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ABSTRACT

Although a large amount of valuable knowledge can be obtained

from the weighted graph snapshots modeled over time, it may cause

privacy issues. Local differential privacy (LDP) provides a strong so-

lution for private graph data publishing in decentralized networks.

However, most existing LDP studies over graphs are only applicable

to static unweighted graphs. This paper investigates the problem of

continuous publication of weighted graph snapshots and proposes

a graph publication framework, WGT-LDP, under 𝑤-event edge

weight LDP, which can protect the privacy of edges and weights

over any𝑤 consecutive time steps. WGT-LDP consists of four key

components: population division-based sampling that overcomes

the problem of over-segmentation of the privacy budget, data range

estimation that mitigates noise on edge weights, aggregate informa-

tion collection that obtains important information about the graph

structure and edge weights, and graph snapshot generation that re-

constructs weighted graph snapshot at each time step. We provide

theoretical guarantees on privacy and utility, and perform exten-

sive experiments on three real-world and two synthetic datasets,

using four commonly used metrics. Our experiments show that

WGT-LDP produces high-quality synthetic weighted graphs and

significantly outperforms baseline methods.
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1 INTRODUCTION

Due to graphs providing an excellent ability to represent relational

data, they have been widely used in many real-world complex
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systems, such as social media and computer networks [24]. In many

cases, the interaction behaviors between entities in these systems

often change dynamically over time, which can be modeled as

continuous graph snapshots. Moreover, these snapshots may carry

more valuable information beyond connecting different entities

(called weights), e.g., interaction frequency, which can be collected

and analyzed for further complex tasks. The following are two real

examples of publishing and analyzing weighted graph snapshots.

Example 1. Social Network Analytics. On professional social

platforms such as LinkedIn, the edges and weights in weighted graph

snapshots can reflect the actual dynamic relevance and connection

strength between users, thereby increasing the efficiency of job search

and recruitment [15].

Example 2. Epidemiological Network Analytics. Analyzing

continuous weighted graph data is also great popularity in epidemi-

ological network systems, e.g., respiratory infectious diseases. By

studying the dynamic interactions (edges) and interaction strengths

(weights) between individuals in continuous snapshots, their risk of

contracting respiratory diseases can be estimated [10, 12].

However, directly publishing these graph data for analysis with-

out protection may pose privacy risks. Local differential privacy

(LDP) [7, 20] is a strong privacy-preserving technique that can be

used to collect sensitive data from users in a decentralized network

without a complete central database. In the LDP setting, to ensure

privacy, each user must send the data injected with random noise to

the curator. Existing work on LDP-based graph publishing mainly

focuses on static unweighted graphs [33, 42], while very little focus

on weighted graph data in the temporal dimension. Despite this,

providing privacy for dynamic networks with abundant valuable

information may be more common in the near future [38].

More precisely, our scenario is concerned with the continuous

publication of weighted graph snapshots, where both the graph

structure and edge weights may be private information. We focus

on methods that provide 𝑤-event-level privacy because they are

applicable to infinite time steps while providing strong privacy

protection [21]. In particular,𝑤-event-level privacy aims to protect

any event sequence occurring within any window of𝑤 time steps,

which means that individuals can guarantee the privacy of their

data over𝑤 consecutive snapshots. Figure 1 shows an example on

a decentralized network where the curator regularly collects per-

turbation data from all users to continuously synthesize weighted
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Figure 1: The example of continuously synthesizingweighted

graph snapshots in decentralized networks.

graphs. To the best of our knowledge, previous works on𝑤-event-

level privacy have focused on tabular streaming data [26, 28, 34, 41],

and have not explored continuous weighted graph publication un-

der LDP. To this end, we have three technical challenges:

• Over-segmentation of privacy budget. To achieve𝑤-event-

level privacy, most existing methods on tabular data need to

allocate privacy budgets for any sliding window of size𝑤 , so that

the sum of the budgets within this window does not exceed the

total privacy budget 𝜀. However, the publishing mechanism of

graph data usually contains multiple components that consume

privacy budgets, which will cause further segmentation of the

privacy budget and thus destroy the utility of the data.

• High noisemagnitude of edge weights. In order not to violate

the differential privacy protocol, the magnitude of the noise

added to the edge weight should be proportional to its upper

bound. In the study of central DP [44], the upper bound can be

lowered based on the total error of all weights in the original

graph. This is difficult under LDP since the curator cannot access

the original data.

• Bias of noisy adjacencymatrix.After adding noise to every bit

of the adjacency matrix with weights, zero edges are converted

to edges with real weights, making the results no longer useful.

It is challenging to mitigate the negative impact of noise on the

performance of synthetic weighted graph snapshots.

In this paper, we propose WGT-LDP, a new framework for con-

tinuous weighted graph publishing under 𝑤-event edge weight

LDP. We first design a population division-based sampling scheme,

which considers data changes and samples disjoint nodes in the

window, so that each node has sufficient privacy budget to perturb

its data. To effectively reduce the noise of edge weights, we pro-

pose a data range estimation mechanism where the curator collects

the noisy local maximum weights of sampling nodes and runs a

post-processing technique to estimate the local data range of each

node. Since node degrees and adjacency lists carry knowledge about

graph structure and edge weights, respectively, we collect these

two aggregates of information from sampling nodes. By using the

coarse-grained noisy node degrees as evidence and the fine-grained

noisy adjacency lists as reference, we can recover the characteristics

of the original snapshot and preserve structural sparsity. Our main

contributions are summarized as follows:

New Perspective. We first explore the problem of weighted graph

publication with LDP in the temporal dimension, which aims to

generate continuous synthetic weighted graph snapshots while

satisfying privacy protection requirements.

Simple yet Effective Solution. We propose a continuous weighted

graphs publication framework WGT-LDP under 𝑤-event edge

weight LDP. WGT-LDP first adopts a population division strat-

egy to adaptively sample nodes with large data changes, and then

uses a data range estimation method to reduce the impact of per-

turbation noise on edge weights. Finally, WGT-LDP collects noisy

degrees as evidence and noisy adjacency lists as reference, and

adopts different methods to reconstruct the current snapshot to

ensure weighted graph utility.

Extensive Experimental Evaluations.We theoretically prove that the

proposedWGT-LDP satisfies𝑤-event edge weight LDP and analyze

the utility. Extensive experiments on several datasets and metrics

demonstrate the effectiveness of WGT-LDP.

2 PRELIMINARIES

2.1 Local Differential Privacy (LDP)

Differential privacy (DP) [8], a gold standard for data privacy, origi-

nally assumed a centralized model where a trusted curator holds the

exact data of all users. This may lead to some privacy and security

issues. For instance, a data curator may sell data for personal gain

or suffer an attack that leads to data leakage [36]. Local differen-

tial privacy (LDP) [7] effectively solves the above problems by not

assuming a trusted third party. In LDP, each user can use the DP

mechanism to perturb personal sensitive data locally before the

data is sent to the curator. Formally, LDP is defined as follows:

Definition 2.1 (LDP). A randomized algorithmM provides 𝜀-LDP,

where 𝜀 > 0, if and only if for any pair of input values 𝑥, 𝑥 ′ ∈ 𝐷

and any possible output 𝑥∗,

Pr
[
M (𝑥) = 𝑥∗

]
≤ 𝑒𝜀 Pr

[
M

(
𝑥 ′
)
= 𝑥∗

]
, (1)

where 𝜀 is called the privacy budget. The smaller 𝜀 can provide

stronger privacy guarantees.

Geometric Mechanism. The Geometric mechanism (GM) [13] is

mainly used for queries with integer results. It satisfies the LDP

requirements by adding random geometric noise to the query func-

tion 𝑓 on the input 𝑥 . The magnitude of noise is proportional to

the global sensitivity, defined as,

Δ𝑓 = maximize
𝑥,𝑥 ′ ∈𝐷

‖ 𝑓 (𝑥) − 𝑓 (𝑥 ′)‖1 . (2)

For numerical data, the Geometric mechanism M is as follows:

M(𝑥) = 𝑓 (𝑥) +𝐺𝑒𝑜 (𝑒−𝜀/Δ𝑓 ), (3)

where 𝐺𝑒𝑜 (𝜆) denotes a random integer noise drawn from two-

sided geometric distribution Pr[𝐺𝑒𝑜 (𝜆) = 𝑧] = 1−𝜆
1+𝜆

𝜆 |𝑧 | , and it has

a mean of 0.

