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ABSTRACT

Understanding the causal relationships between treatments and

outcomes is fundamental in various areas. Causal inference aims to

estimate the e�ect of one variable on another, and critically relies

on access to those variables as well as the key confounders. Un-

fortunately, data analysts often start with datasets lacking these

columns, leading to incorrect estimations. Relational data reposit-

ories hold signi�cant potential to augment such datasets with an

admissible set of confounders necessary for causal analysis. While

recent work has advocated for this potential, these approaches face

notable limitations. They either assume the existence of a com-

plete causal diagram over all datasets in the repository, which is

impractical; rely on computationally infeasible techniques that do

not scale to large data repositories with many features; or can only

detect confounders in the absence of causal relations, and are thus

ine�ective when a causal e�ect exists.

We observe that the asymmetry between causes and e�ects used

in causal discovery can be exploited to directly identify confounders

for causal queries. In this paper, we establish a connection between

the existence of confounders and the presence of unconfounded

ancestors of the treatment variable in the underlying causal dia-

gram—without requiring access to the diagram. This makes it feas-

ible to iteratively discover confounders until an admissible set is

constructed. We propose Suna, a highly optimized, GPU-compatible

system that implements a novel end-to-end algorithm for discover-

ing confounders within large relational data repositories. Experi-

ments on both real-world and synthetic datasets demonstrate that

our system e�ectively discovers high-quality confounders. Fur-

thermore, Suna employs algorithmic optimizations to accelerate

confounder discovery without materializing joins. Our experiments

show that Suna �nds high-quality confounders while running >100x

faster than existing confounder discovery systems.
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1 INTRODUCTION

The goal of observational causal study is to understand the causal ef-

fect between a pair of treatment () ) and outcome ($). For example,

medical researchers aim to understand to what extent smoking () )
elevates blood sugar levels ($), and advertisers try to determine

whether a new ad campaign () ) leads to higher customer purchase

rates ($). Understanding these causal relationships facilitates both

knowledge discovery and decision-making. Due to the impossibility

of observing the same subject under multiple treatment conditions

simultaneously – known as the fundamental problem of causal in-

ference – researchers must group data into comparable cohorts to

e�ectively study these e�ects.

Despite the abundance of observational data, determining the

causal e�ect from observational studies remains a challenging task.

Researchers cannot actively form similar groups of individuals and

assign treatments accordingly. A naive comparison of outcomes

between individuals receiving di�erent treatments is likely to yield

a mixture of causal e�ect and spurious correlation. For example,

smokers having a higher probability of blood sugar might be due to

a speci�c type of gene that makes people more likely to smoke and

have higher levels of blood sugar. Without controlling for these

genetic factors, a naive causal analysis could mistakenly attribute

the e�ect of these genetic factors to smoking, leading to a com-

plete reversal of the true causal e�ect. To properly isolate spurious

correlations from the causal e�ect, it is essential to identify key

attributes of the data that forms an admissible adjustment set. By

holding these attributes constant, di�erent treatment groups be-

come comparable in terms of their outcomes.

The identi�cation of an admissible adjustment set presents signi-

�cant practical challenges, because key attributes to control for con-

founding are often inaccessible. For example, data analysts struggle

with picking an adjustment set without the aid of domain experts;

more commonly, they start with datasets lacking critical attributes

to form an admissible adjustment set for a treatment and outcome

pair of interest [22]. Without access to these key attributes, the

issue of non-identi�ability arises, making it impossible to determ-

ine whether the correlation between the treatment and outcome

is due to causal or non-causal e�ects. This can lead to incorrect

conclusions regarding the causal query [36, 51].

Existing relational data repositories o�er signi�cant potential

for enhancing data-oriented tasks, and prior work has applied this

idea to machine learning tasks [14, 20]. In addition, past work [56]
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has explored the overlap between causal inference and large data

repositories by leveraging knowledge graphs to discover attributes

that o�set spurious correlation between a treatment and outcome

pair. However, this work assumes that there is no causal relationship

between the pair, making it inapplicable to non-zero causal e�ects.

In this paper, we present the �rst work that takes as input a

table with treatment ) and outcome $ variables, anddiscovers an

admissible adjustment set. We call this a causal query Q = (),$).
We use relational data repositories as external knowledge sources to

identify an admissible adjustment set. Since these repositories can

contain many attributes, our approach needs to discover joinable

datasets, integrate them, and identify a set of attributes as an admiss-

ible adjustment set from a substantial search space. While much

existing work focuses on discovering and integrating [10, 26, 27],

we tackle the challenge of e�ciently searching for attributes to

construct an admissible adjustment set for a causal query.

Example 1. Charlotte is deciding whether to pursue a master’s

degree in computer science or enter the job market. She �nds a dataset

that contains worldwide education level and annual salary among

software developers, and �nds higher education correlated with much

higher salaries. However, she did not expect such a high salary in-

crease, and submits a causal query Q = (43D20C8>=, B0;0A~). Suna
�nds that high living and rent indices are confounders that drive

higher education levels and higher salaries, and once conditioned on

these attributes, the salary increase is much lower, which does not

compensate the cost of pursuing an MS degree. As a result she decides

to enter the job market.

Finding confounders is straightforward given a complete causal

directed acyclic diagram (causal DAG) over attributes in all datasets,

where each edge is a causal relationship between two attributes. The

back-door criterion [36, 37] directly �nds an admissible adjustment

set for a given Q = (),$) from the causal DAG. However, most

datasets (and certainly not repositories) do not have causal DAGs.

Thus, Charlotte’s causal query is not answerable.

The lack of a causal DAG is challenging for several reasons. First,

it is di�cult to even verify whether a candidate adjustment set is

admissible for a causal query Q. Second, too many attributes are

potentially relevant to the causal query, and there is an exponential

number of attribute combinations that are potential candidate sets.

Third, assessing each candidate adjustment set requires integrating

of all participating datasets, which is impractically expensive.

In response, causal discovery methods aim to learn the under-

lying causal DAG from data. However, because these approaches

target single tables, they do not scale to even modestly sized data

repositories. For instance, Shimizu et al. [45] does not terminate

within 10 hours on a data repository with 10K rows and 500 at-

tributes. Some recent approaches rely on LLMs to construct the

causal DAG [57], but it is not established whether LLMs have causal

reasoning capabilities [11]. An additional consideration for prac-

tical confounder discovery systems is that the adjustment sets they

�nd must remain a modest size so that analysts can interpret the

output. While controlling for thousands of attributes might theoret-

ically ensure validity, such expansive sets become computationally

prohibitive and impossible to analyze.

To address the challenges above, we present a scalable con-

founder discovery system, Suna, that automatically searches for

a minimal, yet su�cient, set of relevant attributes over large data

repositories. Given a causal query, Suna (1) identi�es an admiss-

ible set of attributes as confounders with minimal size; (2) returns

results within interactive timescales and (3) supports scaling to re-

positories with thousands or millions of attributes. The user submits

a dataset and a causal query over a pair of attributes in the dataset,

and Suna returns an admissible adjustment set (with links to the

original datasets), an estimation of the average treatment e�ect,

and the relevant tables. Internally, Suna iteratively �nds attributes

from datasets in the repository that are both unconfounded with

the treatment attribute and a causal confounder of the causal query.

We prove that this iterative approach can construct an admissible

adjustment set without the need to build a causal DAG. To make

Suna even faster and more scalable, we leverage factorized learn-

ing technique to avoid explicitly joining datasets and implement a

GPU-friendly architecture that signi�cantly accelerates execution.

Our key innovation is a novel framework that leverages bivariate

causal discovery, a building block for parametric causal discovery,

as an oracle to iteratively identify confounders. The main challenge

is selecting a attribute that removes spurious correlations from

a large pool of candidates; by doing this iteratively, we can �nd

an admissible adjustment set. The novel insight from our main

theorem shows that this step can be reduced to �nding an uncon-

founded ancestor of the treatment attribute, that is not part of the

adjustment set found so far. This insight also helps us determine

when the current adjustment set becomes admissible, which avoids

making the adjustment set unmanageably large. Experiments on

real-world repositories show that Suna identi�es meaningful con-

founders for causal queries that are consistent with prior studies.

Synthetic experiments show that Suna scales to 1 million attributes,

and answers the user’s causal query with an A2 accuracy of >0.99,

compared to the ground truth. Our contributions include:

• We connect the existence of confounders to unconfounded an-

cestors of the treatment in an unknown causal diagram.

