supports efficient neighborhood access in a BFS traversal. In this
scenario, the graph vertices are assumed to be sorted in descending
order of their edge degrees, a preprocessing step commonly applied
in distributed graph systems to improve parallelism and memory ac-
cess patterns [24, 45]. For high-degree vertices, GRAPHCSR defaults
to the traditional CSR access strategy, retrieving the adjacency list
via the standard row pointer array high_deg_RST and column index
array COL (lines 2-4). This ensures compatibility and avoids un-
necessary overhead for vertices with large neighborhoods, where
compression benefits are minimal.

For low-degree vertices whose degrees fall below the prede-
fined threshold Thr, a more compact access mechanism is used.
GRAPHCSR first uses low_deg_index to locate the degree group
of a low-degree vertex and compute its relative offset within the



Algorithm 2: GRaPHCSR-based Neighbor-indexing for De-
scending Graph

Algorithm 3: GrRaAPHCSR-based SpMV for Descending
Graph

Input: COL of CSR format
Degree Thr
ve // Current node
Output: neighbors // Neighbors of current node

1 Retrieve v.’s ID id. and degree deg.
// Get the start and end addresses in COL for
high-degree vertices
2 if deg. < Thr then
Astart = high_deg_RSTid.]
L Aeng = high_deg_RST[id. + 1]
// Get the start and end addresses in COL for
low-degree vertices
else
// Compute the bias of v, in its same-degree

3

4

vertices and the degree combination index
bias = id. - low_deg_index[Thr — deg.]
comb =2 xdege. > Thr ? Thr — deg. : deg. — 1
if bias < fusion_count[comb] or2 « deg. == Thr + 1
and bias < 2 * fusion_count[comb] then
// ve is fused
outer_index = high_deg RST[—-1] + (Thr + 1) *
comb-1
>, fusion_count[i] + bias)
i=0
inter_index = 2 x deg. > Thr ? 0: Thr — deg. + 1
if 2 % dege == Thr + 1 and
bias > fusion_count[comb] then
outer_index = outer_index — (Thr + 1) = (2 =
fusion_count[comb] — bias — 1)
inter_index = deg,

10

11
12

13

14 Astart = outer_index + inter_index

else

// v, is not fused

begin = low_deg_RST length() — deg. — 1
Astart = low_deg_RST[begin] + bias

15

16

17

18

| Aend = Astart + degc

19 Based on the Agsqrs and A, 4 positions in COL, index the
neighbors of the current vertex

20 return neighbors

group (lines 6-7). This offset is compared with fusion_count to
determine whether the vertex has been fused (line 8). If fused, its
index is derived from its position among all fused vertices (lines
9-14); otherwise, its COL offset is obtained from low_deg_RST using
the adjusted offset (lines 15-17). The adjacency list is then recon-
structed by reading a fixed-length segment from COL, based on the
vertex’s degree (lines 18-20).

To further evaluate the generality of GRAPHCSR, Algorithm 3
demonstrates its use in an SpMV setting, where the graph is viewed
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Input: Graph G and GRAPHCSR format
Degree Thr
X // Dense vector

Output: Y// Y = A % X, A is the adjacency
matrix of graph G represented by GraphCSR

1 forv € Gdo

2 Retrieve the neighbors of v (neighbors_v) according to
Algorithm 2

sum =0

'S

for neighbor € neighbor_v do
L sum = sum + X [neighbor]

7 return Y

Y.append(sum)

Table 1: Evaluating testbed settings

Name #Nodes CPU Memory/Node
Tianhe-Exa 79,024 Phytium 16-core  16GB
WuzhenLight 512 HG2 64-core 256 GB
Single-machine 1 Intel i7-10750 16GB

as an adjacency matrix A, and the output vector Y = A - X is com-
puted for a given dense vector X. In each iteration, we use the same
neighbor retrieval mechanism from Algorithm 2 (line 2) to access
the adjacency list of a vertex, and then aggregate the corresponding
values from X (lines 4-6). This operation is common in a wide array
of graph analytics tasks, including PageRank, personalized recom-
mendation, and spectral clustering. The use of GRAPHCSR ensures
that such computations benefit from compact indexing structures
and improved cache locality, especially in graphs dominated by
low-degree vertices.