Square Wave Mechanism. The Square Wave mechanism (SW)

[25] attempts to increase the probability that the noisy response

value carries useful information about the true value, which extends

the idea of generalized randomized response. That is, the probability

that users report values closer to 𝑥 is greater than values farther

away from 𝑥 for given input 𝑥 .

In particular, we assume that the input domain is [0, 1] and the

output domain is [−𝑏, 1 + 𝑏], where 𝑏 =
𝜀𝑒𝜀−𝑒𝜀+1

2𝑒𝜀 (𝑒𝜀−1−𝜀 )
. For values in
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the range [𝑙, ℎ], they are first mapped into [0, 1] (by transforming

value 𝑥 to 𝑥−𝑙
ℎ−𝑙

), and then the estimated values are transformed back.

The perturbation function of SW is defined as:

∀𝑥̃∈[−𝑏,1+𝑏 ] , Pr[SW(𝑥) = 𝑥] =

{
𝑝, if |𝑥 − 𝑥 | ≤ 𝑏,

𝑞, otherwise ,
(4)

where 𝑝 =
𝑒𝜀

2𝑏𝑒𝜀+1
and 𝑞 =

1
2𝑏𝑒𝜀+1

.

The LDPmechanisms satisfy the properties of sequential/parallel

composition and post-processing [8, 29], which provide privacy

guarantees for building complex LDP algorithms.

2.2 LDP for Weighted Graphs

In the context of weighted graphs, both the edges and edge weights

may be private information. Depending on the privacy requirement,

we introduce a formal definition of LDP for weighted graphs.

Specifically, let 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} be the set of all nodes (i.e.,

users) in a undirected weighted graph. The adjacency list of a node

𝑣𝑖 can be denoted as an 𝑛-dimensional bit vector (𝑎(𝑣𝑖 , 𝑣1), · · · ,

𝑎(𝑣𝑖 , 𝑣𝑛)), where 𝑎(𝑣𝑖 , 𝑣 𝑗 ) is the edge weight between nodes 𝑣𝑖 and

𝑣 𝑗 . Note that if edge (𝑣𝑖 , 𝑣 𝑗 ) exists in the weighted graph, then

𝑎(𝑣𝑖 , 𝑣 𝑗 ) ≥ 1; otherwise 𝑎(𝑣𝑖 , 𝑣 𝑗 ) = 0. The LDP for weighted graphs

is formally defined as follows:

Definition 2.2 (edge weight LDP). A randomized algorithm M

provides 𝜀-edge weight LDP, where 𝜀 > 0, if and only if for any two

adjacency lists a and a′ that only differ in one bit (called neighbors),

and for any possible output 𝑠 ∈ 𝑅𝑎𝑛𝑔𝑒 (M),

Pr [M (a) = 𝑠] ≤ 𝑒𝜀 Pr
[
M

(
a
′)

= 𝑠
]
. (5)

Edge weight LDP is the same as edge LDP [33] except that the

former (resp. latter) considers weighted graph (resp. unweighted

graph). Under this definition, two adjacency lists differ by exactly

one bit, indicating that they can differ on an edge and can also differ

on the weight of an edge. Therefore, if a mechanism satisfies edge

weight LDP, the impact of any edges or any edge weights on the

final output is bounded, which guarantees the privacy of edges and

edge weights.

2.3 Problem Statement

In our paper, we are interested in weighted graph data with tempo-

ral attribute. In particular, consider a decentralized network system

where a data curator periodically collects information from 𝑛 users.

Based on the collected data at each time step, the curator sequen-

tially publishes weighted graph snapshots at these time steps. Let

𝐺𝑡 = (𝑉 , 𝐸𝑡 , 𝑎𝑡 ) be a undirected weighted graph snapshot at time

steps 𝑡 . 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} is the set of all 𝑛 users. 𝐸𝑡 ⊆ 𝑉 × 𝑉

is the set of edges, where an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑡 denotes a relation-

ship between users 𝑣𝑖 and 𝑣 𝑗 at time step 𝑡 . The weight function

𝑎𝑡 : 𝐸𝑡 → R maps edge (𝑣𝑖 , 𝑣 𝑗 ) at time step 𝑡 to a real weight.

For each node 𝑣𝑖 in 𝐺𝑡 , the degree (𝑑𝑡 )𝑖 denotes the number of

edges connected to the node and (𝐴𝑡 )𝑖 = (𝑎𝑡 (𝑣𝑖 , 𝑣1), · · · , 𝑎𝑡 (𝑣𝑖 , 𝑣𝑛))

denotes its adjacency list, where 𝑎𝑡 (𝑣𝑖 , 𝑣 𝑗 ) ≥ 1 if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑡 ,

and otherwise 𝑎𝑡 (𝑣𝑖 , 𝑣 𝑗 ) = 0. The adjacency lists of all nodes at

time step 𝑡 form the adjacency matrix of graph 𝐺𝑡 , formalized as

𝐴𝑡 = {(𝐴𝑡 )1, (𝐴𝑡 )2, · · · , (𝐴𝑡 )𝑛}. Since the data curator is untrust-

worthy, our goal is to design a LDP solution that helps the curator to

collect user information and then construct the synthetic weighted

graph snapshot𝐺𝑡 at each time step 𝑡 . The resulting synthetic snap-

shot sequence Ĝ =

〈
𝐺1,𝐺2, · · ·

〉
is representative, i.e., it can support

any downstream graph statistical analysis task while preserving

individual privacy.

To balance utility loss and privacy loss over infinite sequences,

we follow𝑤-event-level privacy model [21] and extend its defini-

tion to the local setting for weighted graphs. Before that, we first

introduce some notions. We call two adjacency lists (𝐴𝑡 )𝑖 , (𝐴𝑡 )
′
𝑖

at time step 𝑡 are neighboring if they only differ in one bit. Let a

time-series X = 〈(𝐴1)𝑖 , (𝐴2)𝑖 , · · · 〉, the definition of𝑤-neighboring

time-series is described as follows:

Definition 2.3 (𝑤-neighboring time-series). For a positive integer

𝑤 , two time-series X, X′ of length𝑇 are𝑤-neighboring, if for each

X[𝑡], X′[𝑡] such that 𝑡 ∈ [𝑇 ] and X[𝑡] ≠ X′[𝑡], it holds that X[𝑡],

X′[𝑡] are neighboring; and for each X[𝑡1], X[𝑡2], X
′[𝑡1], X

′[𝑡2]

with 𝑡1 < 𝑡2, X[𝑡1] ≠ X′[𝑡1] and X[𝑡2] ≠ X′[𝑡2], it holds that

𝑡2 − 𝑡1 + 1 ≤ 𝑤 .

That is to say, if X, X′ are𝑤-neighboring time-series, then their

elements are the same or neighboring, and all their neighboring

elements can fit in a window of at most 𝑤 time steps. Hence, we

define𝑤-event edge weight LDP below.

Definition 2.4 (𝑤-event edge weight LDP). LetM be a randomized

algorithm that takes as input time-series X consisting of a single

user’s consecutive adjacency lists. We say thatM provides𝑤-event

𝜀-edge weight LDP if and only if for any𝑤-neighboring time-series

X, X′, and for any possible output 𝑆 ∈ 𝑅𝑎𝑛𝑔𝑒 (M),

Pr [M (X) = 𝑆] ≤ 𝑒𝜀 Pr
[
M

(
X′)

= 𝑆
]
. (6)

Discussion. Definition 2.4 aims to guarantee each user 𝜀-edge

weight LDP for any sliding window including𝑤 consecutive time

steps, where 𝜀 can be regarded as the total available privacy bud-

get in this sliding window. In other words, 𝑤-event edge weight

LDP ensures that the impact of the user’s events in any𝑤 consec-

utive graph snapshots on the query result is limited. Therefore,

an attacker cannot infer individual’s information at any 𝑤 con-

secutive time steps by observing the final sequence of synthetic

graph snapshots. Note that when 𝑤 = 1, the privacy protection

level degenerates to event-level.

Example. We assume that 𝑤 is 2. If the time-series of node

𝑣1 with length 4 is X = 〈(0, 1, 3), (0, 0, 6), (0, 2, 3), (0, 2, 1)〉,

then one of its 𝑤-neighboring time-series can be X′
=

〈(0, 1, 3), (0, 1, 6), (0, 2, 5), (0, 2, 1)〉. This is because elements (0, 1, 6)

and (0, 2, 5) in X′ (i.e., adjacency lists) are neighboring to elements

(0, 0, 6) and (0, 2, 3) in X, respectively, and these neighboring el-

ements are within the time window of size 2. The 𝑤-event edge

weight LDP makes the probability that an attacker can distinguish

between X and X′ by observing the output of the randomized

algorithmM controlled by the privacy budget 𝜀.