• We propose a novel framework that iteratively discovers con-

founders for causal queries based on bivariate causal discovery.

• We design a novel data structure that leverages ideas from fac-

torized learning to avoid explicitly materializing joins during

confounder discovery, and implement a GPU-compatible system

to achieve interactive search latency.

• We evaluate the quality of Suna on a data corpus containing

346 datasets collected from NYC open data [7] and Kaggle data-

sets [25]. Results show that Suna discovers semantically mean-

ingful confounders complyingwith existing studies, while achiev-

ing orders of magnitude runtime improvements over existing

baselines. We further use synthetic datasets to quantitatively

study the accuracy of Suna.

Note: The paper is self-contained. References to appendices can be

disregarded or located in the technical report [6].

2 RELATED WORK

Confounder Discovery. There are two major lines of work for

confounder discovery. One direction [34, 39, 54] explores di�erent

assumptions on the input data. CoCo [34] aims to identify con-

founded attributes assuming the data is observed under di�erent

contexts. Watson et al. [54] learns causal structures assuming a
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known partitions of all attributes with one partition containing

non-descendants of the other. However, they still focus on learning

global causal structures instead of answering speci�c causal queries.

HypDB [39] solves a similar problem to Suna, while restricting the

scope to only consider the input data with limit attributes. Addition-

ally, HypDB assumes that each parent of the treatment attribute is

not a neighbor of another parent in the underlying causal diagram.

Another direction [14, 15, 56, 57] utilizes external data sources,

but the focus is not on answering causal queries. MESA [56] as-

sumes it is known a priori that there is no causal e�ect from )

to $ , and aims to �nd an admissible adjustment set. Metam [14]

proposes a multi-armed bandit algorithm to balance exploring and

exploiting datasets in the data corpus to handle a wide range of

data tasks, including causal inference. They use existing techniques

to answer causal inference queries, which is orthogonal to our ap-

proach. Nexus [15] discovers correlations within a data corpus to

infer hidden confounders. Finally, a vision is proposed in [57] to

�rst integrate treatment, outcome, and confounders into a uni�ed

dataset, followed by building a causal diagramwith a large language

model. Lastly, all approaches above involve materializing a single

dataset that includes the treatment, outcome, and all candidate

confounders, which is impractical for large data corpus.

Causal Discovery. The causal discovery literature focuses on relax-

ing assumptions for parametric and non-parametric approaches to

learn the causal diagram. For example, one popular non-parametric

causal discovery algorithm is the PC algorithm [47], which makes

the causal su�ciency assumption that the underlying causal dia-

gram does not contain any unobserved confounders. It begins with

a complete undirected graph, iteratively prunes edges if two vari-

ables are conditionally independent given some other variables, and

heuristically directs the remaining edges. The FCI algorithm [46]

relaxes the causal su�ciency assumption by allowing unobserved

confounders in the underlying causal diagram. As a tradeo�, FCI

can only identify a set of causal DAGs, called a partial ancestral

graph (PAG), that are compatible with the dataset. However, not all

causal diagrams corresponding to a single PAG evaluate a causal

query to the same answers [24]. In general, most non-parametric

approaches are prohibitively expensive because (1) the number of

conditional independence tests is exponential in the number of

covariates, and (2) conditional independence tests are both sample

ine�cient and computationally expensive [43].

On the other hand, parametric causal discovery approaches make

assumptions about the data generation process (e.g., additive noise).

For instance, LiNGAM [44, 45, 53] assumes a linear causal mech-

anism with non-Gaussian additive noise, while Hoyer et al. [19] ad-

dress non-linear causal mechanisms. These methods exploit asym-

metries between causes and e�ects to infer causal relationships

and topologically sort the variables in the underlying DAG. A �-

nal maximum likelihood estimation step learns a causal structure

consistent with the topological ordering. Yet, the sorting and the

estimation step are still impractically expensive and do not scale to

corpora with many attributes, as is the case in data repositories.

Relational Causal Discovery. Another line of work in causal

discovery focus on modeling causal relationships over relational

data [29, 32, 33]. Speci�cally, the presence of many-to-many re-

lationships between entities results in the violation of the Stable

Unit Treatment Value Assumption (SUTVA), requiring a di�erent se-

mantics for causal models over relational data. This line of work dif-

fers from ours in that it assumes a well-de�ned entity-relationship

schema, which is not available for data corpus in the wild.

Task-based Dataset Search Systems There has been a number

of recent work [8, 10, 14, 20, 21, 41, 58] that broadly fall under

the category of task-based dataset search systems. On a high level,

given a particular task (e.g. machine learning), these systems make

use of external data to augment the performance on that task. Suna

is one such system that is designed to optimize support for e�cient

and scalable causal queries.

Deconfounders. Deconfounders [9, 18, 52] infer synthetic latent

variables as substitutes for actual confounders in causal analysis.

However, these synthetic variables are typically less interpretable

than their real counterparts, and thus we consider these approaches

orthogonal to our focus on dataset search.

3 BACKGROUND

Data Model. For a given a relation ', we use uppercase letter -

to denote an attribute, ' [- ] be its corresponding column, dom(- )
be its domain, and (Ď = [-1, · · · , -ģ] be its schema. A tuple C ∈ '
denotes a tuple in ', with C [- ] representing the value of attribute

� in tuple C . The domain of ' is the Cartesian product of attribute

domains dom(') = dom(-1) × · · · × dom(-ģ). Following conven-

tions in statistics literature, we abuse notation by using the same -

to denote the random variable representing attribute - . The annot-

ated relational model [16] maps C ∈ ' to a commutative semi-ring

(�, ·, ¹, 0, 1) where � is a set, · and ¹ are commutative binary

operators closed over � , and 0/1 are zero/unit elements.

Causal Inference Foundations. The goal of causal inference is to

infer the e�ect of a treatment attribute ) on an outcome attribute

$ in some dataset about a study population. In the simplest case,

the treatment received by each unit in the population is bivariate,

consisting of two types of treatments: C0 and C1. There are two

corresponding potential outcomes, denoted as $ (C0) and $ (C1),
that represent the outcome $ had the treatment being assigned to

C0 and C1. From this point, we will use variables to denote attributes.

One popular measurement to assess the causal e�ect for binary

treatment variables is the average treatment e�ect (ATE); the ATE

of ) on $ can be de�ned as

ATE(),$) = E[$ (C1) −$ (C0)]
The expectation of the potential outcome, E[$ (C0)], is not equi-

valent to E[$ | ) = C0], the expectation of the outcome given

treatment C0, because the former represents the expected outcome

if all units had been assigned the treatment C0, which is a hypothet-

ical scenario that cannot be observed. The fundamental problem of

causal inference arises because each unit can only receive either

treatment C0 or C1. As a result, E[$ (C0)] cannot be trivially estim-

ated from observational data [36]. To avoid bias and accurately

estimate the potential outcome E[$ (C1)], a key step is to identify a

set of variables Z such that, when conditioned upon, the treatment

) is independent of the potential outcomes $ (C0) and $ (C1) (i.e.,
$ (C0),$ (C1) §§ ) | Z). Then, the de�nition of the average treatment

e�ect can be rewritten using probability axioms:

ATE(),$) = (E[$ | ) = C0,Z = z] − E[$ | ) = C1,Z = z]) Pr(Z = z)
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Figure 1: Example of a causal DAG G.
Causal DAG. A causal DAG G is a direct acyclic graph where each

node in V(G) represents a variable, and each directed edge in E(G)
indicates a potential causal relationship between two variables with

the head node as cause and the tail node as e�ect. For example,

Figure 1 (adopted from [55]) encodes potential causal relationships

between 7 variables – large population size of a country (% ) has a

negative e�ect on the HDI of that country (� ), which a�ects the

internet penetration rate (� ), mean year of schooling (") in the

country; a software developer’s education level (�) is a�ected by

both" and� , and a�ects his length of work experience (, ), which

�nally is causal factor of the developer’s salary (().

