
Semantic Operators and Their Optimization: Enabling
LLM-Based Data Processing with Accuracy Guarantees in LOTUS

Liana Patel
Stanford University

lianapat@stanford.edu

Siddharth Jha
UC Berkeley

sidjha@berkeley.edu

Melissa Pan
UC Berkeley

melissapan@berkeley.edu

Harshit Gupta
Stanford University

gharshit@stanford.edu

Parth Asawa
UC Berkeley

pgasawa@berkeley.edu

Carlos Guestrin
Stanford University

guestrin@stanford.edu

Matei Zaharia
UC Berkeley

matei@berkeley.edu

ABSTRACT
The semantic capabilities of large language models (LLMs) have the
potential to enable rich analytics and reasoning over vast knowl-
edge corpora. Unfortunately, existing systems either empirically
optimize expensive LLM-powered operations with no performance
guarantees, or limit their support to simple batched-inference prim-
itives. We introduce semantic operators, the rst formalism with
statistical accuracy guarantees for general-purpose AI-based op-
erations with natural language parameters (e.g., ltering, sorting,
joining or aggregating records using natural language criteria). Each
operator can be implemented by multiple AI algorithms, which com-
pose individual model invocations to orchestrate the model over
the data. Our programming model species the expected behav-
ior of each operator with a high-quality reference algorithm, and
we develop an optimization framework that reduces cost, while
providing accuracy guarantees for individual operators. Using this
approach, we propose several novel optimizations to accelerate
semantic ltering, joining, group-by and top-k operations by up
to 1, 000⇥. We implement semantic operators in the LOTUS sys-
tem and demonstrate LOTUS’ eectiveness on real, bulk-semantic
processing applications, including fact-checking, biomedical multi-
label classication, search, and topic analysis. We show that the
semantic operator model is expressive, capturing state-of-the-art
AI pipelines in a few operator calls, and making it easy to express
new pipelines that match or exceed quality of recent LLM-based
analytic systems by up to 170%, while oering accuracy guarantees.
Overall, LOTUS programs match or exceed the accuracy of state-of-
the-art AI pipelines for each task while running up to 3.6⇥ faster
than the highest-quality baselines. LOTUS is publicly available at
https://github.com/lotus-data/lotus.

PVLDB Reference Format:
Liana Patel, Siddharth Jha, Melissa Pan, Harshit Gupta, Parth Asawa,
Carlos Guestrin, and Matei Zaharia. Semantic Operators and Their
Optimization: Enabling LLM-Based Data Processing with Accuracy
Guarantees in LOTUS. PVLDB, 18(11): 4171 - 4184, 2025.
doi:10.14778/3749646.3749685

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749685

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/lotus-data/lotus.

1 INTRODUCTION
The powerful semantic capabilities of modern language models
(LLMs) create exciting opportunities for building AI-based ana-
lytics systems that reason over vast knowledge corpora. Many
applications require complex reasoning over large amounts of data,
including both unstructured and structured data. For example a re-
searcher reviewing recent ArXiv [2] preprints may want to quickly
obtain a summary of relevant papers from the past week, or nd
the papers that report the best performance for a particular task
and dataset. Similarly, a medical professional may automatically
extract biomedical characteristics and candidate diagnoses from
many patient reports [29]. Likewise, organizations wish to automat-
ically digest lengthy transcripts from internal meetings and chat
histories to validate hypotheses about their business [4].

Each of these tasks require a form of bulk semantic processing,
where the analytics system must process large amounts of data
and orchestrate models in complex patterns across a whole dataset.
Supporting the full generality of these applications with ecient,
easy-to-use analytics systems would have a transformative impact,
similar to what RDBMSes had for tabular data. This prospect, how-
ever, raises two challenging questions: rst, how should developers
express semantic queries, and secondly, how should we design the
underlying data system to achieve high eciency and accuracy.

Unfortunately, existing systems are insucient for bulk semantic
processing, either limiting their expressiveness to simple batched
inference primitives or providing no accuracy guarantees. First, sev-
eral systems only support simple batched inference primitives [1,
8, 9, 14, 46, 47, 49, 50, 53, 67]. These systems do not support richer
LLM-based operations, such as ranking, grouping or joining records,
which require more complex AI algorithms that compose multiple
model invocations to orchestrate the model over the data. Alter-
natively, more recent LLM-based analytics systems, such as Do-
cETL [61] and UQE [25], study more complex AI operations, but
empirically optimize these operations with no accuracy guarantees.
These systems lack a formalism to dene correct behavior, which
hinders their robustness and usability, as we show in Section 5.
These obstacles highlight a core challenge of integrating semantic-
based processing within reliable query systems due to the inherent
ambiguity of natural language instructions and LLM outputs.

4171

https://github.com/lotus-data/lotus
https://doi.org/10.14778/3749646.3749685
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749685
%20https://github.com/lotus-data/lotus
https://www.acm.org/publications/policies/artifact-review-and-badging-current

We propose semantic operators, which extend the relational
model with AI-based operations. Semantic operators provide the
rst formalism with statistical accuracy guarantees for general-
purpose AI-based operations with natural language parameters,
including semantic lters, joins, top-k rankings, aggregations, and
projections. Each operator takes a concise natural language signa-
ture, given by the programmer, and its behavior is fully specied
by a tractable, high-quality reference algorithm. Our optimization
approach then exploits the rich design space of semantic operator
execution plans to reduce cost, while providing statistical accuracy
guarantees for individual operators with respect to the reference al-
gorithm (i.e., ensuring that the output of the optimized operator will
be similar to that of the reference algorithm). We propose several
novel optimizations for the semantic lter, join, top-k and group-by
operators. Our methods include approximation algorithms, building
on statistical techniques used in prior works [37, 39] with novel and
ecient proxy scores using small LLMs or semantic embeddings.
We implement semantic operators in LOTUS (LLMs Over Tables
of Unstructured and Structured data), an open source system that
exposes these operators in a simple DataFrame-based API.

We systematically evaluate LOTUS on four real bulk-semantic
processing applications: fact-checking, biomedical multi-label clas-
sication, search, and topic analysis. These applications include
ones expressible and studied by recent LLM-based analytics sys-
tems (e.g., DocETL [61] and UQE [25]), where we compare against
those systems, as well as others, where we compare against hand-
designed pipelines from the AI literature. We demonstrate that the
semantic operator model is eective, capturing state-of-the-art AI
pipelines in a few operator calls that reliably match or exceed the
quality of recent LLM-based analytics systems by up to 100%, while
oering accuracy guarantees and running up to 3.6⇥ faster than
the best quality baselines. Furthermore, our reference algorithms
provide high-quality results, and our optimizations speed up query
execution by up to 1, 000⇥ with respect to them.

Specically, our LOTUS program re-implements FacTool’s re-
cent state-of-the-art fact-checking pipeline [23], and achieves 12.5%
higher accuracy with 28⇥ lower execution time on the FEVER
dataset [64], outperforming alternative LLM-powered analytics sys-
tems. In the extreme multi-label classication task on the BioDEX
dataset [29], LOTUS reproduces state-of-the-art result quality [28]
and the LLM-powered analytics baselines, while providing accu-
racy guarantees and 1, 000⇥ speedups compared to our reference
algorithm. In the search application, LOTUS allows a simple com-
position of operators to achieve 1.03  2⇥ higher nDCG@10 than
the next best performing baselines, while also providing query
eciency, with 1.67  10⇥ lower execution time than alternative
high-quality algorithms. In the topic analysis task, LOTUS e-
ciently processes hundreds of ArXiv papers to discover a taxonomy
of key topics in dozens of seconds, while once again providing
congurable speedups with statistical accuracy guarantees.

Overall, our main contributions are:
• We propose semantic operators, the rst formalismwith sta-

tistical accuracy guarantees for general-purpose AI-based
operations with natural language parameters. Specically,
our optimization framework species each operator’s ex-
pected behavior and provides accuracy guarantees with
respect to a high-quality reference algorithms.

1 def paper_digest(research_interest: str , baseline: str):
2 return papers_df\
3 .sem_search(abstracts, research_interest , K=100)\
4 .sem_filter(fthe paper {{ abstracts }} claim to

outperform {baseline})\
5 .sem_agg(fWrite a digest summarizing {{ abstracts }}

and their relevance to {research_interest})

Figure 1: Example LOTUS program using semantic operators to return a
summary of relevant papers from the dataset papers_df. The user function,
takes two strings, describing a research interest and a research baseline. The
program searches over papers in the dataset, thenlters based onwhether each
paper claims to outperform the baseline, and nally constructs a summary.

• We dene optimizations with statistical accuracy guaran-
tees for several useful operators, including semantic lters,
joins, top-k and group-by, yielding up to 1, 000⇥ speedups.

• Across diverse real-world ML tasks, we evaluate the ex-
pressiveness of semantic operators and the benet of our
optimizations, including comparisons to prior work.

2 THE SEMANTIC OPERATOR MODEL
Semantic operators provide a declarative interface for semantic-
based manipulation and access to data. These new AI-based opera-
tors extend the data independence model of relational systems [24]
and introduce model-data independence: the separation of applica-
tion logic from the underlying AI-based algorithm that species
how data records are processed via individual model invocations.
Unlike relational operators, semantic operators are parametrized
by natural language expressions and rely on AI-based computation,
making their behavior inherently ambiguous and imprecise. We
address this key challenge by presenting a formalism for dening
semantic operators, their behavior, and correct optimizations, in
this section. In Section 3, we build on this formalism to provide
optimized execution plans with accuracy guarantees, similar to
relational query optimizers.

2.1 Example Semantic Operator Program
To begin to understand the capabilities of semantic operators, we
examine a simple program written with the LOTUS API, shown in
Figure 1. The function paper_digest takes two string parameters, a
user’s research interest and a research baseline, and returns a digest
of relevant research papers that claim to outperform the baseline.
To do this, the function uses 3 semantic operators to process the
dataset of research papers, papers_df, which contains an abstract
attribute. The program rst performs top-k semantic search over the
abstract attribute to nd relevant papers, then semantically lters
to nd papers with abstracts claiming to outperform the baseline,
and lastly creates a summary with a semantic aggregation.

Semantic operators perform familiar transformations, such as
lters and aggregations, reminiscent of relational operators. The
crucial dierence lies in the ability of semantic operators to per-
form transformations with reasoning-based, natural-language speci-
cations. For instance, the sem_filter operator takes the natural
language parameter "the paper {abstracts} claim to outperform the
baseline". The expected output of this operator is all records from
the dataset with abstracts that pass this natural language predicate.

The reasoning capabilities of semantic operators signicantly
distend traditional relational operators and indices. Still, traditional

4172

Table 1: Summary of Key Semantic Operators.) denotes a relation, - and . denote arbitrary tuple types. ; denotes a parameterized natural
language expression (“langex“ for short). Each operator may permit additional optional parameters, including accuracy targets.

Operator Description Denition Reference Algorithm

sem_lter (; : - ! Bool) Returns the tuples that pass the langex predicate. {C8 |C8 2) ^ ;" (C8) = 1} Compute" (C8 , ;), C8 2)
sem_join(C :) , ; : (- ,.) ! Bool) Joins a table against a second table C by keeping

all tuple pairs that pass the langex predicate.
{ (C8 , C 9) |;" (C8 , C 9) = 1, C8 2
)1, C 9 2)2 }

Compute" ({C8 , C 9 }, ;), C8 2)1, C 9 2)2

sem_agg (; :) [-] ! X) Aggregates input tuples according to the langex
reducer function.