3 OUR APPROACH

3.1 Overview

To publish weighted graphs at each time step with𝑤-event edge

weight LDP, we propose a new framework WGT-LDP. Figure 2

shows the workflow of WGT-LDP, which consists of four phases.

Algorithm 1 gives the complete synthesis process of WGT-LDP.
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Figure 2: The overview of our WGT-LDP framework.

Algorithm 1 Overall protocol of WGT-LDP framework

Input: Original adjacency matrices 〈𝐴1, 𝐴2, · · · , 𝐴𝑡 , · · · 〉, Node

set 𝑉 , total privacy budget 𝜀 = 𝜀1 + 𝜀2 + 𝜀3 + 𝜀4, window size𝑤 ,

threshold 𝛿 , transformation probabilities 𝑀 , bucket size 𝑟

Output: Synthetic snapshots Ĝ =

〈
𝐺1,𝐺2, · · · ,𝐺𝑡 , · · ·

〉
for publi-

cation

1: Initialize 𝐺0 with adjacency matrix 𝐴0 ∈ 0𝑛×𝑛 ;

2: for each time step 𝑡 do

3: Obtain remaining node set 𝑉𝑡 = 𝑉 \
∑𝑡−1
𝑘=𝑡−𝑤+1

𝑉𝑘
𝑠 ;

4: 𝑉 𝑡
𝑠 = Sampling(𝐺𝑡−1,𝑉𝑡 , 𝐴𝑡 , 𝛿,𝑤, 𝜀1); ⊲ Algorithm 2

5: for each node 𝑣𝑡𝑖 ∈ 𝑉 𝑡
𝑠 do

6: Construct sub-adjacency list (𝐴𝑡
𝑠 )𝑖 involving 𝑉 𝑡

𝑠 ;

7: ℎ𝑡𝑖 = max((𝐴𝑡
𝑠 )𝑖 );

8: (𝑑𝑡𝑠 )𝑖 = |{ 𝑗 | (𝐴𝑡
𝑠 )𝑖 𝑗 ≠ 0}|;

9: end for

10: ℎ̂𝑡 = Estimation((ℎ𝑡1, · · ·ℎ
𝑡
𝑠𝑡 ), 𝑀, 𝑟, 𝜀2); ⊲ Algorithm 3

11: 𝐴̃𝑡
𝑠 , 𝑑

𝑡
𝑠 = Collection(𝑑𝑡𝑠 , 𝐴

𝑡
𝑠 , ℎ̂𝑡 , 𝜀3, 𝜀4); ⊲ Algorithm 4

12: 𝐺𝑡 = Generation(𝐺𝑡−1, 𝐴̃
𝑡
𝑠 , 𝑑

𝑡
𝑠 , ℎ̂𝑡 , 𝑀, 𝑟 ); ⊲ Algorithm 5

13: end for

14: return Ĝ

• Population Division-based Sampling. This component aims

to sample nodes with large data changes at each time step. We

sample nodes at the current time step that have never been

sampled in the previous𝑤 − 1 time steps. To this end, the curator

calculates the number of nodes whose noisy change error of the

adjacency list are greater than a threshold 𝛿 among the current

remaining nodes and adaptively adjusts the node sampling ratio.

Then, the curator focuses on the information in the subgraph

composed of all sampling nodes.

• Data Range Estimation. This component aims to estimate the

local range of each sampling node’s data in the subgraph to

reduce the impact of perturbation noise on edge weights. In par-

ticular, each sampling node sends the perturbed local maximum

weight to the curator, who adopts Expectation Maximization

with Smoothing (EMS) algorithm [25] and Bayesian estimation

to determine their noisy maximum weights.

• Aggregate Information Collection. This component aims to

collect the privatized degrees and adjacency lists of the sampling

nodes in the subgraph. For each sampling node, it independently

perturbs its degree and adjacency list based on the estimated local

data range, and then sends them to curator. The curator performs

post-processing to the collected perturbation information.

• Graph Snapshot Generation. This component aims to generate

a weighted graph at the current time step. For the edges and

weights between sampling nodes, the curator first adopts the

noisy degree sequence as a characterization of the graph structure

and the values in the noisy adjacency lists as a reference to rebuild

the edges. Then the EMS algorithm and Bayesian estimation are

applied again to rebuild the weights on these edges. For the edges

and weights of non-sampling nodes, the curator uses the data of

the previous time step to rebuild them.

3.2 Population Division-based Sampling

For continuous publication of infinite sequences with 𝑤-event-

level privacy, a general approach is to allocate privacy budgets

for any sliding window containing𝑤 time steps. However, in our

scenario, multiple components for publishing graph snapshots have

to consume privacy budget, so the privacy budget of the sampling

time steps also needs to be redistributed. This may lead to high

noise level that destroy the utility of the synthetic graph. LDP-IDS

[34] proposed to assign users to multiple groups, each of which

uses the entire privacy budget in a window. This method provides

𝑤-event-level privacy under parallel composition. Unfortunately,

random user sampling scheme ignores the differences in user data

changes, which will introduce bias to the generation of graph data.
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Algorithm 2 Population Division-based Sampling

Input: Published weighted graph 𝐺𝑡−1, remaining node set 𝑉𝑡 ,

adjacency list (𝐴𝑡 )𝑖 ∈ 𝑅𝑛 of node 𝑣𝑖 ∈ 𝑉 , threshold 𝛿 , window

size𝑤 , privacy budget 𝜀1
Output: Sampling node set 𝑉 𝑡

𝑠

// Collect change errors

1: for each node 𝑣𝑖 ∈ 𝑉𝑡 do

2: 𝐸𝑡𝑖 = |{ 𝑗 | 𝑎𝑡 (𝑣 𝑗 , 𝑣𝑖 ) ≠ 𝑎𝑡−1 (𝑣 𝑗 , 𝑣𝑖 ), 𝑣 𝑗 ∈ 𝑉𝑡 }|;

3: 𝐸𝑡𝑖 = GM(𝐸𝑡𝑖 ,
𝜀1
𝑤 ,Δ𝑓𝑒𝑟𝑟 );

4: end for

// Sampling strategy

5: 𝑚𝑡 = |{𝑖 | 𝐸𝑡𝑖 ≥ 𝛿, 𝑣𝑖 ∈ 𝑉𝑡 }|;

6: 𝑃𝑡 = 1 − exp(− 𝑛
𝑤 ·𝑚𝑡

);

7: 𝑠𝑡 = 𝑚𝑡 · 𝑃𝑡 ;

8: Sort 𝑉𝑡 in descending order of 𝐸𝑡𝑖 ;

9: Select top 𝑠𝑡 in 𝑉𝑡 as sampling node set 𝑉 𝑡
𝑠 ;

10: return 𝑉 𝑡
𝑠

To strike the trade-off between high noise and information bias,

we design a new population division-based sampling method that

considers data changes. Specifically, a portion of the entire privacy

budget 𝜀 is divided evenly to each time step in the time window

for estimating the data dynamics. After that, the curator decides

which nodes need to be sampled at each time step based on the

number of remaining nodes and the noisy data change error of these

nodes. Subsequently, this group of sampling nodes will use another

portion of the privacy budget to perturb the local data between

them. Since any node is only allowed to be sampled once in each

sliding window, further allocation of the perturbation budget in the

window is avoided, and the privacy budget cost of each node does

not exceed 𝜀.

Let 𝑉𝑡 be the remaining node set at time step 𝑡 , which is cal-

culated by removing the already sampled nodes in the previous

𝑤 − 1 time steps from the node set 𝑉 . For each node 𝑣𝑖 in 𝑉𝑡 with

adjacency list (𝐴𝑡 )𝑖 , we first define its data change error 𝐸𝑡𝑖 as the

number of unequal bits involving 𝑉𝑡 between adjacency lists (𝐴𝑡 )𝑖
and (𝐴𝑡−1)𝑖 , where (𝐴𝑡−1)𝑖 is the noisy adjacency list of 𝑣𝑖 in the

previous synthetic graph 𝐺𝑡−1. That is,

𝐸𝑡𝑖 =


{ 𝑗 | 𝑎𝑡 (𝑣 𝑗 , 𝑣𝑖 ) ≠ 𝑎𝑡−1 (𝑣 𝑗 , 𝑣𝑖 ), 𝑣 𝑗 ∈ 𝑉𝑡 }



 . (7)

When there is no previous synthetic graph, i.e., at the first time

step, we directly adopt 𝐸𝑡𝑖 =



{ 𝑗 | 𝑎𝑡 (𝑣 𝑗 , 𝑣𝑖 ) ≠ 0, 𝑣 𝑗 ∈ 𝑉𝑡 }


 as the

change error. In other words, we assume that the edges and weights

in the previous synthetic graph are all 0. Then, We let each node

locally add Geometric noise to 𝐸𝑡𝑖 with privacy budget 𝜀1
𝑤 to ensure

𝑤-event edge weight LDP, and send the privatized error 𝐸𝑡𝑖 to the

curator. Note that the global sensitivity Δ𝑓𝑒𝑟𝑟 of this query is 1

because changing one bit in the adjacency list result in the change

of 𝐸𝑡𝑖 by at most 1.