Overall, the integration of GRAPHCSR into both traversal-centric
and linear-algebraic graph algorithms confirms its versatility and
efficiency. The folded structure is not tied to a specific algorithm or
graph topology and can be readily extended to other computational
models, such as pull-based or hybrid execution engines. In the
following sections, we provide further evaluation of GRAPHCSR ’s
performance, including its compression effectiveness and runtime
behavior on large-scale real-world graphs.

4 EXPERIMENTAL SETUP

4.1 Evaluation Platforms

To assess the portability and scalability of GRAPHCSR across het-
erogeneous high-performance computing (HPC) environments, we
conduct experiments on two supercomputing systems with distinct
CPU architectures, as well as a single-node baseline platform. Ta-
ble 1 summarizes the hardware and software configurations of all
platforms, along with the maximum number of compute nodes used
in our evaluations.



The first HPC system, WuzhenLight, consists of compute nodes
equipped with dual 64-core HG2 CPUs (2.5 GHz), which implement
the AMD x86-64 instruction set. In our experiments, we utilize up
to 512 nodes from this system. The second platform, Tianhe-Exa,
is based on Phytium 16-core CPUs (2.0 GHz) per node, with up to
79,024 nodes used in large-scale runs. Both systems run customized
Linux distributions built on kernel version 9.3.0.

In addition to the HPC-scale experiments, we include a single-
node comparison platform to evaluate the baseline performance
of GRAPHCSR. This system is powered by an Intel Core i7-10750H
processor, providing six cores at a base frequency of 2.6 GHz. It
serves as a representative desktop-class environment for evaluating
GRAPHCSR ’s efficiency on commodity hardware.

All systems use MPICH 10.2.0 as the MPI implementation and
libgomp 4.5 for OpenMP-based parallelism. Benchmarks are com-
piled using GCC 10.2.0 with the -O3 optimization flag to ensure
high-performance binary generation.

4.2 Workloads

To evaluate the effectiveness and portability of GRAPHCSR across
diverse graph processing workloads, we conduct experiments us-
ing both synthetic and real-world datasets, with a primary focus
on traversal-centric algorithms. Our main benchmark task is BFS,
following the specification of the widely adopted Graph500 bench-
mark suite [27]. Graph500 is recognized as the de facto standard
for assessing the performance of large-scale graph processing sys-
tems [24, 37, 38, 43, 44], as it provides scalable graph generators
and well-defined performance metrics.

The Graph500 generator produces synthetic Kronecker-style
graphs that exhibit structural characteristics similar to those found
in real-world networks, such as power-law degree distributions and
small-world properties. As explained in Section 2.3, the generator
takes two parameters: the scale m and the edge factor n. In our
experiments, unless otherwise stated, we use the default edge factor
n = 16, which is the standard setting recommended by Graph500.

To complement the synthetic datasets, GRAPHCSR is also evalu-
ated on two large-scale real-world graphs to validate its applicability
beyond the synthetic benchmarks. The first data set is clueweb12[3],
a massive web hyperlink graph containing approximately 987 mil-
lion vertices and 42.6 billion edges. The second is twitter-2010[2],
a social interaction graph consisting of 41.7 million vertices and
1.47 billion edges. These two graphs present different structural
characteristics, including significant skewness and irregular degree
distributions, which make them ideal for assessing compression
efficiency and access performance under realistic conditions.

Although BFS serves as the primary workload for evaluating
traversal performance, we further extend our evaluation to include
several additional graph processing kernels to assess the general-
ity of GRAPHCSR. These include DFS, Single-Source Shortest Path
(SSSP), PageRank (PR), Connected Components (CC), Betweenness
Centrality (BC), and Triangle Counting (TC). Together, these tasks
cover a wide spectrum of algorithmic patterns, ranging from tra-
versal and path computation to iterative and structural analysis,
allowing us to comprehensively examine the efficiency and versa-
tility of GRAPHCSR across various graph computing scenarios.
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Figure 3: Degree Distribution of Kronecker graphs (Kron-x).
Such that x represents the scale of the graph, a larger x refers
to a larger graph. The first column represents the graph with
edge_factor = 1 and the second edge_factor = 16. The larger
edge_factor, the denser graph. For example, the percentage
of "50-16" means the distribution of vertex’s degree between
20 to 50 in a graph with edge_factor = 16.

4.3 Key Parameter (Thr) Tuning

In this subsection, we will take the synthetic graphs generated by
Graph500-Kronecker [7] to demonstrate how the hyperparame-
ter Thr will affect our approach. In addition, by digging deeper,
we demonstrate how to further finetune the Thr for fast graph
processing.

