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ABSTRACT
Algorithmic decisions in critical domains such as hiring, college

admissions, and lending are often based on rankings. Given the

impact of these decisions on individuals, organizations, and popula-

tion groups, it is essential to understand them—to help individuals

improve their ranking position, design better ranking procedures,

and ensure legal compliance. In this paper, we argue that explain-

ability methods for classification and regression, such as SHAP,

are insufficient for ranking tasks, and present ShaRP—Shapley Val-

ues for Rankings and Preferences—a framework that explains the

contributions of features to various aspects of a ranked outcome.

ShaRP computes feature contributions for various ranking-specific

profit functions, such as rank and top-𝑘 , and also includes a novel

Shapley value-based method for explaining pairwise preference

outcomes. We provide a flexible implementation of ShaRP, capable

of efficiently and comprehensively explaining ranked and pairwise

outcomes over tabular data, in score-based ranking and learning-to-

rank tasks. Finally, we develop a comprehensive evaluation method-

ology for ranking explainability methods, showing through quali-

tative, quantitative, and usability studies that our rank-aware QoIs

offer complementary insights, scale effectively, and help users in-

terpret ranked outcomes in practice.
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1 INTRODUCTION
Rankings produced by data-driven algorithmic systems now influ-

ence a myriad of socio-technical applications, as part of automated

or semi-automated decision-making, and with direct consequences

to people’s lives and aspirations. An algorithmic ranker, or a ranker
for short, takes a database of candidates as input and produces

a permutation of these candidates as output, see Figure 1 for an

example. We refer to the output of a ranker as a ranked outcome
or simply a ranking. As an alternative to the full permutation, the

best-ranked 𝑘 candidates, or the top-𝑘 , may be returned in rank

order or as a set. In the latter case, we are dealing with a selection
task, which is a special case of ranking.

Algorithmic rankers are broadly used to support decision-making

in critical domains, including hiring and employment, school and

college admissions, credit and lending, and, of course, college rank-

ing. Because of the impact rankers have on individuals, organiza-

tions, and population groups, there is a need to understand them:

to know whether the decisions are correct and legally compliant

(auditing tasks), to help individuals improve their ranked outcomes

(recourse tasks), and to design better ranking procedures (design
tasks). To make progress towards these tasks, we need ways to

explain and interpret ranked outcomes. In this paper, we present

ShaRP —Shapley for Rankings and Preferences—a framework that ex-

plains the contributions of features to different aspects of a ranked

outcome, and that can support all these critically important tasks.

There are two types of rankers: score-based and learned. In score-

based ranking, a given set of candidates is sorted on a score, which

is typically computed using a simple formula, such as a weighted

sum of attribute values [41]. In supervised learning-to-rank (LtR), a

preference-enriched set of candidates is used to train a model that

predicts rankings of unseen candidates [20]. We motivate our work

using score-based rankers and return to LtR later in the paper.

Score-based rankers are often seen as “interpretable models” [30]:

their scoring functions, such as 𝑌1 = 0.9 × 𝑔𝑝𝑎 + 0.1 × 𝑒𝑠𝑠𝑎𝑦 in a

college admissions setting, reflect a normative, a priori notion of

merit. For instance, specifying 𝑌1 asserts that 𝑔𝑝𝑎 matters more

than the essay, while 𝑌2 = 0.1 × 𝑔𝑝𝑎 + 0.9 × 𝑒𝑠𝑠𝑎𝑦 asserts the

opposite. Yet the apparent transparency—and sense of control over
outcomes—that such rankers afford is often misleading. Even with

full knowledge of the formula, designers or decision-makers may

struggle to anticipate or explain its output [22, 24]. We illustrate

this with an example.
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name gpa sat essay 𝑓 𝑔

Bob 4 5 5 4.6 5

Cal 4 5 5 4.6 5

Dia 5 4 4 4.4 4

Eli 4 5 3 4.2 3

Fay 5 4 3 4.2 3

Kat 5 4 2 4.0 2

Leo 4 4 3 3.8 3

Osi 3 3 3 3.0 3

(a)

𝑟D,𝑓

Bob

Cal

Dia

Eli

Fay

Kat

Leo

Osi

(b)

𝑟D,𝑔

Bob

Cal

Dia

Eli

Fay

Leo

Osi

Kat

(c)

Figure 1: (a) Dataset D of college applicants, scored on 𝑔𝑝𝑎, 𝑠𝑎𝑡 , and
𝑒𝑠𝑠𝑎𝑦. (b) Ranking 𝑟D,𝑓 of D on 𝑓 = 0.4 × 𝑔𝑝𝑎 + 0.4 × 𝑠𝑎𝑡 + 0.2 × 𝑒𝑠𝑠𝑎𝑦;
the highlighted top-4 candidates will be interviewed and potentially
admitted. (c) Ranking 𝑟D,𝑔 on 𝑔 = 1.0 × 𝑒𝑠𝑠𝑎𝑦; the top-4 coincides
with that of 𝑟D,𝑓 , signifying that 𝑒𝑠𝑠𝑎𝑦 has the highest importance
for 𝑓 , despite carrying the lowest weight in the scoring function.

Example 1. Consider a datasetD of college applicants in Figure 1,
with scoring features 𝑔𝑝𝑎, 𝑠𝑎𝑡 , and 𝑒𝑠𝑠𝑎𝑦. Very different scoring func-
tions 𝑓 = 0.4 × 𝑔𝑝𝑎 + 0.4 × 𝑠𝑎𝑡 + 0.2 × 𝑒𝑠𝑠𝑎𝑦 and 𝑔 = 1.0 × 𝑒𝑠𝑠𝑎𝑦

induce very similar rankings 𝑟D,𝑓 and 𝑟D,𝑔 , with the same top-4
items appearing in the same order, apparently because 𝑒𝑠𝑠𝑎𝑦 is the
feature that is best able to discriminate between the top-4 and the rest,
and that determines the relative order among the top-4.

This example illustrates that “intrinsically interpretable” score-

based rankers do not always yield explainable outcomes. Evenwhen

both the formula and the dataset are fully known, it may be difficult

to accurately anticipate how individual features influence the final

ranking [22, 24]. This disconnect arises because a feature’s weight in

the scoring function does not necessarily correspond to its practical

influence on the ranked outcome. For example, if 𝑔𝑝𝑎 and 𝑠𝑎𝑡 scores

are highly correlated, while 𝑒𝑠𝑠𝑎𝑦 scores are more variable and

less correlated with the others, the 𝑒𝑠𝑠𝑎𝑦 component may exert

disproportionate influence on rank positions despite having lower
nominal weight. Conversely, a heavily weighted feature might have

little effect if its values are tightly clustered across candidates.