;" (C1, ..., C=)8C1, .., C= 2) Perform a hierarchical reduce, recursively
computing 0228,A
" ({022=8 ,A1, ...,022=8+=,A1 }, ;)

sem_topk (; :) [-] ! (4@ [-], : : 8=C) Returns an ordered list of the : best tuples
according to the langex ranking criteria.

hC1, ..., C: i st 8 (C8 , C 9), 8 < 9 =)
;" (C8 , C 9) = hC8 , C 9 i

Perform quick-select top-k using pairwise
comparisons," ({C8 , C 9 }, ;)

sem_group_by (; : - ! . , ⇠ : 8=C) Groups the tuples into⇠ categories based on the
langex grouping criteria.

argmax
{`1,...`⇠ },`8 2+N

Õ
C8 2)

max
9 21...⇠

;" (C8 , ` 9) Obtain centers `1, ...`⇠ with a clustering
algorithm, and perform pointwise
assignments" (C8 , (;, `1, ..., `⇠)),t8 2) ,

sem_map (; : - ! .) Performs the projection specied by the langex. {;" (C8) |C8 2) } Compute" (C8 , ;), C8 2)

non-AI primitives may be used to transparently optimize the exe-
cution of semantic operators. For instance, a naive execution of the
semantic lter might process each record in a separate LLM invo-
cation that prompts the model to evaluate the predicate. However,
an optimized execution might leverage a light-weight model or
vector index to speed up some predicate evaluations while reserv-
ing LLM-based predicate evaluations only when needed. Crucially,
an ecient analytics system should provide such optimizations
transparently and adaptively to reduce cost when possible, while
also providing accuracy guarantees.

2.2 Dening Semantic Operators
Denition. A semantic operator is a declarative transformation over
one or more datasets, parameterized by a natural language expression.
Each semantic operator can be implemented by potentially many AI-
based algorithms, and its correct behavior is dened with respect to a
given reference algorithm.

Table 1 lists a core set of semantic operators, which cover com-
mon semantic transformations in real-world applications and mir-
ror key transformations in relational operators. Specic systems
may, of course, provide additional semantic operators beyond the
ones we discuss here. Each semantic operator takes a parameterized
natural language expressions (langex for short), which are natural
language expressions that specify a function over one or more at-
tributes. As Figure 1 demonstrates, the langex signature varies for
dierent semantic transformations. While the sem_filter langex
signature provides a natural language predicate, the sem_agg langex
is a commutative, associative aggregator expression, which here
indicates a summarization task over abstracts.

We provide a high-level denition of each semantic transfor-
mation with respect to the user langex and a world model1, " ,
which captures a probability distribution over the vocabulary + .
For example, semantic lter returns {C8 |C8 2) ^ ;" (C8) = 1}, where
) is the input relation and ;" (C8) represents a natural language
predicate evaluated on tuple C8 with model M. Notably, the deni-
tion of each semantic operator can be implemented by multiple
AI-based algorithms, and dierent decisions as to how to invoke
the model over the relation have consequences on the algorithm’s
result quality. Thus, the correct behavior of each semantic operator
is specied by a reference algorithm, a computable and tractable
1In practice, the world model," may be the strongest LLM a practioner has available.

AI algorithm that produces results considered to be high quality.
Each reference algorithm species a model access pattern over the
relation) via an algorithm composed of model invocations" (G, ;),
describing the subset of the data G ✓) , each model call is invoked
over and the task-specic language expressions, given by ; .

2.3 Dening Correct Optimizations for
Semantic Operators

Semantic operators create a rich design space of diverse execution
plans. While reference algorithms provide high-quality implemen-
tations, they are often expensive, with the complexity of LLM calls
scaling linearly or quadratically in the dataset cardinality. As such,
we dene correct optimizations for individual semantic operators
below by considering alternate AI-based algorithms that can reduce
cost while oering close results. In general, optimized semantic oper-
ator plans allow for both lossless optimizations and approximations
of a reference algorithm. This formulation builds on approximate
query processing and assumes some error is often tolerable, which
we nd (Section 5) is reasonable for achieving high-quality results
for semantic processing, which is inherently non-exact.
Denition. A correct optimization for a given semantic operator, and
a reference algorithm for that operator, reduces cost while providing
statistical accuracy guarantees with respect to the reference algorithm.
Specically, the optimization should ensure an accuracy target, W , is
met with probability 1  X .

2.4 Core Semantic Operators
We now overview several core semantic operators, providing the
operator’s denition and a reference algorithm for each. We discuss
design decisions for our reference algorithms based on state-of-
the-art algorithms studied in the AI literature, well-known failure
cases, such as long-context challenges [48], or our experimental
observations. Our empirical evaluation (Section 5) conrms that
the reference algorithms we present support state-of-the-art result
quality in real ML applications; however, nding optimal reference
algorithms for each operator remains an open research question.
Semantic Filter is a unary operator over the relation) and returns
the relation {C8 |C8 2) ^ ;" (C8) = 1}, where the langex provides a
natural language predicate over one or more attributes.
Reference Algorithm. Our reference algorithm runs batched LLM
calls over all tuples in relation) . Each model invocation," (C8 , ;),

4173

1 join_res = papers_df.sem_join(dataset_df , The paper {
abstract:left} uses the {dataset_name:right}.)

2 topk_res = papers_df.sem_topk(The paper has the
funniest {title}, K=5)

3 grouped_res = papers_df.sem_group_by(What is the main
research topic of the paper {abstract}, C=10)

Figure 2: Example usage of sem_join, sem_topk, and sem_groupby. pa-
pers_df contains elds for the "title" "abstract", and dataset_df, contains a eld
called "dataset_name".

prompts the LLM with a single tuple C8 2) , the langex predicate,
and an operator-specic instruction to generate a boolean value.
This simple choice avoids well-studied long-context issues [48] by
processing rows independently rather than in a single invocation.
Semantic Join provides a binary operator over relations)1 and
)2 to return the relation {(C8 , C 9) |;" (C8 , C 9) = 1, C8 2)1, C 9 2)2}.
Here the langex is parameterized by the left and right join keys and
describes a natural language predicate over both.
Reference Algorithm. The reference algorithm implements a nested-
loop join pattern, performing a single predicate evaluation for each
pair of tuples, with model invocations" ({C8 , C 9 }, ;), C8 2)1, C 9 2)2.
This yields an $ (|)1 | · |)2 |) LLM call complexity.
Semanic Top-k imposes a ranking2 over the relation) and returns
the ordered sequence, hC1, ..., C: i st 8(C8 , C 9), 8 < 9 =) ;" (C8 , C 9) =
hC8 , C 9 i. Here, the langex signature is a general ranking criteria.
Reference Algorithm. Two important algorithmic design decisions
for the semantic top-k include how to implement LLM-based com-
parison and how to aggregate ranking information from these com-
parisons. Our reference algorithm uses pairwise LLM comparisons
for the former, and a quick-select top-k algorithm [33] for the latter.
We briey describe the reason for these choices and alternatives
considered. Our decisions build on prior works, which have studied
LLM-based passage re-ranking [27, 31, 45, 52, 56–59, 62] and rank-
ing with noisy comparisons [20, 60] with the goal of achieving high
quality results in a modest complexity of LLM calls or comparisons.

First, pairwise-promptingmethods oer a simple and high-quality
approach that feeds a single pair of tuples to each LLM invocation,
" ({C8 , C 9 }, ;), prompting the model to compare the two inputs and
output a binary label. The two main classes of alternatives are
point-wise ranking methods [27, 31, 45, 59, 69], and list-wise rank-
ing methods [52, 56, 57, 62], both of which have been shown to face
quality issues [27, 58, 62]. We verify these limitations in Section 5.
In contrast, pairwise comparisons have been shown to be eective
and relatively robust to input ordering [58].

In addition, we consider several possible rank-aggregation algo-
rithms, including quadratic sorting algorithms, a heap-based top-k
algorithm and a quick-select-based top-k ranking algorithm. Our
evaluation in Section 5 demonstrates that each of these sorting
algorithms yield high-quality results, comparable to one another.
However, the quick-select-based algorithm oers an ecient imple-
mentation with at least an order of magnitude fewer LLM calls than
the quadratic sorting algorithm and more opportunities for e-
cient batched inference, leading to lower execution time, compared
to a heap-based implementation. The quick-select top-k algorithm
proceeds in successive rounds, each time choosing a pivot, and com-
paring all other remaining tuples to the pivot tuple to determine the

2This denition implies that ;" imposes a total and consistent ordering. However, this
denition can also be softened to assume partial orderings and noisy comparisons
with respect to model" .

rank of the pivot. Because each round is fully parallelizable, we can
eciently batch these LLM-based comparisons before recursing.
Semantic Aggregation performs amany-to-one reduce over the in-
put relation, returning ;" (C1, ..., C=),8C1, .., C= 2) . Here, the langex
signature is a commutative, associative aggregation function3, which
can be applied over any subset of rows to produce an intermediate
results. We note that the langex iteself is model-agnostic, assuming
innite context. Managing nite context limits of the underlying
model" is an implementation detail of the system.
Reference Algorithm. Our reference algorithm uses a hierarchical
reduce pattern. Our choice builds on the LLM-based summarization
pattern studied by prior research works [16, 21, 68] and deployed
systems [7, 13], which we briey overview. Prior works primarily
study two aggregation patterns. First, a fold pattern performs a lin-
ear pass over the data, iteratively updating the accumulated partial
answerwith the next tuple C8 , given by0228 " ({02281, C8 }, ;). Al-
ternatively, the hierarchical reduce pattern recursively aggregates =
inputs in each round A and produce multiple partial answers, given
by 0228,A " ({022=8 ,A1, ...,022=8+=,A1}, ;) until a single answer
remains. Both represent candidate reference algorithms, however,
the hierarchical pattern has been shown to produce higher quality
results for commutative, associative aggregation tasks, like sum-
marization, in prior work [21] and allows for greater parallelism
during query processing, making it our default choice.
Semantic Group-by takes a langex that species a projection
from a tuple to an unknown group label, as well as a target number
of groups, which species the desired granularity of group labels.
As a example, a user might group-by the topics presented in a
set of ArXiv papers, wishing to nd 10 key groups. The group-by
operatormust discover representative group labels and assign a label
to each each tuple. In general, performing the unsupervised group
discovery is a clustering task, which is NP-hard [26]. Clustering
algorithms over points in a metric space typically optimize the
potential function tractably using coordinate descent algorithms,
such as k-means. For the semantic group-by, the clustering task is
over unstructured elds with a natural language similarity function
specied by ;" (C8 , ` 9), which imposes a real-valued score between
a tuple C8 and a candidate label ` 9 . This operator poses the following
optimization problem:

argmax
{`1,...`⇠ }, `8 2+ N

’
C8 2)

max
921...⇠

;" (C8 , ` 9)

where `8 is a group labels, consisting of tokens in vocabulary, + .
Reference Algorithm. Since this operator, by denition, entails the
NP-hard clustering problem [26], our reference algorithm uses a
tractable clustering heuristic to discover group labels, then per-
forms point-wise classication to assign each record to a discov-
ered group label. Specically, our LLM-based clustering algorithm
discovers centers `1, ..., `⇠ by rst performing a semantic projec-
tion, with model invocations " (C8 , ;), C8 2) , prompting the LLM
to predict a candidate label for each input tuple. Then, we embed
these candidate labels and perform an ecient vector clustering
using k-means to construct ⇠ groups. For each group, we top-k

3We note that the ordering of inputs within an LLM prompt invocation can in fact aect
results quality for some tasks. To allow programmers to override the commutativity
and associativity, LOTUS exposes a partioner function.