After receiving the noisy errors from all remaining nodes, the

curator calculates the number of nodes whose noisy errors are

greater than a threshold 𝛿 :

𝑚𝑡 =


{𝑖 | 𝐸𝑡𝑖 ≥ 𝛿, 𝑣𝑖 ∈ 𝑉𝑡 }



 . (8)

Algorithm 3 Data Range Estimation

Input: Maximum ℎ𝑡𝑖 in sub-adjacency list of node 𝑣𝑡𝑖 ∈ 𝑉 𝑡
𝑠 , trans-

formation probabilities 𝑀 , bucket size 𝑟 , privacy budget 𝜀2
Output: Noisy maximum values ℎ̂𝑡 = {ℎ̂𝑡1, · · · , ℎ̂

𝑡
𝑠𝑡 }

// Collect values

1: for each node 𝑣𝑡𝑖 ∈ 𝑉 𝑡
𝑠 do

2: 𝑥𝑡𝑖 = ℎ𝑡𝑖 /𝐵;

3: 𝑥𝑡𝑖 = SW(𝑥𝑡𝑖 , 𝜀2);

4: end for

// Post-processing

5: x̃ = {𝑥𝑡1, · · · , 𝑥
𝑡
𝑠𝑡 };

6: z̃ = EMS(x̃, 𝑀, 𝑟 );

7: for 𝑖 ∈ {1, 2, · · · , 𝑠𝑡 } do

8: Calculate 𝑥𝑡𝑖 based on z̃ by Eq. 10 and 11;

9: ℎ̂𝑡𝑖 = 𝐵 · 𝑥𝑡𝑖 ;

10: end for

11: return ℎ̂𝑡

A simple solution is to sample all these𝑚𝑡 nodes. However, too

large𝑚𝑡 will result in very few nodes that can be sampled at the

next 𝑤 − 1 time steps since any node only participates once in a

window. In other words, the data between the large number of non-

sampling nodes in the subsequent graph need to be approximated by

the previous time step, which may cause excessive approximation

deviation for graphs with significant dynamic changes. Therefore,

the nodes that can be sampled at each time step in the sliding

window are limited and should be carefully allocated. To this end,

the curator adaptively adjusts the node sampling ratio based on

𝑚𝑡 . We choose 𝑛
𝑤 as the adjustment threshold since it implies the

theoretical average number of sampling nodes at each time step in

the window. In particular, when𝑚𝑡 is less than
𝑛
𝑤 , the𝑚𝑡 nodes

should be sampled as much as possible to effectively capture data

changes. When𝑚𝑡 is greater than
𝑛
𝑤 , the number of samples should

be reduced to ensure that there are still enough nodes available for

sampling in future time steps, which can maintain the utility of the

synthetic graph. Based on the above analysis, we set the sampling

ratio as follows:

𝑃𝑡 = 1 − exp(−
𝑛

𝑤 ·𝑚𝑡
) . (9)

The final number of sampling nodes obtained at the current

time step is calculated as 𝑠𝑡 = 𝑚𝑡 · 𝑃𝑡 , and the corresponding set

of sampling node, denoted as 𝑉 𝑡
𝑠 =

{
𝑣𝑡𝑖 | 𝑖 ∈ [𝑠𝑡 ]

}
, consists of the

nodes with the top 𝑠𝑡 data change errors among the𝑚𝑡 nodes. This

process is described in Algorithm 2.

3.3 Data Range Estimation

Given the sampling nodes at time step 𝑡 , the curator focuses on

the data of the subgraph𝐺𝑡
𝑠 composed of these nodes, which has a

public data-independent upper bound 𝐵, i.e., the maximum possible

weight in 𝐺𝑡
𝑠 . To satisfy edge weight LDP, the noise added to the

local edge weight of each node needs to be proportional to 𝐵, which

may lead to large edge weight errors. If users are only required to

perturb the edge weights based on their true local data domain,

differential privacy cannot be satisfied, because the upper bound of

4218



Algorithm 4 Aggregate Information Collection

Input: Degree (𝑑𝑡𝑠 )𝑖 , sub-adjacency list (𝐴𝑡
𝑠 )𝑖 , noisy maximum

values ℎ̂𝑡 = {ℎ̂𝑡1, · · · , ℎ̂
𝑡
𝑠𝑡 }, privacy budget 𝜀3, 𝜀4

Output: Noisy degree sequence 𝑑𝑡𝑠 and sub-adjacency matrix 𝐴̃𝑡
𝑠

// Collect degrees and sub-adjacency lists

1: for each node 𝑣𝑡𝑖 ∈ 𝑉 𝑡
𝑠 do

2: (𝑑𝑡𝑠 )𝑖 = GM((𝑑𝑡𝑠 )𝑖 , 𝜀3,Δ𝑓𝑑 );

3: 𝑎𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) = Truncate(𝑎𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 ), ℎ̂

𝑡
𝑖 );

4: 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) = 𝑎𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 )/ℎ̂

𝑡
𝑖 ;

5: 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) = SW(𝑏𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 ), 𝜀4);

6: end for

// Degrees adjustment

7: 𝑑𝑡𝑠 = NormSub(𝑑𝑡𝑠 );

8: if
∑𝑠𝑡
𝑖=1 (𝑑

𝑡
𝑠 )𝑖 is odd then

9: randomly select a node degree (𝑑𝑡𝑠 )𝑖 ;

10: flip a coin to decide whether to add 1 or subtract 1;

11: end if

12: return 𝐴̃𝑡
𝑠 , 𝑑

𝑡
𝑠

the domain itself is private information. In the paper, we propose a

method to estimate the local data domain of each sampling node.

In particular, let the sub-adjacency matrix of 𝐺𝑡
𝑠 be 𝐴𝑡

𝑠 , where

row vector (𝐴𝑡
𝑠 )𝑖 is the sub-adjacency list of the sampling node

𝑣𝑡𝑖 . The local data range of 𝑣𝑡𝑖 is [0, ℎ𝑡𝑖 ], where ℎ𝑡𝑖 ∈ [0, 𝐵] is the

maximumvalue in (𝐴𝑡
𝑠 )𝑖 . Given the privacy budget 𝜀2 and parameter

𝑏 =
𝜀2𝑒

𝜀2−𝑒𝜀2+1
2𝑒𝜀2 (𝑒𝜀2−1−𝜀2 )

, each sampling node transforms ℎ𝑡𝑖 to 𝑥𝑡𝑖 =
ℎ𝑡
𝑖

𝐵 ∈

[0, 1], and uses the SW to report a value close to 𝑥𝑡𝑖 with probability

𝑝 =
𝑒𝜀2

2𝑏𝑒𝜀2+1
, which carries useful information about 𝑥𝑡𝑖 , and then

sends the perturbed value 𝑥𝑡𝑖 to the curator.

In order to improve the estimation accuracy and reduce the bias,

we perform a post-processing step on the perturbed values. First,

we use Expectation Maximization with smoothing (EMS) algorithm

[25] to infer the probability distribution z̃ of the original value 𝑥𝑡𝑖
of all sampling nodes. To run EMS, the perturbed value 𝑥𝑡𝑖 reported

by the user need to be discretized into 𝑟 buckets in output domain

[−𝑏, 1 + 𝑏]. In this phase, we set the number of buckets to 𝑟 = 
𝐵�.

