TxNSAILs: Achieving Serializable Transaction Scheduling with
Self-Adaptive Isolation Level Selection

Qiyu Zhuang
Renmin University of China
qyzhuang@ruc.edu.cn

Yuxing Chen
Tencent Inc.
axingguchen@tencent.com

Yipeng Sun
Renmin University of China
yipengsun@ruc.edu.cn

ABSTRACT

Achieving the serializable isolation level is costly. Recent studies
have revealed that adjusting specific query patterns within the
workload can still achieve serializability, even at lower isolation
levels. Nevertheless, these studies typically overlook the trade-off
between the performance advantages of lower isolation levels and
the overhead required to maintain serializability, potentially lead-
ing to suboptimal isolation level choices that fail to maximize per-
formance. In this paper, we present TXNSAILS, a middle-tier solu-
tion designed to achieve serializable scheduling with self-adaptive
isolation level selection. First, TXNSAILS incorporates a unified con-
currency control algorithm that achieves serializability at lower
isolation levels with minimal overhead. Second, TXNSAILs employs
a deep learning method to characterize the trade-off between the
performance benefits and overhead associated with lower isola-
tion levels, thus predicting the optimal isolation level. Finally,
TxNSAILs implements a cross-isolation validation mechanism to
ensure serializability during real-time isolation level transitions.
Extensive experiments demonstrate that TxNSAILs outperforms ex-
isting solutions by up to 26.7x and PostgreSQL ’s serializable iso-
lation level by up to 4.8x.

PVLDB Reference Format:

Qiyu Zhuang, Wei Lu, Shuang Liu, Yuxing Chen, Xinyue Shi, Zhanhao
Zhao, Yipeng Sun, Anqun Pan, and Xiaoyong Du. TXNSAILs: Achieving
Serializable Transaction Scheduling with Self-Adaptive Isolation Level
Selection. PVLDB, 18(11): 4227 - 4240, 2025.
doi:10.14778/3749646.3749689

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dbiir/TxnSailsServer.

#Wei Lu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
do0i:10.14778/3749646.3749689

Wei Lu*
Renmin University of China
lu-wei@ruc.edu.cn

Xinyue Shi
Renmin University of China
xinyueshi@ruc.edu.cn

Anqun Pan
Tencent Inc.
aaronpan@tencent.com

4227

Shuang Liu
Renmin University of China
shuang liu@ruc.edu.cn

Zhanhao Zhao
Renmin University of China
zhanhaozhao@ruc.edu.cn

Xiaoyong Du
Renmin University of China
duyong@ruc.edu.cn

1 INTRODUCTION

Serializable isolation level (SER) is regarded as the gold standard
for transaction processing due to its ability to prevent all forms of
anomalies. SER is essential in mission-critical applications, such
as banking systems in finance , which require their data to be
100% correct [30, 34, 54]. However, it incurs expensive coordina-
tion overhead by configuring the RDBMS to SER [19, 46, 64]. De-
spite significant efforts to alleviate this overhead [39, 45, 56, 58],
maintaining a serial order of transactions to be scheduled remains
a fundamental performance bottleneck.

Many studies have explored achieving SER by modifying appli-
cations while configuring the RDBMS to a low isolation level [31].
This approach is driven by two key reasons. First, some RDBMSs,
such as Oracle 21c, cannot strictly guarantee SER and do not sup-
port the in-RDBMS modification, requiring application logic mod-
ifications to enforce it [11]. Second, RDBMSs typically offer better
performance at lower isolation levels, such as read committed (RC)
and snapshot isolation (SI), due to their more relaxed ordering re-
quirements. Modifying applications to achieve SER while using a
lower isolation level sometimes results in better performance com-
pared to directly setting the RDBMS to SER [9, 10, 46].

The main idea of existing works that can achieve SER under low
isolation levels follows three steps: @ Build a static dependency
graph by analyzing the transaction templates, which are the ab-
straction of transaction logics in real-world applications [46, 47].
In this graph, each template is represented by a vertex, and the de-
pendencies between templates, such as write-write (WW), write-
read (WR), or read-write (RW), are depicted as edges. @ Configure
the RDBMS to a low isolation level and identify dangerous struc-
tures that are permissible under the low isolation level but prohib-
ited by SER. For example, under RC, a single RW dependency con-
stitutes the dangerous structure [10, 46]. ® Eliminate dangerous
structures by modifying application logic, e.g., promoting reads
to writes for certain SQL statements so that the RW dependen-
cies are eliminated, and thus guarantees SER. To achieve this, ex-
isting works assume that application logic can be abstracted into
transaction templates and that all runtime transactions conform

https://doi.org/10.14778/3749646.3749689
https://github.com/dbiir/TxnSailsServer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749689
https://www.acm.org/publications/policies/artifact-review-and-badging-current

ww ¥

(b) Modified dependency graph (RC)

(a) Original dependency graph

-=-»RW dependency — WR dependency ----&>WW dependency

Figure 1: Static dependency graphs of Smallbank

to these templates. This is reasonable as modern applications typ-
ically use Object-Relational Mapping (ORM) frameworks [53] to
generate structured and repeatable transaction patterns. Therefore,
we adopt the same assumption as existing works in this paper, and
for interactive or ad hoc transactions not captured by templates,
we configure the database to SER to ensure correctness.

ExaMpLE 1. Consider the SmallBank benchmark [9], which con-
sists of five transaction templates. As outlined in step @, the bench-
mark is modeled into a static dependency graph (Figure 1a). At step @,
five dangerous structures (highlighted by red dashed arrows) are iden-
tified, including the dependency from WC to TS and 4 dependencies
from Bal to the other four templates. At step @, extra writes are intro-
duced to convert RW dependencies to WW dependencies, thus elim-
inating the dangerous structures. To achieve this, certain “SELECT”
statements are modified to “SELECT ... FOR UPDATE”. A detailed
illustration is provided in [1].For reference, the complete modified de-
pendency graph is shown in Figure 1b. O

Thus far, existing studies [12, 13, 18, 24, 25] have proposed
promising solutions, enabling RDBMSs to achieve SER by operat-
ing at lower isolation levels while modifying specific query pat-
terns within a workload. However, these studies exhibit two ma-
jor shortcomings. First, the static modification of query patterns is
inefficient. These studies alter static SQL statements at the applica-
tion level, converting certain read operations into write operations.
This may result in unnecessary transaction conflicts. For instance,
changing read operations to write operations may turn concur-
rent read-write operations into write-write conflicts in MVCC sys-
tems, thus significantly degrading transaction performance. Sec-
ond, these studies fail to address the key trade-off between the per-
formance gains of lower isolation levels and the overhead needed
to maintain SER, making it difficult to choose the optimal isolation
level. As shown in Figure 6 of §7, simply configuring the RDBMS
to SER can sometimes outperform other methods. Additionally, as
workloads evolve, the ideal isolation level may also shift, but exist-
ing studies lack the ability to adapt dynamically.

In this paper, we present TXNSAILS to address the aforemen-
tioned shortcomings with three key objectives: @ TxNSAILs ef-
ficiently achieves SER under various low isolation levels. @
TxNSaILs dynamically adjusts the optimal isolation level to max-
imize performance as the workload evolves. ® TXNSAILs is de-
signed to be general and adaptable across various RDBMSs, requir-
ing no modifications to database kernels. To achieve this, TXNSAILS

4228

is implemented as a middle-tier solution to enhance generalizabil-
ity. However, implementing TXNSAILS presents three major chal-
lenges. First, designing an approach that elevates various isolation
levels to SER without introducing additional writes is a complex
task. Second, determining the optimal isolation level requires ac-
curately modeling the trade-offs between the performance benefits
and serializability overhead associated with lower isolation levels,
which is particularly challenging in dynamic workloads. Third, as
workloads evolve, the optimal isolation level may need to adapt
over time, making it essential to design an efficient and reliable
mechanism for transitioning between isolation levels. To address
these challenges, we propose the following key techniques.

(1) Efficient middle-tier concurrency control algorithm
ensuring SER for each low isolation level (§4.1). We propose a
runtime, fine-grained approach that operates on individual trans-
actions rather than transaction templates, ensuring that the execu-
tion of transactions meets the requirements of SER. This approach
is inspired by the theorem that a schedule is serializable if it does
not contain two transactions, T; and Tj, where T; commits before
T;, but there is a dependency from T; to T; [10]. Building on this
theorem, we introduce a unified concurrency control algorithm to
ensure SER. The algorithm tracks transactions with their templates
involved in specific RW dependency within a static dependency
graph. It detects the runtime dependencies and schedules the com-
mit order to align with their dependency order. If necessary, it will
abort a transaction to guarantee SER.

(2) Self-adaptive isolation level selection mechanism
(§4.2). We observe that the performance benefits of various iso-
lation levels and the overhead of achieving SER are closely influ-
enced by two critical factors: the data access dependencies between
transactions and the data access distribution within transactions.
To capture these, we model workload features as a graph, where
vertices represent individual transaction features and edges denote
dependency features between transactions. Building on this in-
sight, we propose a graph-based model [16, 29] that predicts the op-
timal isolation level using real-time workload features. To the best
of our knowledge, TxXNSAILSs is the first work to enable self-adaptive
isolation level selection for dynamic workloads.

(3) Cross-isolation validation mechanism that enables ef-
ficient transitions and serializable scheduling (§4.3). The op-
timal isolation level should adapt as the workload evolves. When
the RDBMS decides to change the isolation level, new transactions
must be executed under this updated isolation level. Although ex-
isting approaches can achieve SER when all transactions use a uni-
fied low isolation level, they fail to ensure SER when transactions
operate under different isolation levels. This is because varying iso-
lation levels can introduce new dangerous structures. To address
this issue, we identify the structures across different isolation lev-
els and propose a cross-isolation validation mechanism that can
guarantee SER during transitions without causing significant sys-
tem downtime. We prove the correctness of the cross-isolation val-
idation mechanism in §5.2.