An additional nuance in ranking is that outcomes are inher-

ently relative, whereas feature values and computed scores are

absolute—an item’s score reveals little about its position relative to
others. The lack of independence between per-item outcomes makes

feature importance methods developed for classification and regres-

sion [9, 11, 15, 21, 23, 29, 34] inadequate for ranking. These methods

evaluate how a feature affects an item’s score, but a feature can

shift the score without altering the rank. Consider an example.

Example 2. Consider Figure 1 and suppose that Dia’s essay score
increases from 4 to 5, thus increasing the scores computed with both
𝑓 (4.4 to 4.6) and 𝑔 (4 to 5). However, Dia’s rank remains unchanged.

Changes in score do not necessarily lead to changes in rank

because, in selection and ranking, an item’s outcome v depends

on the outcomes of other items in D \ {v}. For example, only one

item can occupy a given rank, and exactly 𝑘 items can appear in

the top-𝑘 . Thus, any explainability method that measures score

changes can only partially explain rank changes. This highlights

that interpretability for ranking tasks requires measuring the features’

(a) Score QoI: Interdisciplinary is the most important
feature, followed by AI and Systems, while Theory neg-
atively impacts the score.

(b) Rank QoI: Systems is the most important feature, fol-
lowed by AI and Interdisciplinary. Theory is minimally
but positively impacting the rank.

Figure 2: Feature importance for Texas A&M in CS Rankings.

impact on quantities beyond the score, such as rank or top-𝑘 presence.

We preview these results for CS Rankings in Figure 2, where feature

importance for score in 2a and rank in 2b yield markedly different

explanations. We discuss these findings in detail in Section 4.

In summary, ranking differs fundamentally from classification

and regression, as noted in learning-to-rank and fairness-in-ranking

work [20, 41, 42]. Interpretability methods must also be tailored

to ranking, where scoring feature influence must account for the

interdependence of item outcomes. We formalize and build on this

insight, making four contributions.

First,we formalize several profit functions for computing Shapley

values in ranking, capturing feature contributions to an item’s score,

rank, or top-𝑘 presence. Building on the QII framework [11], which

applies Shapley values [31] to classification, we adopt QII as a

flexible foundation for defining ranked Quantities of Interest (QoIs).
Second, we propose a Shapley-based method for explaining pair-

wise outcomes. Unlike priormethods that use a fixed baseline [6, 21],

we adapt the baseline dynamically for each pair 𝑢 ≺ 𝑣 , yielding

explanations that reflect relative differences.

Third, we release ShaRP —the first open-source library for ex-

plaining ranked outcomes over tabular data. ShaRP supports both

score-based and learned rankers, includes exact and approximate

QoI computation, and incorporates optimizations for scalability.

Fourth, we evaluate ranking explainability methods through

qualitative, quantitative, and usability studies. Using established

metrics, we show that rank-aware QoIs provide complementary

insights beyond score-based explanations. A large-scale evaluation

confirms the scalability and effectiveness of our methods, while a

CS Rankings usability study shows it helps users make sense of

ranked outcomes.
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2 RELATED WORK
Local feature-based explanations. Ribeiro et al. [29] introduced

LIME, which explains classifiers using local interpretable models.

Lundberg and Lee [21] proposed SHAP, which uses Shapley values

to explain predictions of classification and regression models. Both

are implemented in software libraries and explain an item’s score—

what we refer to as the score QoI.

Feature-based explanations for ranking. Yang et al. [39] introduced
a “nutritional label” for score-based rankers with two global expla-

nation widgets: “Recipe” (scoring feature weights) and “Ingredients”

(features with strongest rank-score correlation). They observed

that a feature’s weight often does not align with its correlation,

highlighting the limits of global explanations. In contrast, we focus

on local explanations for individual items or item pairs.

Gale and Marian [14] proposed “participation metrics” for score-

based rankers, notably “weighted participation,” which attributes

an item’s presence in the top-𝑘 to its features, weights, and values.

Their method aggregates over all top-𝑘 items; ours provides per-

item explanations using the top-𝑘 QoI, which can be aggregated.

Yuan and Dasgupta [40] designed a sensitivity analysis tool for

synthetic data with linear scoring, using mean-centered feature

differences to approximate Shapley values. We re-implemented and

extended their method to support arbitrary distributions, more

features, and flexible scoring functions.

Anahideh and Mohabbati-Kalejahi [2] used local SHAP-based

explanations for items near the one being explained, assuming rank

stability across repeated competitions. While we also observe rank-

stratum-specific feature effects, we show that small feature changes

can cause large rank shifts, challenging their locality assumption.

Moskovitch et al. [25] introduced DEXER to detect group dispari-

ties in top-𝑘 inclusion and explained causes via SHAP on ranks fitted

by linear regression. In contrast, ShaRP fully adapts Shapley values

to rank-specific QoIs. We compare with DEXER in Section 8.2.

Pastor et al. [26] used ranking-based profit functions to detect

under- or overrepresented groups via attribute-level contributions,

focusing on group fairness rather than individual explanations.

Hu et al. [17] proposed PrefSHAP to explain pairwise preferences

in learned rankers, transforming item pairs into artificial items and

applying Shapley analysis. We share the motivation for ranking-

specific QoIs but target preferences induced by score-based rankers

or LtR, not kernel-based preference models as in PrefSHAP.

Shapley-based explanations in Information Retrieval (IR). Concur-
rently with our work, Heuss et al. [16] and Chowdhury et al. [8]

proposed Shapley-based methods for explaining ranked outcomes

in IR. Both compute feature contributions for the entire ranking
by perturbing all items simultaneously for each coalition. These

methods are not applicable to settings that require explanations

on a per-item basis (e.g., lending or hiring). In particular, Chowd-

hury et al. [8] define a profit function tied to query-specific rank-

relevance, limiting generality. In contrast, our method supports

per-item explanations while accounting for the interdependence of

outcomes, using a general profit function that yields feature attri-

butions analogous to SHAP in classification and regression. Other

recent work in IR explored the use of LIME to explain ranked out-

comes [7, 32, 37], and introduced baseline document construction

techniques to improve explanation quality [13].

In summary, we share motivation with these lines of work but

take a leap by presenting the first comprehensive Shapley-value-

based framework for explaining rankings and pairwise preferences.

