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ABSTRACT

Memory channel bandwidth imposes an upper bound on the per-
formance of online transaction processing (OLTP) on in-memory
database management systems (DBMS). Emerging processing-in-
memory (PIM) hardware has the potential to overcome this barrier
by using small cores in DRAM chips that can read and process data
in situ, thereby avoiding moving these data across memory chan-
nels. However, naively offloading all database components to PIM
does not solve the problem due to the characteristics of software
components and the limitations of PIM hardware.

In this paper, we present OLTPim, the first end-to-end OLTP
DBMS designed for PIM systems. We build a formalized model for
the affinity of each database operation towards PIM and use it to
decide the partitioning of components on different types of memory.
We also design a lightweight batching algorithm to overcome the
large PIM control latency while minimizing the batching overhead.
We implement and evaluate OLTPim on the latest PIM system from
UPMEM with 64 worker threads and 2048 PIM modules. Our results
show that OLTPim achieves up to 1.71x throughput and up to
6.14X less per-transaction memory channel traffic over MosaicDB,
a state-of-the-art in-memory system.
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1 INTRODUCTION

Data movement between main memory (DRAM) and the CPU is
often the major bottleneck in in-memory database management
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Figure 1: Throughput gain and memory channel traffic reduction
of OLTPim over MosaicDB [35], a state-of-the-art research in-memory
DBMS, on YCSB [12] with 1B tuples. OLTPim’s numbers are measured on a
real PIM system [66] with 2048 PIM cores; MosaicDB’s numbers are on the
same server, but replacing PIMs with DRAMs. The arrow next to each y-axis
legend points to the better direction for the metric.

systems (DBMSs) for online transaction processing (OLTP) work-
loads [18]. This problem occurs because these DBMSs use pointer-
chasing data structures that incur frequent CPU stalls on mem-
ory latency [11]. Modern DBMSs employ several tricks to hide
this latency and maximize memory bandwidth utilization [29, 35].
However, their performance is bounded by the memory channel
bandwidth. Although today’s multicore CPUs have large on-chip
caches to minimize memory channel traffic, the large working sets
of OLTP workloads mean most data accesses hit main memory.
Emerging processing-in-memory (PIM) hardware overcomes this
limitation by allowing in-place computation of memory-resident
data without fetching them to the CPU [41, 58, 66]. PIM embeds
small programmable cores (PIM cores) inside DRAM chips to achieve
high-bandwidth/low-latency/low-energy access to data. Instead
of processing all data at the CPU and incurring expensive data
movement over memory channels, PIM enables offloading memory-
intensive operations to PIM cores, reducing memory channel traffic.
However, achieving the benefits of PIM for an OLTP DBMS is
not a matter of naively offloading its data structures and engines
to PIM cores, due to several challenges (C1-C4). First, (C1) the
PIM cores with their private local memories are akin to a thousand-
node shared nothing database, inheriting all of its challenges: data
placement, load balance, minimizing cross-node communication,
etc. Second, (C2) PIM cores are quite limited compared to the mul-
ticore CPU, typically with slower clock frequencies, no transpar-
ent caches, no vector instructions, and limited synchronization
primitives. Thus, as we will show, a PIM-optimized OLTP DBMS
judiciously divides its components between the multicore CPU and
the PIM cores, incorporating their different programming models.
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But dividing the components raises the third challenge: (C3) The
DBMS must ensure that any computation offloaded to the PIM cores
amortizes its offload overheads. Lastly, (C4) despite these offloading
overheads and less capable cores, the DBMS on PIM must meet
latency constraints and provide superior transaction throughput
over state-of-the-art OLTP systems on traditional hardware.

In this paper, we show how to overcome these challenges by pre-
senting OLTPim, the first end-to-end OLTP DBMS optimized for
PIM hardware. The crux of OLTPim’s design is to offload pointer-
chasing components (indexes, multi-versioning metadata, garbage
collection) to the PIM cores while the CPU executes the rest (trans-
action management, orchestration, logging). Tuple data are stored
in traditional (not PIM-equipped) DRAM in order to be accessed by
the CPU without incurring offload overheads. OLTPim intelligently
partitions the PIM-side structures to minimize cross-PIM communi-
cation. It also uses a lightweight batching algorithm that minimizes
the overhead of orchestrating CPU threads and PIM programs. To
evaluate OLTPim, we deployed it on a real PIM system from UP-
MEM [66] and compare against MosaicDB [35], a state-of-the-art
in-memory OLTP DBMS, on YCSB [25] and TPC-C [13] workloads.
As shown in Figure 1, OLTPim achieves up to 1.71X better trans-
action throughput with significantly less per-transaction memory
channel traffic (up to 6.14X) compared to MosaicDB.

The main contributions of this paper are:

We formalize the property of PIM-friendly operations and the
design rationale for PIM-based OLTP DBMS.

We identify the limitations of a real PIM system and provide an
optimized SDK API and programming tricks to mitigate them.
We design, implement, and evaluate the first end-to-end OLTP
DBMS on a real PIM system. Our evaluation provides insights
into the strengths and weaknesses of PIM for OLTP. We demon-
strate that even first-generation PIM hardware improves through-
put and reduces memory channel traffic.

2 BACKGROUND

We now provide an overview of PIM hardware and software systems
and motivate the need for a PIM-optimized OLTP DBMS.

2.1 PIM Hardware

PIM embeds small on-chip processors in the logic layer of DRAM [25,
58]. Current PIM hardware uses single-core, in-order processors [66]
(PIM cores). Thus, each PIM core is less powerful than a server-grade,
multicore, out-of-order CPU (e.g., Intel Xeon). The key advantage
of a PIM core is its low-latency access to locally memory-resident
data that uses only a small amount of energy for each LOAD/STORE
operation [25]. Moreover, since the accesses are on-chip and do not
cross memory channels, the aggregate memory bandwidth is capped
by neither per-chip pin constraints nor total memory channel band-
width. Thus, for systems with 1000s of PIM cores, the aggregate
memory bandwidth far exceeds the peak memory bandwidth of
traditional servers at a fraction of the energy costs.

Figure 2 illustrates a PIM system consisting of a multicore CPU,
traditional (passive) DRAM, and PIM components. The CPU has
fast access to its on-chip last-level cache (LLC), but it can access
traditional DRAM and PIM memory only via (slower) off-chip mem-
ory channels. The PIM side is partitioned into PIM modules, each
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Figure 2: PIM Architecture. A high-level overview of a PIM system with
CPU, DRAM, and PIM components. CPU and DRAM have a slow channel
(green), whereas the PIM core and its local memory allow fast access (red).