For each node +ğ in the causal diagram, all nodes having a dir-

ected arrow towards it are regarded as the parents of +ğ , denoted

as Pa(+ğ ). A path ? is a sequence of variables (+1, . . . ,+ġ ) such
that each (+ğ ,+ğ+1) is an edge in the undirected G; ? is a directed

path if each (+ğ ,+ğ+1) ∈ E(G). A collider +ğ in ? is when both

+ğ−1 and +ğ+1 are parents of +ğ . For concreteness, consider vari-

able � in Figure 1, Pa(� ) = {%} and ( is a collider in the path

? = (,,(, � ). A node +ğ is a descendant of +Ġ if there exists a

directed path (+Ġ , . . . ,+ğ ). We use De(+ğ ) and ND(+ğ ) to denote the
set of descendants and non-descendants of +ğ . Again, consider"

in Figure 1, De(") = {�, (,, } and ND(� ) = {�, %}
D-separation and Causal Paths. D-separation o�ers a graphical

criteria based on open and closed paths to determine (in)dependencies

between pairs of variables without examining the data. For a causal

diagram G over variables V(G) and any pair of variables (+ğ ,+Ġ )
such that +ğ ≠ +Ġ , a path ? = (+1, . . . ,+ġ ) in G is open conditioned

on a set of variables Z if, for each triplet (+ğ−1,+ğ ,+ğ+1) in ? if

(1) +ğ is not a collider, then +ğ ∉ Z, and (2) +ğ is a collider, then

∃ +Ġ ∈ De(+ğ ) ∪ {+ğ } such that +Ġ ∈ Z.
Otherwise, ? is closed conditioned on Z. +ğ is dependent on +Ġ

conditioned on Z if there exists a path ? = (+ğ , . . . ,+Ġ ) that is open
conditioned onZ. A causal path between the treatment and outcome

variable is a directed path from ) to $ in the causal DAG.

Causal Confounders andAdmissibleAdjustment Sets.A causal

confounder [17] for Q is a variable that, when conditioned upon,

reduces spurious correlations in estimating the causal e�ect. Sim-

ilarly, we say a variable / is a causal confounder relative to a set

of variables Z if conditioning on / in addition to Z further reduces

spurious correlations compared to conditioning on Z alone. From

this point, we use confounders to refer to causal confounders.

An admissible adjustment set is a set of variables Z such that

when conditioned on, all non-causal paths from ) to $ are closed,

and all causal paths from ) to $ remain open. Semantically, after

condition on Z, the dependency between ) and $ is only due to

causal paths. Once an admissible adjustment set Z has been identi-

�ed, conventional machine learning techniques can estimate the

treatment e�ect. For example, we can train a linear regressionmodel

$ ∼ VZ + U) ; the coe�cient of the treatment ) , U , estimates the

average treatment e�ect of ) on $ .

Back-door Criterion. The back-door criterion [36] in the causal

inference literature characterizes admissible adjustment sets using

graphical conditions.

Definition 3.1 (Back-door Criterion). Given a causal dia-

gram G, a treatment variable ) and an outcome variable $ . A set of

variables Z satis�es the back-door criterion if (1) each back-door path,

a directed path (),+ğ , . . . ,$) where the �rst directed edge is ) ← +ğ ,

is closed conditioned on Z; and (2) + ∉ Z if + ∈ De() ).

Additive Noise Model. Following the de�nition of Structural

Causal Model (SCM) [36], each variable in the causal model can be

expressed as +ğ = 5ğ (Pa(+ğ ), nğ ) where the causal mechanism 5ğ is

an arbitrary function and nğ is a random noise independent from

any variable + ∈ Pa(+ğ ). The Additive Noise Model (ANM) [47] is

a special case of SCM where the independent noise is additive.

Causal Discovery for LiNGAM. Linear Non-Gaussian Acyclic

Model (LiNGAM) is a type of ANM where each causal mechan-

ism 5ğ is linear, and the random noise nğ is non-Gaussian. Under

LiNGAM assumptions, the correct causal direction between any

two unconfounded variables with an unknown causal relationship

can be determined. This is a special case applying the contrapositive

of the Darmois-Skitovitch theorem [13]. In practice, one determines

the causal direction between a pair of unconfounded variables �

and � by training two linear regression models"ý→þ (� predicts

�) and"þ→ý , followed by a measure of independence [45]. The dir-

ection where there is a statistically signi�cant dependency between

the explanatory variable (e.g., �) and the prediction’s residual (e.g.,

� −"ý→þ ) is rejected. The unconfoundedness between � and �

is crucial, because otherwise the explanatory variable and the pre-

diction residuals could be dependent even in the correct causal

direction. We refer to this building block as bivariate causal discov-

ery (BCD). By assuming causal su�ciency, a source node ( always

exists and can be identi�ed from the causal DAG; it is unconfoun-

ded with its descendants and independent of its non-descendants.

Iteratively, a source node can be discovered and removed to sort

V(G) in topological order.

4 PROBLEM DEFINITION

Problem Formulation. LetR = {'1, '2, . . . } be a data corpus with
a set of relations. We denote the set of features for each relation 'ğ
asAĎğ , and letA = ∪ğAĎğ denote the collection of all features across

all relations. A data analyst submits a causal query Q = (),$) in
an input relation ', and aims to discover a set of attributes as an

admissible adjustment set to study the causal e�ect of ) on $ .

Problem 1 (ConfounderDiscovery forCausal�ery). Given

a causal query Q = (),$) in input relation ', let G be an underly-

ing causal diagram with V(G) = A ∪ {),$}, �nd a minimal set of

attributes Z∗ in R that is join-compatible with ' such that

Z∗ = argmin
Z
|Z| minimality

B .C . ) §§ $ |GĐ Z unconfoundedness

Z ∩ De() ) = ∅ no disturbance
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Figure 2: Overview of Suna’s architecture. Suna has an o�line

and an online component. The o�line component prepro-

cesses and computes sketches containing su�cient statistics

from each dataset. The online component uses the computed

su�cient statistics to iteratively discover causal confounders.

The two constraints correspond to the back-door criterion in

De�nition 3.1. Since the goal of data search is to �nd a small set

of relevant datasets and attributes that are easy to manage and

interpret by the users, we believe that a smaller adjustment set

is preferred over a larger one. As a result, we add the minimality

constraint in the objective function to favor a small Z.

Semantics. We follow the semantics of causal inference over re-

lational data de�ned in CaRL [40], considering many-to-one joins

between the input relation ' as the fact table and each 'ğ ∈ R as a

dimension table. Speci�cally, we preprocess each 'ğ by applying

the mean aggregation (corresponding to the embedding function

« in CaRL) to its attributes with respect to each join key. Hence,

the materialized join corresponds to the unit table including the

treatment) , outcome$ , and embedded candidate confounders «ċ
Z

where standard causal inference approaches apply. To this end, we

slightly abuse notation by denoting the embedded attribute «ċ
Ė

for

each / ∈ A as / and each 'ğ as the preprocessed relation 'ğ .

Assumptions.Weassume that all relations inR are join-compatible

with ' where '⋈ = ' ⋈ {'ğ }ğ . Due to the lack of well-de�ned join

conditions between ' and each 'ğ , instead of modeling {'}∪R with

a relational causal diagram [29, 32, 33], we treat columns in '⋈ as

nodes in a standard causal diagram satisfying causal su�ciency and

can be modeled with LiNGAM for confounder discovery. While the

non-Gaussianity property from LiNGAM may seem counterintuit-

ive, this property is frequently observed in real-world data, such

as �nancial and sensor data [12, 49]. In fact, the join-compatibility

of all relations in R with ' can be relax to handle multiple causal

queries; for each causal query Qğ , the subset of all relations join-
compatible with ' is modeled with LiNGAM.

5 SYSTEM ARCHITECTURE

The primary contribution of this work is our algorithm for identi-

fying confounders without the need to construct the full causal

diagram or materializing ' ⋈ {'ğ }Ĥğ=1. Thus, we design Suna to

support an e�cient and scalable implementation of the algorithm.