We have conducted extensive evaluations on SmallBank [9],
TPC-C [5], and YCSB+T [20] benchmarks. The results show that
TxNSAILS achieves up to a 26.7X performance improvement over
state-of-the-art methods and up to a 4.8X performance boost com-
pared to SER provided by PostgreSQL.

2 PRELIMINARIES

RDBMSs typically offer several isolation levels; in this paper, we
focus on the three most commonly used: serializable (SER), snap-
shot isolation (SI), and read committed (RC). In this section, we
first discuss transaction templates. We then present the dangerous
structures under SI and RC, respectively. We finally define the vul-
nerable dependencies that build the foundation of our approach.

2.1 Transaction Templates

A transaction template is an abstraction of application logic that
consists of predefined SQL statements with parameter placehold-
ers. Take the Amalgamate template in Example 1 as an example,
which facilitates the transfer of funds from one customer to an-
other. It first reads the balances of the checking and savings ac-
counts of customer N1, then sets them to zero. Finally, it increases
the checking balance for No by the sum of Np’s previous balances.
In this context, N1 and N2 serve as parameter placeholders. This
modular structure ensures readability and flexibility, allowing the
transaction template to be reused across various contexts.

For better clarity, we use 7; to denote a transaction template and
T; to denote a transaction generated by 7;.

2.2 Dangerous Structures
The dependencies between two concurrent transactions, T; and T},

operating on the same item x, are classified as follows.

e T; — T;: T; writes a version of data item x, and T; writes a

later version of x.

wr
T; — Tj: T; writes a version of data item x, and T reads either
the version written by T; or a later version of x.

rw . . :
T; — T;: T; reads a version of data item x, and T; writes a later
version of x.

DEFINITION 1 (SI DANGEROUS STRUCTURE [43]). Under SI, two

rw rw
consecutive RW dependencies: T; — T; — T are considered as
an SI dangerous structure, where T; and T;, Tj and Ty, are concurrent
transactions, respectively. O

DEFINITION 2 (RC DANGEROUS STRUCTURE [10, 27]). Under RC,

rw . .
an RW dependency: T; — T; is considered as an RC dangerous
structure, where T; and Tj are concurrent transactions. O

When it comes to transaction templates, the dependencies be-
tween two transaction templates, 7; and 7}, are defined as follows:

07 v, 7 if 7 and 7; write the same data set (e.g., relation) in
sequence; (2) 77 2, 7 if 7; writes and 7; reads the same data set

in sequence; (3) 77 o, 7; if 7; reads and 7; writes the same data
set in sequence.

DEFINITION 3 (STATIC SI DANGEROUS STRUCTURE [8, 17]). In a

static dependency graph, two consecutive edges 7; SALN 75, T; SN Tk
are deemed to constitute a static SI dangerous structure. O

DEFINITION 4 (STATIC RC DANGEROUS STRUCTURE [10, 47]). In

a static dependency graph, an edge T; SN 7; is deemed to constitute
a static RC dangerous structure. O

4229

params
App]ication Transactions I Transaction Templates
TxnSails Template interfaces
\/
Executor §4.1 & §4.3 - Analyzer
- Static vulnerable
Dependency Isolation Level dependencies
Detector §4.1 Manager §4.1
Transaction Transition Samples:

Scheduler §4.1 Governor §4.3 - read / write set

[} [} v

Optimal Adapter §4.2

isolation -

level

=
Query
Qs results Workload
Modeling Isolation Level Prediction
RDBMS |

Figure 2: An overview of TXNSAILS

THEOREM 2.1 ([7]). If a static dependency graph contains no SI
(resp. RC) static dangerous structures, then scheduling the transac-
tions generated by the corresponding transaction templates achieves
SER when the RDBMS is configured to SI (resp. RC). O

Theorem 2.1 serves as the foundation for existing approaches to
achieving SER while the RDBMS is configured to SI/RC. However,
these approaches are static and coarse-grained, leading to the in-
correct identification of many non-cyclic schedules. This, in turn,
causes a significant number of unnecessary transaction rollbacks.

2.3 Vulnerable Dependency
DEFINITION 5 (STATIC VULNERABLE DEPENDENCY). The static vul-
nerable dependency is defined as T; SN Tx in chain T; SN T; o,

Tk under SI, and T; SN 7; under RC, respectively. O

DEFINITION 6 (VULNERABLE DEPENDENCY). The vulnerable de-
rw rw rw
pendency is defined as Tj — Ty in chain T; — Tj — Ty under

SL and T; SN T; under RC, respectively. O

THEOREM 2.2 ([10]). For any vulnerable dependency T; AN if
T; commits before T}, then the scheduling achieves SER. O

Theorem 2.2 forms the basis of our dynamic, fine-grained ap-
proach to achieving serializable scheduling. Compared to exist-
ing approaches, our approach neither introduces unnecessary
writes nor misjudges cyclic schedules, thus preventing unwar-
ranted transaction rollbacks.

3 OVERVIEW OF TxNSAILS

TxNSAILS works in the middle tier between the application tier and
the database tier, designed to @ ensure SER when transactions op-
erate under a low isolation level without introducing additional
writes; @ select the optimal isolation level for dynamic workloads
adaptively; ® constantly keep SER during the isolation level transi-
tion. An overview of TXNSAILSs is depicted in Figure 2. It comprises
three main components: Analyzer, Executor, and Adapter.

Analyzer. Analyzer provides template interfaces for template reg-
istration and analysis. Before TXNSAILs executes any transaction
from the application, Analyzer builds the static dependency graph
for the transaction templates and identifies all the static vulnerable
dependencies for each low isolation level according to Definition
5. It then sends the static vulnerable dependencies to Executor.
Executor. Executor ensures SER when transactions operate either
at a single low isolation level or during the isolation level transi-
tion. There are four core modules: Isolation Level Manager (ILM),
Dependency Detector (DD), Transaction Scheduler (TS), and Tran-
sition Governor (TG). (1) ILM stores the static vulnerable depen-
dencies. Before any transaction T starts, it identifies whether T
involves any static vulnerable dependencies. If not, Executor sends
T directly to the RDBMS for execution; otherwise, ILM triggers
DD that identifies vulnerable dependencies of T. (2) DD monitors
the reads and writes of T, detecting any runtime vulnerable depen-
dencies between T and other transactions. If T is involved in any
vulnerable dependencies, TS is triggered. (3) TS attempts to ensure
that the commit and vulnerable dependency orders remain consis-
tent between T and other transactions. If the consistency cannot
be guaranteed, T is blocked or aborted; otherwise, T proceeds to
commit. (4) TG ensures SER during the transition between two iso-
lation levels. It follows a new corollary, which extends Theorem
2.2 to any two transactions, T; and T}, executing under different
isolation levels. The proof of correctness during the isolation level
transition is detailed in §5.2.

Adapter. Adapter models the trade-off between performance ben-
efits and serializability overhead under lower isolation levels. It
predicts the optimal isolation level when the workloads evolve.
Initially, a dedicated thread is introduced to continuously sample
aborted/committed transactions using Monte Carlo sampling [63],
capturing the read/write data items. After collecting a batch of
transaction samples, Adapter predicts the optimal isolation level
for future workloads based on the characteristics of the batch. The
prediction process consists of two steps: Workload Modeling (WM)
and Isolation Level Prediction (ILP). WM extracts performance-
related features and models the workload as a graph. In this graph,
each vertex represents a runtime transaction, with its features cap-
turing the transaction context, such as the number of data items
in the read and write sets. Each edge represents an RW or WW
operation dependency between transactions. Following WM, ILP
embeds the workload graph into a high-dimension vector using
graph neural network [16] and message passing techniques [29],
and then translates the vector into three possible labels: RC, SI, or
SER. The label with the highest value, as determined by our model,
indicates the most efficient isolation level.

4 DESIGN OF TxNSAILS

In this section, we provide the detailed design of TxNSa1Ls. We
first introduce the middle-tier concurrency control mechanism
that achieves serializable scheduling when the RDBMS is config-
ured to a low isolation level (§4.1). Then, we present a self-adaptive
isolation level selection approach, which can predict the optimal fu-
ture isolation level (§4.2). Lastly, we introduce the cross-isolation
validation mechanism that ensures serializable scheduling during
the isolation level transition (§4.3).

4230

4.1

Existing approaches ensure serializability at low isolation levels
by statically introducing additional write operations. However,
these approaches reduce concurrency and increase overhead. To
overcome these limitations, TXNSAILS introduces a middle-tier
concurrency control algorithm, which dynamically validates run-
time dependencies and schedules their commit order. In particular,
TxNSAILs focuses exclusively on vulnerable dependencies identi-
fied by the Analyzer and employs a lightweight validation mecha-
nism to further mitigate overhead.

Middle-tier Concurrency Control

4.1.1 Transaction lifecycle. The lifecycle of transactions in the
middle tier is divided into three phases: execution, validation, and
commit phases. (1) In the execution phase, TXNSAILS establishes
a database connection with a specific isolation level, which is not
adjusted until the transaction is committed or aborted. Following
the RDBMS transaction execution, TXNSAILS stores the read/write
data items in the thread-local buffer that may induce the vulner-
able dependencies; (2) In the validation phase, TXNSAILS acquires
validation locks for data items stored in the buffer. Then, it detects
the dependencies among them and aims to schedule the commit
order consistent with the identified dependency order. A more de-
tailed description of the validation phase will be given in §4.1.2; (3)
In the commit phase, TxNSAILs applies modifications to the data-
base and subsequently releases the validation locks.

4.1.2 Validation phase. TXNSAILs performs two key tasks in the
validation phase: (1) detecting vulnerable dependencies; (2) sched-
uling the commit order consistent with the dependency order. To
achieve this, we utilize a version column, which is incremented af-
ter every write operation. We trace the dependency orders by com-
paring the versions of data items. It is worth noting that the ex-
plicit version column is introduced for the convenience of descrip-
tion. It can be achieved by extracting version information from the
database without modifying the schema. For example, PostgreSQL
maintains the version information via the ctid. Due to space con-
straints, we provide a concise overview of the validation algorithm,
while leaving the detailed pseudocode in our technique report [1].