3 PRELIMINARIES AND NOTATION
Ranking. Let A denote an ordered collection of features (equiv.

attributes), and let D denote a set of items (equiv. points or can-

didates). An item v = (𝑣1, . . . , 𝑣𝑑 ) ∈ R𝑑 assigns values to |A| = 𝑑

features, and may additionally be associated with a score. Score-

based rankers use a scoring function 𝑓 (v) to compute the score of

v. For example, using 𝑓1 (v) = 0.4×𝑔𝑝𝑎 + 0.4× 𝑠𝑎𝑡 + 0.2× 𝑒𝑠𝑠𝑎𝑦, we

compute 𝑓 (Bob) = 4.6 and 𝑓 (Leo) = 3.8.

A ranking 𝑟D is a permutation over the items in D. Letting

𝑛 = |D|, we denote by 𝑟D = ⟨v1, . . . , v𝑛⟩ a ranking that places

item v𝑖 at rank 𝑖 . We denote by 𝑟D (𝑖) the item at rank 𝑖 , and by

𝑟−1D (v) the rank of item v in 𝑟D . In score-based ranking, we are

interested in rankings induced by some scoring function 𝑓 . We

denote these rankings 𝑟D,𝑓 . For example, in Figure 1b, 𝑟D,𝑓 (1) =
Bob, 𝑟−1D,𝑓

(Leo) = 7. We assume that 𝑟−1D,𝑓
(v1) < 𝑟−1D,𝑓

(v2) < · · · <
𝑟−1D,𝑓

(v𝑛), where smaller rank means better position in the ranking.

We are often interested in a sub-ranking of 𝑟D,𝑓 containing its

best-ranked 𝑘 items, for some integer 𝑘 ≤ 𝑛, called the top-𝑘 . The

top-4 of the ranking in Figure 1b is ⟨Bob, Cal, Dia, Eli⟩.
Our goal is to explain the importance of featuresA to the ranking

𝑟D,𝑓 . We will do so using Shapley values [31].

Shapley values. For a set N of 𝑛 players, and a value function

𝑓 that assigns a profit to any subset (or coalition) S of players,

𝑓 : 2
𝑛 → R, where 𝑓 (∅) = 0, the Shapley value of player 𝑖 is:

𝜙𝑖 (𝑓 ) =
∑︁
S

|S|!(𝑛 − |S| − 1)!
𝑛!

(𝑓 (S ∪ {𝑖}) − 𝑓 (S)) (1)

We will use Shapley values to explain ranked outcomes using the

set of features A as the players, and the outcome (or the quantity

of interest, QoI) as the payoff function. In addition to the defini-

tion of players and the payoff function, Shapley values require the

quantification of the payoff over a subset of the players. This, in

turn, requires some way to estimate the payoff over a subset of the

features. Consequently, for any Shapley value implementation, a

method of feature removal or masking is required [6, 10].

A common method (e.g., used in SHAP [10, 21]), for a coalition
(subset of features) S ⊆ A, is to marginalize out the features not

in the coalition A \ S and draw values from the marginal distri-

butions of the subset of features in S jointly, often referred to as

the “marginal” approach. Another alternative (e.g., used in QII [11])

is to draw values of each feature in S independently from its mar-

ginal distribution, often referred to as the “product of marginals”

approach. Another approach is called “baseline” and instead of sam-

pling the features not in the coalition, they are replaced with the

feature values of a specific fixed sample [21]. Here, we choose the

marginal approach for our implementation and take inspiration

from the baseline approach for our pairwise method. In Section 7,

we show how both can be implemented using one algorithm.

Let vS denote a projection of v ontoS. In the example in Figure 1,

(Bob, 4, 5, 5){𝑛𝑎𝑚𝑒,𝑔𝑝𝑎} = (Bob, 4). We define a random variable U
that draws values from the marginal distributions of the subset

4133



<10% 10-
20%

20-
30%

30-
40%

40-
50%

50-
60%

60-
70%

70-
80%

80-
90%

90-
100%

rank stratum
(a)

−20

0

20

40
co
nt
ri
bu
tio

n
to

ra
nk

AI Systems Theory Inter.

<10% 10-
20%

20-
30%

30-
40%

40-
50%

50-
60%

60-
70%

70-
80%

80-
90%

90-
100%

rank stratum
(b)

0

2

4

6

co
nt
ri
bu
tio

n
to

sc
or
e

Figure 3: Feature contributions to rank and score for the CSRankings dataset, aggregated over 10% strata. In this ranking, 189
computer science departments are ranked based on a normalized publication count of the faculty across 4 research areas: AI
(green), Systems (orange), Theory (purple), and Interdisciplinary (pink). (a) Systems is the most important feature for an item’s
rank in the top-20%, followed by AI. AI becomes more important for the rest of the ranking strata. (b) Feature contributions to
score are less informative than to rank: both capture the same relative feature importance for the top 20%; however, feature
contributions become small and very similar as more items are tied for their score. (See rank vs. score plot on the top-right.)

of features in S. Let U = ⟨u1, . . . ,u𝑚⟩ denote a vector of𝑚 items

sampled fromD using this method. For a subset of features S ∈ A,

let vA\SUS = ⟨vA\S (u1)S, . . . , vA\S (u𝑚)S⟩ denote a vector of
items, in which each vA\S (u𝑖 )S takes on the values of the features

in S from u𝑖 , and the values of the remaining features A \ S from

v. We calculate Shapley values using this set of features vA\SUS ,
note that if𝑚 = |D − 1| we use the entire dataset D \ v to calculate

the exact Shapley values.

Shapley values satisfy several natural axioms, including effi-

ciency, symmetry, dummy, and additivity [31], with additional use-

ful properties, such asmonotonicity, following from these axioms[21].

Efficiency states that the sum of the contributions of all features

for item v equals the difference between the outcome 𝑓 (v) and the

average outcome:

∑
𝑖∈A 𝜑𝑖 (𝑓 , v) = 𝑓 (v) −EX [𝑓 (X)] [9, 24]. Using

this property, explanation can be used to reconstruct the outcome.

We will use the efficiency property to define the fidelity metric for

comparing explanations (Section 6).

4 QUANTITIES OF INTEREST FOR RANKING
The first contribution of our work is that we define QoIs that are

appropriate for ranked outcomes. In addition to the expected score,

we introduce rank and top-𝑘 QoI. We use the notation for the

marginal feature removal approach in this section, but note that the

QoIs we introduce can be used with any feature removal approach.