4174

Algorithm 1: SEM-FILTER() , ; ," (G), (G), W' , W% , X)
Input: Relation) , langex predicate ; , oracle model" (G) , proxy model(G) ,

recall target W' , precision target W% , error probability X
Output: Filtered relation) 0
B sample_size
(ImportanceSample() ,(G), B)
"({" (C) : C 2 (}
⇡ {(C) : C 2 ⇡ }
({(C) : C 2 (}
g+ PT_threshold_estimation((, ;,"(,(,W% ,X/2)
g RT_threshold_estimation((, ;,"(,(,W' ,X/2)
g+ max(g+,g)
) 0 ;
// Evaluate predicate for each tuple
for C 2) do

if (C)  g+ then
) 0) 0 [{C }

else if (C)  g then
if " (C) then

) 0) 0 [{C }
end
return) 0

sample by centroid-similarity scores, and perform a semantic ag-
gregation to synthesize an appropriate label over each group. This
provides a reasonable clustering heuristic similar to prior work [25],
although alternative heuristics are possible. In the second stage,
our reference algorithm uses the ⇠ generated labels, `1, ...`⇠ , and
performs point-wise assignments " (C8 , (;, `1, ..., `⇠)), C8 2) . We
choose point-wise classication to avoid the long-context scaling
challenges studied in prior works [25, 48]. This algorithm yields
$ (|) |) LLM call complexity.

3 OPTIMIZED EXECUTION PLANS FOR
SEMANTIC OPERATORS

In this section, we present novel optimizations for several costly
operators, including semantic lter, join, top-k and group-by. Each
optimization provides statistical accuracy guarantees with respect
to the reference algorithm, building from Section 2. While this
paper focuses on novel optimizations for several expensive seman-
tic operators, we envision a rich space of future work exploring
new optimizations and applications of traditional optimizations
for semantic operator programs. For example, several prior works
demonstrate performance gains in both logical query plan optimiza-
tions (e.g. operator re-ordering [46, 47, 50, 51]) and other general
LLM-approximation techniques (e.g. code synthesis [18, 47] and
prompt adaptation [22]). We also note two core semantic operators,
whose optimizations we do not study in this section: semantic maps
and aggregations. Semantic maps reect the general problem of
batched LLM inference, which has been well studied by prior works.
We instead focus the scope of this study on novel optimizations
unique to semantic operators. Although semantic aggregations oer
interesting optimization opportunities, we exclude an exploration
here due to space limitations. We point the interested reader to the
discussion in an extended version of this manuscript [54] and we
leave a detailed quantitative analysis to future work.

3.1 Optimizing Semantic Filter
We provide an approximation for semantic lters that obtains re-
call and precision targets W' and W% with respect to the reference

algorithmwith probability 1X . We leverage the cheaper, but less ac-
curate proxy model(C, ;), which is congured by the user and can
output a score indicating whether the tuple C passes the predicate.
This idea is inspired by prior works [22, 36, 38, 65, 72, 72], which
leverage model cascades for dierent problem settings. Specically,
several works study cascades in the video analytics setting with
vision models, which have signicantly dierent properties than
LLMs, requiring dierent proxy scoring mechanisms. Other works
study cascades for LLMs, but use heavy-weight scoring mecha-
nisms to decide whether to use the proxy model and do not provide
accuracy guarantees. In contrast, we focus on providing accuracy
guarantees for the constrained problem of applying cascades for
lters, which allows us to use lighter-weight scoring functions than
the more general case studied in prior works.

In general, we cannot assume the proxy model is accurate. In
fact, the proxy model may perform very poorly for some tasks and
records. The goal of our algorithm is to automatically discover the
quality of the proxy at query time by sampling and comparing to
the reference algorithm with the oracle model. Our algorithm will
exploit the proxy when it is likely to provide high-quality outputs,
and otherwise defer the oracle model. To do this we must learn
a decision rule, with learned thresholds on the proxy scores us-
ing sampling. As prior work [37] discusses, such sampling-based
algorithms introduce multiple-hypothesis testing problems, requir-
ing statistical corrections using condence intervals, which we
carefully apply in our algorithm.

We consider a small LLM as the proxy model and generate scores
(C) using log-probabilities4 corresponding to the True or False
output tokens of the proxy model’s predicate evaluations, re-scaling
by the quantiles over all generated log-probabilities over the re-
lation. Specically, we construct @ evenly-spaced quantiles in the
range 0 to 100, and bin each computed proxy condence score into
one of these quantiles, reassigning the condence score of each
sample to its quantile number. In our experiments, we nd that
using @ = 50 quantiles provides sucient granularity while also
maintaining eciency. Algorithm 1 shows the full procedure for
performing the approximate semantic lter. We begin by collecting
a sample of tuples (, and labeling each sample with the oracle and
proxy models. The sampling procedure uses importance sampling
and defensively mixes a uniform sample following prior work [38].
Importance sampling chooses records C with replacement from the
dataset ⇡ with weighted probabilitiesF (C) then uses a reweighting
identity to compute the expected value of a quantity 5 (C), instead of
uniformly sampling each record with probability 1/|⇡ |. Our weight
function for sampling uses

p
((C)), following Kang et al. [38], and

we refer the reader to Algorithm 4 of their paper for a detailed
sketch. Additionally, the sample size is a hyperparameter, which
can aect the convergence rate of probabilistic guarantees and has
been studied by prior work on cascade-based optimizations. We set
a default value by taking the maximum 1% of the dataset size and
100 samples, following prior work [38].

Using the central limit theorem and the normal approximation
on the distribution of sample statistics, we then learn a decision
rule by nding thresholds g+ and g , which will respectively ensure
4Log-probabilities are available in common model providers, e.g., OpenAI, and serving
systems, e.g., vLLM. In the absence of available log-probabilities, alternative uncertainty
quantication methods, such as prompt-based methods, may be more suitable.

4175

the precision target and recall target are met, each with an error
probability of X/2. The statistical sub-procedures to choose each
threshold follows prior work [38], but applies them to this new
setting where we must ensure both targets are met, requiring a
correction for hypothesis testing andmultiple failure modes. Finally,
using the learned decision rule, our algorithm proceeds to process
each tuple in the relation. If the tuple’s proxy score is at least g+,
we mark it as passing the predicate. If the tuple’s proxy score is
less than or equal to g , we mark it as failing the predicate, and for
tuples with proxy scores between g+ and g , we resort to the oracle
model to provide a label.

3.2 Optimizing Semantic Join
Similar to semantic lters, we provide an approximation for seman-
tic joins that obtains recall and precision targets W' and W% with
respect to the reference algorithm with probability 1  X . Due to
the expensive quadratic scaling of the nested-loop join, rather than
using a small LLM as the proxy model, we consider an even cheaper
proxy based on semantic similarity scores using embeddings to
reduce the LLM-call complexity. We leverage two possible proxy
algorithms and dynamically choose the lowest-cost one.

The rst approximation, sim-lter produces a proxy score1 (C8 , C 9),
C8 2)1, C 9 2)2 based on embedding similarity. We perform batched
similarity search between the right and left join keys and re-calibrate
similarity scores according to their quantiles to obtain proxy scores.
We then use the proxy scores and a learned threshold to determine
when to resort to the LLM for the join predicate evaluation between
tuple pairs, and when to rely on the embedding-based proxy score.
This approximation is likely to perform eciently when tuple pairs
with high semantic similarity scores between the right and left
join key are more likely to pass the join predicate. This correlation
phenomenon between predicate matches and embedding similarity
has been studied by prior works [55] and is not always present.
Thus, we introduce an alternative approximation, often suitable
when correlation is not present.

The second approximation, project-sim-lter rst performs
a projection over the left join key and then uses the projected
column to compute proxy scores 2 (C 08 , C 9) based on embedding
similarities between the projected value C 08 and C 9 . As before, we
also re-calibrate the proxy scores taking their quantiles. Intuitively,
performing the projection is useful when tuple pairs that pass the
user’s natural language predicate exhibit low semantic similarity.
The projection step invokes the LLM over each tuple in left join
table, prompting it to predict attributes values for the right join key,
without specifying the domain of the right join key. Notably, this
LLM projection is ungrounded, i.e., it is done without knowledge
of the right join key’s attribute domain and can thus be performed
in a fully parallelized semantic map operation. Figure 2 provides an
example of a semantic join between a table of papers and datasets,
where the predicate evaluates whether a given paper abstract uses
a specic dataset. Here, the map step would invoke the LLM over
each abstract, instructing the model to output the dataset used,
conditioned only on the abstract.

To dynamically choose between these two approximations, we
follow a procedure similar to Algorithm 1 to determine the em-
bedding thresholds for both the sim-lter and project-sim-lter

approximations. We begin by importance sampling to collect the
sample (and construct the set of oracle labels,$(, over the sample.
We then obtain embedding thresholds g+ and g independently for
each approximation algorithm using their respective proxy scores,
1 and 2. We use the learned thresholds for each candidate plan
to then determine the exact oracle cost needed to execute either al-
gorithm, and we take the least cost plan with its associated learned
thresholds to proceed to evaluate the predicate for each tuple pair.

3.3 Optimizing Semantic Group-by
We provide an ecient approximation that guarantees a classica-
tion accuracy target, W , is met with probability 1  X . We follow the
clustering algorithm in the rst stage of the reference algorithm to
discover centers `1, ...`⇠ . We then use a proxy-based approximation
for point-wise assignments in the second stage of the algorithm.
Similarly to semantic joins, we leverage semantic similarity scores
as a cheap proxy, although other proxy models are also feasible.
Specically, we leverage the embeddings constructed during the
clustering stage and compute similarity scores between the candi-
date label of each tuple and the discovered centers `1, ...`⇠ . The
proxy score of the tuple C8 with a candidate label, C 08 , for a discov-
ered center ` 9 is given by (C8 , ` 9) = B8<(C 08 , ` 9). Our goal is then
to learn a threshold g , such that if the proxy score between a tu-
ple and the center is greater than g , we return the center as the
label for the tuple, and otherwise we resort to the more expen-
sive LLM-based classication procedure. We accomplish this by
uniform sampling and running the sub-procedure equivalent to
the PT_threshold_estimation used in Algorithm 1 for seman-
tic lters, where the metric we evaluate is classication accuracy
over the ⇠ groups. Here we use uniform rather than importance
sampling since the sample should consist of representative classes
of the whole dataset, rather than a single, possibly rare, class of
interest, as is the case for semantic ltering and joins.

3.4 Optimizing Semantic Top-k
We leverage the embedding similarity scores to optimize pivot se-
lection for some queries, while incurring no accuracy loss. This
optimization is useful when correlation exists between the ranking
imposed by the user’s arbitrary sorting criteria and the ranking
imposed by semantic similarity scores. In this case, we can sort
tuples based on embedding distances to the user’s query, and select
the (: + n)-th item, rather than a random item, as the rst pivot.
This can reduce the number of LLM comparisons required by sub-
sequent rounds in the quick-select algorithm, leading to higher
query eciency at no accuracy loss. In the case of no correlation
between the langex-based ranking and similarity-based ranking,
this method amounts to random pivot selection, and in the worst
case of an adversarial pivot, the algorithm will incur one extra pivot
round, which can impact execution time, but not degrade quality.