Figure 2 gives an overview of the system architecture. Suna has

an o�ine and an online phase. The o�ine phase involves collecting

tabular datasets from open data repositories [7, 25], preprocessing

them by aggregating and removing outliers [31], then transform-

ing them into semi-ring sketches that will be used as input to

the confounder discovery algorithm in the online phase. A cru-

cial feature of these sketches is that they allow the confounder

V

T A

Z

(a)

T A

(b)

Z

T O

A

(c)

Figure 3: Figure 3a is a example causal diagram G where

V(G) = {�,) ,+ , / }, Figure 3b is a causal diagram representing

the projection of G onto {),�}. Figure 3c is a snippet of a

causal diagramwith {�,) , /,$} ¦ V(G), dotted directed edges
indicate a directed path from the head node to the tail node

in G, i.e., there exists a directed path from / to ) in G.
discovery algorithm to be run without materializing joins, leading

to large performance gains. Suna’s online phase processes ana-

lysts’ causal queries. Upon receiving a query, Suna’s data discovery

component leverages existing techniques to �nd datasets that are

join-compatible with the query input. The query is then processed

by the causal confounder evaluation component, which employs

BCD as an oracle to directly �nd confounders. Moreover, the causal

confounder evaluation component’s algorithm is designed to be par-

allelizable, making it possible for us to implement GPU acceleration.

These components work together to let Suna achieve interactive

latency in processing, even for large-scale datasets.

6 CAUSAL CONFOUNDER DISCOVERY

We now describe the theoretical and algorithmic foundations to

solving Problem 1. We refer to attributes in A as variables, and

describe how to select a subset of A as an adjustment set. The main

challenge is that no method exists for validating the correctness of

an arbitrary Z without referring to a causal diagram. We present a

novel algorithm that uses BCD to identify the topological order for a

superset of the adjustment set in the underlying (but not accessible)

causal diagram, and iteratively select an adjustment set that satis�es

unconfoundedness and no disturbance in Problem 1.

This section is organized into three parts. Firstly, we present

a baseline that extends the LiNGAM causal discovery algorithm

to take the causal query Q = (),$) into account, and analyze

its limitations. Secondly, we prove the main theory that bridges

BCD with confounder discovery and enables our iterative discovery

method. Lastly, we describe our end-to-end algorithm.

6.1 Baseline

The back-door criterion implies that the set of all non-descendants

of the treatment variable ND() ) forms an admissible adjustment

set for Q because it automatically closes all back-door paths. As

a result, one simple extension of LiNGAM’s causal discovery al-

gorithm is to build the adjustment set by starting with an empty

adjustment set Z = ∅, and iteratively add the source node of A,

as discovered by the vanilla LiNGAM algorithm, to Z. Since vari-

ables are added to Z in topological order in G, we can terminate

the vanilla LiNGAM algorithm and conclude that the current Z

is admissible if the current source node is ) . It is guaranteed that

Z ¦ ND() ), so Z forms an admissible adjustment set.

However, this approach falls short in three aspects. First, the iter-

ative process of obtaining a topological order overA∪{),$} spends
extra time sorting variables that are not confounders. Second, Z =
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ND() ) can be arbitrarily large, containing attributes spanning over

many datasets. This fails to respect the minimality requirement in

Problem 1. Finally, the high dimensionality of Z introduces high

variance in estimating Pr($ | ),Z), which a�ects the accuracy in

estimating treatment e�ects.

Example 2. Consider Q = (�, () with Figure 1 as the underly-

ing causal DAG. (%, �, �, ", �,, , () is a valid topological order over
V(G), suggesting Z = {%, �, �, "}. However, % and � do not close any

backdoor path for Q, so Z = {�,"} is still admissible.

6.2 The Main Theorem

In this section, we �rst introduce causal diagram projection, which

de�nes the causal relationship on a subset of variables V′ ∈ V(G).
We then present our insights on this projection and state our main

theorem, which provides the theoretical support for an iterative

algorithm that only identi�es confounders.

6.2.1 Connection between Causal Confounder Discovery and Bivari-

ate Causal Discovery. We adopt the de�nition of causal diagram

projection from [50]. At a high level, this de�nition characterizes

the causal relationships among a subset of variables within a larger

causal diagram. This approach allows us to focus on the causal struc-

tures between variables of interest. Given two variables+1 and+2 in

V(G) where (1) there are no open non-causal paths between+1 and

+2 (unconfounded), and (2) there exists a causal path from +1 to +2
(causally related), any projection of V(G) onto a set {+1,+2} ¦ V′

will include a directed edge +1 → +2 and will not contain a bi-

directed edge +1 ´ +2.

Example 3. Consider variables ) and � in the causal DAG in

Figure 3a, the non-causal path, (�,+ , /,) ), between� and) is closed,

while the causal path (�,+ ,) ) is open. Thus, the projection of this

causal DAG onto {�,) } shows a simple cause-and-e�ect relationship

as shown in Figure 3b.

Under the LiNGAM assumption, the projection of a causal DAG

onto two unconfounded and causally related variables will always

exhibit a simple cause-and-e�ect relationship satisfying LiNGAM.

With this observation, we now introduce our main theorem.

Theorem 6.1. Fix a causal diagram G, a causal query Q = (),$),
and a set of variables Z where Z ∩ De() ) = ∅. If there exists an
open non-causal path for Q conditioned on Z in G, there must exist a

variable / ∈ V(G) satisfying (1) there is an open causal path from /

to) , and all non-causal paths between / and) are closed conditioned

on Z in the projection of G onto {), / } ∪ Z; and (2) / is a confounder

for Q conditioned on Z.

Proof. The full proof can be found in the technical report. □

One direct implication of Theorem 6.1 is that, when Z = ∅, we
can detect the presence of open non-causal paths in the causal dia-

gram for Q, by applying BCD on each (), / ) pair where / ∈ V(G).
If such a path exists, there will be at least one / for which regress-

ing ) on / results in a signi�cant dependency between ) and this

regression’s residuals. Conversely, if such a / does not exist, we can

safely conclude that there is no open non-causal path for Q in G
conditioned onZ; henceZ forms an admissible adjustment set. How-

ever, Theorem 6.1 does not immediately translate to an algorithm

Algorithm 1 Iterative Confounder Discovery

1: Input: R, (Đ,ċ ) ∈ ďĎ , ă
2: Return: Z

3: Z← {}
4: while True do

5: C ← {}
6: for all Ďğ ∈ R do

7: B ← gen-bootstrap(Ď, Ďğ ) ² generate bootstrap samples

8: for all Ė ∈ Ďğ do ² augment Ď w/ Ďğ ’s attrs

9: for all Ę ∈ B do

10: ĦĖ+
Ę

, ĦĖ−
Ę
← bivariate-CD(Ę,Ė )

11: CI← CI ∪{ĦĖ−
Ę
− ĦĖ+

Ę
}

12: end for

13: C ← C ∪ Ė if ħă (CI) signi�cant
14: end for

15: end for

16: break if C = {}
17: ĖĥĦĪ ← heuristic-search(C)
18: Z← Z ∪ ĖĥĦĪ

19: update-corpus(ĖĥĦĪ , R)
20: end while

because (1) empirical estimation error can lead to false positives

and false negatives that violates the no disturbance condition, (2)

it only guarantees to �nd a superset C containing a confounder,

without giving a strategy to select the confounder from C, and (3)

it does not address how to account for a non-empty Z in BCD after

the �rst iteration. We now present our solution to these challenges.

6.3 Algorithm

This section presents the full algorithm that iteratively discovers

confounders for Q in Algorithm 1, while accounting for the three

challenges explained previously. We �rst give the algorithm over-

view, then explain individual components in depth. On a high level,

we start with an empty adjustment set Z = ∅ and add variables to Z
once at a time. In each iteration, we �rst �nd a superset of attributes

that contains a confounder, corresponding to the �rst condition in

Theorem 6.1, and then heuristically select the confounder out from

the superset, corresponding to the second condition in Theorem 6.1.

Semantically, an attribute / is added to Z in each iteration if Z ∪ /
further reduce spurious correlation between ) and $ . The input of

the algorithm is the data corpus R and an input dataset containing

the treatment and outcome pair (),$). Each iteration tests whether

/ ∈ 'ğ is a unconfounded ancestor of) (L6-15), with respect to the

current adjustment set Z. heuristic-search then explores these

confounder candidates and identi�es the optimal confounder /ĥĦĪ
(L17). Lastly, we update Z (L18) and R (L19) to facilitate confounder

discovery in future iterations.