Score QoI. The Shapley value function for the score QoI is:

𝑄𝑜𝐼𝑓 ,v (𝑆) = E
US

[𝑓 (vA\SUS)] (2)

This QoI captures the impact of an item’s features on its score.

This is the QoI used by the popular feature-based explanation meth-

ods such as SHAP [21] and LIME [28]. To get the contribution of

a set of features A \ S, we take the expected value of the score

over a random variable US that draws values from the marginal

distributions of the set of features in S.

Rank QoI. The Shapley value payoff function for the rank QoI is:

𝑄𝑜𝐼𝑓 ,v,D (𝑆) = E
US

[𝑟−1D′,𝑓 (vA\SUS)] (3)

where D′
is D ∪ {vA\SUS} \ v. This QoI evaluates the impact

of an item’s features on its rank. To get the contribution of a set of

featuresA\S, we take the expected value of the rank over a random
variable US that draws values from the marginal distributions of

the set of features in S.

Top-𝑘 QoI. The Shapley value payoff function to quantify the

impact of an item’s features on its presence or absence among the

top-𝑘 is stated similarly as rank QoI:

𝑄𝑜𝐼𝑓 ,v,D (𝑆) = E
US

[1𝑟D′,𝑓 (1...𝑘 ) (vA\SUS)] (4)

where D′
is D ∪ {vA\SUS} \ v. The difference with rank QoI

(Equation 3) is that here we compute the expectation over the

indicator function that returns 1 if an items’ rank is at most 𝑘

and 0 otherwise. This QoI allows us to quantify how each feature

contributed to getting the item into the top-𝑘 .

Shapley values for ranking. To compute Shapley values for the

QoIs we defined, we need to apply Equation 1 on the QoIs. Following

the QII notation, we define the iota function 𝜄 as the difference

between the QoI including feature 𝑖 and excluding it.

𝜄 𝑓 ,v,D (𝑖,S) = 𝛼 (𝑄𝑜𝐼𝑓 ,v,D (S ∪ 𝑖) −𝑄𝑜𝐼𝑓 ,v,D (S)) (5)

Here, the QoI can be any defined earlier in this section, and

𝛼 ∈ {−1, 1} is a multiplier that adjusts the order of QoI terms. In

this work, we consider QoIs beyond the score. For some, like rank,

where smaller values are preferable, we set 𝛼 = −1 to adjust the 𝜄

function accordingly.

Using this notation, we can define Shapley values for ShaRP:

𝜙𝑖 (𝑓 , v,D) =
∑︁
S

|S|!(𝑛 − |S| − 1)!
𝑛!

𝜄 𝑓 ,v,D (𝑖,S) (6)

Case Study: QoIs for CSRankings. We review local feature-based

explanations generated by ShaRP for CS Rankings, a real dataset

ranking 189 U.S. Computer Science departments based on normal-

ized faculty publication counts in four areas: AI, Systems, Theory,

and Interdisciplinary [3]. See the full version [27] for dataset and
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ranker details. Our goal is to illustrate how ShaRP reveals meaning-

ful insights about the data—and how those insights vary depending

on the outcome being explained.

Figure 3 shows feature contributions to the rank and score QoIs

for CS Rankings, aggregated by 10% rank strata. As shown in Fig-

ure 3a, Systems is the most important feature across all strata,

followed by AI. Both contribute most positively in the top strata

and most negatively in the bottom. Score-based explanations are less
informative: while they capture similar relative importance in the

top 20%, feature contributions flatten in lower strata, where many

departments have near-tied scores, making comparisons difficult.

Figure 4a presents aggregated feature contributions to the top-

𝑘 QoI, stratified by deciles. Systems again dominates in placing

departments in the top-10, followed by AI. This trend is consistent

with Figure 3b (score QoI), but more pronounced. Unlike the score

QoI, the top-𝑘 QoI also highlights Theory as impactful for top-𝑘

inclusion. Notably, only the rank and top-𝑘 QoIs capture a shift in

relative importance between Systems and AI across strata.

Figure 2, previewed in the Introduction, shows a local explana-

tion for Texas A&M, ranked 34th with a score of 3.941. Waterfall

plots in Figures 2a (score QoI) and 2b (rank QoI) break down feature

contributions relative to the mean outcome E[𝑓 (𝑋 )]. In Figure 2a,

Interdisciplinary is the top contributor to Texas A&M’s score, fol-

lowed by AI and Systems; Theory contributes negatively. For rank

QoI, all features contribute positively, with Systems as the most

impactful. This illustrates that different QoIs support different goals.

To improve score, Texas A&M should focus on Interdisciplinary

and AI. To improve rank, prioritizing Systems is more effective. The

difference arises because increases in score do not always translate
to changes in rank—a score must exceed that of the next-highest

item to affect position.

Another key aspect of these plots is the color of each feature,

which indicates whether a feature contributes positively or nega-

tively to the outcome. This is determined by the average feature

value. Since the average score is influenced by outliers, while rank

is not, the interpretation of contributions varies depending on the

QoI. For example, in CS Rankings, over 70% of departments have

scores below the mean. As a result, when using the score QoI, many

or all of their features appear to contribute negatively. This high-

lights that the meaning of positive and negative contributions is

dependent on the chosen QoI. See Figure 9b and Appendix C for

the score vs. rank distribution for this dataset, and a more detailed

comparison between the score-QoI-based and the rank-QoI-based

explanations for CS Rankings.

5 PAIRWISE EXPLANATIONS
We developed a method for computing feature importance for the

relative order between a pair of items u and v, to answer the ques-

tion of why v is ranked higher than u (i.e., v ≻ u). Our method is

based on baseline Shapley value methods.

In Eq. 1 we provided the definition of game-theoretic Shapley

values. This equation uses a profit function defined over subsets S
of the players. In the ML context, we use methods that take as input

all features (players) - not a subset. Different Shapley value methods

in ML take different approaches for addressing this problem, often

referred to as the “feature removal approach” in the literature [6].
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(a) Feature contribution to the top-𝑘 QoI, for 𝑘 = 10%. Systems is the
most important feature, followed by Interdisciplinary and AI.

Institution AI Systems Theory Inter. Rank

Georgia Tech 28.5 7.8 6.9 10.2 5

Stanford 36.7 5.4 13.3 11.5 6

UMich 30.4 9.0 9.3 5.9 7

(b) Feature values and rank of three highly ranked depart-
ments: Georgia Tech, Stanford, and UMich.
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(c) Pairwise QoI: Georgia Tech ranks
higher than Stanford because of its
relative strength in Systems.
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(d) Pairwise QoI: Stanford ranks
higher than UMich despite Stan-
ford’s relative weakness in Systems.