4 THE LOTUS SYSTEM
In this section we describe the LOTUS system, which implements
the semantic operator model as an extension of Pandas [11]. We
chose a Pandas-like API in our initial system implementation to
make it easy for users to integrate LOTUS with popular AI libraries
in Python. However, semantic operators could also be added to a

4176

1 papers_df.sem_sim_join(papers_df , left_on=abstract,
right_on=abstract, K=10)

2 papers_df.sem_search(col=abstract, query=vector
databases, K=10)

Figure 3: Example usage of sem_sim_join and sem_search.

variety of other data processing APIs and query languages, such
as SQL. LOTUS leverages vLLM [43] to perform ecient batched
inference, and uses FAISS [30, 34], by default, to support ecient
vector search with indices stored and maintained locally on disk.

4.1 Datatypes
LOTUS’ data model consists of tables with structured and unstruc-
tured elds (e.g., text or images), both of which can be passed
as langex parameters. LOTUS also supports semantic indices over
unstructured elds for optimized query processing. These indices
leverage semantic embeddings over each entity in a column and cap-
ture semantic similarity using embedding distance metrics. Seman-
tic indices can be created o-line with sem_index and a specied
retriever model, and then loaded from disk using load_sem_index.

4.2 Semantic Operators in LOTUS
We now overview the semantic operators supported in the LOTUS
API, which includes the core set of operators described in Section 2,
as well as several additional variants provided for convenience. Each
operator takes optional parameters to specify a target accuracy and
error probability, which the optimizer will use to transparently per-
form optimizations. In general, the tradeo curve between accuracy,
latency and cost curve depends on the specic user task, dataset,
and congured models. In practice, one can empirically analyze
this tradeo by benchmarking varied accuracy targets and choose
the operating point most suitable for the given application.
Sem_lter, Sem_join, & Sem_sim_join. The LOTUS API supports
sem_filter and sem_join, both of which take a langex predicate,
as described in Section 2. In addition, LOTUS provides a join variant,
sem_sim_join, where tuples are matched according to their seman-
tic similarity, rather than an arbitrary natural-language predicate.
Akin to an equi-join in standard relational algebra, the semantic sim-
ilarity join is a specialized semantic join, which indicates additional
optimization opportunities to the query engine by leveraging vector
similarity search. Figure 3 provides an example of the sem_join
compared to the sem_sim_join, where the user species the left
and right table join keys, and a parameter . The operator performs
a left join such that for each row in the left table, the output table
will contain most similar rows from the right table.
Sem_topk & Sem_search. LOTUS supports a semantic top-k,
which takes the langex ranking criteria, as described in Section 2.
Programmers can optionally specify a group-by parameter. The
groupings are dened using standard equality matches over the
group-by columns. Additionally, as Figure 3 shows, LOTUS also
provides a top-k variant, sem_search, which returns results ranked
by similarity to the natural language query. LOTUS also exposes ad-
vanced relevance-based re-ranking functionality for search. Users
can specify the n_rerank parameter, which will re-rank the top-
documents and return the top n_rerank.
Sem_agg. The LOTUS API supports semantic aggregations, fol-
lowing the description in Section 2. Similar to sem_topk, LOTUS
also allows users to optionally specify a group-by parameter.

Sem_group_by. This operator creates groups over the input dataframe
according to the langex projection and target number of groups. By
default, the operator discovers suitable group labels, but the user
can also optionally specify target labels. This operator is useful
both for semantic clustering and classication tasks.
Sem_map & Sem_extract. Both these operators perform a natu-
ral language projection over an existing column. While sem_map
projects to an arbitrary text attribute, sem_extract projects each
tuple to a list of sub-strings from the source text. This is useful for
applications, such as entity extraction, where nding snippets or
veried quotes may be preferable to synthesized answers.

5 EVALUATION
We systematically evaluate LOTUS on four bulk-semantic process-
ing applications from the AI and data literature: fact-checking,
biomedical multi-label classication, search, and topic analysis.
Some of these applications can be expressed by recent LLM-based
analytics systems, like AI UDFs, UQE and DocETL, allowing us to
compare against them; while other applications are not supported
by the baseline systems, but LOTUS supports them. For each ap-
plication, we additionally compare against strong hand-designed
pipelines from the literature. We evaluate the LOTUS optimizer,
comparing the performance of optimizations for semantic lters,
joins, top-k and group-by with our reference algorithms. Lastly,
we analyze the statistical accuracy guarantees provided by LOTUS’
optimizations. Overall, we nd the following:

• Compared to AI-based analytics systems, like AI UDFs,
UQE, and DocETL, LOTUS attains similar or up to 170%
higher accuracy, while running up to 3.6⇥ faster and oer-
ing statistical accuracy guarantees that the other systems
do not provide.

• Compared to hand-written pipelines from the AI literature
for fact-checking, biomedical classication, and search, LO-
TUS matches state-of-the-art quality, or exceeds it by up to
100%, in programs involving a few semantic operators.

• The LOTUS optimizer can substantially reduce cost of se-
mantic operator programs, by up to 1, 000⇥ compared to
high-quality reference algorithms, and provides accuracy
guarantees, which hold across repeated trials.

To report controlled latency numbers, we run each baseline
and experiment locally on 4 80GB A100 GPUs using Llama-3-
70B [6] and E5 embeddings [66], with a batch size of 64 running
on vLLM [43], unless otherwise stated. To run DocETL baselines
and reproduce some of their benchmarks [61], we additionally use
OpenAI [10] models, including GPT-4o-mini-2024-07-18, GPT-4o-
2024-08-06 model, and text-embedding-3-small, where noted. For
our experiments that use OpenAI models, we control for cost by
limiting execution to 64-way thread parallelism. For reproducibility,
we set temperature to C = 0 for all methods, unless otherwise stated.

5.0.1 Benchmarked Methods. We briey overview the main meth-
ods we benchmark and tested parameters.
AI UDFs. Many database vendors [1, 8, 9, 14, 53, 67] now support
AI UDFs, which include map-like, row-wise LLM operations and
primitives for vector search. To control for serving infrastructure,
we implement these programs using LOTUS running on vLLM, and
restrict our API to sem_map, sem_search and sem_sim_join.

4177

UQE. UQE [25] proposes an optimized LLM-powered lter method,
which is relevant to this work. Since the code is not open-source, we
implement the UQE lter in 100 line of python code. The UQE lter
takes an LLM call budget and provides a best-eort embedding-
based approximation. To provide a fair comparison between UQE
and LOTUS, we normalize the latency budget when comparing
against LOTUS programs that use LLM-based proxies, and we nor-
malize the LLM call budget when comparing against LOTUS pro-
grams that use embedding-based proxies. We also hyperparameter
tune UQE’s minibatch size, used for its active learning algorithm.
DocETL. DocETL [61] uses an LLM agent as the query optimizer
to perform rewrites to programs, allowing programs to specify sep-
arate LLMs for the optimizer and execution. Our experiments nd
that the optimizer often fails, and among runs where the optimizer
succeeds, performance varies. We obtain three successful runs and
report the average performance of these three successes. We also
try using both Llama-70B as the DocETL optimizer, following our
setup for each other baseline, and GPT-4o-mini as the DocETL
optimizer, following the DocETL preprint [61]. However, we nd
both fail to produce a successful run in Section 5.2. We conrm a
mistake in the pre-print with the authors and nd that GPT-4o is
required for the DocETL optimizer for the BioDEX experiments in
Section 5.2. Since the codebase is an evolving artifact, we report
the commit number we used here5.
LOTUS. We set the default accuracy target, W = 0.9 and failure
probabilitiy, X = 0.2. We provide a detailed ablation, varying these
parameters in Section 5.5. We also show several benchmarks using
either the oracle model only (W = 1), or the proxy model only
(W = 0). Additionally, our sample size, B , use 0.01% of the data and a
minimum of B = 100 for smaller datasets, following prior work [37].

5.1 Fact-Checking
Fact-checking systems determine whether a given claim is cor-
rect, typically based on veriability with a knowledge corpus. Fac-
Tool [23] is a recent open-source research work that provides
a multi-step fact-checking pipeline. We consider the task of re-
constructing the FacTool pipeline, which was originally written in
over 750 lines of code. For our evaluation, we use the FEVER [64]
dataset, a claim verication dataset based on a corpus of 5.5million
Wikipedia articles. Each claim is labeled with one of three reference
labels, "Supported", "Refuted", or "NotEnoughInfo". We merge the
latter two labels into a single class, "Not Supported", following prior
work [23]. To control for our API spending budget, we sample 1,000
claims from the development dataset.
Baselines. For all baselines we use ColBERT [42] as the retreiver
model6 and Llama-70B served with vLLM. We run FactTool’s open
source codebase [5] to measure its performance. The AI UDF base-
line uses a simple semantic map-search-map dataow, following
FacTool’s pipeline. First each claim is mapped to two search queries.
Then the generated queries are used for search over the Wikipedia
corpus. Lastly, each claim, appended with retrieved context, is
mapped to a truth label and reasoning chain. We use the same

5https://github.com/ucbepic/docetl/commit/93050998077a9eb6fc1ee99dc96d1e0a222a987f
6FactTool’s pipeline, by default, performs retrieval with a Google Search API [3]. We
evaluate the pipeline with both the default retrieval API, and with the open-source
ColBERT [42] index. We nd that the results are similar, and we report the results using
ColBERT for retrieval to hold the retriever model constant with the other baselines.

Table 2: Fact-checking Performance on the FEVER Dataset.

Method Accuracy ET (s), batching ET (s), no batching LoC

FacTool 80.9 N/A 5396.11 > 750
AI UDF:map, search,
map

89.9 688.9 4,454.2 < 50

AI UDF map, search
+ UQE lter

66.0 184.4 738.3 150

LOTUS map, search,
lter (unopt.)

91.2 329.1 989.0 < 50

LOTUS map, search,
lter (opt.)

91.0 190.0 776.37 < 50

prompts found in FacTool [5], which include 3 demonstrations for
generating search queries in the rst semantic mapping, and chain-
of-thought prompting in the second semantic mapping. The UQE
baseline follows the rst two steps of the AI UDF baseline, but
replaces the nal step with UQE’s embedding-based LLM-powered
lter. Our LOTUS program similarly follows a map-search-lter
pipeline and uses a Llama-8B proxy model. To provide a fair com-
parison, we tune the UQE LLM call budget to normalize execution
time with the optimized LOTUS program. Since DocETL does not
provide search primitives, we cannot benchmark it in this task.
Results. We report each method’s accuracy, an estimate of lines of
code (LoC), and average execution time (ET) over 10 runs in seconds,
both with and without batching to provide a fair comparison with
FacTool, which provides a sequential implementation only. Overall,
Table 2 demonstrates that the optimized LOTUS program repro-
duces state-of-the art accuracy, comparable to that of FacTool, with
7⇥ faster unbatched execution and 28⇥ faster batched execution,
and in less than 50 LoC, while also outperforming baseline.

We begin by noting that the unoptimized LOTUS program achieves
state-of-the-art accuracy; its improvement over the AI UDF and
UQE baselines reect the eectiveness of our reference algorithm.
Comparing the un-optimized and optimized LOTUS program to
the AI UDF baseline, we see that each achieves comparable accu-
racy in relatively few lines of code. Notably, the AI UDF baseline
and LOTUS program dier solely in the last step of the pipeline,
where LOTUS uses a semantic lter instead of a map. The LOTUS
sem_filter can bemore heavily optimized compared to the generic
AI UDF map operation. This allows the LOTUS program to attain
3.6⇥ faster execution, attributable to the lter’s short LLM genera-
tions in the un-optimized LOTUS baseline, and our cascade-based
optimization for lters in the optimized LOTUS program.