with a PIM core and a local memory. Each PIM core has fast access
to its local memory through its scratchpad memory (SPM) but can-
not access the memory in other PIM modules. SPM is an SRAM
component next to each PIM core, managed explicitly unlike the
transparent CPU cache. The system maps the PIM modules’ local
memories to the CPU’s address space so that the CPU can access
them via the memory channels. Communication between PIM mod-
ules is done by the CPU reading from the source’s local memory and
writing to the destination’s, incurring expensive off-chip accesses.
A fixed number of modules (e.g., 64) constitutes a PIM rank.
The CPU cannot access each module independently because their
addresses follow a rank-wise interleaving. Thus, if the CPU has a ma-
trix of data and wants to transfer row i to the ith module in a rank, it
should first transpose the matrix to make the interleaved layout and
then copy it to the memory-mapped address of the rank. In contrast,
the CPU can access each rank independently because there is no
such interleaving between ranks. Hence, a rank is the smallest unit
that can be controlled independently by the CPU. Although the
rank-wise interleaving is required to provide a contiguous layout
to each PIM core, it differs from traditional (byte-wise) interleav-
ing, which is optimized for cache-line-sized (64B) accesses [15, 54].
Furthermore, a PIM rank’s capacity is smaller than an equivalent
passive DRAM rank’s due to its additional components. Conse-
quently, as depicted in Figure 2, a PIM system also employs passive
DRAM with cache-line-optimized access and larger capacity.
Although there are PIM research prototypes (e.g., Samsung [47]),
UPMEM [66] is currently the most commonly used commercially
available PIM hardware. UPMEM’s system provides 2048 PIM mod-
ules, each with 64MBs of local memory. Its PIM core is an in-order
RISC processor (350 MHz) with a custom instruction set archi-
tecture. UPMEM provides an SDK API (C lang) for broadcasting
compiled code to each PIM module and then later launching them
on demand. The API also enables gathering and scattering data
between the CPU and the PIM modules; the rank-wise interleaving
transpose discussed above is done transparently to the programmer.
One limitation of the UPMEM hardware is mux switch latency.
Although the CPU and PIM core can access the same local memory
in a module, UPMEM does not allow simultaneous access from
both processors. As shown in Figure 2, the mux on each module
determines whether the CPU or PIM core has control of the memory.
If a PIM program wants to modify the data after copying it from
the CPU, it must switch the mux position. The microarchitecture
requires this switching to mitigate access conflicts between the
CPU and PIM cores [15]. Our measurement shows that the mux
switch takes 67 + 11us on the default UPMEM SDK (2025.1.0) and
21 + 4us on our optimized SDK (see §6.1). To our knowledge, this



work is the first paper emphasizing UPMEM’s mux switch latency.
Previous works on UPMEM studied batch-oriented applications
where millions of elements are loaded and processed at once [3,
25, 42, 53, 57, 62], thereby amortizing the mux switch latency. In
contrast, OLTP workloads cannot tolerate the latency of such large
batches, so one must explicitly account for mux switch latency.

2.2 PIM-enhanced Software Systems

The PIM core’s fast local memory access is ideal for systems that
make heavy use of pointer chasing-based indirect structures [34],
such as linked lists and B+trees [9, 10, 55]. Prior work on PIM-
enhanced data structures uses range-partitioning to divide data
across 1000s of modules, but such partitioning suffers from heavy
load imbalance on skewed workloads. PIM-tree [42] uses provably
robust techniques to mitigate such imbalance but it requires multi-
ple rounds of mux-switches to complete one index traversal.

PIM’s large number of parallel cores and scalable internal band-
width makes it an attractive environment for throughput-oriented
memory-intensive applications [1, 14, 33, 71]. (However, the work-
load must not be compute-intensive since each PIM core has limited
computing power [25].) Such applications include analytics [2, 3,
37, 46, 54, 73], machine learning (ML) [5, 8, 24, 36, 53, 61, 72, 74],
graph processing [14, 25, 51, 62, 64], genomic analysis 7, 50, 57],
cryptography [19, 23, 26], and error-correcting codes [20, 21]. A
common technique to optimize such workoads for PIM is to convert
expensive computations into memory-intensive operations, such as
using lookup tables for matrix multiplications in ML systems [53].

OLTP DBMSs are a promising target for PIM because they often
incur unavoidable off-chip memory accesses. A CPU’s LLC is unable
to absorb them due to the OLTP workloads’ random access patterns.
Since OLTP DBMSs rely on data structures (e.g., B+trees) to find
records, they can use PIM cores to accelerate pointer-chasing opera-
tions. Moreover, PIM provides higher aggregate memory bandwidth
for these memory accesses at lower energy costs (as discussed in
§2.1). To our knowledge, no existing OLTP DBMS uses PIM to
improve their performance and efficiency.

3 OLTPIM OVERVIEW

We now describe the design of OLTPim, the first end-to-end OLTP
DBMS optimized for PIM. OLTPim is designed to address the four
challenges (C1-C4) presented in §1 for OLTP on PIM. It targets
high-throughput settings where one PIM-enhanced server (e.g.,
UPMEM) processes up to millions of transactions per second.

3.1 High-Level Design

Figure 3 illustrates the design of OLTPim. The worker threads
execute transactions by issuing queries to the CPU engine. Unlike
existing in-memory DBMSs, OLTPim bifurcates its data structures
in different memory types: PIM and DRAM. As depicted in the right
part of Figure 3, indexes and version chains are placed in PIM and
partitioned across the modules, whereas tuples are placed in DRAM.
As a result, the CPU engine first traverses the index and version
chain by offloading the operations to the PIM engines, then fetches
the corresponding tuples from DRAM.

Each query issued by M worker threads targets one of the N PIM
modules. Since any transaction can access data structures in any
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Figure 3: OLTPim Design. Query requests from M worker threads are
served by N PIM modules. The batcher @ combines the requests in the
request list and @—@ offloads index and MVCC operations to the PIM
engines. Then, the CPU engine @ fetches the tuples from DRAM, @
records them in the transaction context, and (7) returns them to the thread.

module, this becomes an M:N multiplexing problem. The batcher
inside the CPU engine is in charge of the efficient multiplexing. (1)
When a transaction issues a query to the CPU engine, the engine
converts the query into PIM operations and appends them to the
batcher’s request list. (2) The batcher combines and copies them
into the PIM modules. (3) Then, the PIM engine in each PIM core
processes the operations, traversing the indexes and version chains
stored in its local memory. (4) After this completes, the batcher
copies the results back to the CPU where its engine processes the
rest of the query. (5) Using the value received from the PIM engine,
the CPU engine accesses the requested tuples from DRAM. (6) It
also manages the transaction context, such as appending to the
write set and writing the log. (7) Lastly, the CPU engine returns the
tuple to the transaction, and the worker thread resumes execution.

3.2 Design Rationale

OLTPim stores some data structures in DRAM instead of offloading
all operations to PIM. Furthermore, it uses a centralized batcher
to coordinate PIM requests instead of allowing worker threads to
query modules directly. As we now discuss, these design choices are
based on the observation that most OLTP workloads are memory-
bound, and thus, memory traffic is the primary factor for determin-
ing performance rather than the amount of computations.

Near-Memory Affinity. Naively offloading database structures
and operations to PIM does not guarantee an advantage over non-
PIM designs due to the operations’ overheads (Challenge C3). For
example, if the DBMS places database tuples in PIM local memories,
then fetching a tuple to the CPU in service of a transaction would
incur the same memory channel traffic as if it placed the tuple in
DRAM. Thus, PIM would have no advantage and, in fact, would
hurt performance due to mux switching and rank-wise interleaving.

As the previous example shows, memory channel traffic reduc-
tion is an important metric for describing the benefit of PIM offload-
ing. We model this reduction as the near-memory affinity Anear of
an operation. Let m be the number of memory accesses in cache
line units that the operation requires. An access that traverses a
memory channel is called a far-memory access. Assuming the work-
ing set size is larger than the CPU LLC, executing the operation
without PIM requires m far-memory accesses (i.e., the far-memory
traffic Mpopim = m). In contrast, if a system instead offloads the
operation to a PIM module with the data, these accesses become



Table 1: Near-Memory Affinity Apear of Database Operations.