Figure 4: Feature importance for the top-𝑘 QoI (i.e., selection) for CS
Rankings in 4a, with further analysis of the relative orders among
two pairs of departments in 4c and 4d.

One feature removal method is creating hybrid samples using the

marginal distributions of the missing features and drawing values

jointly. In Sec. 3 we took this approach. We defined the items that

we will be using in the Shapley value computations when using

this marginal approach as vA\SUS where U = ⟨u1, . . . ,u𝑚⟩ is a
vector of𝑚 items sampled from D.

For pairwise preferences, we will be using a different feature

removal technique that uses a “baseline” item to create hybrid items

instead of the feature distributions. Baseline feature removal tech-

niques select one item as the baseline item and then compare all

other items to it. The benefit of these methods is that the exact

feature contributions can be computed without any sampling. The

disadvantage is that often it is hard to select the baseline sample be-

cause different baseline samples create different feature attributions

and, in most contexts, it is hard to identify a “neutral” or “average”

item. As an example, in related work, we mentioned [33] that at-

tempts to identify a good baseline input document for DeepSHAP in

IR. As another example, the baseline implementation of SHAP [21]

uses the all-zeroes item as the baseline sample. While selecting a

baseline sample is not simple in most cases, we find that the baseline

feature removal technique is a natural fit when we are explaining

the difference in outcomes between two items v and u.
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When explaining the pairwise outcome of two items v and u,
we are going to generate an explanation for one item using the

other as the baseline. In other words, for coalition S, we will be
creating the hybrid sample vA\SuS . Note that we do not need

the feature distributions or any other parameters for this method.

Additionally, note that we are not selecting a fixed item as the base-

line but we dynamically change it depending on the pair of items

we want to compare. This definition has a natural interpretation,

the feature importance of a pairwise explanation amounts to the

difference between the outcome of the two items. According to

the property of efficiency (see Section 3) we have:

∑
𝑖∈A 𝜑𝑖 (𝑓 , v) =

𝑓 (v) − EX [𝑓 (X)] = 𝑓 (v) − 1

2
(𝑓 (v) + 𝑓 (u)) = 1

2
(𝑓 (v) − 𝑓 (u)).

The Shapley value of v in comparison to u is defined as:

𝜙𝑖 (𝑓 , v ≻ u) =
∑︁
S

|S|!(𝑛 − |S| − 1)!
𝑛!

𝜄 𝑓 ,v,u (𝑖,S) (7)

Note that Eq. 7 differs from Eq. 6 in setting D = {u}. Note
also that any QoI from Section 4 can be used when calculating the

pairwise explanation. Because pairwise preferences are of especial

interest to ranking tasks, we will only be using rank as the QoI for

the pairwise method in the rest of the paper.

Case Study: Explanations of Pairwise Outcomes in CS Rankings.
In Figure 4b- 4d we continue our analysis of the top-𝑘 and consider

the relative ranking of three universities: Georgia Tech in rank 5,

Stanford in rank 6, and UMich in rank 7. We wish to understand

why Georgia Tech is ranked higher than Stanford (Figure 4c), and

why Stanford is ranked higher than UMich (Figure 4d). In both

cases, Georgia Tech and UMich have lower values for all features

except Systems. The Systems value of Georgia Tech is high enough

to overcome the contributions of other features and rank it higher

than Stanford. However, for UMich, we see that, while Systems

is the most important feature in the top-10% stratum, it is not

important enough to move UMich above Stanford.

Pairwise Shapley explanations can clarify rank differences be-

tween two items. In Fig. 4c, we explain the pairwise outcome for

Georgia Tech vs. Stanford. For v
Georgia Tech

= (28.5, 7.8, 6.9, 10.2),
we use u

Stanford
= (36.7, 5.4, 13.3, 11.5) as the baseline. For coalition

S = {AI, Systems}, we construct vA\SuS = (36.7, 5.4, 6.9, 10.2),
enabling a direct feature comparison. The pairwise explanation

from ShaRP is intuitive: in the same figure, Systems improves Geor-

gia Tech’s rank by 5 compared to Stanford. Feature contributions

sum to half the rank difference between these universities, aligning

with Fig. 4a, which highlights Systems as particularly influential

for top-𝑘 universities.

6 EMPIRICAL EVALUATION
Multiple metrics for evaluating explanation methods across key

dimensions have been proposed [22, 24], including for ranking [4,

8, 33, 37]. In this work, we use such metrics to compare expla-

nation methods and adapt or define several others for evaluating

feature importance in ranking. We aim to formulate these metrics

as generally as possible to support broader applicability.

Our focus is on explanation methods that return a numerical

vector of feature attributions explaining the outcome for a given

item. We can assess pair-wise explanation agreement by comparing

the feature vectors of a pair of explanations. Furthermore, we can

use an explanation to compute the outcome for the item being

explained (e.g., its rank), and compare it to the actual observed

outcome for that item. This allows us to assess fidelity of an ex-
planation. Below, we describe explanation agreement and fidelity

metrics and also explain how these primitives can be aggregated

to assess sensitivity and fidelity of an explanation method, and to

quantify inter-method explanation agreement.

Notation. In Section 3, we have been using 𝜙 (v) to represent

the vector of feature weights, computed using Shapley values. We

generalize our definition here to 𝑔(v) to represent the output of

any feature-based explanation method 𝑔, regardless of whether it

consists of Shapley values or of some other numerical quantification

of feature importance. For all methods we consider, 𝑔(v) is a vector
of numerical contributions of each feature towards the outcome for

item v.

6.1 Fidelity Metrics
Explanation Fidelity. A useful property of feature-based explana-

tions is that the actual outcome can be computed from them. For

Shapley-value-based explanations, this follows from the efficiency

property of Shapley values, see Section 3. Fidelity measures how

well the explanation 𝑔(v) matches the model prediction 𝑓 (v) being
explained, see [7, 24]. SHAP and LIME explanations can be used to

compute an item’s score (score QoI in our terminology) [7, 21], with

feature importance indicating the displacement due to that feature

from the mean score, either positively or negatively. ShaRP expla-

nations can be used to compute the outcome for all supported QoIs,

including score, rank, and top-𝑘 , and for the pairwise method.