After that, the probability distribution z̃ is used as a prior, such

that the curator can apply Bayes’ theorem to calculate the corre-

sponding posterior probability distribution, i.e., for each 𝑖 ∈ [𝑠𝑡 ],

𝑃 (𝑥𝑡𝑖 ∈ 𝑏𝑘 | 𝑥𝑡𝑖 ∈ 𝑏 𝑗 ) =
𝑀𝑗,𝑘 · z̃𝑘∑𝑟
𝑘=1

𝑀𝑗,𝑘 · z̃𝑘
. (10)

For each sampling node 𝑣𝑡𝑖 , the curator selects the upper bound

of the bucket with the maximum posterior probability as its noisy

value, i.e.,

𝑥𝑡𝑖 = sup(argmax
𝑏𝑘

𝑃 (𝑥𝑡𝑖 ∈ 𝑏𝑘 | 𝑥𝑡𝑖 ∈ 𝑏 𝑗 )), (11)

and calculates the corresponding noisy local maximum weight as

ℎ̂𝑡𝑖 = 𝐵 · 𝑥𝑡𝑖 . Algorithm 3 shows the estimation procedure.

3.4 Aggregate Information Collection

Based on the estimated data range, the sampling nodes locally

perturb important information about the topology of the subgraph

𝐺𝑡
𝑠 at time step 𝑡 , including node degrees and sub-adjacency lists.

In particular, the node degrees reflect the subgraph density and

have low sensitivity, which can better denoise the subgraph topol-

ogy. The sub-adjacency lists contain fine-grained information of

weighted connections between sampling nodes, which can be used

as a reference for edge generation and reconstruct edge weights.

Let (𝑑𝑡𝑠 )𝑖 be the degree of sampling node 𝑣𝑡𝑖 in the subgraph

𝐺𝑡
𝑠 . As shown in Algorithm 4, given the privacy budget 𝜀3, each

sampling node 𝑣𝑡𝑖 use Geometricmechanism to inject unbiased noise

into its degree. The sensitivity of degree Δ𝑓𝑑 is 1 because adjusting

one bit from the adjacency list of a node changes its degree by at

most 1. For sub-adjacency list (𝐴𝑡
𝑠 )𝑖 , the sampling node 𝑣𝑡𝑖 maps each

bit 𝑎𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) to 𝑏𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 ) ∈ [0, 1] according to the estimated data

range [0, ℎ̂𝑡𝑖 ], and then uses the SW to randomly perturb these bit

with the privacy budget 𝜀4. Note that when the value of a bit is larger

than ℎ̂𝑡𝑖 , it will first be truncated, i.e., 𝑎𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) = min(𝑎𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 ), ℎ̂

𝑡
𝑖 ).

Since the SW exploits the ordinal property of edge weights, a report

that is different from but close to the true weight also carries useful

information about the weight, which is exactly what we expect.

After adding Geometric noise, some perturbed degree values may

appear negative and their sum may be odd, which makes the sub-

sequent graph generation infeasible. Thus, we first adopt NormSub

[40] to post-process the negative value problem. Given perturbed

degree sequence 𝑑𝑡𝑠 , our goal is to find an optimal integer 𝛼∗
=

argmin
𝛼

|
∑
𝑖∈[𝑠𝑡 ] max((𝑑𝑡𝑠 )𝑖 + 𝛼, 0) −

∑
𝑖∈[𝑠𝑡 ] (𝑑

𝑡
𝑠 )𝑖 |. After obtaining

𝛼∗, each node degree (𝑑𝑡𝑠 )𝑖 is updated to (𝑑𝑡𝑠 )𝑖 = max((𝑑𝑡𝑠 )𝑖 +𝛼∗, 0),

which satisfies non-negative constraint. To solve the odd sum prob-

lem, we randomly select a node degree in𝑑𝑡𝑠 and flip a coin to decide

whether to add 1 or subtract 1 to this node degree.

3.5 Graph Snapshot Generation

Now, the curator generates the synthetic subgraph 𝐺𝑡
𝑠 at time

step 𝑡 based on the noisy degree sequence 𝑑𝑡𝑠 and the noisy sub-

adjacency matrix 𝐴̃𝑡
𝑠 (consisting of the noisy sub-adjacency lists

from all sampling nodes). We first use 𝑑𝑡𝑠 to characterize the graph

structure and then use 𝐴̃𝑡
𝑠 as a reference to reconstruct the edges

in 𝐺𝑡
𝑠 . The intuition of this method is that the bits with high noisy

values in the sub-adjacency matrix are more likely to correspond

to non-zero edges in the original subgraph.

As shown in Algorithm 5, the curator picks a node 𝑣𝑡𝑖 with the

minimum degree and considers other nodes with non-zero degree

in 𝑑𝑡𝑠 as candidate nodes that may be connected to 𝑣𝑡𝑖 . For potential

edges between 𝑣𝑡𝑖 and each candidate node 𝑣𝑡𝑗 , the curator refers to

the bits 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) and 𝑏𝑡 (𝑣

𝑡
𝑗 , 𝑣

𝑡
𝑖 ) in 𝐴̃𝑡

𝑠 related to their existence and

adds a potential edge with the largest bit product to𝐺𝑡
𝑠 . That is, the

index of the node 𝑣𝑡𝑗 connected to 𝑣𝑡𝑖 is determined to be

𝑗 = argmax
𝑗

𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) · 𝑏𝑡 (𝑣

𝑡
𝑗 , 𝑣

𝑡
𝑖 ) . (12)

Then, the degrees corresponding to nodes 𝑣𝑡𝑖 and 𝑣𝑡𝑗 in 𝑑𝑡𝑠 are both

subtracted by 1. The above process will be repeated until 𝑑𝑡𝑠 is

reduced to 0 or no additional edges can be added.

To reconstruct the weights on the edges, the curator considers

the bit 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) corresponding to each edge (𝑣𝑡𝑖 , 𝑣

𝑡
𝑗 ) in 𝐺𝑡

𝑠 , and
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Algorithm 5 Graph Snapshot Generation

Input: Published weighted graph 𝐺𝑡−1, noisy degree sequence

𝑑𝑡𝑠 , noisy sub-adjacency matrix 𝐴̃𝑡
𝑠 = (𝑏𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 )), noisy maxi-

mum values ℎ̂𝑡 = {ℎ̂𝑡1, · · · , ℎ̂
𝑡
𝑠𝑡 }, transformation probabilities

𝑀 , bucket size 𝑟

Output: Synthetic weighted graph 𝐺𝑡 for publication

1: Initialize 𝐺𝑡 = (𝐺𝑡
𝑠 ,𝐺𝑡\𝐺

𝑡
𝑠 ) as a null graph;

2: while 𝑑𝑡𝑠 ≠ 0 or |𝑑𝑡𝑠 > 0| ≠ 1 do

3: Choose a node 𝑣𝑡𝑖 with (𝑑𝑡𝑠 )𝑖 is minimal positive entry in 𝑑𝑡𝑠 ;

4: for each 𝑣𝑡𝑗 ≠ 𝑣𝑡𝑖 with (𝑑𝑡𝑠 ) 𝑗 is the positive entry do

5: Pick 𝑣𝑡𝑗 with 𝑗 = argmax𝑗 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) · 𝑏𝑡 (𝑣

𝑡
𝑗 , 𝑣

𝑡
𝑖 );

6: end for

7: Add edge (𝑣𝑡𝑖 , 𝑣
𝑡
𝑗 ) to 𝐺𝑡

𝑠 ;

8: (𝑑𝑡𝑠 )𝑖 = (𝑑𝑡𝑠 )𝑖 − 1, (𝑑𝑡𝑠 ) 𝑗 = (𝑑𝑡𝑠 ) 𝑗 − 1;

9: end while

10: Construct sequence b̃ by bits corresponding to all edges in𝐺𝑡
𝑠 ;

11: z̃ = EMS(b̃, 𝑀, 𝑟 );

12: for each 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) ∈ b̃ do

13: Calculate 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) based on z̃ by Eq. 10 and 11;

14: 𝑎𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) = ℎ̂𝑡𝑖 · 𝑏𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 );

15: Add weight 𝑎𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) to 𝐺𝑡

𝑠 ;

16: end for

// Generate edges and weights in 𝐺𝑡\𝐺
𝑡
𝑠

17: Approximate with the corresponding values 𝐺𝑡−1;

18: return 𝐺𝑡

then post-processes 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) by applying the EMS algorithm and

Bayesian estimation described in Section 3.3. In this phase, we set

the number of buckets to 𝑟 = 
max(ℎ̂𝑡 )�. After obtaining the post-

processed noisy bit 𝑏𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ), the noisy weight on the edge (𝑣𝑡𝑖 , 𝑣

𝑡
𝑗 )

is calculated as 𝑎𝑡 (𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 ) = ℎ̂𝑡𝑖 · 𝑏𝑡 (𝑣

𝑡
𝑖 , 𝑣

𝑡
𝑗 ).

For the edges and weights of non-sampling nodes, they approx-

imate the values in the last generated graph. At this point, the

synthetic weighted graph snapshot 𝐺𝑡 at time step 𝑡 is generated.