For both RC and SI levels, we detect vulnerable dependencies
based on those defined in Definition 6. During validation, the trans-
action first requests Shared locks for items in the read set and Exclu-
sive locks for items in the write set. Specifically, before transaction
T; commits, the validation phase is performed in two key steps:

(1) T; checks each data item in its write set to detect the RW
dependencies from T;’s concurrent transactions (e.g., Tj) to T;. We
achieve this via the validation locks. If any lock request fails, in-
dicating T; exists, an RW dependency is detected. In such a case,
the failed lock request should be appended to the corresponding
lock’s waitlist, making T; wait until T; commits, ensuring consis-
tency between dependency and commit orders. If no concurrent
transactions in the validation phase are reading the same item, T;
proceeds to commit and create a new data version.

(2) T; checks each data item in its read sets to detect the RW de-
pendencies from T; to T;’s concurrent transactions. Specifically, it
compares the version of each read item in the thread-local buffer
with the latest version in the database. If a newer version is found,
indicating an RW dependency from the current transaction T; to

- - [I

Transaction Lifecycle (SI) w:| Database !

: operation |

Wx) c I i

T — e |10 velidaion |

¥ v I

' S~ - > | TCP/IP !

R\Aj/ > vwrite_set <~ 1 communication |

I I

R(xp) W) C |y Inmemory
operation

L -] D mcion |

F =T — 1l | ransaction |

@ > vread set < I ! lifecycle !

= [t A

Validation Lock Table (VLT)
Lease

Key Type LockNum WaitList LatestVersion

Xo time_now

RDBMS

Figure 3: Transaction processing in TXNSAILS

a committed transaction, say T}, then T; is aborted to ensure the
consistency of commit and dependency orders. Moreover, compar-
ing data item versions in the local buffer with the latest versions
in the RDBMS can introduce additional interactions between the
database middleware and the underlying database, imposing over-
head on system and network resources. To alleviate this burden,
TxNSAILs employs a caching mechanism in the middle-tier mem-
ory to store the latest versions of data items, which can signifi-
cantly reduce validation overhead.

In the above steps, we ensure the commit order in the middle
tier is consistent with the dependency order. Subsequently, we
schedule the actual commit order in the RDBMS consistent with
the commit order in the middle tier. We ensure that the RDBMS
layer consistency is achieved by releasing validation locks only af-
ter the transaction has been completed in the RDBMS. Based on
this, if two concurrent transactions conflict, they cannot enter the
validation phase simultaneously. One transaction must complete
validation and commit before the other can proceed, ensuring a
correct and consistent commit order in the RDBMS.

To enable efficient and accurate validation, TXNSAILS leverages
a validation lock table (VLT) to maintain metadata for each data
item. Each data item is assigned a hash value computed using the
collision-resistant hash function H, and a corresponding entry is
stored in VLT. Data items with the same hash value are stored
in the same bucket and organized as a linked list. When an entry
with key x is accessed, TXNSAILs first determines the appropriate
bucket using H(x) and then traverses it to locate the specific en-
try. Each hash entry e comprises five fields: (1) e.Type, the type of
locks acquired, which can be None, Shared (SH), and Exclusive (EX);
(2) e.LockNum, the number of currently held locks; (3) e.WaitList,
a list of transactions waiting to acquire locks; (4) e.LatestVersion,
the most recent committed version of the data item; and (5) e.Lease,
the timestamp indicating the garbage collection time.

ExampLE 2. Take the transaction processing in Figure 3 as an
example. Recall that there exists a static vulnerable dependency

Twe I, Tts in Smallbank when the RDBMS is set to SI (Figure 1).
Thus, it is necessary to detect the read operation of Tyyc and the write
operation of Tys. In the execution phase, after the RDBMS execution
(@), Ty, stores the data item x in its vread_set and Ty stores x in its
vwrite_set (@). In the validation phase of Ty, it acquires the shared
validation lock on x (@) and retrieves the latest version of x from ei-
ther VLT or the RDBMS (®). While in the validation phase of Tys, it

4231

requests the exclusive validation lock on x and is blocked until T,
releases the lock. Finally, in the commit phase, T, releases the val-
idation lock on x (®). This ensures that the commit order of the two
transactions is consistent with the dependency order, thereby guaran-
teeing SER when they operate under SIL O

4.1.3 Discussion. To optimize memory usage, TXNSAILS incorpo-
rates an efficient garbage collection algorithm to evict cold entries.
More detailed description is provided in our technical report [1].
Moreover, complex queries make it hard for TXNSAILS to track de-
pendencies. For complex queries on primary keys, TXNSAILS uses
multi-grained validation locks (such as interval or table locks) to
detect predicate dependencies, drawing on techniques similar to
SIREAD locks in PostgreSQL and gap locks [38]. When TxNSAILS
cannot easily infer target items in complex queries (e.g., with pred-
icates on non-primary keys), it defaults to table-level locks or con-
figures the underlying database to use SER for correctness.

4.2 Self-adaptive Isolation Level Selection

Selecting optimal isolation levels for all transactions in a workload
while maintaining SER is challenging, as we need to balance the
extra serializability overhead and performance benefits in differ-
ent isolation levels. To address this, we propose a neural-network-
based isolation level prediction approach, which predicts the fu-
ture optimal isolation level based on the current workload fea-
tures [41, 55, 61]. Specifically, TXNSAILs adopts transaction depen-
dency graphs to capture workload features and adopts a graph clas-
sification model to perform self-adaptive isolation level selection.

4.2.1 Graph construction. To extract the complex features of con-
current transactions, TXNSAILS proposes a graph-structured work-
load model, which is composed of three matrixes: a vertex matrix
V, an edge index matrix E, and an edge attribute matrix A. For-
mally, a workload graph is defined as G = (V, E, A), where each
row in A represents the feature vector of an operator, each entry
ejj in E signifies the relationship between v; and v, and each row
in A represents the feature vector of an edge.

TxNSAILS constructs the runtime workload graph by sampling
transactions adhering to Monte Carlo sampling. Each transaction
in the batch is mapped to a vertex v;, and its feature vector V; is
generated by extracting the number of data items in its read and
write set. For each vertex pair (v;,v;), if a data dependency exists
between them, i.e., their read and write sets intersect, TXNSAILS
adds an edge entry e;; into the edge index matrix E. For each edge
eij, TXNSAILS extracts the data dependency type and the involved
relations to generate its attribute A, ;. The data dependency type
for e;; can be either RR, RW/WR, or WW. Given that the number
of relations and dependency types is fixed, one-hot encoding is
employed to represent these features within the attribute matrix.

4.2.2 Graph embedding and isolation prediction. Predicting the op-
timal isolation strategy for the future workload using the con-
structed graph-structure model G = (V,E, A) is challenging due
to its complex structures and dynamic and high-dimensional fea-
tures, which require capturing both local and global dependencies.
Heuristic methods rely on manually crafted rules that lack gen-
eralizability, while traditional machine learning models are defi-
cient in leveraging relational information encoded in the vertexes

Graph Construction Graph Embedding Predicition

Layer |

—> v—»}—»Ho (;) 7,
o

Layer2 Layer3 Layer 4

®)

Output
layer

Node: transaction

- [rent, went, success]
Edge: data correlation

- [src, dst, type, table]

@]
&)

Figure 4: Graph-based isolation level selection model

and edges, losing critical structural context. To address these chal-
lenges, we use a graph classification model that learns graph-level
representations by aggregating node features through multiple lay-
ers of neural network-based convolutions.

As shown in Figure 4, our graph model comprises two parts.
First, we use a Graph Embedding Network to learn and aggregate
both vertex and edge features, producing node-level embedded ma-
trix H that encodes the local structure and attribute information of
the graph. Second, to predict the optimal isolation strategy for the
workload, we use a Graph Classification Network that learns the
mapping from the embedded matrix H to perform the end-to-end
graph classification to predict the optimal isolation strategy.

The Graph Embedding Network is constructed with a three-layer
architecture, where each layer applies a convolution operation
to update node representations. This process integrates node and
edge features through a dynamic aggregation mechanism [26, 62].
At each layer, an edge network maps the input edge features into
higher-dimensional convolution kernels via a multi-layer percep-
tion (MLP), as shown in Eq.(1). This mapping dynamically trans-
forms edge attributes into weights, which are then used during
the node aggregation step. The convolution operation produces up-
dated node embeddings for each node v; using Eq.(1), where N (v;)
represents the neighbors of node v;, We(ii,) is the edge-specific
weight, and o denotes the active function (i.e., ReLU). Through this
layer-wise propagation, the embedding module produces H, a set
of node-level embeddings that encode the graph information.

H,(,ll) = cr(max

0;eN(o;)))

The Graph Classification Network takes the node embeddings H
as inputs and passes them through two fully connected layers. The
first layer applies a ReLU activation function to enhance nonlin-
earity. The second layer implements a softmax activation function
and outputs a three-dimensional vector, with each field represent-
ing the probability of the isolation level being optimal.

w® = f(D(A) = MLP(A)

1
(Wa) gD @

€jj vj

4.2.3 Data collection and labeling. Our modeling approach is
somewhat general and not specifically designed for any particu-
lar workloads. However, in practice, we train the model separately
for each type of benchmark for efficiency considerations. Taking
YCSB+T as an example, we generate lots of random workloads
with varying read/write ratios and key distributions. Each work-
load is executed under each isolation level for 10 seconds, with
sampling intervals of 1 second, and the optimal isolation level is
labeled based on throughput.

4232

RGo) R() Wy c
T ~ ey 0>
RW \ .
W) € \
T, —» \ RW
W) TN > '
wwW W) R() c
T S| o 1 il w] >
Isolation level transition @ - >
— |
Metadata 1 Validate data item y E
I
key: ; _ i _g
{lastestVersion} | x: {1}, y: {0 —> 1}, {2} | Validate data item x <
"""""""""" " Data item x has been modified !