For QoIs that concern a single item, namely, score, rank, and

top-𝑘 , we compute fidelity of explanation 𝑔 for item v as:

𝐹 (𝑔, v,QoI()) = 1 − 1

𝑍

�����QoI(v) − 𝑑∑︁
𝑖=1

𝑔(𝑖, v)
����� (8)

Here,QoI(v) returns the value of the quantity of interest (i.e., the
outcome being explained by 𝑔), such as v’s score, rank, or presence
in the top-𝑘 , while 𝑔(𝑖, v) is the contribution of the i-th feature of 𝑣 .

Finally, 𝑍 is the normalizer set to the maximum distance between a

pair of outcomes for the given dataset D and ranker 𝑓 (omitted to

simplify notation), and for the specified QoI. Note that, for pairwise

explanations, fidelity 𝐹 (𝑔,u ≻ v) = 1 if 𝑢 is ranked higher than

𝑢 and if 𝑔 predicts that relative order among the items, and is 0

otherwise.

Example 3. Consider, for example, the explanation of Texas A&M
University’s 𝑟𝑎𝑛𝑘 = 34 in CS Rankings, presented as a waterfall plot in
Figure 2b. The sum of feature weights −20.78− 19.52− 18.71− 1.95 =

−60.96 captures the displacement of Texas A&M University in the
ranking relative to the middle of the ranked list (position 94.5 out
of 189), up to rounding: 94.5 − 60.96 = 33.54. This explanation has
near-perfect fidelity 1− 0.16

189
= 0.998. We use the length of the ranked

list 𝑍 = 189 as the normalizer for rank QoI.

Method Fidelity. We aggregate per-item fidelity (per Equation 8)

to quantify the fidelity of an explanation method as:

𝐹 (𝑔,D) = Ev∈D𝐹 (𝑔, v) (9)
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For pairwise, we compute 𝐹 (𝑔,D) as the expectation of 𝐹 (𝑔,u ≻
v) over all pairs of distinct items u, v ∈ D.

6.2 Agreement Metrics
Explanation Agreement. When comparing explanation methods,

we may be interested in knowing how similar their explanations

are for the same item. Alternatively, when analyzing an explanation

method, we may want to know how similar its explanations are for

some pair of items (e.g., those that are similar in feature space, or

that have similar outcomes, or both).

We define explanation agreement, based on three distance met-

rics often used for comparing rankings [8, 33], (1) Kendall’s tau

distance, (2) Jaccard distance of the top-2 features, and (3) Euclidean

distance between the explanation vectors. For each of these distance

metrics, we normalize them to the [0, 1] range and then transform

their output so that 1 means full agreement (similarity) and 0 means

full disagreement. For dataset D and ranker 𝑓 , we define explana-

tion agreement as:

𝐴(𝑔, 𝑞,u, v, sim()) = sim(𝑔(u), 𝑞(v)) (10)

Here, 𝑔 and 𝑞 are explanation methods, u and v are points being

explained, and sim() is a function that computes the specified simi-

larity metric over the explanations. Two important cases are: when

𝑔 = 𝑞 and u ≠ v, we are comparing explanations generated by

the same method for different points. Conversely, when 𝑔 ≠ 𝑞 and

u = v, we are comparing explanations of the same point generated

by different methods.

Example 4. For example, consider the explanations of Texas A&M’s
score and rank, produced by ShaRP for score QoI 2a and rank QoI 2b,
respectively. These explanations are similar in the sense that they ex-
plain two related outcomes (score and rank) of the same item. However,
they are dissimilar in that the relative importance of Texas A&M’s
features is different. For rank QoI, the explanation ranks features as
⟨Systems,AI, Inter, Theory⟩. However, for score QoI, the explanation
ranks features differently as ⟨Inter,AI, Systems, Theory⟩. These lists
are dissimilar in terms of the relative order of the features, with 3
out of 6 possible pairs appearing in the opposite relative order. An
explanation agreement metric that uses Kendall’s tau distance as a
sub-routine allows us to quantify this.

Method Agreement. To compute agreement for a pair of explana-

tion methods 𝑔 and 𝑞, for a dataset D, we compute explanations

for each item using each method, compute pair-wise explanation

agreement per Eq. 10, and aggregate it across D.

𝐴(𝑔, 𝑞,D, sim()) = Ev∈D𝐴(𝑔, 𝑞, v, v, sim()) (11)

Method Sensitivity. The Sensitivity of an explanation method

quantifies the similarity between explanations of similar items [4].

We will use nbr(v) (as in “neighbor”) to refer to a function that

retrieves items that are in some sense similar to v, noting that

this similarity may be based on items’ features, their outcomes for

some QoI, or both. For each v, we retrieve its neighbors nbr(v),
compute pair-wise explanation agreement between v and each of

its neighbors per Eq. 10, and aggregate this value over D:

𝑆 (𝑔,D, sim, nbr()) = Ev∈D,u∈nbr(v)𝐴(𝑔,𝑔, v,u, sim()) (12)

7 THE SHARP LIBRARY
ShaRP is implemented in Python, follows an API structure similar

to scikit-learn [5], and is parallelized. The library can be used both

to compute exact feature importance values and to approximate

them to improve running times.

Implementation of QoIs for ranking. We provide Algorithm 1 to

showcase the flexibility of ShaRP . Using this implementation, we

can 1) easily switch between QoIs, 2) calculate both marginal and

baseline Shapley values, and 3) approximate Shapley values for

efficiency. The algorithm relies on black-box access to the model

that generates the outcome (i.e., specifying an input and observing

the outcome used in the QoI). Specifically, Algorithm 1 takes as

input a dataset D, a reference set D′ ⊆ D from which samples

are drawn, an item v for which the explanation is generated, the

number of samples𝑚, the maximum coalition size 𝑐 , and the 𝜄 ()
function (Equation 5) used to quantify feature importance.

To change the QoI, we modify the input 𝜄 () function. To switch

to the pairwise baseline method, we set D′ = u and𝑚 = 1, where

u is the baseline item to compare against v. To approximate feature

importance, we control the parameters𝑚 and 𝑐 . Passing in the full

set of items as the reference set (D′ = D), and setting𝑚 = |D| − 1

and 𝑐 = |A| − 1, yields exact Shapley value computation—i.e., each

feature of v is quantified against all other items in D using all

possible coalitions of features except the one being evaluated.

Because we compute the rank of each item relative to the entire

dataset D, the dataset must be provided along with the reference

set. We provide an empirical analysis of the impact of𝑚 and 𝑐 on

performance in Section 8.3.2.