It is important to know the graph we are dealing with before
actually tuning Thr. In Figure 3, we first show the vertices distri-
bution of Kron-x (x represents the scale of the graph), generated
by the Kronecker generator, to simulate the real-world graphs. A
Kron-x graph may have 2% vertices and edge_factor = 2* edges, in
which we manually set edge_factor as 1 and 16 in this scenario.
Note that a larger edge_factor generates a denser graph.

From Figure 4, we have observed that 0-degree vertices are up
to 85.21%, vertices with 0 < degree < 9 are climbing to 97.79%, the
proportion of vertices (0 < degree < 20) is steadily increasing to
98.61%, while the ratio of vertices with 0 < degree < 50 is close to
99.46% but climbs at a snail’s pace. Interestingly, the low-degree
distribution does not vary greatly with the sparsity of the graph,
though the number of zeros decreases as the graph gets denser.
For example, a denser kron-31 (edge_factor=16) would have less
0-degree vertices (59.94%), but it still holds 86.66% of the vertices
with 0 < degree < 9.

Moreover, we can conclude that low-degree vertices, e.g., whose
degree is larger than 0 and smaller than 10, hold more than 12%
and 27% for sparse and dense Kronecker graphs. Accordingly, the
optimal Thr should theoretically be larger than 9, but still, the
performance would be varied as the low-degree vertices proportion
changed. With this distribution in hand, we can set up a Thr range
and evaluate the sensibility of Thr across different scales of graphs,
see Figure 4.

In addition to clueweb12 and twitter-2010, we also conduct tens
of public graphs and get similar distributions. Further, the selection
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100%, M(X) represents the memory cost of format X (i.e., CSR

or GRAPHCSR).

Kron-31, in which saving space =

policy of Thr for real-world graphs demonstrate similarities with
synthetic graphs.

We evaluate the performance of GRAPHCSR carefully by tuning
Thr. We first list the results of Thr < 9 as shown in Figure 4(a)
to prove that based on the degree distribution in Figure 3, every
increase in Thr brings obvious benefits and the overall yield is
linear. On the other hand, Figure 4(b) shows that when Thr > 9,
the changes in Thr have little effect on its performance within the
same edge_factor. The largest performance gap would be around
5% when edge_factor = 16. So far, we may draw a conclusion that:
(i) The majority of the graphs have a large scale of N-degree vertices
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Figure 5: Space and time comparison on BFS based on various
spare matrix formats.

such that N < 9. In this case, Thr = 9 gains significant benefits. We
strongly recommend that when one needs to carefully fine-tune
Thr, one should first refer to the graph degree distribution. (ii)
Although a larger Thr may give a better GRAPHCSR performance,
GraPHCSR is generally Thr -oblivious when Thr > 9.

4.4 Evaluation Methodologies

For performance evaluation, we adopt the standard methodology
defined by the Graph500 benchmark. Each test case is executed
ten times on an unloaded system, with 64 root vertices randomly
selected in each run to ensure statistical robustness. We report
the geometric mean of the resulting GTEPS values to mitigate
the impact of outliers. In all experiments, we observed minimal
variance (less than 2%) in the measured performance, indicating
high stability and reproducibility of the results.
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5 EXPERIMENTAL RESULTS

5.1 GRAPHCSR vs. CSR-like Formats in Memory
Consumption

we first examine the memory footprint, which reports the memory
cost when using different sparse matrix storage formats for BFS.

We find that the experimental memory cost is very close to the
theoretical values claimed [21]. Let Adr represent the deviation rate
between the theoretical value (that is, V;1,.) and the experimental
value (that is, Vexp) in the following.

_ |Vthe - Vexp|

Adr X 100%

1

exp
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Figure 7: Batching improvement with GRAPHCSR on various
graphs.

Our approach outperforms all the other CSR-like formats by
saving more than 90% 2 memory space against most CSRs and up
to 99. 8% space against the CSCSR format. The average deviation
rate with respect to SuperCSR [21], is less than 0. 4%, even the
highest deviation rates are less than 2%, which proves the reliability
of GRAPHCSR. All show that GRAPHCSR has the smallest memory
cost over state-of-the-art CSR-like formats, since GRAPHCSR not
only eliminates 0-degree vertices, but also compresses the identical-
degree vertices for graphs.