L--#!RC transaction [J Cross-isolation validation

Figure 5: Cross-isolation validation

4.2.4 Model training. In TXNSAILS, we train the embedding and
prediction network together and use cross-entropy loss. Backprop-
agation involves calculating the gradients of the loss function con-
cerning the parameters of the graph model. First, the gradient is
computed for the output layer. Then, using the chain rule, these
gradients are propagated backward through the whole network,
updating the parameters of each layer. For embedding layers, this
process includes computing gradients for both vertex features and
transformation matrices derived from edge attributes. Moreover,
the model can be retrained asynchronously, and during the retrain-
ing period, it does not affect transaction execution.

4.3 Cross-isolation Validation

If the predicted optimal isolation level changes, TxNSaILs will
adapt from the previous isolation level I,;4 to the optimal isola-
tion level I;¢1. We design a cross-isolation validation mechanism
to guarantee SER during the isolation level transition.

ExaMmpLE 3. Figure 5 illustrates non-serializable scheduling dur-
ing the transition from SER to RC after To commits, making Ty
and To operate under SER while T3 operates under RC. In this sce-
nario, Ty is expected to be aborted to ensure SER. However, existing
RDBMSs do not handle dependencies between transactions under dif-
ferent isolation levels, allowing Ty to commit successfully, leading to
non-serializable scheduling. Note that when transactions T1, Ta, and
T3 are all executed under SER, the concurrency control in RDBMS
prevents such non-serializable scheduling. O

We need to explicitly consider the situations of cross-isolation
transitions to ensure the correct transaction execution during the
process. A straightforward approach is to wait for all transactions
to complete under the previous isolation level before making the
transition. In the example above, this would mean blocking T3 until
Ty commits. However, it can result in prolonged system downtime,
especially when there are long-running uncommitted transactions.
Another possible approach is to abort these uncommitted transac-
tions and retry them after the transition, which leads to a high
abort rate. To mitigate these negative impacts, TXNSAILS employs
a cross-isolation validation (CIV) mechanism that ensures serializ-
ability and allows for non-blocking transaction execution without
a significant increase in aborts. Specifically, we extend the vulner-
able dependency under the single isolation level in Definition 6 to
the cross-isolation vulnerable dependency, defined as follows:

DEFINITION 7 (CROSS-ISOLATION VULNERABLE DEPENDENCY).
. . . rw
The cross-isolation vulnerable dependency is defined as Tj — Ty

rw rw
in the dependency chain T; — T; — Ty where Tj commits after
the transition starts. |

Based on Definition 7, we extend Theorem 2.2, which is de-
fined for the single isolation level, to derive Corollary 1 for cross-
isolation transitions, and prove its correctness in §5.2.

CoROLLARY 1. During the transition, if every cross-isolation vul-

nerable dependency T; SN Ty in a transaction scheduling satisfies
that Tj commits before Ty, this scheduling is serializable. O

Based on Corollary 1, we implement our CIV mechanism by
detecting all cross-isolation vulnerable dependencies during the
isolation-level transition and ensuring the consistency of the com-
mit and dependency orders. The CIV mechanism includes three
steps. (1) When the system transitions from the current isolation
I,;4 to the optimal isolation level I¢qy, the middle tier blocks new
transactions from entering the validation phase until all transac-
tions that have entered the validation phase before the transition
commit or abort. Importantly, we only block transactions to enter
the validation phase. Transactions can execute normally without
blocking. (2) After that, the transaction that has completed the ex-
ecution phase enters the cross-isolation validation phase. During
the cross-isolation validation phase, transactions request valida-
tion locks according to the stricter locking method of either I,;4
or Ineyw to ensure that all cross-isolation vulnerable dependencies
can be detected. For example, when transitioning from SI'to RC, the
transaction in the cross-isolation validation phase requests valida-
tion locks following RC’s validation locking method, regardless of
whether it is executed under SI or RC. (3) After acquiring valida-
tion locks, transaction T; first detects vulnerable dependencies of
its original isolation level. Then, it detects cross-isolation vulner-
able dependencies by checking whether a committed transaction
modifies its read set (using the same detection method as that in
§4.1). If such modifications are detected, T; is aborted to ensure the
consistency of the commit and dependency orders. As shown in
Figure 5, TxNSaI1Ls validates T .vread_set (xo and yo) before it can
commit. Since T has created a new version x1 and commits before
Ty, TxnSaiLs would abort T7 to ensure serializability.

Once all transactions executed under I,;; are committed or
aborted, the transition process ends. Then, transactions do not
need to undergo the cross-isolation validation.

5 SERIALIZABILITY AND RECOVERY

In this section, we first prove the serializability of TxNSAILS’s
scheduling in the single-isolation level and cross-isolation level
categories in § 5.1 and § 5.2, respectively. Finally, we present the
failure recovery strategy in § 5.3.

5.1 Serializability under Low Isolation Levels

Non-serializable scheduling under each low isolation level accom-
modates certain specific vulnerable dependencies. According to
Theorem 2.2, a necessary condition for non-serializability is the
presence of inconsistent dependencies and commit orders among
these vulnerable dependencies. The unified middle-tier concur-
rency control ensures the commit order respects dependency order

4233

for transactions with vulnerable dependencies, thereby preserving
SER even when the RDBMS operates at lower isolation levels.

5.2 Serializability under Cross-isolation Levels

In this subsection, we prove the serializability during isolation tran-
sitions after implementing our CIV mechanism in §4.3. The proof
can be reduced into two steps: (1) we first prove the correctness of
Corollary 1; (2) then we prove that our CIV mechanism can detect
each cross-isolation vulnerable dependency, T; SALN Tk, in Defini-
tion 7 and ensure the consistency between the commit order and
the dependency order between T; and Ty, thus ensuring serializ-
ability during isolation transitions.

Correctness of Corollary 1 We prove the correctness of Corol-
lary 1 by proving the correctness of its contrapositive. Corollary 1
can be formalized using Eq.(2) where ct; represents the T;’s com-
mit time and ¢s denotes the isolation transition’s start time.

@

Its contrapositive can be deduced using Eq.(3). For clarity, we

v (T; v, T; o, T Acty; > ts Actr; < cty,) = SER

rw rw
use ¢ to denote T; — Tj — T Acty; > ts.

—=SER = =V (a A CtTj < CtTk) = I-(a A Cl’Tj < CtTk)

= A(-a Vv (—\CtT’. <cty A (aV=a)))

= JA(-a Vv (—|Cl'7‘j <ctg A -a) VvV (—|Ct7‘j <ctg A «a)) (3)
= 3A((-a A (True Vv —ety; < ety) Vv (—uctTj <cty, Aa))
= A(-a Vv (—\CtTj <cty A «a))

Since any witness of -ety; < ot A a automatically satisties
—a V (=cty; < cty, A @), the proof of Corollary 1’s contrapositive
can be reduced to proving -SER = E(ﬂctTj < ct, A a), which is
demonstrated in Proposition 1.

PROPOSITION 1. If a non-serializable schedule occurs during the
isolation transition, there must exist a cross-isolation vulnerable de-
pendency, T; LA T; RAN Ty, where Tj commits after the transition
starts, and Ty, commits before T;. O

We then prove the correctness of Proposition 1 based on the fol-
lowing two steps. @ If there is a non-serializable scheduling during
the transition, there exists at least one anomaly structure defined
in Definition 8. @ If there is a non-serializable scheduling during
the transition, there exists at least one anomaly structure that satis-
fies Tj commits after the transition starts. Due to space constraints,
a detailed proof is available in our technical report [1].

DEFINITION 8 (ANOMALY STRUCTURE). The anomaly structure

rw rw
during transition is defined as T; — Tj — Ti., where T; operates
under SER and T commits before T;.

5.2.1 Serializability during transition. Then we prove that our CIV
mechanism can detect all vulnerable dependencies described in
Definition 7, thus ensuring the serializability. In the CIV mecha-
nism, we employ validation for every transaction that is not com-
mitted after the transition starts, ensuring it is not involved in a
cross-isolation vulnerable dependency and maintaining consistent
dependency and commit orders. With this validation, we can en-
sure that there does not exist any cross-isolation vulnerable depen-
dency during the transition, thus ensuring the serializability.

Table 1: Interfaces of TxNSAILS

register(template_name, sql) Register each sql with the template names.
Analyze and identify static vulnerable
dependencies in low isolation levels.

analysis()

5.3 Failure Recovery

The system incorporates a robust failure recovery mechanism to
ensure data consistency and service availability. For TXNSAILs fail-
ures, the RDBMS first automatically rolls back uncommitted trans-
actions because the connection between the RDBMS and TXNSAILS
is lost. Next, the TxNSAILS is automatically restarted, reconnected
to the RDBMS, and then continues the normal execution. For
RDBMS failures, the RDBMS is restarted and recovered to a consis-
tent state using its recovery algorithm (e.g., ARIES [42]). For both
failures, both components are restarted, relying on the RDBMS’s
recovery mechanism to ensure consistency.

6 IMPLEMENTATION

We implement TXNSAILs from scratch using Java and Python, com-
prising approximately 6,000 lines of Java code and 500 lines of
Python code. It can seamlessly integrate with any RDBMS that
offers the isolation levels defined in [6, 43].

Interfaces. Applications interact with TxNSAILS via predefined in-
terfaces, as detailed in Table 1. Applications first register transac-
tion templates by register interface, which parses the sql to extract
operation types and relations. Then, analysis interface is used to
identify static vulnerable dependencies under low isolation levels.
Analyzer. We implement SDGBuilder class that takes transaction
templates as input and constructs a static dependency graph. The
graph is then passed to CycleFinder class to detect cycles based
on the characteristics defined in Theorem 2.1. Finally, it identi-
fies transaction templates with static vulnerable dependencies and
stores the results in a MetaWorker instance.