We now describe the algorithm for marginal exact computation,

which generalizes all cases discussed above. By definition, Shapley

values compute feature importance using all possible coalitions of

features and all items in the dataset—referred to here as the exact
computation of local feature-based explanations. For illustrative

purposes, we explicitly include the construction of the random

variable U in lines 4–7 of Algorithm 1. For each feature 𝑖 ∈ A,

the algorithm considers all coalitions S ⊆ A \ {𝑖}. For each S, it
draws𝑚 = |D| − 1 samples from D. Two vectors of items are then

constructed: U1, where features in S vary as in U and the rest are

fixed to their values in v; and U2, where features in S ∪ {𝑖} vary as

in U, with the remaining features again fixed to v. The importance

of coalition S for feature 𝑖 , denoted 𝜙𝑖S (v), is computed using the

QoI function 𝜄 (), which measures the difference betweenU1 andU2.

This quantity is then weighted by the number of coalitions of size

|S|—specifically,
(𝑑−1
|S |

)
—and accumulated into the final contribution

𝜙𝑖 (v), normalized over all possible coalition sizes 𝑑 .

In practice, one of the main bottlenecks in computing feature

contributions, especially with complex black-box models, is infer-

ence time. To mitigate this, we cache inference results in a hash

map, allowing repeated inputs to return cached outputs in constant

time (𝑂 (1)). This significantly speeds up computation as more tu-

ples are processed. Initially, the explainer experiences a “cold start”

with no cached results, but performance improves to a “warm start”

as the cache builds, reducing the need for repeated model inference.

Evaluating the 𝜄 () function, is straightforward for the score QoI
but not for the ranking-specific QoIs. Specifically, for the score

QoI, using the definition in Section 4, we take the mean of the
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Algorithm 1 Local feature importance using ShaRP

Require: DatasetD′
, reference setD′

, item v, number of samples

𝑚, maximum coalition size c, 𝜄 ()
1: 𝜙 (v) = ⟨0, . . . , 0⟩
2: for 𝑖 ∈ A do
3: for S ⊆ A \ {𝑖} and |S| ≤ 𝑐 do
4: U ∼ D′\v,𝑚
5: U1 = vA\SUS
6: U2 = vA\{S∪𝑖 }US∪𝑖
7: 𝜙𝑖S (v) = 𝜄 (U1,U2)
8: 𝜙𝑖 (v) = 𝜙𝑖 (v) + 1

𝑑
1

(𝑑−1|𝑆 | )
𝜙𝑖S (v)

9: end for
10: end for
11: return 𝜙 (v), the Shapley values v’s features

Algorithm 2 𝜄𝑅𝑎𝑛𝑘
Require: Dataset D′

, scoring function 𝑓 , item v, U1, U2, number

of samples𝑚

1: 𝜙 = 0

2: for 𝑖 ∈ {1, . . . ,𝑚} do
3: u1 = U1 (𝑖)
4: u2 = U2 (𝑖)
5: D1 = D \ {v} ∪ {u1}
6: D2 = D \ {v} ∪ {u2}
7: 𝜙 = 𝜙 + 𝑟−1D2,𝑓

(u2) − 𝑟−1D1,𝑓
(u1)

8: end for
9: return 𝜙/|U1 |

(per-element) difference of 𝑓 (U1) and 𝑓 (U2). However, this is not
the case for ranking-specific QoIs. The rank of an item is computed

with respect to all other items in the sample. This adds two steps to

calculating the rank QoI compared to the score QoI. The itemwe are

explaining needs to be removed fromD′
, and the score of each item

u𝑖 ∈ U1 (and equivalently u𝑗 ∈ U2) needs to be compared to the

scores of all items in D′
. The computation of 𝜄𝑅𝑎𝑛𝑘 is summarized

in Algorithm 2.

To compute feature importance that explains whether an item

appears at the top-𝑘 , for some given 𝑘 , we use a similar method

as for rank QoI. The difference is that, rather than computing the

difference in rank positions for a given pair of items u1 and u2,
we instead check whether one, both, or neither of them is at the

top-𝑘 . As in Algorithm 2, we work with D1 = D \ {v} ∪ {u1} and
D2 = D\{v}∪ {u2} for each sample. We increase the contribution

to 𝜙 by 1 if only u1 is in the top-𝑘 , and decrease it by 1 if only u2 is
in the top-𝑘 . We omit pseudocode due to space constraints.

Visualizing feature importance. We use three visualization meth-

ods. First, waterfall plots (Figure 2) show feature importance for

a single item, following [21]. Second, box-and-whisker plots (Fig-

ures 3, 4a, 5) aggregate local importance across 10%-width ranking

strata, showing median and variance per feature. Third, bar charts

(Figures 4c, 4d) display pairwise contributions from the perspective

of the first item in each pair.

8 EXPERIMENTAL EVALUATION OF SHARP
We ran extensive experiments on real and synthetic datasets with

score-based ranking tasks to demonstrate the utility and perfor-

mance of ShaRP . Section 8.3 presents efficiency results, Section 8.1

provides a qualitative evaluation, and Section 8.2 compares ShaRP to

other methods using the metrics from Section 6. All experiments

were run on a 14-core Intel Xeon Platinum 8268 (2.90GHz) machine

with 128GB RAM. We evaluate the performance of ShaRP and

compare it to other local feature importance methods, using several

real and synthetic datasets, with the corresponding ranking tasks.

Dataset properties, along with ranker type (score-based or learned)

are summarized in Table 1, see Appendix A for details.

8.1 Qualitative Analysis
We already presented a detailed case study of CS Rankings pre-

sented as an example across the previous sections. To evaluate

ShaRP across different settings, we conducted two additional ex-

periments. First, we analyzed a set of simple synthetic datasets

coming from multiple different distributions and studied how each

distribution affects the ranking. Secondly, we compared the expla-

nations resulting from two different LtR rankers for the Moving

Company dataset.

8.1.1 Score-based Ranking with Synthetic Data. In this set of ex-

periments (see Appendix B for details), we use simple two-feature

datasets to study how feature distributions and scoring functions

interact with ranking. We consider two settings: (1) fixed scoring

function with varying distributions, and (2) fixed distributions with

varying scoring functions.