In addition to synthetic graphs (e.g. Kron-31), GRAPHCSR is also
applied to real-world social graphs such as clueweb12 [3]. We also
examine space and time cost of BFS based on various popular sparse
matrix formats, including CSR, DCSR, CSCSR, BCSR, COO [33],
CSR5 [39] and GraphCSR [20] with disabled fusion ( marked as
GraphCSR*). It shows that GRAPHCSR has the smallest memory
cost, as shown in Figure 5(a) and the fastest running time, as shown
in Figure 5(b) among all testing sparse matrix formats.

5.2 SpMV Performance

Although GRAPHCSR is specifically designed for large graph tra-
versal, it can effectively support graph computation like SpMV. We
evaluate the format GRAPHCSR in an isolated SpMV test on two
real-world datasets Twitter-2010 and clueweb12. For a fair compar-
ison, we reuse the two input graphs’ topology with the randomly
generated index vectors as the testing scenario. Figure 6 shows the
SpMYV performance of the CSR-based variants, CSB [6], GraphCSR*
(i-e., GraphCSR [20] with fusion disabled) and CSR5 [39]. and non-
CSR-formats including ELLPACK [28], and COO (Coordinate list)
format [15].

Figure 6(a) shows that GRAPHCSR vyields a memory cost lower
than all previous CSR-like formats by up to orders of magnitude. On
average, those CSR-based formats require extra memory to support
vectorization and tiling, which perform well in small graph com-
putations but are fatigued when facing large graphs. Building on

2Since COL is identical for all CSRs, it is not considered for space saving.



10°

Memory Cost (GB)
>

3
2

2

Memory Cost (GB)
>

10°

Figure 8: Memory footprint for deploying GRAPHCSR on two real-world graphsusing Tianhe-Exa with eight nodes available.

Running Time (ms)

10'

Running Time (ms)

[_JcsrR [CLIpCSR  [ZJCSCSR [C_JcsrR [CLIpCSR  [ZJCSCSR [JcsrR [CLJpCSR - [ZJCSCSR
RXYBCSR E]GraphCSR* Ml GraphCSR | R YBCSR dGraphCSR* Il GraphCSR R RXYBCSR [E]GraphCSR* I GraphCSR
10° 10
~ 7 ~ 10? 7
2 a @
N Q10 N <) N
2 2
< S 10'
z z
=} =]
1 5 10! g
‘b\‘ = =
[ 10°
3
N
3
N
5 100 2] 107
clueweb12 twitter-2010 clueweb12 twitter-2010 clueweb12 twitter-2010
(a) DFS (b) SSSP (©) PR
[JcsrR [T Ipcsr [ZJcscsr [JcSR [T JDCSR [ZJCSCSR [JcsrR [T IDCSR [ZJcscsr
R YBCSR EFGraphCSR* [l GraphCSR s RYBCSR EEIGraphCSR* MM GraphCSR R RXYBCSR EAGraphCSR* [EBGraphCSR
10 10
& )
@, ] 5
O 10 S 10 /]
7T e N = N
2 3
- 3 o)
= 2
3 =}
£ £
3 10! < 10!
=
10° 10°

clueweb12 twitter-2010

(dcc

clueweb12 twitter-2010

clueweb12

(HTC

[Jcsr [T IDCsR [ZJcscsr [Jcsr [T IIDCSR [ZAcscsr [JcsrR [T IDCSR [ZAcscsr
N NIBCSR EHGraphCSR* B GraphCSR . N NBCSR E=HGraphCSR* I GraphCSR , N NBCSR [IGraphCSR * B GraphCSR
10° 10
10
g 7] Ew
N
E 10t &=
= =
= k=]
g g0
5 5 10
= e g Eig = =
10° - 10! LLL)
clueweb12 clueweb12 twitter-2010 clueweb12 twitter-2010
(2) DFS (b) SSSP (c) PR
[Jcsr  [CIIIDCSR [ZAcscsr [Jcsr  [IDIDCSR [ZAcscsr [Jcsr  [IIpCSR [ZAcscsr
NNBCSR [FiGraphCSR * [ GraphCSR RKNBCSR E=HGraphCSR* M GraphCSR RNBCSR [F=]GraphCSR * B GraphCSR
10 102
z z
E 10 E 10
o o
E £
& =
= =1
.8 g
= =1
£ 10 £ 100
& &
10" 10"

Figure 9:

clueweb12
(d)cc

Runtime for deploying GRAPHCSR on two real-world graphs using Tianhe-Exa with eight nodes available.