Database Operation Near-Memory Affinity

Tuple Access —i
B+tree Traversal Hypelog L — 2i
Version Chain Traversal Copis — 2i

where:

Hooc Height of B+tree’s out-of-cache part

L B+tree node size in cache line units

Cois Version chain length until the visible version

i Size in cache line units of IDs, keys, data fields
(e.g. 32bit/64B = 1/16)

near-memory accesses within the module. But one must also ac-
count for the memory traffic of sending the operation’s arguments
from CPU to PIM and retrieving its return values from PIM to CPU.
If this incurs r cache lines of traffic then the far-memory traffic
Mpiy = r. We define Apear as the amount of far-memory traffic
reduction by using PIM:

¢y

Table 1 shows the estimated Apear for operations required to
locate a small number of tuples through an index, which is the most
common case in OLTP queries [63]. First, fetching a tuple requires
far-memory traffic as large as its size, assuming it is not in the
CPU’s LLC. If a DBMS offloads it to PIM, the CPU sends the tuple’s
ID to PIM and receives its data. Hence, r = i + m and Apear = —i.
Next, traversing a B+tree requires searching H nodes from the root
to a leaf while binary-searching each node by fetching log L cache
lines from memory. Since the CPU LLC stores the top part of the
tree, the required far-memory traffic is m = Hyo log L. To offload
the index lookup, the CPU sends the key to PIM and receives the
tuple ID/pointer, while the tree traversal becomes near-memory
accesses. As a result, r = 2i and Apear = Hooc log L — 2i. Similarly,
finding the visible version in a version chain requires m = Cy;s far-
memory accesses, but offloading the operation reduces it to r = 2i
for the object ID and the return value, yielding Apear = Cyis — 2i.

The takeaway from Table 1 is that an operation’s near-memory
affinity depends on both its memory footprint and input/output
sizes. If an operation hides its heavy memory accesses to a PIM
module behind small inputs and outputs (e.g., B+tree key/value), it
becomes more near-memory-friendly. In contrast, if the operation
reads or writes the data (e.g., fetching a tuple), the size of the inputs
and outputs becomes as large as the operation’s memory footprint,
making it less near-memory-friendly.

Note that our near-memory affinity model serves as a guideline
for system design decisions, but it is insufficient for modeling the
actual performance, which also includes factors such as address
interleaving, bulk transfers, and computational intensity.

Anear = Mnopim —Mpim =m —r

Condition for Less Memory Channel Traffic. From Equa-
tion (1), we have that memory channel traffic decreases if:

Anear > 0 (2)

Based on Equation (2), OLTPim offloads only the near-memory-
friendly operations to PIM and keeps the rest in DRAM to ensure
memory channel traffic reduction. According to Table 1, B+tree and
version chain traversals are near-memory-friendly, whereas tuple
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access is not. Hence, OLTPim places indexes and version chains in
PIM and leaves tuples in DRAM.

Batching Independent Operations. Although Equation (2)
ensures less memory traffic, performance improvement is not guar-
anteed. Accessing the PIM-side structure requires (1) copying the
input to the module, (2) executing the PIM program, and (3) copy-
ing the output back to the CPU. Since the PIM core accesses the
local memory during (2), but the CPU does in (1) and (3), two mux
switches are required. As a result, the latency of accessing the PIM
structure is greater than accessing the same structure in DRAM.

Given this, the system should execute the operations in batches
to hide this latency and maximize throughput. The CPU sends the
inputs for a batch of B operations to PIM, executes them in paral-
lel, and receives their outputs, amortizing the mux switch latency
over B operations. In addition to the larger throughput, large-scale
batching can improve the load balance across the modules [41, 42].

Condition for Higher Throughput. Batching hides latencies
and makes workloads bandwidth-bound. When executing B opera-
tions in DRAM, the runtime is Ty,oppm = B © Myopiv /W, where ‘W
is the aggregated memory channel bandwidth in cache line units.
On the other hand, if the system offloads them to PIM as a batch
of size B, the runtime is Tppy = B - Mppv/ W + L, where L is the
PIM round latency consisting of two mux switches and additional
batching overhead. Hence, the throughput for the batch is improved
if Tpim < ThoriM, Which simplifies to:

B> W.L/Anear ®)

Equation (3) shows that the batch size for the PIM operations
should be larger than ‘W L/ Apear to achieve better throughput. If
the memory channel bandwidth is ‘W ~ (256GB/s)/(64B) and PIM
round latency is £ ~ 200us, then ‘W L ~ 10°. Hence, for typical op-
erations where Apear < 10°, batched execution is required to hide
the PIM latency. In OLTPim, the batcher in Figure 3 is responsible
for batch-executing the PIM operations.

However, we cannot increase B indefinitely as it degrades trans-
action latencies. We aim to keep P99 latency acceptable (e.g., sub-
20ms), while maximizing throughput and reducing memory channel
traffic (Challenge C4). Moreover, the system must track the contexts
of all B in-flight transactions. If their total size exceeds the CPU
LLC capacity, additional LLC misses increase the memory traffic
and degrade performance. We study the batch size trade-off in §7.3.

To alleviate the batch size in Equation (3), a system shoud min-
imize PIM round latency (L£). Hence, we optimize the batcher to
avoid OS overheads and improve its PIM access API efficiency (§5).

Merging Dependent Operations. Independent operations are
combined into a batch to maximize the throughput, but it is impos-
sible if they are dependent on each other. For example, assume the
B+ tree nodes are randomly distributed across the PIM modules.
If a parent and its child node are in different modules, the CPU
should first traverse the parent node, receive the child pointer, and
then traverse the child node. This requires runtime of at least 2.£
since each traversal requires a PIM round latency. As shown in the
example, PIM operation dependency arises when different modules
have relevant structures. To minimize the dependency, the DBMS
merges operations by partitioning the PIM-side structures and plac-
ing relevant structures in the same PIM module (Challenge C1). In



addition to reducing the transaction latency, merging operations
into one increases its Apear, further alleviating Equations (2) and (3).

OLTPim follows two major design rationales that improve the
throughput and memory channel traffic. First, the DBMS places
its data structures in either DRAM or PIM memory depending on
operations’ near-memory affinity. The DBMS partitions PIM-side
structures across the modules to facilitate dependent operation
merging. Second, the DBMS batches operations to hide the PIM
round latency while minimizing the coordination overhead. We
elaborate on the design choices for OLTPim’s structural compo-
nents and batching mechanism in §4 and §5, respectively.

4 STRUCTURAL COMPONENTS

OLTPim stores its components in either DRAM or PIM memory,
spreading PIM-side structures across the modules. As discussed in
§3, it stores indexes and version chains in PIM and tuples in DRAM.
Figure 4 illustrates the hash-partitioned PIM-side structures and an
example workflow for a PIM engine to serve a query. It takes the
index key as an input, traverses the index to get an object ID (OID),
finds and traverses the corresponding version chain, and returns
the pointer of the visible tuple to the CPU engine. We now describe
the design of OLTPim’s DRAM- and PIM-side components.

4.1 Configurably Hash-Partitioned Indexes

Because index traversal requires the DBMS to chase pointers with
unpredictable access patterns, it incurs off-chip data movements if
the index is larger than the LLC [9]. OLTPim offloads index opera-
tions to the PIM cores by partitioning them across modules.

One approach is to use range-partitioning to divide the key space
into disjoint subsets and assign each partial index to a module [10,
55]. An extension to this is PIM-tree’s skew-resistant paritioning
that divides both the key space and the index levels, and then
assigns each sub-index to a module to guarantee load balance [42].
However, since the nodes on a traversal path reside on different
modules, PIM-tree requires multiple dependent PIM operations per
look-up, which is not ideal in latency-sensitive applications.