6.3.1 Bootstrap Resampling. To reduce estimation error and en-

hance robustness, gen-bootstrap (L7) generates resampled data-

sets with replacement for conducting hypothesis tests across mul-

tiple samples. bivariate-CD (L10) implements BCD, returning de-

pendency measures between the explanatory variable and predic-

tion residuals for both forward (/ → ) ) and backward () → / )
causal directions. We employ mutual information scores to quantify

these dependencies [28], de�ning ?Ė+ = MI(/ ; nĐ ) and ?Ė− =

MI() ; nĖ ), where nĐ and nĖ represent prediction residuals in their

respectivemodels. Variables 5 for which the 100·(1−g)-percentile of
the bootstrapped distribution (@ă (CI)) is signi�cant are considered
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Figure 4: Figure 4a is a causal diagram consisting treatment

) and outcome $ , a latent variable nĐ representing the noise

of ) , and the three other variables /1, /2 and /3. Figure 4b

is a causal diagram considering the residuals of ) and /3
predicted by /2.

as candidates of confounders (L13), where g is a tunable hyperpara-

meter defaulted to 0.05. Semantically, this di�erence serves as a

score indicating the likelihood of / being an ancestor of ) .

6.3.2 Heuristic Selection. Theorem 6.1 guarantees that there exists

a variable / ∈ C such that conditioning on / mitigate spurious

correlation between ) and $ and reduces their dependency. As

a result, one approach to selecting a confounder from C is to es-

timate the mutual information score between ) and $ with and

without conditioning on / for each / ∈ C. A non-trivial di�erence

inMI() ;$ | Z)−MI() ;$ | Z∪{/ }) suggests that/ is a confounder.

Therefore, once we have identi�ed a superset of variables contain-

ing at least one confounder, we can select the confounder based

on a drop in mutual information when conditioned upon. Empir-

ically, we can also use the absolute di�erence in coe�cients of )

regressing ) ∪ Z and {), / } ∪ Z on $ .

6.3.3 Update Residuals. In iterations where Z is non-empty, our

algorithm must identify variables that close remaining open non-

causal paths conditioned on the current Z. For clarity of illustra-

tion, we assume the current adjustment set Z contains a single

confounder, though the underlying methodology generalizes seam-

lessly to adjustment sets of higher cardinality. Let Z = {�}, due to
condition (1) in Theorem 6.1, � is an admissible adjustment set for

the causal query Q = (/,) ). Hence, for linear causal mechanisms,

we write ) = U/ + V� + nĐ for arbitrary constants U and V where

�,/ §§ nĐ . Let nĐ,ý and nĖ,ý denote the prediction residuals of

regressing � on ) and regressing � on / , then

nĐ,ý = UnĖ,ý + nĐ
If we treat nĐ,ý and nĖ,ý as variables, and construct a causal diagram

between them, the causal diagram is nĖ,ý → nĐ,ý that satis�es the

LiNGAM property. Hence, a signi�cant ?ĊĖ,ý− − ?ĊĖ,ý+ indicates
that / is a variable satisfying both conditions in Theorem 6.1.

Example 4. Consider a causal diagram G in Figure 4a, where

) is the treatment variable and Z = {/2}. In this setup, the causal

path from /3 to) is open, while the non-causal path (), /1, /2, /3) is
closed conditioned on /2. By computing the residuals nĐ,Ė2

and nĖ3,Ė2

after regressing /2 on ) and /3, the causal diagram regarding nĐ,Ė2

and nĖ3,Ė2
is shown in Figure 4b.

For each iteration, we always need to consider the current Z

over BCD. That is, we work with nĐ,Z and nĖ,Z, the residuals of )

and / after regressing on all variables in Z, for each / ∈ Z in each

iteration. By applying the Frisch-Waugh-Lovell theorem, those nĐ,Z
and nĜ ,Z can be maintained incrementally over the search.

Example 5. Let /1 and /2 be the causal confounders discovered

over the �rst 2 iterations. We want to compute BCD between ) and /3
conditioned on Z = {/1, /2}. Note that:

) = U1/1 + U2/2 + nĐ,Z
nĐ,Ė1

= U2nĖ2,Ė1
+ nĐ,Z

Hence, we maintain nĐ,Ė1
and nĖ2,Ė1

at the end of the �rst iteration

once /1 is discovered. Then, we can calculate nĐ,Z by regressing nĖ2,Ė1

on nĐ,Ė1
and taking the prediction residual.

7 OPTIMIZATIONS

The major performance bottleneck is L6-15 in Algorithm 1, which

runs BCD between the treatment variable and every other variable

in A, and update residuals in L19. Suna accelerates these steps

by factorizing BCD to avoid join materialization and using GPU-

acceleration to answer queries in seconds. In fact, our algorithm

extends beyond optimizing BCD and accelerates estimating mutual

information between attributes across multiple datasets.

Main Bottlenecks. For every pair of treatment and potential con-

founder variables (), / ), where) ∈ (Ď and/ ∈ (Ďğ , bivariate-CD
consists of four steps: (1) materialize ' ⋈J 'ğ ; (2) train linear re-

gression models"Đ→Ė to predict / from ) and"Ė→Đ to predict

) from / , and calculate the prediction residuals nĖ = / −"Đ→Ė

and nĐ = ) −"Ė→Đ ; (3) assess the dependency level between )

and nĖ and between / and nĐ by computing the mutual informa-

tion scoresMI() ; nĖ ) andMI(/ ; nĐ ); and (4) use /ĥĦĪ to predict all

variables in A and update them to their respective prediction re-

siduals, once the optimal confounder /ĥĦĪ is discovered. The steps

are computationally expensive because of the many (), / ) pairs
(due to potentially large numbers of candidate confounders), and

the high cost of materializing joins, training models, computing

residuals and estimating mutual information.

Factorized Learning. To address the challenges of training regres-

sion models and updating variables to their respective prediction

residuals, Suna leverages factorized learning techniques [31] to

distribute linear regression training and inference over joins by

pre-computing sketches. These sketches contain semi-ring annota-

tions that transform group-by and join operations into addition

(·) and multiplication (¹) operations within a semi-ring struc-

ture (�, ·, ¹, 0, 1). The annotation for group-by WJ' is the sum of

the annotations within the group, and the annotation of a tuple

C ∈ '1 ⋈ '2 is the product of annotations from contributing tuples

in '1 and '2. The sketches for regression models are called the

variance semi-ring, which consists of the count, sum and sum of

squares of attributes for each candidate confounder / ∈ A over J .

The key optimization of factorized learning pushes aggregations W

(·) before joins ⋈ (¹) to avoid aggregating on the materialized join.

During pre-computation, each tuple in C ∈ ' is lifted to a semi-ring

annotation via a lift function 6(·) : dom(') → � , and aggregated

for each group de�ned by J . Pre-aggregated sketches have several

advantages: (a) they are smaller than the original dataset—linear

in the join key’s domain; (b) they are su�cient for training linear

regression models over joins; and (c) they can be easily updated to

a new variance semi-ring suitable for deriving prediction residuals.

When combined with GPU acceleration, Suna can train of over one

million linear regression models through joins in ≈1B42 .
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Although factorized learning techniques address steps (1,2,4),

they do not address (3), because of the inherent challenges in es-

timating mutual information. Estimating MI() ; nĖ ) for continu-
ous variables ) and nĖ requires estimating the di�erential en-

tropies ℎ() ), ℎ(nĖ ) and joint di�erential entropy ℎ(), nĖ ), which
in turn depends on estimating Pr(), nĖ ). Due to the invariance

property of mutual information under invertible transformations,

bivariate-CD(), / ) is equivalent to bivariate-CD()̃ , /̃ ), where
)̃ and /̃ denote the normalized columns ) and / in '⋈. Then, the

signi�cance level of a candidate confounder can be rewritten as

?+−?− = MI()̃ ; /̃−V ·)̃ )−MI(/̃ ; )̃ −V ·/̃ ) = MI()̃ ; ñĖ )−MI(/̃ ; ñĐ )

As pointed out in [23], this is equivalent to estimatingℎ()̃ )+ℎ(ñĖ )−
ℎ(/̃ ) − ℎ(ñĐ ), which boils down to estimating the marginal pdfs

Pr()̃ ), Pr(/̃ ), Pr(ñĐ ) and Pr(ñĖ ). However, these distributions can
only be computed after materializing '⋈. For instance, in Figure 6a,

the distribution of ' [) ] di�ers from that of '⋈ [) ] in Figure 6b.

Further, no semi-ring (su�cient statistics) exists for this estimation,

which necessitates join materialization. To avoid this, we develop

a two-phase solution: we �rst adopt equi-width histograms for

marginal pdf estimation, then design a novel semi-ring structure

that e�ciently computes these histogram-based estimates.