twitter-2010

clueweb12 twitter-2010

(¢) BC

4264

clueweb12

twitter-2010
HTC



Table 2: GRAPHCSR-based Graph500 BFS v.s. Fugaku (the
latest Graph500 top-ranked supercomputer)

System #Nodes RAM (GB) Storage format  GTEPS
Tianhe-Exa 79,024 1,264,384 GRAPHCSR 224,139.15
Fugaku 152,064 5,087,232 BCSR [45] 166,029

this memory advantage, Figure 6(b) demonstrates that GRAPHCSR
also achieves superior computational performance in SpMV oper-
ations across a variety of large-scale graph datasets. The key lies
in the reduced data movement of GRAPHCSR and the streamlined
access pattern based on the aggregation of fusion. By eliminating
excessive structural overhead and maintaining a contiguous and
compact layout, GRAPHCSR enables faster traversal of neighboring
vertices and more direct indexing of nonzero entries during the
multiplication process.

5.3 GRrRaPHCSR with Batching

Current state-of-the-art sparse formats prioritize space reduction,
often compromising decompression efficiency. As such, the key per-
formance bottleneck is the achievement of improved decompression
efficiency while substantially reducing space requirements. As such,
we propose GRAPHCSR, which improves space efficiency by group-
ing vertices of the same degree and compressing ones of the low
degree through fusion. This design enables batched and coalesced
memory accesses, reduces storage overhead, accelerates decom-
pression, and enhances overall graph processing performance.

Consequently, we demonstrate the improvement of the batching
performance of GRAPHCSR with batching access (i.e., GRAPHCSR
w/. batching) significantly outperforms GRAPHCSR without batch-
ing, that is, GRAPHCSR w/o. batching, as shown in Figure 7. It is
worth noting that batching can not only boost the performance of
a synthetic graph (e.g., Kron-31) but also advance the performance
of real-world graphs, validating its versatility. In addition, perfor-
mance improvements become prevalent by varying the size of the
graph. Both clueweb12 and Kron-31 have more vertices and edges
than twitter-2010, since there is more space for batching access,
demonstrating good scalability.

5.4 GrRaPHCSR-based Graph500 Ranking

GRraAPHCSR has been successfully deployed on the Tianhe-Exa su-
percomputer, scaling up to 79,024 nodes, each equipped with 16 GB
of RAM. Under this configuration, running a distributed Graph500
BFS benchmark with GRAPHCSR achieved a record-breaking per-
formance of 224,139.15 GTEPS. This result represents a 13.52%
improvement over the current top-ranked system, Fugaku, which
reaches 166,029 GTEPS using more than 152,000 nodes and four
times the total memory capacity.

As shown in Table 2, this comparison highlights the remarkable
efficiency of our system, with higher throughput achieved using
nearly half the number of nodes and significantly less memory. Im-
portantly, both experiments were conducted on graphs of the same
scale, generated using the Graph500 generator with an edge factor
of 42 (Kron-42), yielding graphs with approximately 4.4 trillion
vertices and 70.4 trillion edges.
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These results provide strong empirical evidence for the scal-
ability and resource efficiency of GRAPHCSR. They demonstrate
that the proposed GRAPHCSR not only supports high-performance
graph traversal at extreme scales but also enables supercomput-
ing platforms to deliver world-leading performance under tighter
memory and compute constraints, making it a practical solution
for modern large-scale graph processing workloads.

5.5 GRAPHCSR for Small-sized Machines

Although motivated by many-node supercomputers, GRAPHCSR
can also behave well on smaller number of nodes even a single-
alone machine. First, we compare GRAPHCSR with different CSR-
like formats within a 8-node subset of Tianhe-Exa using various
graph traversal algorithms, such as DFS, SSSP, PR, CC, BC, and TC,
as shown in Figure 8 and Figure 9. The results show that GRAPHCSR
outperforms prior CSR-like formats on all data sets and evaluation
metrics. GRAPHCSR surpasses all CSR formats and saves at most
89.2% and 71.9% (average 77.3% and 65.5%) of space compared to
naive CSR and BCSR, respectively. And refer to Figure 9, GRAPHCSR
outperforms all CSR formats and offers speeds up to 19.3 times
(average 14.4x) while running each popular graph algorithm. It is
worth noticing that because real-world graphs are typically not
hypersparse graphs, DCSR requires more memory than BCSR or
even vanilla CSR. Correspondingly, our approach is highly stable
when dealing with both hypersparse and non-hypersparse graphs
since we are not solely relying on the number of 0-degree vertices
as DCSR does.