OLTPim uses a variant of the range-partitioning for its indexes.
As depicted in Figure 4, a hash function maps the key right-shifted
by R bits into one of the modules, partitioning the key space into
disjoint ranges of 2R keys. When the DBMS needs to access an
index, it computes the target PIM ID using the hash function and
then the CPU engine sends a request to the corresponding PIM
module. OLTPim use B+trees as local indexes in each module, but
they can be replaced with any other ordered data structures such
as radix trees [52], Masstree [56], or skip lists [70].

With a range query, the CPU engine broadcasts PIM operations
to all modules that may contain a key in the target range. Although
the operations’ independence allows parallel execution, the DBMS
minimizes the number of accessed modules to reduce resource
usage. Because OLTPim maps 2R consecutive keys to the same
module, a larger R reduces the number of modules involved. On
the other hand, a larger R risks load imbalance among the PIM
modules because queries may target hot keys in a single module.
In our experiments, we use R = log, S for indexes supporting scans
with range length S and R = 0 for indexes without scans.
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Figure 4: Structural Components of the PIM Engines. A PIM engine
uses the index key to return the DRAM pointer to the visible tuple in the
key’s version chain. Indexes and version chains are partitioned based on
Hash(key»R) for a configurable R.

OLTPim’s hash partitioning randomly distributes the keys across
PIM modules to balance local index sizes. In cases of workload skew,
the DBMS can reconfigure the hash function to balance the per-
module access frequency by placing fewer keys in a module if they
are popular. But changing the hash function at runtime requires
moving keys to other modules, which incurs expensive off-chip
memory traffic (see §2.1). For re-partitioning, OLTPim rebuilds the
PIM indexes from scratch instead of partial adjustment.

The DBMS’s hash-partitioned indexes serve a query with one
PIM operation, minimizing mux switches and off-chip memory
traffic. Even with the minimized offloading cost, if the entire index
fits in LLC, placing it in DRAM is always better. This also applies if
the index’s working set is smaller than LLC due to a skewed access
pattern. Hence, OLTPim supports selectively placing indexes in
either PIM or DRAM to achieve the best performance.

4.2 Tuple Storage

OLTPim places tuples in DRAM because Apear < 0 for tuple access
operations (§3.2). Furthermore, PIM’s rank-wise interleaving (§2.1)
exacerbates the disadvantage. Assume OLTPim places each tuple in
a PIM module. When it fetches one tuple from a module, it should
read data from adjacent modules as well because a cache line from
the CPU’s address space is striped across the modules in a rank.
As a result, the needless data from other modules multiplies the
required memory traffic even if the query only needs one tuple.
Placing tuples in DRAM ensures flexible access from the CPU
engine, but makes PIM engines less efficient for tuple-heavy op-
erations, such as aggregations. OLTPim targets OLTP workloads
where most queries access a small number of tuples at a time via
indexes [63]; it is not optimized for more complex OLAP queries.

4.3 Multi-Versioning

OLTPim uses multi-version concurrency control (MVCC) to man-
age transactions. Previous in-memory MVCC implementations
maintain version metadata in each tuple’s header [16, 69], including
the version timestamp (i.e., commit sequence number, CSN) and
the pointer to the next version (i.e., version chain). But inlining
this metadata in DRAM with tuple data would mean that only the
DBMS’s CPU engine could traverse a tuple’s version chain. A better
approach is for the DBMS to store tuples’ MVCC metadata in PIM
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Figure 5: Garbage Collection in OLTPim. The PIM engine @ GC the
version chain and (2) returns the first pointer and the number of the obsolete
tuples, which is used by the CPU engine to @ GC the tuple chain.

memory since their traversal has a high near-memory affinity (Ta-
ble 1). The DBMS maintains newest-to-oldest (N20) version chains
in the module with its primary index using the same hash function
(§4.1), so that it can merge version chain operations with relevant
index operations (Challenge C1). The PIM engine traverses an index
and a version chain in the same module, and returns the visible
tuple’s DRAM pointer to the CPU engine.

MVCC DBMSs include a garbage collection (GC) mechanism to
prune obsolete versions and reclaim their storage [69]. In OLTPim,
each PIM engine identifies obsolete versions as they traverse version
chains, but the CPU engine does not have access to this version
metadata to remove DRAM-resident tuples. To overcome this issue,
OLTPim maintains a redundant tuple chain in DRAM along with
tuple data. As shown in Figure 5, after (1) the PIM engine traverses
the version chain and collects obsolete version metadata (V2 and
V1), (2) it returns (i) the pointer to the first obsolete tuple (&T2) and
(ii) the number of obsolete tuples (n=2) to the CPU engine. From
this information, (3) the CPU engine can collect obsolete tuples
(T2 and Tq) without using the version metadata. This only requires
2 DRAM accesses (Tz and T;), whereas 5 accesses (T5 through T7)
would be required if the version metadata were placed in DRAM.

We compare OLTPim with another design where the version
metadata is placed in DRAM and connected from oldest to newest
(O2N) [69]. During GC, there is no need to traverse the entire chain
in such a design (T; and T3), incurring the same number of far-
memory accesses as OLTPim. However, OLTPim still wins in the
common case of accessing the newest tuple, which requires even
more far-memory accesses if traversing the chain from the oldest.
In sum, storing version metadata in PIM and separating them from
DRAM tuples reduces the memory channel traffic (Challenge C3).

When adding a new version at the end of a tuple’s PIM-side
chain, the PIM engine acquires a write lock on the last version by
setting a bit in its metadata. Since only the PIM engine can access
its local version chains, a global lock manager is not required. The
PIM-side write lock also protects the tuple chain in DRAM because
OLTPim GCs it only if the transaction acquires the corresponding
write lock for an update query (cooperative GC).

4.4 Secondary Indexes

The DBMS stores a tuple’s primary index entry on the same PIM
module with its version chain. However, this is impossible for sec-
ondary index entries. Assume the primary and a secondary index
for the same table use the hash functions h,, and hs, respectively,
to map the key to the PIM modules. To place the secondary in-
dex entry on the same module, the DBMS needs a h; that satisfies
hy(kp(t)) = hs(ks(t)) for all tuples t, where kj, and ks are the
primary and the secondary key of the tuple. This is impossible in
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practice as kp and ks are unrelated in general. Hence, the DBMS has
to store a tuple’s secondary index entry in a different module from
the corresponding version chain, and thus querying a secondary
index requires at least two dependent PIM operations (Figure 4).

The PIM engine uses the secondary index to return the pair (PIM
ID, OID). Then, OLTPim uses the values to locate the version chain
in a different module and traverse it. In addition, a secondary index
can return invisible entries redundantly if the tuple is removed in
another module. OLTPim prevents this by additionally storing two
CSNis that describe the visibility of the tuple.

4.5 Transaction Management and Logging

When a transaction commits/aborts, the DBMS makes its changes
visible to others using its write set (i.e., list of modified tuples). Since
OLTPim stores version chains in PIM, the CPU engine sends the
OIDs in the write set to the corresponding PIM modules. Then, the
PIM engines publish (commit) or remove (abort) the modifications
and release the write locks to ensure consistency. Sending the OIDs
to PIM incurs additional off-chip memory traffic. However, the
benefit of offloading the version chain exceeds the drawback at
commits/aborts, improving the end-to-end throughput (§7.6).

An alternative design would keep redundant write sets in PIM
engines. This could reduce memory traffic at commit/abort by send-
ing a single transaction ID instead of potentially multiple OIDs to
each module. In our setting, however, the PIM write set typically
has at most one entry per module since tens of entries (average 18
on TPC-C [13]) are spread across thousands of modules (N=2048),
so we chose our simpler design. Keeping redundant write sets in
PIM would be beneficial for workloads with larger write sets.