7.1 Histogram-based BCD

7.1.1 Equi-width Histogram. For a relation ' and an attribute - ∈
(Ď , an equi-width histogram over ' [- ] places {C [- ]}Ī ∈Ď into non-

overlapping bins of the same width. To minimize the integrated

mean squared error between the histogram and the underlying

distribution, we follow Scott’s rule [42] and set the bin width to

beFĮ = (24
√
c)1/3fĔ=−1/3, where fĔ is the (empirical) standard

deviation of ' [- ] and = = |' |. In fact, any binning strategy based

on fĔ and = is supported. We de�ne the bin assignment function

5 : R→ Z that maps each C [- ] to its corresponding bin as

5 : G ↦→ +(G −min{C [- ]}Ī ∈Ď)/FĮ ,
Then, the �nal histogram is an aggregation query that counts

the number of tuples within each bin, which can be expressed

in relational algebra as WĜ (Ĕ ),ÿċđĊĐ ('), or simpli�ed as WĜ (Ĕ ) (').
Pr(- ) is then approximated by normalizing the bin counts by =.

We aim to answer the queries WĜ (Ĕ ) ('⋈) for - ∈ {)̃ , /̃ , ñĐ , ñĖ }.
Notably, fĔ and = in '⋈ come free with the variance semi-ring,

andmin{C [- ]}Ī ∈Ď can be computed using a tropical semi-ring [16].

For simplicity, we denote min{C [- ] | C ∈ '} as UĔ and treat these

statistics as constants as they are not the focus of this section.

7.1.2 Histogram Semi-ring. We de�ne the histogram semi-ring

(�, ·, ¹, 0, 1), where � is the set of ordered pairs in Z × Z. To ease

expression, we use a key-value pair (:, E) to denote an element of

� with (:, 0) ∈ � if the key : does not exist in� . For two semi-ring

annotations �1, �2 ∈ � , we de�ne the semi-ring addition · and

semi-ring multiplication ¹ as

Definition 7.1 (Semi-ring Addition ·). The semi-ring addition

· of �· = �1 · �2 is de�ned as �· = {(:, E1 + E2) | ∀(:, E1) ∈
�1, (:, E2) ∈ �2}. The additive identity (0) is de�ned as {(0, 0)}.

Definition 7.2 (Semi-ring Multiplication ¹). The semi-ring

multiplication ¹ of�¹ = �1¹�2 can be de�ned as {(:,
∑
ġ1+ġ2=ġ E1 ·

=
1 100 1

(a) Histogram Semi-ring Addition.

=
10 1 21

(b) Histogram Semi-ring Multiplication.

Figure 5: Semantics for addition in Figure 5a and multiplica-

tion in Figure 5b over histogram semi-ring.

E2) | (:1, E1) ∈ �1, (:2, E2) ∈ �2}. The multiplicative identity (1) is

de�ned as {(0, 1)}.

Proposition 7.1. The semi-ring add (·) and multiplication (¹)
satisfy the commutative and distributive law.

Intuitively, the histogram semi-ring represents local histograms

within each join key. We illustrate the semi-ring operators through

an example in Figure 5.

Example 6. The · operator in Figure 5a corresponds to the bin-

wise addition of histograms. The ¹ operator computes new histogram

bins through a multiplication-addition mechanism: combining bin 0

of the left histogram with bin 1 of the right histogram in Figure 5b

creates a new bin whose key is the sum of the participating bins’ keys

(0 + 1), and value is the product of the participating bins’ values (1 · 1).

Next, we use the histogram semi-ring to estimate Pr()̃ ) and
Pr(ñĖ ). The same approach applies to Pr(/̃ ) and Pr(ñĐ ).

7.1.3 Estimating pdf for )̃ . To compute W
Ĝ (Đ̃ ) ('⋈) without mater-

ializing '⋈, we distribute the aggregation through joins using two

steps: (1) compute per-join-key histograms of )̃ in ', and (2) obtain

per-join-key counts in 'ğ via WJ ('ğ ). Leveraging the histogram

semi-ring, we de�ne the lift function 6
Đ̃
(·) : dom(') → � as

6
Đ̃
(C) =

{
(5 (C [)̃ ]), 1) C ∈ '
(0, 1) C ∈ 'ğ

Here, 6
Đ̃
(·) maps tuples in ' to single-bin histograms (5 ()̃ ), 1) and

tuples in 'ğ to the semi-ring multiplicative identity. We illustrate

the whole procedure using a running example.

Example 7. Consider relations ' and '1 in Figure 6a, with each

tuple annotated by the histogram semi-ring for 6
Đ̃
(C); for illustration

purpose,) = )̃ , / = /̃ . To avoid materializing' ⋈ '1 in Figure 6b, we

�rst compute WJ' and WJ'1 by aggregating semi-ring annotations

within each join key. For join key 01, the summation 6
Đ̃
(C) is (0, 1) ·

(1, 1) · (1, 1) = (0, 2), (3, 1) as shown in Figure 6c. Next, we combine

sketches using the semi-ring ¹ operator – the product of the two semi-

ring annotations across 01 is {(0, 1), (1, 2)} ¹ {(0, 3)} = {(0 + 0, 1 ·
3), (0 + 1, 2 · 3)} = {(0, 3), (1, 6)}. The �nal histogram W (WJ (') ¹
WJ ('1)) (Figure 6d) equals the ground truth in Figure 6b.

7.1.4 Estimating pdf for ñĖ . 5 ()̃ ) is completely dependent on ',

so it easily distribute through '⋈. The same trick does not apply

to calculating 5 (ñĖ ), because it is unclear how ' and '1 contribute

to ñĖ . To factorize WĜ (Ċ̃Ė ) ('⋈), we �rst decompose 5 (ñĖ ) by lever-

aging its linearity, and the fact that | +0 + 1, − (+0, + +1,) | ∈ {0, 1}.
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Figure 6: Example of factorized histogram method.

For each C ∈ '⋈, we rewrite 5 (C [ñĖ ]) as

+
C [/̃ ] − V · C [)̃ ] − UĊ̃Ė

FĊ̃Ė

, ≈ +
C [/̃ ] − UĊ̃Ė

FĊ̃Ė

, − + V · C [)̃ ]
FĊ̃Ė

,

This decompose 5 ((C [/̃ ] − V · C [)̃ ])/fĊ̃Ė ) into two parts where

the �rst term (highlighted in red) only involves C [/̃ ] in '1 and the

second term (highlighted in blue) only involves C [)̃ ] in ', such that

they can be computed locally. We de�ne the lift function 6Ċ̃Ė (·) as

6Ċ̃Ė (C) =




(
−+ ÿ ·Ī [Đ̃ ]ĭĊ̃Ė

,, 1
)

C ∈ '
(
+ (Ī [Ė̃ ]−ĂĊ̃Ė )ĭĊ̃Ė

,, 1
)

C ∈ 'ğ

Here, 6Ċ̃Ė (·) maps tuples in ' and 'ğ to their contributing factors

in 5 (ñĖ ). We will use the same running example in Figure 6 to

illustrate this procedure.

Example 8. Consider again relations ' and '1 in Figure 6a, we

�rst obtain V = 0.5 using the variance semi-ring, and lift each tuple

in ' and '1 with the histogram semi-ring through 6Ċ̃Ė (C). Similar to

Example 7, we aggregate the semi-ring annotations locally in ' and

'1 and merge them using the semi-ring ¹ operator as shown in the

lower half of Figure 6c, the estimated histogram shown in Figure 6d

approximates the ground truth in Figure 6b.

7.2 Convergence Analysis

As noted in previous sections, we use histograms to estimate dif-

ferential entropy and mutual information. In Lemma 7.3 and The-

orem 7.2, we demonstrate that the histogram-based approach yields

unbiased estimates for both di�erential entropy and conditional

mutual information, which naturally extend to mutual information.

The di�erential entropy (which can be negative) applies to con-

tinuous random variables, while entropy (always non-negative)

applies only to discrete random variables. Both de�nitions can be

uni�ed via measure theory; so we only need to focus on proving

results for entropy convergence. In particular, probabilitymass func-

tions (pmf) can be translated to probability density functions (pdf)

by using the counting measure (instead of the Lebesgue measure).