We also observe that the LOTUS program outperforms the UQE
program by 38% accuracy at an equivalent latency budget. The UQE
baseline diers from LOTUS solely in the way it performs semantic
ltering. LOTUS provides a high quality un-optimized semantic
lter, then optimizes the operation with accuracy guarantees by
adaptively learning when to apply the proxy. On the other hand,
UQE takes a best-eort approach with a xed embedding-based
proxy that is applied to all samples once the user’s LLM budget is
depleted. The UQE lter is unable to automatically learn that the
embedding-based proxy performs poorly on this task.

Semantic Filter Optimization. Finally, we compare the LOTUS
programs with and without the semantic lter optimization. Table 2
shows the optimized program achieves 99.8% accuracy relative
to the un-optimized one, while reducing batched execution time
by 1.7⇥. Figure 4 further highlights the diverse operating points

4178

https://github.com/ucbepic/docetl/commit/93050998077a9eb6fc1ee99dc96d1e0a222a987f

Figure 4: Accuracy vs. execution time (s) for the LOTUS fact-checking
program on the FEVER dataset. We compare the performance using the proxy
only (red circle), oracle only (green circle) and both models with varied the
precision and recall targets, at X = 0.2 (stars) for the lter.

achieved by our sem_filter by varying the recall and precision
target, from W = 0 (red circle), to W = 1 (green circle).

5.2 Biomedical Multi-label Classication
Biomedical classication entails processing complex, lengthy pa-
tient documents. We consider the extreme multi-label classication
task on the BioDEX Dataset [29], which consists of a corpus of
65, 000 biomedical articles, and ground-truth expert-created drug
safety reports constructed from each article. The task is to classify
the patient’s drug reactions, given each medical article. Notably,
there are 24, 000 possible drug-reaction labels. Due to the large
label set, leveraging an LLM to perform inference is dicult, and
this setting has been studied in prior works [28]. We show below
that this task can be eciently modeled and optimized using the
semantic join. Similar to prior work [29] we sample 250 patient
articles for our evaluation to control for our API spending budget.
Baselines. The search baseline performs embedding similarity
search over each patient article and the set of reaction labels. For
the baseline LLM-based analytics systems, we implement a LLM-
powered join over the patient articles and set of candidate reaction
labels, followed by a ranking step, if supported. The AI UDF pro-
gram entails a naive, nested-loop join pattern using row-wise LLM
operators; however we note this is prohibitively costly and we re-
port estimated latency. While UQE does not explicitly study joins,
we implement a UQE join using its optimized lter. The DocETL
program uses a join and reduce, which uses listwise ranking, follow-
ing the preprint [61]. We note that we are unable to successfully run
DocETL using Llama-70B or GPT-4o-mini for its optimizer, so re-
sults (Table 3, 4) are shown using GPT-4o for the DocETL optimizer.
LOTUS supports both join and ranking. Although LOTUS provides
a sem_topk operator, we limit our ranking step to list-wise ranking
to maintain a fair comparison with DocETL, and revisit ranking in
Section 5.3. Our main results are shown in Table 3, using Llama-70B
and E5 embeddings and sampling size of 0.01%. We also provide
an additional set of benchmarks in Table 4 comparing LOTUS and
DocETL following the models, prompts and parameters used in the
original DocETL preprint. The DocETL setup uses GPT-4o for the
optimizer, GPT-4o-mini, text-embedding-3-small embeddings and
a sampling size of 500. DocETL’s join takes an LLM call budget,
which we control to compare against the other baselines.
Results. Table 3 demonstrates the LOTUS programs consistently
match or exceed the accuracy of all baselines, while also providing
performance guarantees, unlike DocETL, which requires multiple
reruns and manual selection of the optimizer LLM to produce high-
quality results. The table reports the rank-precision@5 (RP@5) and
rank-precision@10 (RP@10), following prior work [28], as well

Table 3: Biomedical Multi-label Classication Results on the
BioDEX Dataset with Llama-70b

Method RP@5 RP@10 ET (s) # LM Calls

Search 0.106 0.120 2.91 0.00
AI UDF * N/A N/A 2,144,560 6,092,500
UQE 0.115 0.114 6,559 15,000
DocETL Join (avg of 3 suc-
cesses)**

0.180 0.219 2050 13,185

DocETL Join + Rank (avg of 3
successes)**

0.262 0.282 2,342 13,433

LOTUS Join 0.212 0.213 2,340 5,644
LOTUS Join + Rank 0.265 0.280 2,503 5,869

Table 4: Additional Comparison Following DocETL’s Original
Benchmarks on the BioDEX Dataset with GPT-4o-mini

Method RP@5 RP@10 ET (s) # LM Calls

DocETL Join + Rank (avg of 3
successes)**

0.268 0.287 583 35,669

LOTUS Join + Rank 0.289 0.296 647 32,026

* AI UDF is infeasible to run and latency is estimated.
** The DocETL baselines requires using GPT-4o as its optimizer and still exhibit
frequent failures, with, on average, 1 in 3 runs failing. We rerun the system
multiple times and report results averaged only over 3 successful runs.

as execution time in seconds and the number of LLM calls. The
LOTUS join with ranking program achieves higher rank-precision
than the standalone LOTUS join program, and we show both.

We begin by informally comparing these accuracy results to
that of D’Oosterlinck et al. [28], a state-of-the art AI pipeline
that composed a multi-step DSPy [41] program compiled using
a combination of Llama-2-7b-chat, GPT-3.5-turbo, and GPT-4-turbo.
D’Oosterlinck et al. report 24.73 RP@5 and 27.67 RP@10 for the
compiled program, which is comparable to result quality achieved
by the simple LOTUS join with ranking program.

Turning to the baselines measured in Table 3, we see that, rst,
the search baseline oers low results quality, with the LOTUS
programs achieving over 2⇥ higher RP@5 and RP@10 due to the
stronger reasoning capability of LLM algorithms. Next, The AI UDF
baseline, using row-wise LLM calls, is prohibitively expensive, and
reects the cost of our reference algorithm for joins. Its quadratic
scaling of LLM call complexity with respect to dataset size leads to
1, 000⇥ higher estimated cost relative to the optimized LOTUS join
program. UQE, which uses an embedding-based optimization, ob-
tains similar accuracy to the search baseline, remaining well below
the RP@5 and RP@10 of the LOTUS programs despite a generous
LLM call budget, indicating that the UQE method has lower sample
eciency on this task. Next, we turn to a detailed comparison of
DocETL and LOTUS, shown in Table 3 and Table 4. LOTUS con-
sistently matches or exceeds the accuracy of DocETL’s successful
runs. Notably, the DocETL agentic optimizer requires GPT-4o and
frequently fails, requiring multiple reruns, while LOTUS’ optimizer
provides statistical accuracy guarantees, which we analyze further
in Section 5.5. Table 4 also shows that LOTUS and DocETL have
similar numbers of LLM calls and execution time, however the
token consumption per call of the DocETL programs are lower on
average due to its optimized plan, which leads to modestly lower
execution time despite modestly higher LLM calls.

Semantic Join Optimization. Lastly, we turn to Table 5 and study
the candidate join plans produced by the LOTUS optimizer. Plan
1, the sim-lter, requires more LLM calls to meet the recall and

4179

Table 5: Comparison of Candidate LOTUS Join Plans and Reference
Algorithm on the BioDEX Dataset Using Llama-70b

Method RP@5 RP@10 ET (s) # LM Calls
LOTUS Join Plan 1 0.1541 0.170 12,563 27,687
LOTUS Join Plan 2 (chosen) 0.212 0.213 2,116 5,290
Reference Algorithm N/A N/A 2,144,560 6,092,500

precision targets, compared to Plan 2, the project-sim-lter plan.
This reects that Plan 2’s proxy oers a stronger signal for predicate
evaluations. We see that the LOTUS optimizer correctly selects Plan
2 to execute since it is lower cost. The selected pattern also results in
signicantly better accuracy due to its higher-quality proxy signal
for this task. Specically, the project-sim-lter pattern oers 37%
higher RP@5 and 25% higher RP@10 compared to the sim-lter,
with 1, 000⇥ fewer LLM calls than the reference algorithm.

5.3 Search & Ranking
Relevance-based ranking has been widely studied in the context of
information retrieval. In addition, our conversations with LOTUS
users reveal a common need for ranking based on complex natural
language criteria (e.g., ranking customer reviews based on how
frustrated they sound). We assess LOTUS’ ranking capabilities on
both types of tasks using two datasets: BEIR’s SciFact test set [63], a
widely used benchmark for retrieval, and a new dataset, HellaSwag-
bench, which we generated to assess more complex ranking tasks.
For both, we report average nDCG@10, a standard ranking metric,
and execution time (ET). The SciFact dataset consists of scientic
claims and the task is to rank articles from a corpus by relevance
to each claim. We sample 300 claims for our evaluation. HellaSwag-
bench consists of 200 synthetic paper abstracts7, each reporting
an accuracy on the HellaSwag dataset [74], and the task is to rank
abstracts by their reported accuracy. This dataset provides an ob-
jective ground truth, while focusing on a reasoning-based ranking
criteria, rather than a relevance-based one8. We report results for
= = 20 trials at temperature C = 0.7, similar to prior works [41].
Baselines. In addition to the standard search baseline, we add a
re-ranker baseline using the MixedBread cross-encoder [15], a high
quality re-ranker common in relevance-based retrieval. The AI UDF
baseline performs a point-wise ranking by prompting the LLM to
assign a relevance score to each row, similar to prior work [76].
The DocETL baseline uses the system’s LLM reduce operation for
ranking, as described by the pre-print [61]. Our LOTUS program
uses the sem_topk operator with a semantic index on the document
corpus of both datasets. For the reranker, AI UDF, DocETL, and
LOTUS programs on SciFact, we perform search to retrieve 100
articles, before re-ranking them with each method.
Results. We evaluated the performance of the LOTUS program in
comparison to the baseline systems, our reference algorithm, and
alternative high-quality ranking algorithms we considered for our
sem_topk reference algorithm.

First Table 6 demonstrates that LOTUS achieves 1.03 2⇥ higher
accuracy than the next best-performing baselines on Scifact and

7Each abstract in HellaSwag-bench is generated by prompting Llama-70b to write a
research abstract that claims a accuracy value, randomly sampled from 0  100%.
8While the Hellaswag-bench ranking task can be solved with a sem_map, to extract
accuracy values, followed by a structured sorting, our focus is on assessing semantic
ranking algorithms. We nd this benchmark useful for understanding performance
trade-os, which may generalize to a wider set of reasoning-based ranking queries.