Executor. During execution, TXNSAILs automatically analyzes
runtime transactions and identifies which template transactions
belong to. It invokes SQLRewrite() function to rewrite queries, se-
lecting the appropriate record version if its template is involved in
static vulnerable dependencies. Additionally, we implement a crit-
ical data structure, ValidationMetaTable, which is initialized before
any transactions are received to perform middle-tier validation in
both single- and cross-isolation scenarios. Organized as a hash ta-
ble, each bucket in the table represents a list of ValidationMeta
entries, including validation lock, latest version, and lease informa-
tion. A dedicated thread handles garbage collection of expired meta
entries by comparing the lease with the system’s real-time clock.
Moreover, we implement the WAIT-DIE strategy within the Valida-
tionMetaTable to prevent deadlocks.

Adapter. We implement the TransactionCollector class to collect
the read and write sets for transactions and the RDGBuilder class to
build the runtime dependency graph. Adapteris then implemented
with the aid of torch_geometric, taking the runtime dependency
graph as input and outputting the optimal isolation level. To ensure
cross-platform compatibility and efficiency, the Python and Java
components communicate via sockets.

4234

Integration with Apache Shardingsphere [35]. The Analyzer
and Adapter can be directly integrated as external modules. Specif-
ically, we extend the PostgreSQLMultiStatementsHandler to collect
validation information from execution results and store it in the
ConnectionSession, based on static vulnerable dependencies. Addi-
tionally, we modify the TransactionBackendHandler to perform val-
idation using the metadata gathered during execution, ensuring
consistency between dependency and commit order.

7 EVALUATIONS

In this section, we evaluate TXNSAILS’s performance compared to
state-of-the-art solutions. Our goal is to validate two critical as-
pects empirically: (1) TxNSAILS’s effectiveness in adaptively select-
ing the appropriate isolation level for dynamic workloads (§7.2);
and (2) TXNSAILS’s performance superiority over state-of-the-art
solutions across a variety of scenarios (§7.3).

7.1 Setup

We run our database and clients on two separate in-cluster servers
with an Intel(R) Xeon(R) Platinum 8361HC CPU @ 2.60GHz pro-
cessor, which includes 24 physical cores, 64 GB DRAM, and 500
GB SSD. The operating system is CentOS Linux release 7.9.

7.1.1 Default configuration. We utilize BenchBase [22] as our
benchmark simulator, which is deployed on the client server. By
default, the experiments are conducted using 128 client terminals.
We deployed PostgreSQL 15.2 [4] as the default database engine,
which employs MVCC to implement three distinct isolation levels:
RC, SI, SER (by SSI [17]). To prevent dirty writes, write locks are
enforced at all isolation levels. For our database configuration, we
allocated a buffer pool size of 24GB, limited the maximum num-
ber of connections to 2000, and established a lock wait timeout of
100 ms. To eliminate network-related effects, both TxNSA1Ls and
PostgreSQL were deployed on another server.

7.1.2 Baselines. To ensure a fair comparison, we implemented ex-
isting approaches within the BenchBase framework.

Baselines within the database. We evaluated concurrency con-
trol algorithms supported natively by RDBMSs, specifically those
associated with lower isolation levels that can achieve SER:

(1) & (2) Native concurrency control mechanisms in RDBMSs (SER
and SI). These approaches execute workloads configured at the SER
or SI levels. For instance, TPC-C achieves serializable scheduling
under SI, while SmallBank requires SER for serializability.
Baselines outside the database kernel. We also evaluated ex-
ternal strategies that transform RW dependencies into WW depen-
dencies to eliminate static dangerous structures.

(3) & (4) Promotion (RC+Promotion[47], SI+Promotion [9]).
This strategy converts read operations into write operations by
promoting SELECT statements with non-modifying UPDATE state-
ments [9]. These modifications are applied at RC and SI levels, re-
ferred to as RC+Promotion and SI+Promotion, respectively.

(5) & (6) Conflict materialization (RC+ELM [10], SI+ELM [9]).
This approach employs an external lock manager (ELM) and intro-
duces additional write operations on the ELM to ensure serializ-
able scheduling. It is applied at both RC and SI levels, referred to
as RC+ELM and SI+ELM, respectively.

—— TxnSails-RC
—>— TxnSails-SI

SER
—<— TxnSails-Rule

TxnSails-Bayesian
—=— TxnSails

F: skew-1.1
reads-90%

A: skew-0.1
reads-90%

B: skew-1.3
reads-5%

C: skew-0.7
reads-95%

D: skew-1.3
reads-90%

E: skew-0.9
reads-90%

Throughput (k Txns/s)

Timeline (s)

Figure 6: Workload shifting - YCSB

We incorporate two simple isolation level selection methods: a
rule-based method and a Bayesian model-based method [28], de-
noted as TxNSa1Ls-Rule and TxNSarLs-Bayesian, respectively.
TxnSaiLs-Rule relies on the write/read ratio (wr), using SI for
wr < 0.2, SER for 0.2 < wr < 0.4, and RC for wr > 0.4. TXNSAILS-
Bayesian uses a 4-dimensional feature vector, including the num-
ber of reads (ro), writes (wo), RW dependencies (rw), and WW de-
pendencies (ww), to represent each workload.

Finally, we evaluate the middle-tier concurrency control in §4.1
at both RC and SI levels without self-adaptive isolation level selec-
tion, denoted as TXxNSAILS-RC and TxNSA1LSs-SI, respectively.

7.1.3 Benchmarks. Three benchmarks are conducted as follows.
SmallBank [9]. This benchmark populates the database with 400k
accounts, each having associated checking and savings accounts.
Transactions are selected by each client using a uniform distribu-
tion. To simulate transactional access skew, we employ a Zipfian
distribution with a default skew factor of 0.7.

YCSB+T [21]. This benchmark generates synthetic workloads em-
ulating large-scale Internet applications. In our setup, the usertable
consists of 10 million records, each 1KB in size, totaling 10GB. The
skew factor, set by default to 0.7, controls the distribution of ac-
cessed data items, with higher values increasing data contention.
Each default transaction involves 10 operations, with a 90% proba-
bility of being a read and a 10% probability of being a write.
TPC-C [5]. We use the TPC-C benchmark, which modifies the
templates to convert all predicate reads into key-based accesses ac-
cording to our baseline [46]. It includes five transaction templates:
NewOrder, Payment, OrderStatus, Delivery, and StockLevel. Our
tests use 32 warehouses, with a total data size of 3.2 GB.

7.2 Ablation Study

In this part, we evaluate the effectiveness of the self-adaptive iso-
lation level selection and isolation transition in TXNSAILs.

7.2.1 Self-adaptive isolation level selection. We first evaluate self-
adaptive isolation level selection by varying the workload every 10
seconds across six distinct scenarios. The experimental results are
illustrated in Figure 6. We sample the workload at 1-second inter-
vals. The results demonstrate that different isolation levels perform
variably under different workloads: SI performs well in low-skew
scenarios (A, C, E), SER is more effective in high-skew scenarios
with a lower percentage of write operations (D, F), and RC excels
in high skew scenarios with a high percentage of writes (B). Across
all tested dynamic scenarios, TXNSAILS successfully adapts to the

4235

B DB-Exec [E TxnSails-Val EIDB-Commit

Graph prediction

—_ 8.8 (47ms)
& 3(. P
° 80 10.1us) . P
2060 - -
2 | Isolation transition (382 ms) ”
3 40 - P
220 STV

0 Socket, Disk 10...

0.3 0.7 1.1 (7ms)

Skew factor

(a) Transaction breakdown (b) Transition breakdown

Figure 7: Breakdown analysis - YCSB

TxnSails (Abort mechanism) —=— TxnSails (Block mechanism) —— TxnSails

TxnSails (Abort mechanism) TxnSails (Block mechanism) TxnSails
» D: skew-1.3 E: skew-0.9 s
z 16 reads-90% reads-90% % 120 7 19103
& 8 80 46
=12 =z 40 R
=] o200 o0 00 F00 H00
2 8 W | =z 116
E‘) \\ / o 1.2 ;
= 2304

0 m 0.0 ol Zhol

0250 500 750 1000
Transaction think time (ms)

0246 81012141618
Timeline (s)

(a) Transition from D to E (b) Performance metrics

Figure 8: Comparison of transition mechanisms - YCSB

optimal isolation level. Specifically, the graph learning model in
TxNSAILs identifies that SI is suitable for scenarios with fewer con-
flicts due to its higher concurrency and lower data access over-
head. Conversely, RC is ideal for scenarios with higher conflict
rates and more write operations, as it efficiently handles concur-
rent writes (SI aborts concurrent writes, while RC allows them to
commit). Compared to an application directly run on RDBMS at
the SER level, the performance of TXNSAILs when selecting SER is
slightly reduced by 4.3%. This overhead arises from two aspects: (1)
TXNSAILS requires selecting version and another localhost message
delivery ; (2) TXNSAILS needs to sample transactions to predict the
optimal isolation level, even though this is an asynchronous task.
The rule-based and Bayesian model-based methods achieve correct
predictions in some cases; however, they fail to make optimal deci-
sions in scenarios such as workloads D and F, due to their limited
modeling capacity compared to the neural network.

7.2.2 Validation analysis. This part evaluates the validation effi-
ciency in both single-isolation and cross-isolation scenarios.
Single-isolation level validation. We evaluate the single-level
validation cost under skew factors of 0.3, 0.7, and 1.1, respectively.
The average breakdown is depicted in Figure 7a. The validation
cost remains relatively stable, decreasing from 2.6% to 0.3% of the
transaction lifecycle as contention increases. This suggests that the
middle-tier concurrency control proposed in §4.1 does not signifi-
cantly affect normal execution.