4 THEORETICAL ANALYSIS

4.1 Privacy Analysis

Recall that WGT-LDP allocates the total budget into three compo-

nents: 𝜀1 to population division-based sampling, 𝜀2 to data range

estimation, 𝜀3 and 𝜀4 to aggregate information collection (𝜀1 + 𝜀2 +

𝜀3 +𝜀4 =𝜀). The graph snapshot generation component only post-

processes the perturbed data and does not need to allocate any

budget. Then, WGT-LDP has the following privacy guarantee.

Theorem 4.1. WGT-LDP satisfies 𝑤-event 𝜀-edge weight LDP,

where 𝜀 = 𝜀1 + 𝜀2 + 𝜀3 + 𝜀4.

Proof. See the technical report [45] for proof details. �

4.2 Utility Analysis

We use the expected ℓ1-distance between 𝐴𝑡 and 𝐴𝑡 at any time

step 𝑡 , i.e., 𝐸 [‖𝐴𝑡 − 𝐴𝑡 ‖1,1], to evaluate the utility of WGT-LDP.

Due to space constraints, please refer to the technical report of this

paper [45] for a detailed analysis of determining utility metric.

Unlike the error estimation of tabular stream data with𝑤-event

LDP [34], the expected ℓ1-distance of WGT-LDP is complicated.

To simplify the utility analysis, we assume that the edge weights

between non-sampling nodes are approximated by 0. Besides, for

the subgraph 𝐺𝑡
𝑠 composed of sampling nodes, its maximum edge

weight ℎ𝑡𝑚𝑎𝑥 is at most ℎ̂𝑡𝑚𝑎𝑥 = max{ℎ̂𝑡1, · · · , ℎ̂
𝑡
𝑠𝑡 }, where ℎ̂𝑡𝑖 repre-

sents the noisy maximum value in sub-adjacency list of sampling

node 𝑣𝑡𝑖 . Then WGT-LDP has the following utility guarantee.

Theorem 4.2. Assume that the edge weights between non-

sampling nodes are approximated by 0. Then, for any time step

𝑡 ∈ Z≥0, ℎ̂
𝑡
𝑚𝑎𝑥 ∈ R≥0, and subgraph 𝐺𝑡

𝑠 ∈ 𝐺𝑡 composed of sam-

pling nodes such that the maximum edge weight ℎ𝑡𝑚𝑎𝑥 of 𝐺𝑡
𝑠 is at

most ℎ̂𝑡𝑚𝑎𝑥 , we have

𝐸 [‖𝐴𝑡 −𝐴𝑡 ‖1,1] ≤
ℎ̂𝑡𝑚𝑎𝑥 (𝑏 + 1)

2
‖𝐴𝑡 ‖0,0 + ‖𝐴𝑡 ‖1,1, (13)

where𝑏 =
𝜀4𝑒

𝜀4−𝑒𝜀4+1
2𝑒𝜀4 (𝑒𝜀4−1−𝜀4 )

and ‖𝐴𝑡 ‖0,0 denotes the number of non-zero

elements in 𝐴𝑡 .

Proof. Refer to the technical report [45] for proof details. �

Discussion. Theorem 4.2 shows that under𝑤-event edge weight

LDP, the expected ℓ1 error of WGT-LDP is positively correlated

with the original graph 𝐺𝑡 itself and its maximum edge weight.

In fact, 𝐺𝑡 is usually sparse, and only a small number of edges

have large weights. In addition, the privacy budget 𝜀4 associated

with the utility is independent of 𝑤 , i.e., it does not need to be

allocated to the sliding window of size𝑤 . Therefore, the synthetic

graph𝐺𝑡 generated by WGT-LDP at any time step 𝑡 is a reasonable

representation of the original graph 𝐺𝑡 . This benefits from the fact

that the population division-based sampling increases the available

privacy budget at each time step, the data range estimation reduces

the upper bound of the maximum possible edge weight (from 𝐵 to

ℎ̂𝑡𝑚𝑎𝑥 ), and the graph snapshot generation based on noisy degree

sequence preserves the sparse structure of the graph.

5 EVALUATION

We conducted extensive experiments to evaluate the effectiveness

of WGT-LDP. All experiments are conducted in Python on a laptop

with Intel Core i5-1135G7 CPU, 16GB RAM. For each experiment,

we performed it ten times and presented the average results.

5.1 Experimental Setup

Datasets. We first conduct experiments on three real-world graph

datasets. Note that we regard the connection of nodes occurring

within an hour is regarded as single connection.

• Email-Eu [32] contains 61046 dynamic email communications be-

tween 319 members. Each member on the network represents as

a node.We use the number of communications betweenmembers

to construct weighted topology of each graph snapshot.

• Forum [31] contains 33720 dynamic interaction records between

899 students in the community. We abstract each student as a

node and construct weighted topology based on the number of

interactions between students in a specific time window.
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Table 1: Basic Information of Datasets

Datasets 𝒏 𝑻 𝑩 Type

Email-Eu 319 173 72 communication

Forum 899 24 168 Social

Tech-AS 5000 24 24 Autonomous System

Synthetic-I & II 10000 100 200 Synthetic

• Tech-AS [35] records 171403 dynamic connections between 34761

autonomous systems. We randomly selected 5000 autonomous

systems from the network as nodes, and construct the weighted

topology of each snapshot according to the number of connec-

tions between these nodes in a specific time window.

Secondly, we use NetworkX [14], an open source package in

python, to generate two synthetic datasets that follow a power-law

distribution, namely Synthetic-I and Synthetic-II. Both synthetic

datasets contain 100 weighted graph snapshots with 10000 nodes,

and the edge weight of each snapshot is bounded by 200. The

difference is that the severity of snapshot changes between adjacent

time steps in Synthetic-I is 20%, while that in Synthetic-II is 90%.

Table 1 summarizes the basic information of all datasets, where

𝑛 is the numbers of nodes, 𝑇 is the number of snapshots and 𝐵 is

the common upper bound of the edge weights.

Parameter Settings. In our experiments, we set the threshold 𝛿 = 1

for node sampling. The sliding window size 𝑤 is set to 5. For the

allocation of privacy budget, we set 𝜀1 =
1
2𝜀 and 𝜀2 = 𝜀3 = 𝜀4 =

1
6𝜀,

where the total privacy budget 𝜀 varies from 0.5 to 2.5.

Baselines. We compare WGT-LDP with the following baselines:

• BDG. This method is a baseline solution based on budget division,

which does not perform node sampling but uniformly distributes

the total privacy budget 𝜀 to𝑤 time steps in the sliding window.

• RPG. The baseline RPG adopts the population division-based

solution. However, it does not consider the data changes of nodes,

i.e., it randomly assigns all nodes to𝑤 time steps in the window.

• Swg-NS. The mechanism SwgDP [44] considers the dynamic

weighted graphs publishing mechanism with DP. Since the node

adaptive sampling component in SwgDP can be easily modified

to the LDP setting, we use this component to perform node

sampling and synthesize weighted graphs in the subsequent

phases. We denote this baseline as Swg-NS.

• HMG. Li et al. [27] proposed HMG as an LDP mechanism to

achieve dynamic graph publishing for decentralized applications.

Since HMG does not consider the edge weights, we add noisy

weights perturbed by the Laplace mechanism [9] to each edge

after HMG generates the edges in the weighted graph.

Note that to ensure the rationality of the comparison, the Swg-NS

and HMG are reproduced in the𝑤-event-level privacy model.

In addition, we also implement two static unweighted graph

mechanisms LDPGen [33] and Blink [48] for comparison, which

can show the performance of our method on event-level privacy

(𝑤 = 1). Since Blink is originally designed for training GNN models,

we use their proposed variant Blink-Hard to generate synthetic

graph at any time step. Both mechanisms are implemented under

the privacy definition of edge LDP [33]. This definition can be

viewed as the case where the value of each bit in Definition 2.2 is

0 or 1. Note that when 𝑤 = 1, WGT-LDP does not sample users,

but directly executes the last three phases to generate the entire

weighted graph, which is equivalent to BDG and RPG.

Metrics.We evaluate the quality of the synthetic weighted graph

snapshots from the following four aspects: degree distribution,

weight distribution, clustering coefficient and path condition, where

the first three are graph statistical queries and the last one is a graph

structure query. Since these snapshots are continuously released,

we calculate the average of each metric over all time steps. Note that

for the clustering coefficient, we consider the Root Mean Squared

Error (RMSE) over time. Smaller results indicate higher utility.