Table 6: Ranking Results on SciFact and Hellaswag-bench Datasets

Method SciFact HellaSwag-bench

nDCG@10 ET (s) # LM
Calls

nDCG@10 ET (s) # LM
Calls

Search 0.712 0.009 0 0.119 0.008 0
Reranker 0.741 2.64 0 0.461 2.36 0
AI UDF 0.457 9.83 100 0.091 19.7 200
DocETL - Llama 70B
optimizer (avg. of 3
sucesses)*

N/A N/A N/A 0.246 14.1 3

DocETL - GPT 4o op-
timizer*

N/A N/A N/A N/A N/A N/A

LOTUS 0.765 36.3 213.2 0.919 57.0 506.4

* DocETL is unable to acheive any successful runs using GPT-4o for its optimizer on
SciFact and HellaSwag-bench, nor using Llama-70B for its optimizer on SciFact

Table 7: Comparison of LOTUS’ Top-k to the Reference Algorithm
and Other High-Quality Top-k Algorithms for Ranking

Method SciFact HellaSwag-bench

nDCG@10 ET (s) # LM
Calls

nDCG@10 ET (s) # LM
Calls

Quadratic Topk 0.768 801.2 4950 0.886 2116.6 19,900
Heap Topk 0.765 60.0 192.6 0.896 59.4 241.5
Quickselect Topk 0.771 40.5 237.0 0.893 49.4 448.1
LOTUS 0.765 36.3 213.2 0.919 57.0 506.4

HellaSwag-bench, reecting the eectiveness of our LLM-based
ranking algorithm using pairwise comparisons. Specically, as ex-
pected, the re-ranker oers competitive accuracy compared to the
LOTUS program on Scifact, which focuses on relevance-based re-
trieval, which is the supervised task on which the re-ranker model
was trained. However, on HellaSwag-bench, a more complex rank-
ing task, the LOTUS program signicantly outperforms the re-
ranker, reecting the generalized capabilities of strong LLM-based
reference algorithms. We also observe that the point-wise AI UDF
method and the list-wise ranking, used by DocETL, oer substan-
tially lower accuracy, unable to outperform the re-ranking baseline.
This reects the limitations of point-wise and list-wise ranking,
both of which have been studied in prior work [58] and exhibit
common failure modes involving calibration and long context. No-
tably, the DocETL baseline altogether fails to produce any suc-
cessful execution plans using the GPT-4o optimizer on Scifact and
Hellaswag-bench and using the Llama-70B optimizer on Scifact.

Turning our attention to Table 7, we compare the quick-select
top-k reference algorithm to several alternative candidates. The
quadratic top-k, heap top-k, and quick-select top-k oer comparable
accuracy on both datasets; however, the three candidate choices
provide signicant dierences in eciency. The quadratic algorithm
requires 20  82⇥ more LLM calls and over 10⇥ higher execution
time than the heap top-k and quick-select top-k. The quick-select
top-: oers 16  32% lower execution time than the heap-based
sorting method, despite sometimes requiring more LLM calls. This
is because the quick-select top-: implementation allows for ecient
batched processing in each round of the algorithm, whereas the
heap-based top-: incurs sequential LLM calls during heap updates.

Semantic Topk Optimization. Finally, the Table 7 compares the
quick-select top-kwith the LOTUS quick-select top-k using embedding-
based pivot selection. We demonstrate that the optimization is loss-
less, as expected, and can decrease latency by 10%. Specically,

4180

(`1) Advancements in Recommender Systems and Multimodal Data Integration
(`2) Advancements in Generative Information Retrieval Systems
(`3) Advancements in Large Language Models for Various Applications
(`4) Advancements in AI Security and Malware Detection Techniques
(`5) Advancements in Robotic Navigation and Manipulation Techniques

Figure 5: Discovered labels from LOTUS sem_group_by("the topic of each
{paper}", C=5) over a dataset of recent ArXiv papers, scraped from the cs.DB,
cs.IR, cs.CR and cs.RO domains.

this optimization is useful where document rank correlates with
semantic similarity, which is likely on the Scifact dataset.

5.4 Topic Analysis on ArXiv Papers
A common unsupervised discovery task requires grouping a large
document corpus by topics and assigning descriptive labels to each
group. We consider this task over a dataset of 647 recent ArXiv
articles, which we scraped from the database (cs.DB), information
retrieval (cs.IR), cryptography and security (cs.CR), and robotics
(cs.RO) domains. We aim to discover 5 key topic labels.

We can succinctly represent this task using the sem_group_by
operator with LOTUS. AI UDFs, DocETL and standalone search sys-
tems do not serve operations for semantic group discovery. While
UQE [25] studies optimizations for serving non-LLM aggregations,
e.g., COUNT, with LLM-based group-bys, it does not focus on im-
plementing, optimizing, and evaluating a standalone group-by op-
erator, but suggests a standalone group-by implementation similar
to our sem_group_by reference algorithm. Thus, in this section,
we focus our analysis on understanding the performance of our
sem_group_by reference algorithm and analyzing our optimiza-
tion with respect to it. We use Llama-70B and E5 embeddings. For
approximations, we use a sample size of 100 and X = 0.2.
Results. The sem_group_by consists of two sub-tasks: (a) discover-
ing representative group labels, and (b) classifying each document.
We rst qualitatively analyze the labels discovered in the rst sub-
task. Figure 5 shows the discovered labels intuitively align with
recent research topics in the cs.DB, cs.IR, cs.CR, and cs.RO ArXiv
domains e.g., recommendation, retrieval, LLM applications, AI se-
curity, and robotics. Performing this label discovery sub-procedure
took 44.03 seconds, representing a tractable algorithm.

Semantic Groupby Optimization. Turning to the classication
sub-task, we compare the performance of the reference algorithm
to our approximation, which uses an embedding-based proxy here.
Intuitively, the LLM-based classication in the reference algorithm
provides high quality by leveraging the LLM capabilities to reason
about the main topic of each abstract, while the embedding-based
model oers an approximation using semantic similarity between
a topic and abstract. Figure 6 compares the execution time and clas-
sication accuracy of the oracle-based reference algorithm (green
circle), our approximations using both the Llama-70B oracle LLM
and embedding-based proxy at varied accuracy targets (blue stars),
and the embedding-based proxy alone (red circle). The proxy-only
baseline is 17.4⇥ faster than the oracle, but about 39% less accu-
rate. Our approximation allows users to declaratively interpolate
between these two extremes by varying the accuracy target. We
also note that the sampling-based procedure used to perform this
optimization took less than 5 seconds, a small relative cost.

Figure 6: Classication accuracy vs. execution time (s) for the LOTUS
sem_group_by over the ArXiv dataset. We compare performance of classi-
fying each paper using the proxy only (red circle) or oracle only (green circle)
to our approximation with varied accuracy targets, at X = 0.2 (blue stars).

5.5 Accuracy Guarantees Evaluation
Our approximation methods are designed to adaptively learn when
to leverage the proxy and guarantee the accuracy target is met. To
demonstrate the accuracy guarantees provided by our optimiza-
tions, we vary the proxymodels, recall and precision targets and fail-
ure probability parameters, studying the sem_filter performance
on the fact-checking task. Figure 7a and Figure 7b demonstrate
the average accuracy observed over 20 trials for varied recall and
precision targets. We evaluate performance with both the Llama-8B
proxy (solid lines) and a weaker proxy, TinyLlama-1B (dashed lines),
with a failure probability of X = 0.2 (red) and X = 0.4 (blue). As ex-
pected, the average recall and precision values increase with higher
target values for either metric. Figure 7c shows that decreasing the
recall and precision target tends to reduce the number of oracle
calls. As expected, at a xed accuracy target, our approximation
requires more oracle calls with the weaker proxy, TinyLlama. We
also note that the cost, in number of oracle calls or latency, may
not necessarily increase linearly with accuracy target, as the gure
shows. Intuitively, the number of additional oracle calls required to
achieve an n increase in accuracy will depend on the target accuracy
range. Finally, in Figure 7d we record the percentage of 50 trials
that do not meet the recall and precision target, both set to 0.9, us-
ing the TinyLlama proxy. The results conrm the observed failure
probabilities are lower than the congured failure probabilities, as
expected due to our conservative implementation.

6 RELATEDWORK
Data Systems with Batched Inference Primitives. Many prior
works support a limited set of simple, batched inference primitives.
First, AI UDF systems [1, 8, 14, 49, 53, 67] provide a low-level, non-
declarative programming interface supporting batched inference
LLM calls. These systems also integrate vector search, equivalent
to our sem_search or sem_sim_join, and can combine AI UDFs
with non-LLM operations (e.g., average, count). Alternatively, sev-
eral recent works support domain-specic batched-inference op-
erations [18, 46, 47, 50] for various tasks, including data cleaning,
extract-transform-load (ETL) and conversational agents. In contrast
to these prior works, semantic operators provide a general-purpose
query model that goes beyond simple batched inference primitives
to support semantic operations that require more complex AI al-
gorithms (e.g., joins, aggregations, and ranking). Our detailed eval-
uation (Section 5) demonstrates the performance limitations of
batched-inference LLM execution models.
Best-Eort LLM-Based Analytics Systems. Several recent sys-
tems [17, 25, 61] go beyond batched inference LLM primitives but
provide no accuracy guarantees for their execution. Following a
preprint [54] of this work, DocETL [61] proposes to use LLM agents
as the query optimizer over LLM-powered operators. This is a

4181

(a) Observed vs Target Re-
call

(b) Observed vs Target Pre-
cision

(c) # Oracle Calls vs Accu-
racy Target

(d) Observed vs Cong-
ured Failure Probability

Figure 7: We evaluate statistical accuracy guarantees with our semantic lter for fact-checking on the FEVER dataset. We show (a) average observed recall vs.
congured recall targets (W') , (b) average observed precision vs. congured precision targets (W%) , and (c) the number of oracle LLM calls vs. congured accuracy
targets (W' = W%), using a Llama-70B oracle and either a Llama-8B proxy (dashed lines) or a TinyLlama proxy (solid lines), for two dierent failure probabilities
(X = 0.2, 0.4) . We also show observed vs. congured failure probabilities using the TinyLlama proxy and Llama-70B oracle, for accuracy targets W' = W% = 0.9.

promising direction for future work; however, our evaluation (Sec-
tion 5) demonstrates that DocETL’s agentic approach leads to high
variance in performance, no accuracy guarantees, and requires mul-
tiple reruns to achieve comparable accuracy to ours, with approxi-
mately 1 in 3 runs failing due to optimizer errors, indicating that
more work is needed to make these methods robust. UQE [25] also
studies optimizations for LLM-powered operators, proposing an
embedding-based lter approximation. In contrast to our methods,
UQE provides best-eort performance with no accuracy guaran-
tees. UQE also studies optimizations for non-LLM aggregations (e.g.,
average, count) combined with LLM-based lters and group-bys
using stratied sampling, which is complementary to this work.
General ML-based Query Processing. Prior works study the use
of non-LLM machine learning (ML) in databases. MADLib [32]
extends SQL with abstractions for descriptive statistics and ma-
chine learning (e.g., regression and classication). NoScope [36],
TASTI [40], SUPG [37], BlazeIt [35] and probabilistic predicates [51]
propose methods to optimize queries involving expensiveML-based
predicates (e.g., using object detectors) over large datasets, typically
in video analytics. In contrast, our work integrates LLMs, which
motivates our new formalisms for language-based operators and
novel optimizations. Some optimizations proposed in these prior
works, such as model cascades and predicate re-ordering, are also
useful for optimizing LOTUS pipelines with language models.
Table Question Answering. A large body of work, including
retrieval-augmented generation [44] and Text2SQL [70, 71, 73, 75],
serves question-answering via natural language over databases.
Typically, the LLM system invokes external tools, e.g., search APIs
or SQL programs. Interestingly, these agentic workows can in-
stead invoke semantic operator programs as the underlying data-
processing API. Recent work [19] demonstrates the promise of this
approach to outperform baseline TableQA methods.
Adoption of Semantic Operators. Based on a preprint [54] of this
work, Google recently implemented experimental semantic opera-
tors in BigQuery Dataframes [12], including sem_map, sem_filter,
sem_join, sem_agg, sem_topk, sem_search, and sem_sim_join.