Cross-isolation level validation. We evaluate TxNSAILs with
YCSB using the various transition mechanisms mentioned in §4.3.
We first evaluate the transition of the workload from D to E with a
“think time” of 1s, as illustrated in Figure 8a. TXNSAILS minimizes
the impact of isolation level transitions by avoiding active block

260 wio cache |~ W/o GC (Low) W/ GC (Low)
E w/ cache = w/o GC (High) —— w/ GC (High)
45

< %80
E S
%30 § 60
Y 40
215 =l
=] S
= £ 20
= 0 5] A

Low contention High contention = 09710 20 30 40 50 60

Time (s)
(a) Performance (b) Memory usage

Figure 9: Impact of garbage collection - YCSB

EEE 60 - 7\;’\ 60 == No cached
= L‘_"’L“’mem‘_"“ 9 Hot cached
£45 High contention 4 2 EES All cached
<30 230

= 5

£1s 215

g =

070 256512 1024 2048 0 Low contention High contention

of terminals

(a) Memory usage (b) Performance

Figure 10: Impact of Metadata - YCSB

time or aborts. To further compare mechanisms, we vary the “think
time” parameter (Figure 8b). Increased think time raises transac-
tion latency and leads to more aborts under the abort strategy, and
the blocking strategy incurs longer blocking times. In contrast, the
cross-isolation validation mechanism outperforms both, reducing
transaction aborts and blocking time while delivering performance
improvements of up to 2.7Xx and 5.4X, respectively.

7.2.3 Overhead analysis. We first evaluate the metadata-induced
memory overhead, as shown in Figure 10. With 10GB of YCSB
data, TXNSAILS uses under 50MB of memory while achieving a
10% performance gain. The cache hit ratio is 39.8% under low con-
tention and 68.4% under high contention, indicating that TXNSAILS
efficiently caches frequently accessed tuples, especially when con-
tention is high. Then, we evaluate the overhead of our garbage col-
lection strategy. As illustrated in Figure 9, the garbage collection
mechanism incurs only slight performance overheads, 3.61% under
low contention and 0.6% under high contention, while reducing
memory usage by 84.7% and 92.0%, respectively.

7.2.4 Graph model: construction, training, and prediction. Fig-
ure 7b illustrates the overhead of workload transition, which takes
about 450 ms, with graph construction and prediction accounting
for 22 ms and 47 ms, respectively. Over 80% of the time is spent on
transition, from initiating the transition to all connections adopt-
ing the new isolation level, closely tied to the longest transaction
execution latency. Notably, the prediction in Figure 6 is inaccurate
for 1 or 2 seconds at the 30-second and 50-second marks due to
the sampling transactions from the previous workload. However,
the model successfully transitions to the optimal isolation level in
subsequent prediction cycles. The overhead of the learned model
is minimal, incurring under 2.5% throughput overhead.

We compare the accuracy of three prediction methods and show
the result in Figure 11a. The neural network method consistently

4236

E= Rule BE Bayesian TxnSails 20

0.8) 1.5
@0‘6 g 1.0
] £
= =}
go4 © 0.5
<

0.2

0.0

YCSB SmallBank TPCC

Component 1

(a) Accuarcy (b) Extracted features

Figure 11: Model training metrics - YCSB

achieves the highest accuracy across all benchmarks, outperform-
ing the rule-based and Bayesian models by up to 27.5%, 48.7%, and
46.6%, respectively. The Bayesian model mispredicts at Workload E
due to unstable decisions near boundaries, where small changes in
probability affect isolation level choices. The superior performance
of the neural network is due to its ability to capture complex rela-
tionships in the dependency graph, whereas the other two simpler
approaches rely on irreversibly compressed or aggregated features,
limiting their effectiveness. To visualize the high-dimensional vec-
tors produced by our model, we use t-SNE [2] for nonlinear di-
mensionality reduction, mapping them into two dimensions and
plotting them with their true labels in Figure 11b. Most workloads
are accurately distinguished, with few errors primarily occurring
at the boundaries between isolation levels.

Summary. One isolation level does not fits all workloads. In low-
skew scenarios, SI outperforms RC; in high-skew scenarios with
fewer writes, SER is the most effective; and in high-skew scenar-
ios with intensive writes, RC is more suitable. TxNSAI1Ls effectively
guarantees SER at lower levels and efficiently adapts isolation lev-
els to optimize performance for dynamic workloads using the pro-
posed fast isolation level transition technique.

7.3 Comparision to State-of-the-art Solutions

We evaluate TXNSAILs against state-of-the-art solutions that use
external lock manager (ELM) [9, 10] and Promotion [9, 47]
over workloads by YCSB, SmallBank, and TPC-C benchmarks.

7.3.1 Impact of data contention. This part studies the impact of
data contention by varying the skew factor (SF). TXNSAILs out-
performs other solutions by up to 22.7x and is 1.9X better than
the second-best solution due to lightweight validation without
workload modification, thus higher concurrency as depicted in Fig-
ure 12a. In this case, SOTA solutions can not beat SER as they
introduce additional write operations in YCSB workloads that re-
strict concurrency. In high contention scenarios (SF>0.9), valida-
tion costs outweigh the benefits of using a lower isolation level,
triggering TXNSAILs to transition to the SER level and perform
slightly (<5%) lower than SER due to TxNSAILs overhead. In low
contention scenarios (SF<0.9), TxNSaI1Ls adopts SI due to low vali-
dation overhead. We further analyze the latency distribution with
the skew factor of 0.9 using cumulative distribution function (CDF)
plots, as shown in Figure 12b. In all scenarios, TxNSAILs reduces
transaction latency.

7.3.2 Impact of write/read ratios. This part evaluates the perfor-
mance of varying the percentage of write operations over YCSB. In

88 RC+ELM @z SI+ELM SER
RC+Promotion E== SI+Promotion TxnSails
----- RC+ELM ---— SI+ELM SER
RC+Promotion SI+Promotion —— TxnSails
é st st Sl 1.0
£ " - : SI 508
245 £0.6
= s
=] SI 153
£30 204
£ -4
215 SER gpg| ~ 0.2
= AV IV [! %
=0 [alk H f 0.0 =T T T 7 3
0.1 03 050709 1.1 1.3 10 10 10 10 10
Skew factor Latency (ms)
(a) Performance (b) Analysis of latency CDF
Figure 12: Impact of data contention - YCSB
B8 RC+ELM SI+ELM SER
RC+Promotion ~ E== SI+Promotion TxnSails
é 0B O BB CCO ROt]
60 g
& ; 507
245] é
3 ¥
£30 S s é
Z15] H H SER pef “ 0.1
£ LNEHRVE v He e
01 03 05 07 09 0 50 100 150
Write operation percentage Throughput (k Txns/s)

(a) Skew factor is 0.1 (b) Read only transactions

Figure 13: Impact of write/read ratio - YCSB

read-write scenarios in Figure 13a , TXNSAILS can outperform sec-
ond best solutions up to 1.7X. As the percentage of write operations
increases, the performance gap narrows as verification overhead at
lower isolation levels increases. TXNSAILs transitions from using SI
to SER and finally to RC, as the FCW [19] strategy increases the
abort rate in scenarios with a high percentage of writes.

We also evaluate the performance in read-only scenarios in Fig-
ure 13b. TxNSAILs achieves performance up to 4.6x higher than
SER and up to 20.4x higher than others. TXNSAILs adopts to SIlevel
asits in-memory validation is nearly costless and rarely fails. Other
solutions convert read operations to write operations, thereby re-
stricting concurrency. This also highlights that when a database is
configured to be SER, there is a significant performance loss com-
pared to SI, even with read-only scenarios.

7.3.3 Impact of templates percentages. In complex workloads like
SmallBank and TPC-C, only certain transaction templates lead to
data anomalies, so modifying these templates can ensure serializ-
ability under low isolation levels. This part compares different so-
lutions by varying the percentage of critical transaction templates.

In SmallBank, we evaluate the proportions of the read-only Bal-
ance and write transaction WriteCheck, as shown in Figure 14.
As the proportion of Balance transactions increases, performance
improves; however, RC+ELM and RC+Promotion introduce addi-
tional writes in Balance, leading to increased WW conflicts. In
contrast, SI+ELM and SI+Promotion perform better since they
do not modify read-only Balance transactions. TXNSAILs transi-
tions to SI in these workloads and achieves up to 6.2x perfor-
mance gain over RC+ELM and RC+Promotion. Conversely, as the

4237

B RCHELM SI+ELM SER

RC+Promotion E=3 SI+Promotion TxnSails
Z12s 50
&
) 100 40
g 75 . 30
E [
£ 50 - ¥ : 20
g 25 Hé : 10
= : e HIVE HEYE T]

0 30 s0 70 9 o
Balance percentage ‘WriteCheck percentage

Figure 14: Impact of templates percentage - SmallBank

— RC+ELM RC+Promotion E= SI SER TxnSails
%30 ke Re

£ 24] SI i RC

5 - 5 SI & [RC

5 18] - SI X [. RC RC
S 3 i 3 ; X : 5 .
E 2 ‘| ¥ : B § i 8
E g i : :] 8 : § E :
= 70 90 10 30 50 70 90

Neworder percentage Payment percentage

Figure 15: Impact of templates percentage - TPC-C

8 RC+ELM 7 SHELM SER
o RC+Promotion E=3 SI+Promotion TxnSails
2 skew factor: 0.1 skew factor: 1.1
£75
&~]
= 60 - EN
BN nin
530 B & b
215 R 0 i ; ;
E 1 BVE HBVE RV T mﬂr@&ﬂl&ﬂl&ﬂ :
50 70 90 100 30 50 70 90

Balance percentage Balance percentage

Figure 16: Extended evaluations on MySQL - SmallBank

proportion of WriteCheck transactions increases, concurrency de-
creases. However, TXNSAILs’s performance advantage becomes
more pronounced as no extra WW conflicts are introduced. At 90%
WriteCheck transactions, TXNSAILS outperforms SI+Promotion by
58.1% and achieves 2.3x the performance of SER.