• Degree Distribution. We adopt Kullback-Leibler (KL) diver-

gence [23] to evaluate the error of the degree distributions be-

tween the original and synthetic weighted graphs. To avoid the

denominator in the KL divergence being zero, we add a small

value to the degree distributions.

• Weight Distribution.We bucketize the weights into 𝐵 bins and

count the number of edges that fall into each bin to calculate the

weight distribution. Similar to the degree distribution, we use

KL divergence to measure the error.

• Clustering Coefficient. It is a statistical metric that character-

izes the community structure of a graph. We use the RMSE of

the clustering coefficient over all time steps to measure the error.

See the technical report [45] for details.

• Path Condition. The path length of a graph measures its con-

nectivity, which is denoted as the maximum number of edges

between all nodes with a connected path. We use the Relative

Error (RE) of path to evaluate the error. See the technical report

[45] for details.

5.2 Comparison under𝑤-Event Privacy

For each dataset, we first evaluate the utility of WGT-LDP with

all baseline methods under the privacy guarantee of𝑤-event edge

weight LDP.

Utility on Different Privacy Budgets 𝜀. Figure 3 shows the com-

parison of four metrics between WGT-LDP and all baselines when

𝜀 varies from 0.5 to 2.5. In general, we observe that WGT-LDP

outperforms its competitors in most cases. This is because WGT-

LDP determines the sampling nodes based on data change and the

number of remaining nodes at each time step, which brings two

benefits: 1) each node can perturb their data with sufficient privacy

budget, reducing the perturbation error; 2) nodes with large change

errors are preferentially sampled, reducing the approximation error.

When the privacy budget 𝜀 is less than 1.5, WGT-LDP has higher RE

on Email-Eu than RPG. This is because small graphs are more sen-

sitive to noise and too small privacy budget reduces the sampling

accuracy. We notice that the KL divergence of weight distribution

of RPG on the Tech-AS is close to WGT-LDP, which may be due

to the fact that the weights of most nodes on the Tech-AS vary

greatly, resulting in similar approximation errors. In some cases,

error slightly increases with larger 𝜀 due to the interaction between

sampling randomness (e.g., in RPG) and graph structure. As noise

decreases, the approximation error introduced by random sampling

may dominate, leading to unexpected error patterns.

Utility on Different Window Sizes𝑤 . Figure 4 shows the utility

of WGT-LDP and all baselines on four metrics, with different𝑤 . In

these experiments, the privacy budget 𝜀 is fixed to 2. We can see
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(a) Email-Eu (b) Forum (c) Tech-AS

Figure 3: Utility comparison of four metrics on varying 𝜀.

that the errors of all methods on the four metrics generally increase

with𝑤 . This is because the increase of𝑤 means that less privacy

budget or nodes will be allocated to each time step. We can also

observe that WGT-LDP acquires smaller error than the competitors

on three datasets, which shows the effectiveness of our population

division-based sampling and subsequent graph synthesis phases in

improving utility. For HMG, we find that as𝑤 increases, its errors

on many metrics such as clustering coefficient and path condition

are increasingly different from our scheme. The reason is that the

increase of𝑤 leads to greater noise, which causes this prediction

based on historical data to become very inaccurate. Comparing the

baselines BDG and RPG, although BDG performs better than RPG

on the degree distribution of Forum, it performs worse than RPG on

Tech-AS, which suggest that the relative utility of the two baselines

depends on the dataset.

Effect of Threshold 𝛿 . As described in Section 3.2, WGT-LDP

selects nodes with significant data changes using a threshold 𝛿 at

each time step. Figure 5 presents the effect of varying 𝛿 (0.5–9)

on the degree distribution under 𝜀 = 2. We find that the effect of

varying 𝛿 on utility tends to level off as the dataset grows. The

reason is as follows: When the total number of nodes 𝑛 increases,

the number of nodes𝑚𝑡 with data changes greater than 𝛿 increases

significantly. At this time, we limit the number of sampling nodes

to near 𝑛
𝑤 by setting the sampling ratio, so that the adjustment of 𝛿

has little effect on the determination of the final sampling nodes. In

Email-Eu and Forum, the utility first improves and then degrades as

𝛿 increases. This reflects a trade-off between perturbation noise and

approximation error. When 𝛿 is small, many unchanged nodes are

included, increasing the data dimension and noise. As 𝛿 grows, more

relevant nodes are selected, improving utility. However, excessively

large 𝛿 may exclude important changes, increasing approximation

error. Overall, WGT-LDP achieves stable performance when 𝛿 is

around 1 across datasets. Similar trends were observed for other

metrics and are reported in the technical report of this paper [45].

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 4: Utility comparison of four metrics on varying𝑤 .

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 5: 𝐷𝐾𝐿(Degree) metrics vs. Different threshold 𝛿 .

Effect of Privacy Budget Allocation. We evaluate the effect

of different privacy budget allocation strategies using the Forum

dataset. Specifically, we vary the ratio of 𝜀1, 𝜀2 and 𝜀3 to 𝜀 from

0.1 to 0.7 with step size 0.2. Then 𝜀4 is automatically calculated

by 𝜀 − 𝜀1 − 𝜀2 − 𝜀3. Figure 6 shows the performance of WGT-LDP

when the total privacy budget 𝜀 is 1. When 𝜀1 is small, the errors

of most metrics are large. The reason is that the first phase needs

to divide 𝜀1 into 𝑤 time steps, and a small 𝜀1 further reduces the

sampling accuracy. If the sampled nodes are inaccurate, it is difficult

to reconstruct a high-quality synthetic graph. In addition, small

𝜀2, 𝜀3 and 𝜀4 have poor effects on different metrics. The above

observations provide guidance for privacy budget allocation. That

is, we should allocate more privacy budget to 𝜀1. In our experiments,

we set 𝜀1 as
1
2𝜀, and set 𝜀2, 𝜀3 and 𝜀4 as

1
6𝜀. The results for the Email-

Eu and Tech-AS datasets are shown in [45] due to space constraints.

Effect of the Number of Experimental Repetitions. Figure 7

illustrates the average utility of multiple repeated experiments on

degree distribution. We can observe that when the number of runs

is small, the utility of degree distribution varies greatly. However, as

the number of runs increases, the results of most methods tend to be

stable. This is because the random perturbations of the differential

privacy mechanism will cause large fluctuations in the results of a

single experiment. Therefore, by averaging multiple independent
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(a) D𝐾𝐿 (Degree) (b) D𝐾𝐿 (Weight) (c) RMSE𝐶𝐶 (d) RE𝑃

Figure 6: Four evaluation metrics vs. Different privacy budget allocations.

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 7: Average utility of multiple repeated experiments.

The number of repetitions ranging from 1 to 10.

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 8: KL divergence of weight distribution with and with-

out data range estimation.

experiments, the performance of the algorithm in the sense of

expectation can be more reliably evaluated. In addition, WGT-LDP

achieves the best performance in most cases, which proves the

effectiveness of our mechanism on synthetic dynamic weighted

graphs. The results of the other three metrics are provided in [45].

Effect of Data Range Estimation. We conduct experiments of

WGT-LDPwith and without data range estimation on three datasets

to evaluate the effect of data range estimation. As shown in Figure

8, we can observe that data range estimation significantly reduces

the KL divergence of weight distribution. The reason is that WGT-

LDP with data range estimation avoids pathological worst case

of considering edge weight perturbations by estimating the local

upper bound for each node, which reduces the noise of edge weights

in any snapshot. When the privacy budget is small, the estimation

is not accurate enough, thus causing higher KL divergence.

5.3 Comparison under Event Privacy

To show the advantages of the last three stages of WGT-LDP for

graph generation, we further provide performance comparisons

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 9: Utility comparison under event-level privacy.

when 𝑤 = 1. In other words, we consider the scenario of event-

level edge weight LDP. In this scenario, WGT-LDP protects the

privacy of edges and weights on any single graph snapshot, which

can be regarded as a static graph publication at any time step.

Since static graph mechanisms LDPGen and Blink only focus on

unweighted graphs, we compare all methods on three metrics, i.e.,

degree distribution, path condition, and clustering coefficient.

Figure 9 illustrates the experimental results on three datasets.

Since WGT-LDP is designed for generating weighted graphs, it is

necessary to allocate additional privacy budget for the reconstruc-

tion of edge weights. Nevertheless, we observe that WGT-LDP still

achieves better accuracy than the baselines based on unweighted

graphs in most cases. The reason is that WGT-LDP exploits the

relationship between edge weights and graph structure, which can

be used to guide the synthesis of weighted graphs. For clustering

coefficient, LDPGen performs best on Forum and Tech-AS because

it uses the BTER [37] model to generate a synthetic graph, which is

specifically optimized for returning accurate clustering coefficients.