OLTPim guarantees durability by logging the information al-
ready available to the CPU engine. Before a transaction commits,
for each tuple in the write set, the CPU engine writes a log consist-
ing of its index ID, PIM ID, OID, and tuple data. Note that the tuple
data is stored in DRAM, and the rest are available in the write set.
The updates on PIM-side structures (indexes and version chains)
are not flushed to the logs. Instead, on recovery, the PIM engine re-
builds the indexes for valid tuples and initializes the version chains
to be single-entry. The index keys and visibility information are
computed from the tuple data and update history available in the
log. Although rebuilding PIM-side structures degrades the recov-
ery performance, we optimize OLTPim for normal operation by
avoiding further data movements from PIM to CPU and disks.

5 BATCHED EXECUTION

The batcher in OLTPim executes PIM operations in batches to hide
PIM round latency (recall Figure 3). It should be lightweight since
it is on the performance critical path, being called as frequently as
the rate of all PIM operations. Although our batcher is designed
for OLTP, it can also be used on other PIM-based latency-critical
applications that serve multiple concurrent streams of requests.
This section elaborates on the basic execution algorithm of the
batcher and the optimizations to minimize batching overheads.

5.1 Per-Rank Batching

When a transaction issues a query, the CPU engine converts it into
one or more PIM requests that target certain PIM modules. A PIM
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request contains all the information required to serve an operation,
such as operation type, input arguments, output placeholders, and
target PIM ID. Since all clients in the system issue the requests
concurrently to different modules, OLTPim serves the concurrent
M:N multiplexing of requests from all clients to all modules (§3.1).

Consider two extreme design choices for the batcher: (i) a system-
wide batcher that processes all requests bulk-synchronously, lim-
iting the concurrency between requests on different modules and
degrading the response time, or (ii) per-module batchers that maxi-
mize fine-grained concurrency but cannot be controlled indepen-
dently due to the interleaving of modules in a rank (§2.1). Residing
in a sweet spot between these two, OLTPim uses a batcher for each
rank. Because the DBMS can control different ranks independently,
the per-rank batchers maximize concurrency as far as the hardware
permits. They are also more robust to load imbalance (stragglers)
than a system-wide batcher since lightly-loaded ranks need not
wait for heavily-loaded ranks to complete.

5.2 Flat Combining Avoids Oversubscription

Each per-rank batcher executes a combiner job, consisting of CPU-
side tasks to collect the batch of requests, copy them to and execute
them on the rank’s modules, and distribute the results to the source
transactions. Using designated threads for combiner jobs, however,
would cause core oversubscription—incurring OS overhead and
degrading the performance [35]—because the CPU cores are already
fully occupied by worker threads for executing transactions.

To avoid oversubscription, our base algorithm (Figure 6a) uses
flat combining [31, 55], which enables concurrency between trans-
actions and combiner jobs without introducing additional threads.
Each worker thread executes a stream of transactions, and each
per-rank batcher has a combiner latch in addition to a request list.
(1) When a transaction issues a PIM request, the thread appends it
to the request list of a per-rank batcher and (2) tries to acquire the
combiner latch. (3) The thread with the latch becomes the combiner
thread, executing the combiner job for all requests in the rank and
then it (4) releases the latch. (5) If the thread fails to acquire the
latch, it waits for the other threads to execute its request. This ap-
proach avoids OS overhead if the combiner job does not use system
calls or spawn threads. We assume that all PIM accesses are through
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LOAD/STORE instructions on the memory-mapped addresses of the
PIM rank. This is not the case in the default SDK from UPMEM [66],
but is enabled by our custom API (see §6.1).

5.3 Coroutines for CPU-PIM Interleaving

The algorithm in Figure 6a is designed to avoid OS overhead. How-
ever, it still wastes CPU cycles waiting for the combiner job and the
PIM program to complete ((3) in the Figure) if another thread is al-
ready working on the same rank. Our improved algorithm, depicted
in Figure 6b, avoids such inefficiency using coroutines—i.e., light-
weight user-level threads. In-memory DBMSs often use coroutines
to hide DRAM latency by switching to another coroutine while
prefetching the desired data [29, 35].

OLTPim uses coroutines to hide the latency of combiner jobs
and PIM programs (instead of hiding DRAM latency). First, (1)
OLTPim uses multiple coroutines for each worker thread, and each
coroutine issues requests to per-rank batchers and tries to acquire
the combiner latch. After (2) acquiring the latch, the coroutine (3)
executes a part of the combiner job instead of executing them all.
As depicted in the three-state finite state machine in Figure 6b, after
collecting the requests and starting the PIM program, the coroutine
() releases the latch and (5) yields the control to another coroutine
(co_yield). Hence, the worker thread can utilize the CPU with other
coroutines while the PIM program is running, maximizing the
throughput (Challenge C4). The later parts of the combiner job (e.g.,
distributing the results) are executed by other coroutines or the
same coroutine when it is scheduled later.

Using multiple coroutines improves throughput by interleaving
CPU work with PIM. However, as noted in §3.2, too large batching
(of coroutines) degrades transaction latency and increases the total
transaction context size. We evaluate this trade-off in §7.3.

5.4 NUMA-Aware Workload Partitioning

The flat combining algorithm in Figure 6 performs well on single-
socket servers, but its performance is suboptimal on multi-socket
machines. The algorithm assumes that any worker thread can be
the combiner for any rank, and the combiner thread accesses the
structures of the per-rank batcher (the request list and the combiner
latch). Hence, if threads from different NUMA nodes become the



combiners of the same rank one after the other, the structures of the
batcher are moved to the other socket’s LLC over the cross-socket
interconnect. Such ping-ponging can be as frequent as the rate of
PIM requests, significantly degrading performance.

OLTPim avoids this problem by partitioning the tables for each
NUMA node and allowing each worker thread to query only its
local partitions [60]. By using NUMA-partitioned tables, the DBMS
prevents a worker thread from becoming the combiner of NUMA-
remote ranks, minimizing inter-socket data movement.

6 IMPLEMENTATION CHALLENGES

We implemented OLTPim targeting UPMEM hardware [66], the
most commonly used commercial PIM system. We found, however,
that the official UPMEM SDK was suboptimal for OLTP workloads.
As such, we extended the SDK to improve its API and implement
additional features [44]. This section lists the challenges and our so-
lutions for implementing OLTPim using the UPMEM SDK v2025.1.0.

6.1 Reducing API Overheads

The CPU interacts with UPMEM modules via LOAD/STORE instruc-
tions [66]. Both the local memory and control interface are mapped
to predefined addresses in the virtual memory on the CPU, with
rank-wise interleaving. A CPU-resident thread should be able to
interact with each rank using the LOAD/STORE instructions without
system calls or helper threads. However, the UPMEM SDK offloads
the work to helper threads for parallelism. This benefits the copy-
ing of a large amount of data in batch-oriented applications, but it
incurs unnecessary OS overhead on latency-sensitive applications.

Instead of offloading the copy operations to helper threads, our
extension has the calling thread copy the data to/from the mapped
addresses using SIMD instructions. We apply this optimization to
both the data movement and the control interface, thereby remov-
ing OS overheads and enabling the flat-combining optimization
(§5.2). We also inline our extension into a single executable to avoid
external library calls and allow compiler optimizations.