We show that the histogram semiring-based entropy estimation,

over mixed random vectors, converges to the true entropy:

Lemma 7.3. Given a random vector (-,., / ) that contains discrete-
continuous mixture random variables, with semiring histogram bins

� = � ∪ � and the resulting discretized random vector (- ′, . ′, / ′),
where the bins in � contain discrete data points (of which every

dimension has a discrete value) and � = � \ �, we have

lim
Ę→0

� (- ′, . ′, / ′) = � (-,., / ) ,

where 1 = maxþ Ġ ∈þ (` (� Ġ )), and ` is the product measure.

Furthermore, the histogram-based mutual information estima-

tion also converges to the true mutual information:

Theorem 7.2. Given a mixed random vector (-,., / ),

lim
Ę→0

lim
Ĥ→∞

MI
ℎ (- ;. |/ ) = MI(- ;. |/ )

almost surely, where = refers to the sample size and 1 refers to the

maximum volume of the semiring histogram volumes for bins in �.

MI
ℎ (- ;. |/ ) is the mutual information computed via histograms,

and MI(- ;. |/ ) is the true mutual information.

Detailed discussion and proof of Lemma 7.3 and Theorem 7.2

can be found in the technical report. Note that Theorem 7.2 that

applies to conditional mutual information also applies to the mutual

information, since the latter is a special case of the former. Fur-

thermore, it is straightforward to see that the results apply beyond

mixed random vectors of size three.

8 EVALUATION

We now present evaluations of the quality and e�cacy of Suna.

We �rst evaluate Suna by constructing a large real-world data

corpus consisting of datasets from NYC Open Data [7] and Kaggle

[25] to determine if Suna can discover semantically meaningful

confounders. Then, we generate synthetic datasets to quantitatively

assess the adjustment sets discovered by Suna. Finally, we examine

the e�ectiveness of our optimization proposed in Section 7.
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Dataset Query Suna MESA HypDB Correlation

SO
What is the e�ect of education
level on salary?

Cost of Living & Rent Index Unemployment Rate Country Rent Index

ELA
What is the e�ect of each school’s
extra credit performance score on
students’ ELA score?

Grade 6 Enrollment
% Eligible for Free or Reduced
Lunches

% of grads
Performance Category Score
Total Student Response Rate

School Overall Score
ID
Pct Level 3 and 4

School Overall Score

Ratio
What is the e�ect of each school’s
pupil-to-teacher ratio on student’s
ELA score?

Level 4: %
% Students with Disabilities
Minimum Class Size

Performance Category Score
Math Pro�ciency
ELA % Pro�cient

Percent HRA Eligible
Average Class Size
Pct Level 2

% Students with Disabilities

SAT
What is the e�ect of test takers
numbers on SAT score?

# Safety Incidents
Grade 9 Enrollment
Total Regents #

Safety and Respect Score
Graduation Rate
# Ontrack at Year 1

Total Regents # Total Regents #

Table 1: Report of discovered confounders for causal queries.

8.1 Real-world Experiments

We use real-world datasets to evaluate Suna’s ability to reason

against spurious correlations. Our evaluation addresses two key

questions: Q1: Does Suna discover semantically meaningful con-

founders? and Q2: Can Suna deliver causal query results with

interactive latency? We cite existing studies in the social science

literature to reason about semantic information. This is consistent

the methodologies in prior work [39, 56] for evaluating the quality

of causal queries over real-world datasets.

8.1.1 Data and Workload. We construct a large corpus of 346 data-

sets from NYC Open Data [7] and Kaggle [25]. Datasets from NYC

open data contain 1462 numerical attributes and share a common

District Borough Number column as join key, and datasets from

Kaggle contain 91 attributes and share a common Country column.

We construct 4 causal queries using the following datasets:

• SO [48] contains the results of annual surveys over 2023 and

2024 conducted by Stack Over�ow that collect insights from

developers worldwide. We convert the values in the education

level column to numerical values that represent approximate

years of formal schooling.

• ELA [4] integrates 2006-11 English Language Arts (ELA) test

results with annual school progress reports [1] for each District

Borough Number (DBN).

• Ratio [3] contains 2013-18 ELA test results over DBNs integrated

with the annual pupil-to-teacher ratio report [5] for each DBN.

• SAT [2] contains 2012 college-bound seniors’ mean SAT scores

over each DBN.

For each query, we preprocess all datasets in the data corpus by

aggregating attributes with respect to the join key, and impute

missing entries with the mean of the column.

8.1.2 Baselines. We compare Suna with the following approaches:

(1)MESA [56] discovers attributes that explain confounding bias

between two variables with no causal relationship, (2) HypDB [39]

is a confounder detection system that discovers confounders for

arbitrary treatment and outcome variables, and (3) Correlation

identi�es the attribute most strongly correlated with the treatment

variable. Both MESA and HypDB require a single table as input, so

they require a preprocessing step that materializes the join across

all join-compatible datasets. Moreover, HypDB only accepts cat-

egorical attributes, necessitating a binning procedure for numerical

attributes. However, it is optimized for binary features; with more

than two bins per numerical attribute, it fails to terminate within

10 hours on each query. Consequently, we convert all attributes

into binary features to run HypDB e�ciently. Although this bin-

ning transformation discards some information, it preserves the

underlying causal diagram.

8.1.3 �ality analysis. In this section, we aim to answer Q1. We

report the confounders discovered by di�erent methods for each

query in Table 1, in cases where Suna discovers more than 3 con-

founders, we select the 3 most in�uential confounders toward the

treatment e�ect. Next, we analyze the quality of the discovered con-

founders by referencing existing studies. We highlight confounders

complying with existing studies in blue in Table 1. Suna discovers

semantically meaningful confounders for each causal query.

SO.We examine potential confounders for causal analysis between

years of formal schooling (treatment) and yearly salary (outcome).

An economic study [35] shows that social factors—such as higher

living costs in urban areas—can drive both greater educational

attainment and increased salary. Both Suna andCorrelation identify

relevant confounders consistent with these �ndings.

ELA. We next investigate confounders for causal analysis between

the additional score a school receives in its progress report (treat-

ment), which represents extra points awarded beyond the core per-

formance metrics, and the school’s average ELA score (outcome).

Research suggests socioeconomic status is a key confounder. For

this query, only Suna discovers % poverty.

Ratio. Then, we explore potential confounders for causal analysis

between the pupil-to-teacher ratio (treatment) on the school’s av-

erage ELA score (outcome). Prior work indicates that students’

socio-economic status impacts both class sizes and performance.

In this query, Suna and Correlation identify % Students with Dis-

abilities, while HypDB detects Percent HRA Eligible (a proxy for

the socioeconomic needs of the school community), all in line with

existing literature.

SAT. Finally, we examine confounders when studying how the

number of SAT test takes (treatment) a�ect the average math score

(outcome) for each high school. Previous research [30, 38] notes

that school size and environment can shape test participation and

performance. All methods (Suna, MESA, HypDB, and Correlation)

identify plausible confounders.

8.1.4 Runtime analysis. We now evaluate the scalability of Suna.

Figure 7a shows the cumulative runtime for Suna, MESA, and
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Figure 7: (a) Runtime performance of Suna vs other baselines

for real-world causal queries. The x-axis includes all

baselines for each query. The y-axis shows runtime. Suna

is g2 orders of magnitude faster than baselines for causal

queries. (b) Runtime breakdown of Suna’s algorithmic com-

ponents for each query.

HypDB, along with the time required to materialize joins for each

causal query. Importantly, Suna is g2 orders of magnitude faster

than all baselines for every causal query. In fact, Suna’s completion

times of the queries are orders of magnitude faster than MESA and

HypDB’s join completion time. This demonstrates the e�ciency

of Suna’s optimizations. Figure 7b decomposes Suna’s end-to-end

runtime into its algorithmic components, including transforming

the input dataset into sketches (lift), iteratively searching for con-

founders with sketches (confounder search), and incrementally

maintaining the sketches across iterations (update residual). For all

queries, none of these components is a signi�cant runtime bottle-

neck, as they all �nish within ∼1s, achieving interactive latency.

8.1.5 Takeaways: Suna discovers semanticallymeaningful confounders

as validated by existing studies. With optimizations discussed in Sec-

tion 7, Suna runs orders of magnitude (>100 times) faster than existing

confounder discovery systems.