7 LIMITATIONS AND FUTUREWORK
Semantic operators open up exciting research directions for future
work. We briey outline the limitations of this work and compelling
opportunities of future work towards robust, AI-enabled systems
for semantic bulk processing. Firstly, the accuracy guarantees in
this work are limited to individual semantic operators. Future work

should build on the formalism introduced in this work to develop
end-to-end accuracy guarantees for semantic operator queries. In
this setting, the user could congure an accuracy target for the
end-to-end semantic query, and the query optimizer will assign
an error budget to each individual operator. Additionally, while
this work explores simple cost-based optimizations for semantic
operators, more work is needed to develop algorithms that tractably
search over many possible execution plans employing various prox-
ies (e.g., cheaper AI models, vector indexes, traditional indexes and
operators, or code-generation methods), while rigorously consid-
ering the relative cost of each. Moreover, developing a framework
of equivalence rules for semantic operator execution plans is an
interesting direction towards principled optimizations. Lastly, while
this work presents several high-quality reference algorithms for
semantic operators, developing better reference algorithms remains
an exciting open research question.

8 CONCLUSION
In this work, we proposed semantic operators to provide the rst
formalism with statistical accuracy guarantees for general-purpose,
AI-based operations with natural language parameters. Our results
across diverse applications, including fact-checking, biomedical
multi-label classication, search, and topic analysis, demonstrate
the generality, expressiveness and robustness of the semantic oper-
ator model as well as our optimization approach. For each task, we
nd that LOTUS programs capture state-of-the-art AI applications
with low development overhead, match or exceed result quality of
recent LLM-powered analytics systems, and substantially reduce
cost, while ensuring accuracy guarantees. Since open-sourcing
LOTUS, we have seen a growing user-base, as well as adoption
of semantic operators among large database vendors. We believe
both represent exciting steps towards powerful data systems that
integrate AI reasoning capabilities over vast knowledge corpora.

ACKNOWLEDGMENTS
This research was supported in part by aliate members and other
supporters of the Stanford DAWN project, including Meta, Google,
and VMware, as well as Cisco, SAP, and a Sloan Fellowship. Any
opinions, ndings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reect the views of the sponsors.

4182

REFERENCES
[1] [n.d.]. AI Functions on Databricks. https://docs.databricks.com
[2] [n.d.]. arXiv.org ePrint archive. https://arxiv.org
[3] [n.d.]. Custom Search JSON API | Programmable Search Engine. https://

developers.google.com/custom-search/v1/overview
[4] [n.d.]. Discovery Insight Platform. https://www.ndourview.com
[5] [n.d.]. GAIR-NLP/factool: FacTool: Factuality Detection in Generative AI. https:

//github.com/GAIR-NLP/factool
[6] [n.d.]. Introducing Meta Llama 3: The most capable openly available LLM to

date. https://ai.meta.com/blog/meta-llama-3/
[7] [n.d.]. LangChain. https://www.langchain.com/
[8] [n.d.]. Large Language Model (LLM) Functions (Snowake Cortex) | Snowake

Documentation. https://docs.snowake.com/user-guide/snowake-cortex/llm-
functions

[9] [n.d.]. LLM with Vertex AI only using SQL queries in BigQuery.
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-
vertex-ai-only-using-sql-queries-in-bigquery

[10] [n.d.]. OpenAI Platform. https://platform.openai.com
[11] [n.d.]. pandas - Python Data Analysis Library. https://pandas.pydata.org/
[12] [n.d.]. python-bigquery-dataframes/notebooks/experimental/semantic_operators.ipynb

at main · googleapis/python-bigquery-dataframes. https://github.com/
googleapis/python-bigquery-dataframes/blob/main/notebooks/experimental/
semantic_operators.ipynb

[13] [n.d.]. Querying - LlamaIndex 0.9.11.post1. https://docs.llamaindex.ai/en/stable/
understanding/querying/querying.html

[14] 2023. Large Language Models for sentiment analysis with Amazon Redshift ML
(Preview) | AWS Big Data Blog. https://aws.amazon.com/blogs/big-data/large-
language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
Section: Amazon Redshift.

[15] 2024. mixedbread-ai/mxbai-rerank-large-v1 ·Hugging Face. https://huggingface.
co/mixedbread-ai/mxbai-rerank-large-v1

[16] Grin Adams, Alexander Fabbri, Faisal Ladhak, Eric Lehman, and Noémie El-
hadad. 2023. From Sparse to Dense: GPT-4 Summarization with Chain of Density
Prompting. http://arxiv.org/abs/2309.04269 arXiv:2309.04269 [cs].

[17] Eric Anderson, Jonathan Fritz, Austin Lee, Bohou Li, Mark Lindblad, Henry
Lindeman, Alex Meyer, Parth Parmar, Tanvi Ranade, Mehul A. Shah, Benjamin
Sowell, Dan Tecuci, Vinayak Thapliyal, and Matt Welsh. 2024. The Design of an
LLM-powered Unstructured Analytics System. https://doi.org/10.48550/arXiv.
2409.00847 arXiv:2409.00847 [cs].

[18] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable Simple
Systems for Generating Structured Views of Heterogeneous Data Lakes. http:
//arxiv.org/abs/2304.09433 arXiv:2304.09433 [cs].

[19] Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E.
Gonzalez, Carlos Guestrin, and Matei Zaharia. 2024. Text2SQL is Not Enough:
Unifying AI and Databases with TAG. https://doi.org/10.48550/arXiv.2408.14717
arXiv:2408.14717 [cs].

[20] Mark Braverman and Elchanan Mossel. [n.d.]. Noisy sorting without resampling.
([n. d.]).

[21] Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. 2024. BooookScore: A
systematic exploration of book-length summarization in the era of LLMs. http:
//arxiv.org/abs/2310.00785 arXiv:2310.00785 [cs].

[22] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. FrugalGPT: How to Use
Large Language Models While Reducing Cost and Improving Performance. http:
//arxiv.org/abs/2305.05176 arXiv:2305.05176 [cs].

[23] I.-Chun Chern, Ste Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting
Zhou, Junxian He, Graham Neubig, and Pengfei Liu. 2023. FacTool: Factu-
ality Detection in Generative AI – A Tool Augmented Framework for Multi-
Task and Multi-Domain Scenarios. https://doi.org/10.48550/arXiv.2307.13528
arXiv:2307.13528 [cs].

[24] E F Codd. 1970. A Relational Model of Data for Large Shared Data Banks. 13, 6
(1970).

[25] Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade
Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, and
Dale Schuurmans. 2024. UQE: A Query Engine for Unstructured Databases.
https://doi.org/10.48550/arXiv.2407.09522 arXiv:2407.09522 [cs].

[26] Sanjoy Dasgupta. [n.d.]. The hardness of k-means clustering. ([n. d.]).
[27] Shrey Desai and Greg Durrett. 2020. Calibration of Pre-trained Transformers.

https://arxiv.org/abs/2003.07892v3
[28] Karel D’Oosterlinck, Omar Khattab, François Remy, Thomas Demeester, Chris

Develder, and Christopher Potts. 2024. In-Context Learning for Extreme Multi-
Label Classication. https://doi.org/10.48550/arXiv.2401.12178 arXiv:2401.12178
[cs].

[29] Karel D’Oosterlinck, François Remy, Johannes Deleu, Thomas Demeester, Chris
Develder, Klim Zaporojets, Aneiss Ghodsi, Simon Ellershaw, Jack Collins, and
Christopher Potts. 2023. BioDEX: Large-Scale Biomedical Adverse Drug Event
Extraction for Real-World Pharmacovigilance. https://doi.org/10.48550/arXiv.
2305.13395 arXiv:2305.13395 [cs].

[30] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Je Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. https://doi.org/10.48550/arXiv.2401.08281 arXiv:2401.08281
[cs].

[31] Andrew Drozdov, Honglei Zhuang, Zhuyun Dai, Zhen Qin, Razieh Rahimi, Xuan-
hui Wang, Dana Alon, Mohit Iyyer, Andrew McCallum, Donald Metzler, and Kai
Hui. 2023. PaRaDe: Passage Ranking using Demonstrations with Large Language
Models. https://doi.org/10.48550/arXiv.2310.14408 arXiv:2310.14408 [cs].

[32] Joe Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li,
and Arun Kumar. 2012. The MADlib Analytics Library or MAD Skills, the SQL.
http://arxiv.org/abs/1208.4165 arXiv:1208.4165 [cs].

[33] C. A. R. Hoare. 1961. Algorithm 65: nd. Commun. ACM 4, 7 (July 1961), 321–322.
https://doi.org/10.1145/366622.366647

[34] Je Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. http://arxiv.org/abs/1702.08734 arXiv:1702.08734 [cs].

[35] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-
tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.
http://arxiv.org/abs/1805.01046 arXiv:1805.01046 [cs].

[36] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
2017. NoScope: Optimizing Neural Network Queries over Video at Scale. http:
//arxiv.org/abs/1703.02529 arXiv:1703.02529 [cs].

[37] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.
2020. Approximate selection with guarantees using proxies. Proceedings of
the VLDB Endowment 13, 12 (Aug. 2020), 1990–2003. https://doi.org/10.14778/
3407790.3407804

[38] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.
2022. Approximate Selection with Guarantees using Proxies. https://doi.org/10.
48550/arXiv.2004.00827 arXiv:2004.00827 [cs].

[39] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei
Zaharia. 2021. Accelerating approximate aggregation queries with expensive
predicates. Proceedings of the VLDB Endowment 14, 11 (July 2021), 2341–2354.
https://doi.org/10.14778/3476249.3476285

[40] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.
[n.d.]. Task-agnostic Indexes for Deep Learning-based Queries over Unstructured
Data. ([n. d.]).

[41] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav San-
thanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna
Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. 2023. DSPy:
Compiling Declarative Language Model Calls into Self-Improving Pipelines.
https://arxiv.org/abs/2310.03714v1

[42] Omar Khattab and Matei Zaharia. 2020. ColBERT: Ecient and Eective Passage
Search via Contextualized Late Interaction over BERT. https://arxiv.org/abs/
2004.12832v2

[43] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ecient
Memory Management for Large Language Model Serving with PagedAttention.
https://arxiv.org/abs/2309.06180v1

[44] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. https://doi.org/10.48550/arXiv.
2005.11401 arXiv:2005.11401 [cs].

[45] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar,
Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove,
Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson,
Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu
Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul,
Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya
Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary,
William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. 2022.
Holistic Evaluation of Language Models. https://arxiv.org/abs/2211.09110v2

[46] Yiming Lin, Madelon Hulsebos, Ruiying Ma, Shreya Shankar, Sepanta Zeigham,
Aditya G. Parameswaran, and Eugene Wu. 2024. Towards Accurate and Ecient
Document Analytics with Large Language Models. http://arxiv.org/abs/2405.
04674 arXiv:2405.04674 [cs].

[47] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen, Zui
Chen, Michael Franklin, Tim Kraska, Samuel Madden, and Gerardo Vitagliano.
2024. A Declarative System for Optimizing AI Workloads. http://arxiv.org/abs/
2405.14696 arXiv:2405.14696 [cs].

[48] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. https://doi.org/10.48550/arXiv.2307.03172 arXiv:2307.03172
[cs].