5.4 Evaluation on Synthetic Datasets

To evaluate the impact of snapshot variability and the larger win-

dow size𝑤 , we compare the utility of WGT-LDP with baselines on

two synthetic datasets given different privacy budgets and larger

𝑤 . For efficiency reasons, we omit the baseline BDG due to its high

computational overhead at this scale.
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(a) Synthetic-I (b) Synthetic-II

Figure 10: Evaluation on synthetic datasets given different 𝜀.

(a) Synthetic-I (b) Synthetic-II

Figure 11: Evaluation on synthetic datasets given different𝑤 .

Figure 10 shows the utility across four metrics under different

privacy budgets. We can find that WGT-LDP performs better than

other methods on Synthetic-II, but its advantage on Synthetic-I

is not obvious. This is because the severity of snapshot changes

in Synthetic-II is higher than that in Synthetic-I. For WGT-LDP,

when the degree of data change is large, it can effectively capture

nodes with large change errors, which improves the utility of graph

synthesis. For the baseline RPG, we observed that when the privacy

budget is large, the baseline RPG shows an upward trend on some

metrics as the privacy budget increases. The reason is that although

the large privacy budget limits the impact of injected noise, the

random sampling method of RPG causes some areas with important

graph features to produce larger approximation errors.

Figure 11 shows the impact of increasing𝑤 from 10 to 90.We also

find that WGT-LDP has a more obvious advantage on Synthetic-II

than on Synthetic-I. For clustering coefficient, RPG and Swg-NS

slightly outperform our method. This is because the clustering coef-

ficient of the synthetic dataset is very low, i.e., there is no significant

community structure, and the sampling strategy of RPG and Swg-

NS increases the dispersion of the graph structure, which in turn

leads to a smaller RMSE. Nevertheless, the overall performance

of WGT-LDP remains competitive, especially on Synthetic-II. In

addition, we observe that as𝑤 increases, our method first performs

better and then worse on weight distribution, which is caused by

the combined effect of perturbation error and approximation error.

When𝑤 is small, more nodes are sampled and we set a larger upper

bound on weights in the synthetic graph, making the perturbation

noise of weights large. When𝑤 is large, more data is approximated,

which aggravates the approximation error.

5.5 Case Study

We apply WGT-LDP to an end-to-end use case, i.e., the influence

maximization (IM) problem [6], to evaluate the utility of synthetic

weighted graph snapshots for network analytics. IM aims to locate

nodes from the network that can achieve the maximum impact

spread, and has applications in viral marketing [6], epidemic control

[5], networkmonitoring [30], and so on. For example, in the event of

an infectious disease outbreak (such as COVID-19), super spreaders

can be identified to prioritize quarantine or vaccination.

Specifically, we apply the Degree Discount (DD) method [4] to

select the top 20 most influential nodes from each synthetic graph

snapshot, where node degree is defined as the sum of edge weights.

We then simulate the Independent Cascade (IC) model [22] to esti-

mate influence spread, using spread probability 1− (1−𝑝)𝑎 (𝑢,𝑣) for

each edge (𝑢, 𝑣) with weight 𝑎(𝑢, 𝑣) and 𝑝 = 0.01. Higher influence

spread values indicate higher utility, i.e., the locations of the most

influential nodes are more accurate.

Figure 12 shows the influence spread under varying privacy bud-

gets. WGT-LDP consistently achieves the highest spread across

all datasets. This demonstrates the effectiveness of our scheme in

recovering graph structure and edge weights, which is crucial for

locating influential nodes. For other baselines, we find that RPG sig-

nificantly outperforms the other three baselines when the privacy

budget is small. This is because BDG, HMG and Swg-NS further

split the already small privacy budget, resulting in a significant

increase in noise, while the random population division of RPG

allows each user to hold the entire privacy budget.

Figure 13 shows influence spread under varying window sizes

𝑤 . WGT-LDP also maintains excellent performance relative to all

baselines. In addition, the influence spread of all methods generally

decreases with the increase of𝑤 , mainly due to the available privacy

budget or nodes at each time step decreases, posing a challenge to

synthetic graphs.

5.6 Utility on Different Time Steps

To achieve a more comprehensive analysis, we present the utility

of WGT-LDP and all baselines in different time steps when 𝜀 is

2. Due to space constraints, we provide the degree distribution
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(a) Email-Eu (b) Forum (c) Tech-AS

Figure 12: The influence spread given different 𝜀.

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 13: The influence spread given different𝑤 .

performance and defer the results of other metrics to [45]. As shown

in Figure 14, we observe that WGT-LDP consistently outperforms

other methods in most time steps. This highlights the key role that

our node sampling mechanism, weight optimization method, and

synthetic graph snapshot step play in preserving graph features.

6 RELATEDWORK

Time Series Data Analysis via DP. There are three levels of

local differential privacy protection for time series data analysis:

event-level, user-level and𝑤-event-level. Event-level LDP aims to

hide a single event in a time series [19, 39]. User-level LDP tries

to hide all events of a single user [1, 11].𝑤-event-level LDP aims

to protect any event sequence occurring within any window of𝑤

time steps. Since 𝑤-event-level LDP can balance the privacy loss

and utility loss between event-level LDP and user-level LDP, it has

been widely used by many works recently [16, 26, 28, 34, 41]. For

example, Wang et al. [41] proposed a metric-based𝑤-event-level

LDP to protect the important patterns of time series. Li et al. [28]

extended the above pattern protection to the scenario of finite data

range. Ren et al. [34] introduced a budget division strategy and a

population-based sampling mechanism for streaming tabular data

publication under LDP. Hu et al. [16] explored real-time trajectory

synthesis, which generates high-utility trajectory data by extracting

movement patterns from users’ trajectory streams. However, these

algorithms in the above works are tailored to their respective data

formats and do not account for graph topology, edge correlations

or weight semantics.

Static Graph Publication via DP. Many prior works [2, 3, 17, 18,

33, 42, 43, 46] focus on releasing static graphs under differential

privacy guarantees. For instance, Qin et al. [33] first proposed

to generate a synthetic social graph under LDP. Wei et al. [42]

additionally considered node attributes and generated attributed

social graph in a decentralized network. Recently, Yuan et al. [46]

(a) Email-Eu (b) Forum (c) Tech-AS

Figure 14: Utility of methods with different time steps.

utilized community information to publish a synthetic graph with

DP, which improves the accuracy of graph reconstruction. Brito et

al. [2] designed a DP algorithm to generate count-weighted graph

while protecting one interaction between nodes. However, these

studies overlook the temporal properties of graphs and may be

challenging to apply in our continuous publication scenario.

Dynamic Graph Publication via DP. Several works [27, 44, 47]

address the temporal or dynamic properties of graphs. Specifically,

Yuan et al. [47] proposed a framework for publishing stream graphs

under DP, which uses communities as granularity and achieves

𝑤-event-level privacy. Xu et al. [44] initially investigated the prob-

lem of dynamic weighted graph publication and proposed a new

weighted graph snapshot publication mechanism called SwgDP.

SwgDP guides current snapshot generation by leveraging historical

graph data. However, SwgDP only provides event-level privacy in

the central DP setting, which offers relatively weak guarantees and

assumes a trusted curator. Li et al. [27] considered dynamic graph

publishing with LDP, but similarly limited their privacy protection

to event-level LDP. In summary, all these studies rely on event-level

privacy under DP or LDP, or on𝑤-event-level privacy in the central

DP setting, without addressing the combination of dynamic graph

structure, edge weights and local 𝑤-event-level privacy. To the

best of our knowledge, this work is the first to support continuous

publishing of dynamic weighted graphs under𝑤-event-level LDP,

bridging a crucial gap in the literature.

7 CONCLUSION

In this paper, we proposeWGT-LDP, a novel framework for the con-

tinuous publication of weighted graph snapshots while ensuring𝑤-

event edge weight LDP. By incorporating population division-based

sampling, data range estimation, aggregate information collection,

and graph snapshot generation, our approach effectively balances

privacy protection and utility preservation. Theoretical analysis and

extensive experiments on real-world and synthetic datasets demon-

strate that WGT-LDP significantly outperforms baseline methods

by reducing perturbation noise and improving graph utility. Future

work will explore personalized privacy protection and extensions

to heterogeneous graphs, further advancing privacy-preserving

graph generation in decentralized settings.
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