Another problem we faced is that the UPMEM SDK uses a busy-
loop polling protocol to check the completion of both PIM programs
and mux switches. Each status poll uses memory-mapped I/O, and
the protocol requires multiple rounds of read/write commands. Be-
cause the CPU repeatedly polls the PIM status over the memory
channel, unnecessary memory channel traffic grows linearly with
PIM program running time. Furthermore, the protocol checks the
activeness of each module every time it accesses the rank, adding
redundant complexity and latency since this status does not change
during runtime. After exploring several mitigations, including de-
creasing the polling frequency, we implemented an optimized API
that removes redundant steps in the I/O protocol. Because this API
is in the critical path of small-batch applications like OLTPim, these
optimizations improve end-to-end transaction latency (see §7.6).

6.2 PIM Programming

PIM modules have limited resources and abilities, making program-
ming systems for them difficult (Challenge C2). UPMEM’s SDK
provides useful libraries for PIM programs [66], but as we now
describe, it lacks functionality necessary for OLTPim (see §4).
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The first problem is that the SDK does not support dynamic
memory allocation on PIM modules. To implement variable-sized
structures (e.g., B+trees), OLTPim uses a static array for them with
a predefined number of fixed-sized blocks. The system manually
adjusts the capacity of each array (e.g., for tree nodes, versions, and
list nodes) to store the maximum amount of data in PIM.

Second, the PIM core supports atomic instructions on only a
designated 256-bit memory region, not on arbitrary addresses. This
makes it difficult to implement in-place, fine-grained latches on
B+tree nodes. Instead, OLTPim uses per-PIM-module bitmaps of
(software) latch status, protected by one of the hardware latches.

As mentioned in prior work [25, 42], the UPMEM PIM core has
limited instruction memory (4K instructions). Thus, we extract
commonly used code into functions and un-inline them to fit all
PIM engine codes within the instruction memory limit.

Lastly, each PIM core has a local scratchpad (SPM) but without
hardware support for transparent caching (§2.1). OLTPim statically
partitions the SPM and manually specifies the addresses and sizes
of data to temporarily fetch them into the SPM. There is too little
instruction memory to implement complicated software caching.
As a result, our implementation (possibly redundantly) fetches PIM-
side data into the SPM every time they are accessed.

7 EVALUATION

We evaluate OLTPim to analyze the performance and efficiency
improvement of PIM under different OLTP workloads.

7.1 Experiment Setup

We evaluate OLTPim on a dual-socket server with 2 x Intel Xeon
Silver 4216 CPUs (32 threads, 2.1 GHz, 22 MB LLC). It has 12 memory
channels where eight are equipped with UPMEM DIMMs and the
other four are DRAM DIMMs, which are all DDR4 2400MT/s. The
server has a total 32 UPMEM ranks or 2048 modules with 128 GB
capacity and PIM cores at 350 MHz. Since UPMEM DIMMs take up
2/3 of the memory channels and aggregate bandwidth, evaluating
the baseline system on the same server degrades the performance
by 5-10%. Instead, we compare the baseline system on the same
server when all 12 channels are equipped with DRAM DIMMs
(DDR4 2400MT/s). We evaluate both systems in a Docker container
with Ubuntu v22.04 (kernel v5.10.0) and UPMEM SDK v2025.1.0.

Baseline In-Memory DBMS. We compare the performance
and efficiency of OLTPim with MosaicDB [35], a state-of-the-art
research OLTP DBMS with memory-optimized data structures and
latency hiding techniques. It inherits the source code of Silo [65],
ERMIA [48], and CoroBase [29]. Although MosaicDB supports on-
disk queries, we disable them for a fair comparison with OLTPim.

Workloads. We primarily use YCSB [12] to evaluate the systems
under various scenarios. We use the following workload mixes:
e YCSB-Cis a read-only workload. Each transaction reads 10 tuples.
e YCSB-B is a read-intensive workload (95% reads, 5% updates).
Each update transaction updates 10 tuples.
e YCSB-A is an update-intensive workload (50% updates, 50% reads).
Additionally, we use TPC-C [13] (1024 warehouses) to represent
complex OLTP workloads. In addition to the original TPC-C, we use
its variants with different ratios of write transactions (new order,
payment, and delivery) and read-only transactions (order status
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and stock level). The original benchmark uses the write-read ratio
of 9:1, and the ratio of 0:10 is the read-only TPC-CR [29].

To further increase the batch size on OLTPim, we modify the
workloads to issue as many queries in each transaction simul-
taneously as possible, similar to the MultiGet [40] and JDBC’s
executeBatch [22] interfaces. The benchmark driver simultane-
ously issues 10 independent queries in each YCSB transaction so
the CPU engine processes them in one batch. Similarly, each trans-
action in TPC-C is optimized to use the minimum number of PIM
rounds by computing the dependency graph of the queries in each
transaction and issuing all queries at the same level simultaneously.

Measurement. We use two evaluation metrics: (i) Transaction
throughput is the rate of committed transactions, excluding aborts;
its unit is million transactions per second (MTPS), and (ii) Per-
transaction memory channel traffic, or memory traffic, is the amount
of memory channel traffic (for both commits and aborts) amortized
over the number of commits; its unit is kilobytes per transaction
(KBPT) and we collect it via hardware performance counters, sepa-
rating DRAM and PIM traffic using per-channel values. All reported
results are for 60-second runs of each system, except for TPC-C and
YCSB-A with table size 1B where we use 30-second runs.

DBMS Configurations. MosaicDB uses multiple coroutines per
thread to hide DRAM latencies. OLTPim also uses coroutines to in-
terleave CPU/PIM execution and hide the PIM latencies (§5.3). Since
PIM’s latency is higher than DRAM’s, we configure OLTPim to use
coroutines with a larger batch size to achieve maximum throughput.
MosaicDB’s optimal batch is eight coroutines per thread. OLTPim
shows different maxima for each workload. On YCSB, OLTPim uses
256 coroutines per thread, except for YCSB-S, which uses 128. On
TPC-C, it uses 64 coroutines per thread. We measure the impact of
batch size in §7.3. Both DBMSs write the recovery logs to a RAM
disk. Since its latency is negligible compared to SSD, the DBMSs
asynchronously flush log buffers without pipelined commits [39].

7.2 Overall Performance

We first compare the transaction throughput and memory channel

traffic of OLTPim and MosaicDB on different workloads.
Read-Only Workload. We use a read-only workload to eval-

uate the read performance of OLTPim and its dependency on the
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table size. The YCSB-C column in Figure 7 shows that OLTPim
achieves up to 1.71x throughput with 6.14X less memory traffic
over MosaicDB (as highlighted in Figure 1). MosaicDB’s through-
put and efficiency degrade on large tables because the CPU cache
cannot store the entire working set as it grows, which increases
the number of LLC misses. In contrast, OLTPim’s throughput and
memory traffic remain constant on larger tables since it avoids
far-memory traffic by exploiting near-memory accesses.

Workloads with Updates. We add update transactions to the
workload to evaluate the update performance of OLTPim on differ-
ent table sizes. The results for YCSB-B and YCSB-A show OLTPim
achieves up to 1.70x higher throughput with 5.05x less memory
traffic over MosaicDB. Compared to YCSB-C, DRAM write traffic
increases on both systems. However, the trend of total memory
traffic over the increasing table sizes remains similar; it increases
for larger tables in MosaicDB but remains constant in OLTPim.
Although OLTPim performs well on large tables, its throughput
decreases on small tables and underperforms MosaicDB on tables
with less than 10M tuples. This slowdown is due to the GC of each
DBMS, which incurs significant overhead if used with OLTPim’s
larger batch sizes. We further discuss this inefficiency in §7.4.