TPC-C can execute serializable under SI, eliminating the need
for validation in SI. The critical NewOrder and Payment transac-
tions require modifications by RC+ELM and RC+Promotion, in-
creasing write conflicts on NewOrder, resulting in a performance
disadvantage compared to TxNSAILs . Due to high contention
on the warehouse relation, validation overheads are generally
higher, except when the proportion of NewOrder is 0.1, where
TxNSAILS shows a 10.7% improvement over SL In other scenar-
ios, TxNSAILs adapts to SI. Payment transactions are more write-
intensive, prompting TXNSAILs to adapt to RC, which achieves up
to 40.6% performance improvement over SI. Compared to other so-
lutions, TXNSAILS achieves up to 53.5% performance improvement.

7.3.4 Generality and scalability. This part evaluates the general-
ity and scalability of TxNSAILs using MySQL and Neon [3]. Specif-
ically, we apply TxNSAILs to low isolation levels in MySQL and
conduct experiments using the SmallBank benchmark. As shown

_HERC+ELM SHELM SER SER (wr) SER (ro)

gEER(HPmmmi(m EH SI+Promotion E& TxnSails ’Q\ [0 TxnSails (wr) TxnSails (ro)

Z g

£ 60 £ 320

245 <240

230 2160

15 1 : K : : % 80

2 e HNVE R el | S (L i) | | |

= 64 128 256 51210242048 £ 1 2 3 4
of terminals # of nodes

(a) Scale up (b) Scale out

Figure 17: Scalability in Neon - YCSB

Table 2: Integerate TXNSAILs into Apache shardingsphere

Median
Approach Throughput (k Txn/s) Latency (ms) p99 Latency (ms)
SSP+TxXNSAILS 32.3 3.97 21.66
SSP 28.4 4.76 49.12

in Figure 16, TxNSAILS consistently achieves the highest through-
put on MySQL. In particular, TxnSails outperforms the second-best
solution by up to 12.5% under low contention and 22.1% under high
contention workloads. Furthermore, TxnSails surpasses other so-
lutions by up to 12.36x. These results highlight the generality of
TxNSAILs across diverse database systems.

To evaluate the scalability, we conduct experiments on Neon, an
elastically scalable database, from both scale-up and scale-out per-
spectives. As shown in Figure 17a, we vary the number of client
terminals on a single read-write node from 32 to 2048. The re-
sults show that TXNSAILs consistently outperforms other solutions.
TxNSAILs achieves up to 1.65X performance improvement at 2048
terminals. As shown in Figure 17b, we increase the number of read-
only nodes. Here, TXNSAILS also consistently surpasses the base-
line Neon database, confirming its great scale-out scalability. It is
worth noting that, since read-only nodes only provide SI, TxNSAILS
does not add extra concurrency control overhead on these nodes.
Consequently, the performance gains become less pronounced as
the number of read-only nodes increases.

7.3.5 Integration into Shardingsphere. We evaluate TXNSAILS in
Shardingsphere using the underlying data source PostgreSQL via
the YCSB workload with the default configuration; the results are
illustrated in Table 2. After integrating TxNSaiLs, SSP’s perfor-
mance improves 13.7%, the median latency reduces 16.5%, and the
maximum latency reduces up to 55.9%. TXNSAILS can provide bet-
ter performance and lower tail latency with a low isolation level.
Summary. Current research often limits concurrency and scala-
bility in a coarse-grained manner by replacing read locks with
write locks. In contrast, TXNSAILS employs validation-based con-
currency control in a fine-grained manner, achieving superior per-
formance compared to existing approaches. Furthermore, unlike
previous work that merely advocates for a lower isolation level, we
argue that, due to the varying structures and proportions of differ-
ent transaction templates, higher isolation levels can sometimes
yield better results, which can be used by TXNSAILs adaptively.

4238

8 RELATED WORK

Our study is related to the previous work on concurrency control
algorithms that ensure serializable scheduling within and outside
the database kernel.

Within the database kernel. Existing works have explored a va-
riety of algorithms to guarantee SER, which can be divided into
two main categories: (1) deterministic algorithms (e.g., Calvin [44],
Aria [40], Harmony [33]) and (2) non-deterministic algorithms,
such as 2PL, OCC, timestamp ordering (TO) and their variants
[14, 15, 32, 36, 45, 48, 50-52, 56, 57, 59, 60]. While these algo-
rithms effectively achieve serializable scheduling, they offer vary-
ing performance benefits depending on the workload. To address
this, some studies propose adaptive concurrency control algo-
rithms for dynamic workloads. For instance, Polyjuice [49] em-
ploys reinforcement learning to design tailored concurrency con-
trol mechanisms for each stored procedure, while Snapper [37]
mixes deterministic and non-deterministic (i.e., 2PL) algorithms.
However, deterministic algorithms impose stricter requirements
than TxNSAILs: (1) transactions must be pre-collected and com-
pleted in a single interactive round, and (2) their read-write sets
must be known in advance. Furthermore, all these algorithms are
explicitly tailored for database kernels, which limits their broader
applicability and generalizability. In contrast, TXNSAILS requires
no kernel modifications . More importantly, TXxNSAILs boosts per-
formance by adaptively assigning the optimal isolation level based
on workload characteristics while preserving SER.

Outside the database kernel. Substantial efforts have been ded-
icated to scheduling entire workloads under low isolation levels
can still achieve SER by adjusting specific query patterns. Fekete et
al. provide the necessary and sufficient conditions for SI to achieve
serializable scheduling [8, 23]. Ketsman et al. [31, 46] investigate
the characteristics of non-serializable scheduling under RC and
Read Uncommitted isolation levels. This theoretical framework has
been further refined with functional constraints by Vandevoort et
al. [47]. Based on these insights, TXNSAILS can accurately and effi-
ciently achieve SER across various isolation levels.

9 CONCLUSION

In this paper, we present TxNSailLs, an efficient middle-tier ap-
proach that achieves serializability by strategically selecting be-
tween serializable and low isolation levels for dynamic work-
loads. TxNSAILs introduces a unified middle-tier validation method
to enforce the commit order consistent with the vulnerable de-
pendency order, ensuring serializability in single-isolation and
cross-isolation scenarios. Moreover, TxNSAILs adopts a graph-
learned model to extract the runtime workload characteristics and
adaptively predict the optimal isolation levels, achieving further
performance improvement. The experimental results show that
TxNSAILS can self-adaptively select the optimal isolation level and
outperform state-of-the-art solutions and the native PostgreSQL.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-
tion of China (No. 62441230, 62472429, 62461146205). Wei Lu is the
corresponding author.

REFERENCES

(9]

[10]

[11]

[12]

[13

[14]

[15]

[16]

(18]

[19

[20]

[21]

[22

[23]
[24]
[25]

[26

[27]

[28]

[29

[30]

2024. Supplemental materials of TxnSails. https://github.com/dbiir/
TxnSailsServer/blob/main/technique_report_revision.pdf.

2024. t-distributed stochastic neighbor embedding. https://en.wikipedia.org/
wiki/T-distributed_stochastic_neighbor_embedding.

2025. Neon Serverless Postgres — Ship faster. https://neon.tech/.

2025. PostgreSQL: The World’s Most Advanced Open Source Relational Data-
base. https://www.postgresql.org/.

2025. TPC-C: On-Line Transaction Processing Benchmark. http://www.tpc.org/
tpee/.

Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation
Level Definitions. In ICDE. IEEE Computer Society, 67-78.

Mohammad Alomari et al. 2009. Ensuring serializable executions with snapshot
isolation dbms. (2009).

Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. Serial-
izable executions with snapshot isolation: Modifying application code or mixing
isolation levels?. In Database Systems for Advanced Applications: 13th Interna-
tional Conference, DASFAA 2008, New Delhi, India, March 19-21, 2008. Proceedings
13. Springer, 267-281.

Mohammad Alomari, Michael J. Cahill, Alan D. Fekete, and Uwe R6hm. 2008.
The Cost of Serializability on Platforms That Use Snapshot Isolation. In ICDE.
IEEE Computer Society, 576-585.

Mohammad Alomari and Alan D. Fekete. 2015. Serializable use of Read Com-
mitted isolation level. In AICCSA. IEEE Computer Society, 1-8.

Peter Bailis, Aaron Davidson, Alan D. Fekete, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2013. Highly Available Transactions: Virtues and Limitations.
Proc. VLDB Endow. 7, 3 (2013), 181-192.

Peter Bailis, Alan D. Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. 2014. Coordination Avoidance in Database Systems. Proc.
VLDB Endow. 8, 3 (2014), 185-196.

Peter Bailis, Alan D. Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica.
2014. Scalable atomic visibility with RAMP transactions. In SIGMOD Conference.
ACM, 27-38.

Claude Barthels, Ingo Miiller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong consistency is not hard to get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. Proc. VLDB Endow. 12, 13 (2019),
2325-2338.

Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (1981), 185-221.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In ICLR.

Michael J. Cahill, Uwe Rohm, and Alan D. Fekete. 2008. Serializable isolation
for snapshot databases. In SIGMOD Conference. ACM, 729-738.

Michael J. Cahill, Uwe R6hm, and Alan D. Fekete. 2009. Serializable isolation
for snapshot databases. ACM Trans. Database Syst. 34, 4 (2009), 20:1-20:42.
Yuxing Chen, Anqun Pan, Hailin Lei, Anda Ye, Shuo Han, Yan Tang, Wei Lu, Yun-
peng Chai, Feng Zhang, and Xiaoyong Du. 2024. TDSQL: Tencent Distributed
Database System. Proc. VLDB Endow. 17, 12 (2024), 3869-3882.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. ACM,
143-154.

Akon Dey, Alan D. Fekete, Raghunath Nambiar, and Uwe R6hm. 2014. YCSB+T:
Benchmarking web-scale transactional databases. In ICDE Workshops. IEEE
Computer Society, 223-230.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-
tional Databases. Proc. VLDB Endow. 7, 4 (2013), 277-288.

Alan D. Fekete. 2005. Allocating isolation levels to transactions. In PODS. ACM,
206-215.

AlanD. Fekete. 2019. Making Consistency Protocols Serializable. In PODS. ACM,
269.

Alan D. Fekete, Shirley Goldrei, and Jorge Perez Asenjo. 2009. Quantifying Iso-
lation Anomalies. Proc. VLDB Endow. 2, 1 (2009), 467-478.

Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and
Masaki Aida. 2019. Graph Signal Processing for Directed Graphs Based on the
Hermitian Laplacian. In ECML/PKDD (1) (Lecture Notes in Computer Science),
Vol. 11906. Springer, 447-463.

Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020.
IsoDiff: Debugging Anomalies Caused by Weak Isolation. Proc. VLDB Endow. 13,
11 (2020), 2773-2786.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. 1995. Bayesian
data analysis. Chapman and Hall/CRC.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry. In ICML
(Proceedings of Machine Learning Research), Vol. 70. PMLR, 1263-1272.

Long Gu, Si Liu, Tiancheng Xing, Hengfeng Wei, Yuxing Chen, and David A.
Basin. 2024. IsoVista: Black-box Checking Database Isolation Guarantees.

4239

(31]

(32]

[33

(35]

[36

[37

[39

[40]

[41]

[42]

[46

[47

(48

[49]

[51

[52

Proc. VLDB Endow. 17, 12 (2024), 4325-4328. https://doi.org/10.14778/3685800.
3685866

Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2022. De-
ciding Robustness for Lower SQL Isolation Levels. ACM Trans. Database Syst.
47,4 (2022), 13:1-13:41.

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for Heterogeneous Work-
loads. In SIGMOD Conference. ACM, 1675-1687.

Ziliang Lai, Chris Liu, and Eric Lo. 2023. When Private Blockchain Meets De-
terministic Database. Proc. ACM Manag. Data 1, 1 (2023), 98:1-98:28. https:
//doi.org/10.1145/3588952

Hexu Li, Hengfeng Wei, Hongrong Ouyang, Yuxing Chen, Na Yang, Ruohao
Zhang, and Anqun Pan. 2025. Online Timestamp-Based Transactional Isolation
Checking of Database Systems. In 2025 IEEE 41st International Conference on
Data Engineering (ICDE). IEEE Computer Society, 3738-3750.

Ruiyuan Li, Liang Zhang, Juan Pan, Junwen Liu, Peng Wang, Nianjun Sun, Shan-
min Wang, Chao Chen, Fugiang Gu, and Songtao Guo. 2022. Apache Sharding-
Sphere: A Holistic and Pluggable Platform for Data Sharding. In ICDE. IEEE,
2468-2480.

Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:
Dependably Fast Multi-Core In-Memory Transactions. In SIGMOD Conference.
ACM, 21-35.

Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, and Marcos Antonio Vaz Salles.
2022. Hybrid Deterministic and Nondeterministic Execution of Transactions in
Actor Systems. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 65-78.

David B. Lomet. 1993. Key Range Locking Strategies for Improved Concurrency.
In VLDB. Morgan Kaufmann, 655-664.

David B. Lomet, Alan D. Fekete, Rui Wang, and Peter Ward. 2012. Multi-version
Concurrency via Timestamp Range Conflict Management. In ICDE. IEEE Com-
puter Society, 714-725.

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practi-
cal Deterministic OLTP Database. Proc. VLDB Endow. 13, 11 (2020), 2047-2060.
http://www.vldb.org/pvldb/vol13/p2047-lu.pdf

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-Driving
Database Management Systems. In SIGMOD Conference. ACM, 631-645.

C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.
Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM
Trans. Database Syst. 17, 1 (1992), 94-162.

Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (2012), 1850-1861.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for par-
titioned database systems. In SIGMOD Conference. ACM, 1-12.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOSP. ACM,
18-32.

Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2021. Ro-
bustness against Read Committed for Transaction Templates. Proc. VLDB Endow.
14, 11 (2021), 2141-2153.

Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Ro-
bustness Against Read Committed for Transaction Templates with Functional
Constraints. In ICDT (LIPIcs), Vol. 220. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 16:1-16:17.

Donghui Wang, Yuxing Chen, Chengyao Jiang, Anqun Pan, Wei Jiang, Songli
Wang, Hailin Lei, Chong Zhu, Lixiong Zheng, Wei Lu, Yunpeng Chai, Feng
Zhang, and Xiaoyong Du. 2025. TXSQL: Lock Optimizations Towards High
Contented Workloads. In Companion of the 2025 International Conference on
Management of Data, SIGMOD/PODS 2025, Berlin, Germany, June 22-27, 2025,
Volker Markl, Joseph M. Hellerstein, and Azza Abouzied (Eds.). ACM, 675-688.
https://doi.org/10.1145/3722212.3724457

Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2021, July 14-16, 2021. 198-216.
Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. 2015. The
Serial Safety Net: Efficient Concurrency Control on Modern Hardware. In Pro-
ceedings of the 11th International Workshop on Data Management on New Hard-
ware (Melbourne, VIC, Australia). Association for Computing Machinery, New
York, NY, USA, Article 8, 8 pages.

Tianzheng Wang, Ryan Johnson, Alan D. Fekete, and Ippokratis Pandis. 2017.
Efficiently making (almost) any concurrency control mechanism serializable.
VLDB 7. 26, 4 (2017), 537-562.

Tianzheng Wang, Ryan Johnson, Alan D. Fekete, and Ippokratis Pandis. 2018.
Erratum to: Efficiently making (almost) any concurrency control mechanism
serializable. VLDB 7. 27, 6 (2018), 899-900.

https://github.com/dbiir/TxnSailsServer/blob/main/technique_report_revision.pdf
https://github.com/dbiir/TxnSailsServer/blob/main/technique_report_revision.pdf
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://neon.tech/
https://www.postgresql.org/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://doi.org/10.14778/3685800.3685866
https://doi.org/10.14778/3685800.3685866
https://doi.org/10.1145/3588952
https://doi.org/10.1145/3588952
http://www.vldb.org/pvldb/vol13/p2047-lu.pdf
https://doi.org/10.1145/3722212.3724457

[53]

[54]

[55]

[56]

[57]

[58]

Zhaoguo Wang, Chuzhe Tang, Xiaodong Zhang, Qianmian Yu, Binyu Zang,
Haibing Guan, and Haibo Chen. 2024. Ad Hoc Transactions through the Look-
ing Glass: An Empirical Study of Application-Level Transactions in Web Appli-
cations. ACM Trans. Database Syst. 49, 1 (2024), 3:1-3:43.

Hengfeng Wei, Jiang Xiao, Na Yang, Si Liu, Zijing Yin, Yuxing Chen, and An-
qun Pan. 2025. Boosting End-to-End Database Isolation Checking via Mini-
Transactions. In 2025 IEEE 41st International Conference on Data Engineering
(ICDE). IEEE Computer Society, 3998-4010.

Tao Yu, Zhaonian Zou, Weihua Sun, and Yu Yan. 2024. Refactoring Index Tuning
Process with Benefit Estimation. Proc. VLDB Endow. 17, 7 (2024), 1528-1541.
Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tic-
Toc: Time Traveling Optimistic Concurrency Control. In SIGMOD Conference.
ACM, 1629-1642.

Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph, and Srini-
vas Devadas. 2018. Sundial: Harmonizing Concurrency Control and Caching in
a Distributed OLTP Database Management System. Proc. VLDB Endow. 11, 10
(2018), 1289-1302.

Chao Zhang, Guoliang Li, Leyao Liu, Tao Lv, and Ju Fan. 2025. CloudyBench:
A Testbed for A Comprehensive Evaluation of Cloud-Native Databases. In 2025
IEEE 41st International Conference on Data Engineering (ICDE). IEEE Computer
Society, 2535-2547.

4240

[59

[60

[61

[63

[64]

Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for
HTAP Databases. Proc. VLDB Endow. 17, 5 (2024), 939-951. https://doi.org/10.
14778/3641204.3641206

Zhanhao Zhao, Hongyao Zhao, Qiyu Zhuang, Wei Lu, Haixiang Li, Meihui
Zhang, Anqun Pan, and Xiaoyong Du. 2023. Efficiently Supporting Multi-Level
Serializability in Decentralized Database Systems. IEEE Trans. Knowl. Data Eng.
35, 12 (2023), 12618-12633.

Qiushi Zheng, Zhanhao Zhao, Wei Lu, Chang Yao, Yuxing Chen, Anqun Pan,
and Xiaoyong Du. 2024. Lion: Minimizing Distributed Transactions Through
Adaptive Replica Provision. In ICDE. IEEE, 2012-2025.

Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries using Graph Embedding. Proc. VLDB Endow.
13, 9 (2020), 1416-1428.

Zeheng Zhou, Ying Jiang, Weifeng Liu, Ruifan Wu, Zerong Li, and Wenchao
Guan. 2024. A Fast Algorithm for Estimating Two-Dimensional Sample Entropy
Based on an Upper Confidence Bound and Monte Carlo Sampling. Entropy 26,
2 (2024), 155

Qiyu Zhuang, Xinyue Shi, Shuang Liu, Wei Lu, Zhanhao Zhao, Yuxing Chen,
Tong Li, Anqun Pan, and Xiaoyong Du. 2025. GeoTP: Latency-Aware Geo-
Distributed Transaction Processing in Database Middlewares . In 2025 IEEE 41st
International Conference on Data Engineering (ICDE). IEEE Computer Society,
433-445.

https://doi.org/10.14778/3641204.3641206
https://doi.org/10.14778/3641204.3641206

	Abstract
	1 Introduction
	2 preliminaries
	2.1 Transaction Templates
	2.2 Dangerous Structures
	2.3 Vulnerable Dependency

	3 Overview of TxnSails
	4 Design of TxnSails
	4.1 Middle-tier Concurrency Control
	4.2 Self-adaptive Isolation Level Selection
	4.3 Cross-isolation Validation

	5 Serializability and recovery
	5.1 Serializability under Low Isolation Levels
	5.2 Serializability under Cross-isolation Levels
	5.3 Failure Recovery

	6 Implementation
	7 evaluations
	7.1 Setup
	7.2 Ablation Study
	7.3 Comparision to State-of-the-art Solutions

	8 Related Work
	9 conclusion
	Acknowledgments
	References