[49] Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E. Gonzalez,
Ion Stoica, and Matei Zaharia. 2024. Optimizing LLM Queries in Relational

4183

https://docs.databricks.com
https://arxiv.org
https://developers.google.com/custom-search/v1/overview
https://developers.google.com/custom-search/v1/overview
https://www.findourview.com
https://github.com/GAIR-NLP/factool
https://github.com/GAIR-NLP/factool
https://ai.meta.com/blog/meta-llama-3/
https://www.langchain.com/
https://docs.snowflake.com/user-guide/snowflake-cortex/llm-functions
https://docs.snowflake.com/user-guide/snowflake-cortex/llm-functions
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://platform.openai.com
https://pandas.pydata.org/
https://github.com/googleapis/python-bigquery-dataframes/blob/main/notebooks/experimental/semantic_operators.ipynb
https://github.com/googleapis/python-bigquery-dataframes/blob/main/notebooks/experimental/semantic_operators.ipynb
https://github.com/googleapis/python-bigquery-dataframes/blob/main/notebooks/experimental/semantic_operators.ipynb
https://docs.llamaindex.ai/en/stable/understanding/querying/querying.html
https://docs.llamaindex.ai/en/stable/understanding/querying/querying.html
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
http://arxiv.org/abs/2309.04269
https://doi.org/10.48550/arXiv.2409.00847
https://doi.org/10.48550/arXiv.2409.00847
http://arxiv.org/abs/2304.09433
http://arxiv.org/abs/2304.09433
https://doi.org/10.48550/arXiv.2408.14717
http://arxiv.org/abs/2310.00785
http://arxiv.org/abs/2310.00785
http://arxiv.org/abs/2305.05176
http://arxiv.org/abs/2305.05176
https://doi.org/10.48550/arXiv.2307.13528
https://doi.org/10.48550/arXiv.2407.09522
https://arxiv.org/abs/2003.07892v3
https://doi.org/10.48550/arXiv.2401.12178
https://doi.org/10.48550/arXiv.2305.13395
https://doi.org/10.48550/arXiv.2305.13395
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.48550/arXiv.2310.14408
http://arxiv.org/abs/1208.4165
https://doi.org/10.1145/366622.366647
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1703.02529
http://arxiv.org/abs/1703.02529
https://doi.org/10.14778/3407790.3407804
https://doi.org/10.14778/3407790.3407804
https://doi.org/10.48550/arXiv.2004.00827
https://doi.org/10.48550/arXiv.2004.00827
https://doi.org/10.14778/3476249.3476285
https://arxiv.org/abs/2310.03714v1
https://arxiv.org/abs/2004.12832v2
https://arxiv.org/abs/2004.12832v2
https://arxiv.org/abs/2309.06180v1
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://arxiv.org/abs/2211.09110v2
http://arxiv.org/abs/2405.04674
http://arxiv.org/abs/2405.04674
http://arxiv.org/abs/2405.14696
http://arxiv.org/abs/2405.14696
https://doi.org/10.48550/arXiv.2307.03172

Workloads. http://arxiv.org/abs/2403.05821 arXiv:2403.05821 [cs].
[50] Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina J. Semnani, Chen Jie Yu,

and Monica S. Lam. 2024. SUQL: Conversational Search over Structured and
Unstructured Data with Large Language Models. https://doi.org/10.48550/arXiv.
2311.09818 arXiv:2311.09818 [cs].

[51] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating Machine Learning Inference with Probabilistic Predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 1493–1508.
https://doi.org/10.1145/3183713.3183751

[52] Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-Shot
Listwise Document Reranking with a Large Language Model. https://arxiv.org/
abs/2305.02156v1

[53] MotherDuck. [n.d.]. Introducing the prompt() Function: Use the Power of LLMs
with SQL! - MotherDuck Blog. https://motherduck.com/blog/sql-llm-prompt-
function-gpt-models/

[54] Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia. 2024. LOTUS:
Enabling Semantic Queries with LLMs Over Tables of Unstructured and Struc-
tured Data. https://doi.org/10.48550/arXiv.2407.11418 arXiv:2407.11418 [cs]
version: 1.

[55] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN:
Performant and Predicate-Agnostic Search Over Vector Embeddings and Struc-
tured Data. Proceedings of the ACM on Management of Data 2, 3 (May 2024),
120:1–120:27. https://doi.org/10.1145/3654923

[56] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankVicuna:
Zero-Shot Listwise Document Reranking with Open-Source Large Language
Models. http://arxiv.org/abs/2309.15088 arXiv:2309.15088 [cs].

[57] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankZephyr:
Eective and Robust Zero-Shot Listwise Reranking is a Breeze! http://arxiv.org/
abs/2312.02724 arXiv:2312.02724 [cs].

[58] Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming
Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Ben-
dersky. 2024. Large Language Models are Eective Text Rankers with Pairwise
Ranking Prompting. https://doi.org/10.48550/arXiv.2306.17563 arXiv:2306.17563
[cs].

[59] Devendra Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau
Yih, Joelle Pineau, and Luke Zettlemoyer. 2022. Improving Passage Retrieval
with Zero-Shot Question Generation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Abu Dhabi, United Arab Emirates, 3781–3797. https://doi.org/10.
18653/v1/2022.emnlp-main.249

[60] Nihar B. Shah and Martin J. Wainwright. 2016. Simple, Robust and Opti-
mal Ranking from Pairwise Comparisons. http://arxiv.org/abs/1512.08949
arXiv:1512.08949 [cs, math, stat].

[61] Shreya Shankar, Tristan Chambers, Tarak Shah, Aditya G. Parameswaran, and
Eugene Wu. 2024. DocETL: Agentic Query Rewriting and Evaluation for
Complex Document Processing. https://doi.org/10.48550/arXiv.2410.12189
arXiv:2410.12189 [cs].

[62] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? Investi-
gating Large Language Models as Re-Ranking Agents. https://arxiv.org/abs/
2304.09542v2

[63] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation
of Information Retrieval Models. https://doi.org/10.48550/arXiv.2104.08663
arXiv:2104.08663 [cs].

[64] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a Large-scale Dataset for Fact Extraction and VERication. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), Marilyn Walker, Heng Ji, and Amanda Stent (Eds.). Association for
Computational Linguistics, New Orleans, Louisiana, 809–819. https://doi.org/10.
18653/v1/N18-1074

[65] P. Viola and M. Jones. 2001. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1. IEEE Comput. Soc,
Kauai, HI, USA, I–511–I–518. https://doi.org/10.1109/CVPR.2001.990517

[66] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2024. Text Embeddings by Weakly-Supervised
Contrastive Pre-training. http://arxiv.org/abs/2212.03533 arXiv:2212.03533 [cs].

[67] WilliamDAssafMSFT. 2024. Intelligent Applications - Azure SQL Data-
base. https://learn.microsoft.com/en-us/azure/azure-sql/database/ai-articial-
intelligence-intelligent-applications?view=azuresql

[68] Je Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan
Leike, and Paul Christiano. 2021. Recursively Summarizing Books with Human
Feedback. https://doi.org/10.48550/arXiv.2109.10862 arXiv:2109.10862 [cs].

[69] Shirley Wu, Shiyu Zhao, Michihiro Yasunaga, Kexin Huang, Kaidi Cao, Qian
Huang, Vassilis N. Ioannidis, Karthik Subbian, James Zou, and Jure Leskovec.
2024. STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge
Bases. https://arxiv.org/abs/2404.13207v2

[70] Navid Yaghmazadeh, View Prole, Yuepeng Wang, View Prole, Isil Dillig, View
Prole, Thomas Dillig, and View Prole. 2017. SQLizer: query synthesis from
natural language. Proceedings of the ACM on Programming Languages 1, OOPSLA
(Oct. 2017), 1–26. https://doi.org/10.1145/3133887 Publisher: Association for
Computing Machinery.

[71] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018. TypeSQL:
Knowledge-based Type-Aware Neural Text-to-SQL Generation. https://doi.org/
10.48550/arXiv.1804.09769 arXiv:1804.09769 [cs].

[72] Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. 2024. Large Language
Model Cascades with Mixture of Thoughts Representations for Cost-ecient
Reasoning. http://arxiv.org/abs/2310.03094 arXiv:2310.03094 [cs].

[73] John M Zelle and Raymond J Mooney. 1996. 1996-Learning to Parse Database
Queries Using Inductive Logic Programming. (1996).

[74] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019.
HellaSwag: Can a Machine Really Finish Your Sentence? https://doi.org/10.
48550/arXiv.1905.07830 arXiv:1905.07830 [cs].

[75] Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold
Liu, Rui Zhao, Ziyue Li, and Hangyu Mao. 2024. Benchmarking the Text-to-SQL
Capability of Large Language Models: A Comprehensive Evaluation. https:
//doi.org/10.48550/arXiv.2403.02951 arXiv:2403.02951 [cs].

[76] Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and
Michael Bendersky. 2024. Beyond Yes and No: Improving Zero-Shot LLM Rankers
via Scoring Fine-Grained Relevance Labels. http://arxiv.org/abs/2310.14122
arXiv:2310.14122 [cs].

4184

http://arxiv.org/abs/2403.05821
https://doi.org/10.48550/arXiv.2311.09818
https://doi.org/10.48550/arXiv.2311.09818
https://doi.org/10.1145/3183713.3183751
https://arxiv.org/abs/2305.02156v1
https://arxiv.org/abs/2305.02156v1
https://motherduck.com/blog/sql-llm-prompt-function-gpt-models/
https://motherduck.com/blog/sql-llm-prompt-function-gpt-models/
https://doi.org/10.48550/arXiv.2407.11418
https://doi.org/10.1145/3654923
http://arxiv.org/abs/2309.15088
http://arxiv.org/abs/2312.02724
http://arxiv.org/abs/2312.02724
https://doi.org/10.48550/arXiv.2306.17563
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
http://arxiv.org/abs/1512.08949
https://doi.org/10.48550/arXiv.2410.12189
https://arxiv.org/abs/2304.09542v2
https://arxiv.org/abs/2304.09542v2
https://doi.org/10.48550/arXiv.2104.08663
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.1109/CVPR.2001.990517
http://arxiv.org/abs/2212.03533
https://learn.microsoft.com/en-us/azure/azure-sql/database/ai-artificial-intelligence-intelligent-applications?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/ai-artificial-intelligence-intelligent-applications?view=azuresql
https://doi.org/10.48550/arXiv.2109.10862
https://arxiv.org/abs/2404.13207v2
https://doi.org/10.1145/3133887
https://doi.org/10.48550/arXiv.1804.09769
https://doi.org/10.48550/arXiv.1804.09769
http://arxiv.org/abs/2310.03094
https://doi.org/10.48550/arXiv.1905.07830
https://doi.org/10.48550/arXiv.1905.07830
https://doi.org/10.48550/arXiv.2403.02951
https://doi.org/10.48550/arXiv.2403.02951
http://arxiv.org/abs/2310.14122

	Abstract
	1 Introduction
	2 The Semantic Operator Model
	2.1 Example Semantic Operator Program
	2.2 Defining Semantic Operators
	2.3 Defining Correct Optimizations for Semantic Operators
	2.4 Core Semantic Operators

	3 Optimized Execution Plans for Semantic Operators
	3.1 Optimizing Semantic Filter
	3.2 Optimizing Semantic Join
	3.3 Optimizing Semantic Group-by
	3.4 Optimizing Semantic Top-k

	4 The LOTUS System
	4.1 Datatypes
	4.2 Semantic Operators in LOTUS

	5 Evaluation
	5.1 Fact-Checking
	5.2 Biomedical Multi-label Classification
	5.3 Search & Ranking
	5.4 Topic Analysis on ArXiv Papers
	5.5 Accuracy Guarantees Evaluation

	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