Workload with Scans. To evaluate the range scan performance
with different scan lengths, we create a custom workload in which
each transaction issues 10 scan queries. As shown in the YCSB-S
column, OLTPim shows higher throughput than MosaicDB using
less memory traffic on all scan lengths. Since the tuples are stored
in DRAM, both DBMSs’ DRAM read memory traffic increases by
the same amount as the scan length becomes large.

Workload with Inserts. To evaluate the insert performance of
OLTPim, we create another workload YCSB-I with varying ratios
of inserts and reads. It starts with 100M tuples, and each insert
transaction inserts 10 tuples. The final table size is 300M-800M
tuples, depending on the insert ratio. The YCSB-I results show that
OLTPim outperforms MosaicDB on workloads with less than 50%
insertions. We will analyze the reason behind the inefficiency of
OLTPim on insertion-intensive workloads in §7.5.

TPC-C Benchmark. Lastly, we use the TPC-C benchmark to
evaluate the DBMSs on more complex transaction workloads, with
varying write-reads ratios. As described in §4.1, OLTPim places
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small indexes (i.e., warehouse, district) in DRAM and others
in PIM. OLTPim reduces memory traffic per transaction on all
write-read mixes, up to 2.75X on the read-only mix. TPC-C’s write
transactions are insert-heavy, highly-skewed, and exhibits good
data locality [29]. On higher read ratios, MosaicDB’s throughput
decreases because the overall workload’s data locality decreases
with the write ratio, increasing LLC misses. However, OLTPim’s
throughput decrease is smaller than MosaicDB as PIM enables
efficient processing of workloads without locality. Furthermore,
OLTPim outperforms MosaicDB on the read-only workload, show-
ing that the read-only transactions are more suitable for OLTPim
than the write transactions.

7.3 Impact of Batch Size and P99 Latency

OLTPim requires a large batch size to hide PIM round latency and
improve throughput, but it incurs a larger transaction latency, a
higher conflict rate, and a larger working set for transaction con-
texts. To measure this tradeoff, we evaluate YCSB-B with 100M
tuples for varying batch sizes and with/without the MultiGet opti-
mization (§7.1). Figure 8 shows the throughput, P99 latency, mem-
ory traffic, and abort rate depending on the batch size. The stars
denote the throughput-optimal batch size for each system.

OLTPim achieves its best throughput with batch size 256, whereas
MosaicDB’s best size is eight. On small batch sizes, OLTPim’s
throughput is less than MosaicDB due to the large PIM round
latency for each of many batches; larger batch sizes mitigate this
overhead. Performance decreases for batch sizes larger than 1K
because the total context size exceeds the CPU LLC capacity. Addi-
tionally, issuing multiple queries in one batch improves throughput
since the no-MultiGet’s peak throughput is smaller than OLTPim.

The P99 measurements in Figure 8 show that OLTPim’s latency
is higher than MosaicDB with small batch sizes due to the large PIM
round latency. The impact is higher for the no-MultiGet instance
as it requires 10 batches or 20 mux switches to complete a transac-
tion. However, large batch sizes hide PIM’s impact as the DBMSs’
P99 converges to similar values. Although OLTPim’s P99 with its
throughput-optimal large batch size is higher than MosaicDB’s with
its small batch size, OLTPim still achieves a <10 ms P99 latency
(star point), which is acceptable in most applications.
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Figure 9: Impact of Garbage Collection. Comparison of transaction
throughput for YCSB-A. The GC slowdown is the ratio of the throughput
without GC over the throughput with GC.

For batch sizes smaller than 100, OLTPim’s per-transaction mem-
ory channel traffic decreases with larger batch sizes while Mo-
saicDB’s traffic remains constant. This is because a portion of mem-
ory channel traffic unrelated to each transaction (e.g., PIM control
signals) is amortized over the increasing throughput of OLTPim
but not over MosaicDB’s constant throughput. This impact is larger
for the no-MultiGet OLTPim with a smaller throughput. On the
other hand, memory channel traffic of both systems increases for
batch sizes larger than 100 since the total context size exceeds the
CPU LLC capacity, as mentioned above.

The abort rate increases with the batch size due to the higher
chance of conflicts between more in-flight coroutines. Thus, OLTPim
has a higher abort rate under the throughput-optimal batch size
than MosaicDB. Although its value is negligible on the read-mostly
YCSB-B, the difference can be large on update-heavy workloads.
For example, in YCSB-A with 1M tuples, the abort rate of MosaicDB
and OLTPim are 1.1% and 21%, respectively. We report the commit
throughput and the memory traffic per commit (§7.1), and hence
account for OLTPim’s higher abort rate in the reported numbers.

7.4 Updates and Garbage Collection

Since update operations extend version chains that the GC has to
then reclaim, we next evaluate YCSB-A without GC to analyze its
impact on OLTPim. As shown in Figure 9, enabling GC degrades
throughput for both OLTPim and MosaicDB, especially on small
tables. This is because applying the same rate of random updates
on a smaller table is more likely to create a longer version chain.

After removing the impact of GC, the trend of dotted lines in
Figure 9 is the same as the trend of the (read-only) YCSB-C col-
umn in Figure 7. MosaicDB’s throughput decreases on large tables
due to the larger working set and LLC misses, whereas OLTPim’s
throughput remains constant by converting them to near-memory
accesses. Thus, the advantage of using OLTPim on update-intensive
workloads without GC is as effective as on read-only workloads.

We also observe that the slowdown due to GC on OLTPim is
smaller on large tables. It shows the advantage of OLTPim on GC
as described in §4.3. However, OLTPim shows a larger slowdown
on the 1M case. The larger batch size of OLTPim causes more in-
flight transactions, increasing the length of the non-obsolete version
chains (V5 to V3 in Figure 5). Because the PIM engine traverses them
redundantly at a high rate, it incurs significant overhead even as
near-memory accesses within the PIM module.
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Figure 10: Impact of Logging on Insert/Update. Transaction throughput,
P99 latency, and memory channel traffic of OLTPim on YCSB-I and YCSB-U.
Unlike the left bars, the right bars are measured without logging.
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Figure 11: Impact of Optimizations. Transaction throughput of YCSB-B
with 1B tuples, incrementally applying different optimizations in Table 2.

7.5 Impact of Logging on Insert Performance

We next evaluate YCSB-I with and without logging to measure
its impact on performance. We also create an additional work-
load YCSB-U that replaces the insert queries in YCSB-I with update
queries. By comparing the two workloads without logging, we
analyze the impact of the insert operations themselves.

Figure 10 shows the throughput, P99 latency, and memory traffic
of YCSB-I and -U, with/without logging. When logging is disabled,
the throughput increases while the P99 decreases. Unlike YCSB-U,
the changes are negligible in YCSB-1I, indicating that logging is not
the bottleneck for inserts. Furthermore, insert transactions have
larger latency than update transactions, even though they have the
same number of queries with similar CPU code complexity. Hence,
the latency difference is due to the longer execution time of insert
operations in the PIM engine compared to updates, caused by the
need for coarse-grained latches in B+tree inserts (§6.2).

Comparing the PIM traffic (the two upper boxes of each mem-
ory traffic bar) between YCSB-I and YCSB-U, inserts require more
PIM traffic than updates. UPMEM hardware requires the CPU to
polling-wait for PIM completion (§6.1). Although our optimized
API minimizes the memory traffic for each poll, longer PIM execu-
tion consumes more PIM traffic. Hence, the larger PIM traffic also
indicates that inserts takes longer than updates on the PIM engine.

4251

Table 2: Description of each optimization level in Figure 11.