8.2 Synthetic Experiments

We further assess Suna’s accuracy on synthetic datasets to address

three key questions. Q1: Does Suna discover an admissible adjust-

ment set that accurately estimates the ATE? Q2: How does the total

number of variables in the causal diagram a�ect Suna’s estimate of

the average treatment e�ect, both with and without irrelevant vari-

ables as noise? Q3: How well do our approximations in Section 7.1

estimate Pr(nĖ ) and Pr(nĐ ), and how this approximation implies

to the estimation of � (nĖ ) and � (nĐ ).

8.2.1 Setup. We construct a causal diagram using synthetic data-

sets following the LiNGAM model. The coe�cients of linear mech-

anisms are drawn randomly within the range of [1, 2]; additive
noises are sampled from a Uniform distribution* (0, 1). To avoid
over�ow, we normalize the coe�cients that determine each vari-

able by dividing them by the number of parents of that variable

and rounding the data to two digits. To construct causal queries,

we generate a random pair of treatment and outcome Q = (),$)
where ) is a non-descendant of $ (i.e., ) ∉ ND($)). We generate

a relation R with = tuples and< variables. Then, we partition R
vertically where the input dataset ' contains [J ,) ,$], and the

remaining columns are partitioned into< − 2 relations, each con-

tains a single attribute. To support joins, we assign a primary key
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Figure 8: MSE and A2 (normalizing for variations in the

ground truth ATE) of the estimated ATE by Suna and di�erent

baselines evaluated on over < ∈ {10, 50, 100, 500, 1"}. Suna
consistently achieves high accuracy across di�erent number

of variables, while ND does not scale to large |A|.
J to R, and distribute it over each of the< − 2 relations, R can be

recovered by joining all relations through one-to-one joins over J .

8.2.2 Accuracy Evaluation. We study Q1 and Q2 by randomly

generating 100 causal queries with< ∈ {10, 50, 100, 500, 1"}. To
answer Q1, we use the discovered set of confounders Z to train

a linear regression model $ ∼ VZ + U) , and compare U against

the ground-truth ATE. To evaluate Q2—Suna’s resilience to irrelev-

ant variables—we set< = 1" to construct a causal diagram over

500 variables and �ll the remaining ones with random noises. For

baselines, we compare Suna with MESA, HypDB, and the simple

extension we proposed in Section 6.1, referred to as ND. Since ND

does not scale to moderately large< (the topological sort and early

stop do not terminate over an hour for < = 500 for each causal

query), we evaluate ND by using the set of all non-descendants

of ) obtained from the ground truth causal diagram as the adjust-

ment set. This approach assumes ND will always estimate ND() )
accurately, an assumption that may not always hold.

Figure 8a reports the squared error (MSE) between the estim-

ated ATE versus the ground truth. To account for the di�erence in

magnitude of the ground truth causal e�ect, we report the A2 score

in Figure 8b. Suna and ND has similar performance – lowest MSE

and highest A2 score of > 0.99 for each<. On the other hand,MESA

and HypDB both fail to discover admissible adjustment sets with

A2 score degrades for larger<. This is becauseMESA assumes no

causal e�ect between the treatment and outcome, which is easily

violated for larger<. When this assumption is violated,MESAmay

mistakenly select mediators as confounders that leads to wrong

adjustment sets. On the other hand, HypDB ’s reliance on binning

leads to signi�cant information loss, thus hindering its ability to

�nd valid confounders. Interestingly, although ND guarantees to

�nd an admissible adjustment set in theory under in�nite sample

sizes, it estimates the average treatment e�ect poorly for< = 1" .

This is due to estimation error caused by large adjustment sets.

8.2.3 Scalability. We further study Q1 and Q2 by examining how

the size of the adjustment set and the runtime varies as the number

of variables increases. The settings remain the same as Section 8.2.2.

Figure 9a shows that Suna discovers a smaller (less than one third

of the size than ND), yet still admissible confounder set across all

numbers of variables. This makes Suna a more interpretable system

for analysts to use, especially when they seek to analyze causal

relations in complex scenarios when the number of variables is
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Figure 9: Adjustment set size |Z| discovered by Suna and size

of ND(Đ ) in G and Suna’s runtime to iteratively construct Z.

The adjustment set discovered by Suna is >3x smaller.

large. Figure 9b shows that the mean runtime over 100 queries

grows slightly as the number of variables increases, due to the

preprocessing step to �lter out irrelevant variables. By leveraging

factorized learning techniques and GPU acceleration (following

SET [31]), we manage to keep the overhead minimal (∼3s for one
million variables), even at a scale where most baselines would time

out or take more than days to complete.

8.2.4 Histogram Semi-ring Approximation Evaluation. We invest-

igate Q3 by examining the divergence between the approximate

histogram and the exact histogram (obtained via join materializa-

tion), as well as the resulting impact on entropy estimation.

We use the same setup from Section 8.2.1 for data generation.

For robustness, we take 10 attributes {Ė1, . . . , Ė10} and conduct BCD
for each pair of (Đ, Ėğ ). Due to symmetry in estimating Pr(Ċ̃Ė ) and
Pr(Ċ̃Đ ), we focus our study on the approximation of Pr(Ċ̃Ė ) and
how such approximation a�ects Ą (Ċ̃Ė ) - a core estimate in BCD-

using methods described in Section 7.1. We measure the approx-

imation accuracy of Pr(Ċ̃Ė ) using KL divergence from the exact

histogram computed by materializing joins, and then quantify how

this a�ects entropy estimates by computing the ℓ1 distance between

the approximated entropy and the ground truth entropy of each

Ċ̃Ėğ
.The sample size Ĥ is varied from {100, 1000, 5000, 10000, 50000}.
Figure 10a reports that the mean KL-divergence between the

approximated and exact histograms converges to 0 as the number of

samples increases, all (Đ, Ėğ ) pairs. Convergence is also observed in
Figure 10b, which shows that as the number of samples increases,

the ℓ1 distance between the approximate and exact histograms

approaches 0. In fact, both the KL divergence and ℓ1 distance fall

below a negligible 0.01 at a small sample size (Ĥ = 5000).

8.2.5 Takeaways. Suna prunes away irrelevant variables and iden-

ti�es high-quality confounders to accurately answer causal queries in

just a few seconds, scaling to 1M variables. Further, empirical evalu-

ations show that the histogram estimation reliably converges as the

number of samples increases. Combined with the theoretical analysis

in Section 7.2, these results validate our approach in Section 7.

9 DISCUSSION

Discussion. Our main contribution is an algorithm that e�ciently

discovers confounders in an unobserved causal DAG from a re-

lational data repository—all without materializing joins. In our

current implementation, we leverage LiNGAM to analyze linear re-

lationships among numerical attributes under the causal su�ciency

assumption. Our approach lays a solid foundation for extending
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Figure 10: Comparison of KL Divergence and entropy estim-

ates as sample size Ĥ increases.

towards more general and complex causal settings. In particular,

moving beyond linear models and incorporating latent confounders

only requires the capability to perform bivariate causal discovery

on the projected causal diagram that includes a variable pair (Đ, Ė )
from the current adjustment set.

Limitation and Future Directions. One important yet out-of-

scope aspect we did not address is the complexity of handling

data quality. In real-world scenarios, missing or contaminated data

is common. However, standard data cleaning techniques such as

data imputation with mean values distort the underlying causal

assumptions. For example, removing entire tuples containing the

missing entry introduces arti�cial selection bias and a�ects the

accuracy of downstream causal analysis. Future work could extend

Suna in several promising directions. One avenue is to explore more

complex parametric causal mechanisms (e.g. non-linear) capable of

handling arbitrary data types, or design a hybrid approach based

on assumptions over subsets of datasets. Another direction is to

identify priority for data curation over a �xed-sized set of datasets

and columns to best improve the accuracy of a causal query.

10 CONCLUSIONS

Suna is a confounder discovery system that searches large cor-

pora to �nd datasets to improve causal inference task estimation.

We prove the connection between bivariate causal discovery, a

key building block in parametric causal discovery that exploits the

asymmetry between causes and e�ects, and confounder discov-

ery. This theorem lets Suna directly search for causal confounders

without the need for a full causal DAG. To improve scalability, Suna

designs a novel data structure inspired by factorized learning to

avoid materializing joins and implements a GPU-compatible sys-

tem to further scale up performance. Suna achieves an Ĩ2 score

of >0.99 over a causal diagram of 500 variables where all existing

confounder discovery systems fail, and scales to repositories with

1ĉ variables while answering queries within a few seconds.
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