Further, we examine GRAPHCSR with with state-of-the-art graph
systems including GraphCube [23], Mizan [31] and DGP4LB (i.e.,
dynamic graph partitioning scheme to support load balance in
distributed graph environments [14]) with load balance optimiza-
tion. Figure 10 presents a comparison of load balance factors for
GraphCube, Mizan and DGP4LB by running BFS on a graph (i.e.
Kron-27) generated by Graph500 using 8 Tianhe-Exa. The bal-
ance factor of GRAPHCSR is still second to the state-of-the-art
GraphCube [23] that is nearly optimal. where the load balance
factor (b), is defined as

b= (0 (wi_load) /© (A_load))/N @)
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where ©(W!_load) and ©(A_load) represent the working loads at
node i and the average loads among all the running nodes, respec-
tively, N is the number of running nodes.

Finally, we compare GRAPHCSR standard graph systems like
Neo4j or DuckDB which offer optimized graph querying operators
such as BFS and SSSP using a geneal single machine as listed in
Table 1. Figure 11. demonstrates that GRAPHCSR significantly out-
performs Neo4j or DuckDB in all graph operators. That is because
both grouping identical vertices and batching access coordinately
improve space and time efficiency, especially for sorted graphs.

5.6 Preprocessing Overhead

GRrRAPHCSR requires a one-time preprocessing step in which the
input graph is sorted by degree of the vertex. This operation is per-
formed only once per dataset and remains valid for all subsequent
graph processing tasks. Extensive evaluations show that the prepro-
cessing overhead of GRAPHCSR increases modestly with increasing
graph scale. Even at a system scale of 512 compute nodes, the total
preprocessing time remains low, only 2.07 seconds, highlighting the
efficiency and scalability of the format in distributed environments.
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Although graph sorting may appear costly, it is a one-time
preprocessing step commonly shared across various graph work-
loads such as traversal, aggregation, and subgraph analysis. Mod-
ern graph systems, including Gemini [51], Shentu [38], Graph-
Scope [17], Gluon [16], and GraphCube [23], have adopted sorted
inputs as standard practice. Moreover, recent advances in high per-
formance computing, such as vectorization and pipelining [22, 24],
have significantly reduced the sorting overhead. GRAPHCSR is de-
signed to align with these trends, leveraging sorted graphs to am-
plify space and performance benefits without introducing additional
preprocessing costs, making it a practical and compatible solution
for modern graph analytics pipelines.

GRrAPHCSR supports SpMV and SpMM operations specifically
optimized for graph analytics, but it is not ideally suited for general
sparse matrix computations due to the vertex reordering it employs,
which complicates direct index access common in standard CSR
implementations. For general-purpose sparse matrix tasks, we rec-
ommend converting GRAPHCSR back to the native CSR format to
fully leverage existing highly optimized CSR-based kernels. Exist-
ing methods such as CSR5 [39] and SMASH [30] focus primarily on
parallelization and hardware-specific optimizations in small-scale
matrices. However, these approaches do not address the significant
memory overhead challenges encountered in large-scale graph pro-
cessing workloads. Since memory often limits performance more
than computation in HPC, GRAPHCSR ’s memory-efficient design
combined with reversible CSR conversion provides an effective
trade-off between storage savings and computational compatibility,
addressing key challenges in large-scale graph analytics.

6 CONCLUSION

We have presented GRAPHCSR, a CSR-like sparse storage format
designed to optimize memory utilization for distributed large-scale
graph processing. GRAPHCSR exploits the prevalence of low-degree
vertices in real-world graphs by grouping vertices with identical
degrees and combining complementary degree pairs, significantly
reducing the storage footprint of the adjacency matrix. This or-
ganization enables GRAPHCSR to support efficient batch process-
ing and coalesced memory access, leading to improved memory
efficiency and higher throughput in graph processing tasks. We
evaluated GRAPHCSR through theoretical analysis and extensive
empirical experiments, comparing it with representative sparse ma-
trix storage formats. Extensive evaluations show that GRAPHCSR
consistently achieves significant reductions in memory consump-
tion while simultaneously improving processing throughput com-
pared to the baseline storage formats. Consequently, GRAPHCSR
presents a promising approach for handling large-scale datasets in
high-performance computing environments.
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