Level Description

M) MosaicDB

(O-3) Offload only the index to PIM with default SDK
(0-2)  Offload both the index and MVCC to PIM (§4.3)
(O-1)  (0O-2) + Optimized PIM access (§6.1)

(0) OLTPim: (O-1) + Interleave CPU & PIM (§5.3)
(MN) (M) with NUMA-partitioned workload

(ON)  (O) with NUMA-partitioned workload (§5.4)

7.6 Impact of Optimizations

To evaluate the impact of our design choices, we measure the
throughput of YCSB-B by selectively enabling our optimizations.
For each optimization level described in Table 2, its throughput
is shown in Figure 11. We incrementally add optimizations from
left to right in the figure. Starting from (M) MosaicDB, (O-3) is the
naive version of offloading only the index to PIM. The throughput
decreases because using PIM incurs significant batching overhead.
(O-2) further offloads the version chains to PIM, following the dis-
cussion in §4.3, resulting in higher throughput.

The later optimization levels minimize the batching overhead.
(O-1) uses the optimized interface for accessing PIM, as discussed
in §6.1. (O) uses coroutines to interleave CPU and PIM executions,
as discussed in §5.3. After applying these optimizations, the system
becomes OLTPim, which has higher throughput than MosaicDB.

The (MN) and (ON) execute the NUMA-partitioned workload to
minimize inter-socket communication, as described in §5.4. Compar-
ing them to (M) and (O), the speedup of using the NUMA-partitioned
workload for OLTPim is 1.41X, whereas the speedup for MosaicDB
is 1.26X. Because OLTPim’s batcher uses more inter-socket commu-
nication than MosaicDB for the non-NUMA-partitioned workload,
OLTPim gets greater benefit from NUMA partitioning.

7.7 Impact of Skewness

Existing in-memory DBMSs already handle skewed workloads well
because the CPU LLC can exploit their data locality. In contrast, the
design of OLTPim assumes uniform workloads where the working
set does not fit in the CPU cache. Figure 12 shows throughput and
memory traffic of OLTPim and MosaicDB on YCSB-B under the
zipfian distribution. € = 0 refers to the uniform distribution, and
higher § means more skewed. The result shows that OLTPim has
higher throughput and lower memory traffic than MosaicDB on
low-to-moderate skew (6 < 0.5), but not on high skew (6 = 0.99).

We also observe that the two systems have different trends re-
garding the skewness of the workload. The throughput and mem-
ory traffic of MosaicDB are improved on more skewed workloads
because the CPU LLC is more friendly to them. Conversely, in
OLTPim, these metrics are improved on more uniform workloads
because the requests are evenly distributed across the PIM cores,
exploiting their massive parallelism. Hence, each system has an ad-
vantage in different workload characteristics due to the difference
in their hardware properties. Future work will explore using ideas
from PIM-tree [42] to increase skew-resistance, while seeking to
minimize the number of PIM rounds.
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8 RELATED WORK

OLTPim is the first end-to-end OLTP DBMS designed for PIM sys-
tems. However, it is closely related to prior work on designing
database systems for heterogeneous hardware.

PIM-Optimized Index Structures. Database indexes are the
primary components of an OLTP DBMS. PIM-optimized data struc-
tures include range partitioning indexes [10, 55] and skew-resistant
indexes [42, 43], as discussed in §2.2. In addition, HybriDS [9]
improves the range-partitioning indexes by storing the frequently-
used upper part of the B+tree in the CPU cache. As discussed in §4.1,
OLTPim uses a variant of the range-partitioning index instead of
the skew-resistant index to minimize the batching overhead, which
is critical to latency-sensitive applications.

PIM-Based OLAP DBMSs. §2.2 also mentioned several works
on PIM implementations of OLAP operators. Kepe et al. [46] re-
places CPU SIMD instructions with PIM and compares their TPC-H
performance. PimDB [3] implements PIM-based filters and aggre-
gates, and Lim et al. [54] designs a join algorithm exploiting PIM’s
interleaved addresses. Those works target the OLAP operators,
which are read-only and batch-friendly. In contrast, OLTPim tar-
gets the read-write and latency-sensitive OLTP workloads. Note
that typical OLAP systems store most of their data on disk, whereas
practical OLTP workloads have working sets that fit in memory,
making PIM more suitable for OLTP.

GPU-Based OLTP DBMSs. Due to the powerful batch process-
ing capability of GPUs, several OLAP DBMSs use GPUs to accelerate
analytic workloads [28, 30, 32]. On the other hand, GPUTx [27],
GaccO [4], and LTPG [68] use GPUs for accelerating OLTP work-
loads. They group the concurrent transactions into a single batch
and resolve their conflicts in advance using the dependency graph.
Although GPUs are computationally stronger than PIM cores, PIM
consumes significantly less energy and manufacturing cost. Fur-
thermore, PIM is easily scalable to larger memory capacity, making
it more suitable for large-scale OLTP workloads.

DBMSs for Other NDP Hardwares. PIM is an example of
near-data processing (NDP) [58] that pushes code to data instead of
fetching data to code. Prior work on on-disk DBMSs exploits NDP-
capable SSDs to offload atomic page operations [45], individual
OLAP operators [17, 38], the entire SQL engine [59], or a hybrid
transactional-analytical engine [67]. For disaggregated memory
DBMSs, Farview [49] exploits the NDP in the memory node to
improve OLAP performance. OLTPim exploits the NDP concept on
the DRAM level within the memory hierarchy.
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9 FUTURE PIM HARDWARE

We now discuss how OLTPim’s design choices could change with
future PIM hardware.

Foremost is OLTPim’s data placement scheme in §4, which as-
sumes that each PIM core can only access its local memory. But
if PIM hardware supported inter-module communication [75], the
DBMS could employ more dynamic run-time operations and place-
ment strategies. For example, secondary index traversal (Figure 4,
§4.4) could employ direct PIM-to-PIM communication, avoiding the
extra PIM round OLTPim incurs. This capability would also enable
the DBMS to perform online re-partitioning (§4.1) without incur-
ring off-chip memory traffic. However, even with enhanced PIM
hardware, accessing local memory will still be cheaper than access-
ing remote memory. As such, OLTPim’s fine-grained partitioning
scheme will likely remain the best choice for PIM systems.

Second, future PIM hardware could allow independent access
to PIM modules. UPMEM’s current rank-wise address interleaving
prevents the DBMS from controlling individual modules, making
PIM-side tuple storage less practical (§4.2) and requiring control
of at least rank granularity (§5.1). This interleaving arises because
each PIM module resides in a physical chip, while the CPU per-
forms parallel access across multiple chips and banks [15]. But
independent module access would alleviate these limitations and
allow more fine-grained concurrency.

Third, OLTPim’s batcher (§5) assumes that the mux switch la-
tency is larger than memory access latency. Future PIM hardware
could optimize mux switches or support asynchronous PIM ac-
cess [6]. These improvements could enable the batcher for smaller
batch sizes. However, the CPU-PIM interleaving and the NUMA
partitioning in §5.3 and §5.4 are still effective for hiding PIM ex-
ecution latency and reducing inter-socket accesses, respectively.
Additionally, even with asynchronous PIM, a DBMS will still require
rank-wise batching (§5.1) to pack the requests into an interleaved
array, unless the CPU can send data to each module independently.

10 CONCLUSION

This paper presents OLTPim, the first end-to-end OLTP DBMS de-
signed for a real PIM system. The evaluation shows that it achieves

up to 1.71x throughput speedup with up to 6.14X less per-transaction
memory channel traffic than the state-of-the-art in-memory DBMS.

Its design includes the formalized partitioning strategy of data-
base components on different types of memory and a lightweight

batching algorithm, which are likely useful for designing other

PIM-optimized latency-sensitive applications.
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