When the scoring function is fixed, feature importance depends
on both distribution and stratum. Features with higher variance

dominate at the top, while in the middle either feature may prevail,

increasing variability. For negatively correlated features, the pat-

tern holds with opposite contribution signs. Discrete features (e.g.,

Bernoulli) split the ranking into segments, with the second feature

determining order within each. When distributions are fixed and

scoring functions vary, importance varies by stratum, depending on

both weight and variance. A low-variance feature can dominate if

its weight is high. Finally, we show that under certain distributions,

low-ranked items can jump to the top-𝑘 , contradicting the locality
assumption in Anahideh and Mohabbati-Kalejahi [2]. Even items in

the top-50% can move into the top-10% with specific value changes.

Table 1: Datasets, sorted by # tuples. S stands for score-based
ranked task and LtR for learning-to-rank.

name source # tuples # features task

Tennis (ATP) [19] 86 6 S

CS Rankings (CSR) [3] 189 5 S

Times Higher Education (THE) [18] 1,397 5 S

Synthetic (SYN) here 2,000 2 or 3 S

ACS Income - Alaska (ACS-AK) [12] 3,546 10 LtR

Moving company (MOV) [38] 4,000 3 LtR

ACS Income - Texas (ACS-TX) [12] 135,924 10 LtR
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Figure 5: Feature contribution to the rank QoI for (a) XGB
over the original moving company dataset, (b) XGB over the
unbiased version, (c) LGB over the original moving company
dataset and (d) LGB over the unbiased version.

8.1.2 Learning to Rank. We now showcase how ShaRP can be

used to audit black-box rankers and understanding their decision

process. We use an XGB ranker with a pairwise ranking objective

and an LGB ranker with a LambdaRank objective. Both are trained

on training sets and evaluated on test sets of 2,000 tuples each. We

use ShaRP to explain 100 items (10 per stratum) of each test set,

with no approximations and the rank QoI. In Figure 5, we observe

that the two LtR models behave significantly differently.

XGB rankers do not appear to rely on the Sex feature, regardless

of whether the de-biasing intervention from [38] is applied. How-

ever, Race remains influential; in Figure 5a, it boosts applicants’

rankings by roughly 400 positions up to the 70th percentile. This

is notable given that Weight Lifting contributes positively in the

70–80th percentile range but negatively in the 60–70th range. Ide-

ally, its impact should be more monotonic, as partially achieved in

Figure 5b. Although Race shows slightly reduced influence after

the intervention, it remains an important feature.

In contrast, LGB rankers tend to rely on all features. In the origi-

nal model (Figure 5c), Sex and Race are highly influential across all

strata, often ranking as the top features for applicants in the lower

percentiles (50th and below). Analysis of the 10–20th, 60–70th, and

90–100th percentiles shows that Weight Lifting has minimal im-

pact on decisions, with Sex and Race largely determining rank. The

fairness intervention reduces this effect somewhat (Figure 5d) by

increasing the influence of Weight Lifting, but Race and Sex remain

dominant features, occasionally outweighing Weight Lifting.

In summary, results indicate that XGB relies more on Race, while

LGB emphasizes Sex. Bias mitigation is effective up to the 10th

percentile but fails to correct bias across the remaining strata.

8.1.3 ACS Income. We use the 2018 ACS Income dataset (10 fea-

tures, 6 categorical) from Alaska (3,546 records) and Texas (135,924

records) as a secondary case study. The task is to predict whether

an individual’s income exceeds $50,000, using a pipeline with one-

hot encoding and a Random Forest Classifier (RFC). Unlike other

methods, ShaRP can generate explanations at any pipeline stage,

including over raw features. Individuals are ranked by classification

score, with explanations shown in Figures 6 and 19 (Appendix F).

Figure 6b shows overall feature importance in Alaska. Hours

worked (WKHP), marital status (MAR), age (AGEP), and race (RAC1P)

are most influential, followed by education (SCHL), which only mat-

ters in the top 20%. Marital status impacts rank across all strata,

while race, marital status, and sex dominate in the top 60%, 50%, and

10% respectively. The top 10% are mostly white, married, and male;

in contrast, education and hours worked vary more but are less

important. Feature importance shifts notably in Texas. Education

becomes key—especially in the top 10% and bottom 30%. Age plays

a smaller role, marital status remains influential at both extremes,

race has limited impact, and sex is relevant but rarely dominant.

This experiment shows the effectiveness of ShaRP on higher-

dimensional data and highlights nuanced differences in feature

importance across data subsets.

8.2 Comparison to Other Methods
In this section, we compare explainabilitymethods using themetrics

from Section 6, focusing on a subset from Section 2. Since ShaRP and

Shapley values target individual explanations, we exclude global

methods such as those by Yang et al. and Gale and Marian [14, 39].

To compare with HIL [40], we adapt their code to support real data

and arbitrary score-based rankers (see full version [27]), and focus

on their weight-based methods, as their Shapley approximation

is already covered by SHAP. We exclude PrefShap [17], which is

restricted to pairwise data with a specialized kernel model.

We compare to HRE [2] but use only four of their internal meth-

ods as provided by their public code base (Decision Trees (DT),

Linear Regression (LR), Ordinary Least Squares (OLS), and Partial

Least Squares (PLS)) and their default neighborhood settings (5-10

consecutive positions above and below the item being explained).

We compare to DEXER which fits a linear regression model to

the ranks and explains this model using the score-based SHAP in-

stead of the original blackbox, treating rank as a score. Finally, we

compare to SHAP [21] and LIME [29], due to their wide use and

availability, even though they are not designed for ranking.

8.2.1 Sensitivity. Figure 7 compares the sensitivity of all methods

by evaluating explanation similarity for pairs of similar items. For

each pair, we compute: (1) Euclidean distance between explanations

(x-axis), (2) rank difference (y-axis), and (3) feature distance (hue;

lighter means more similar). Each plot centers the reference item at

(0,0), with scatter points showing neighbors’ distances. Results are

overlaid across all items, each used in turn as the reference point.

Intuitively, items with similar features and close rankings should

have similar explanations—points should lie near the diagonal 𝑦 =

𝑥 , with hue darkening as distance grows. In practice, this often

fails: a dominant feature may decouple feature and explanation

similarity, and dissimilar items can yield similar outcomes. Ideally,

explanations should vary for closely ranked items with distinct
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Figure 6: Feature contribution on ACS Income (Alaska) to the rank QoI (a) across strata and (b) overall.

features and differ significantly for distant ranks, filling the space

below 𝑦 = 𝑥 with hue darkening outward.

(a) HRE LR (b) DEXER

(c) LIME (d) SHAP

(e) ShaRP Rank (f) HIL Std Rank

Figure 7: Sensitivity results for CS Rankings. Each dot rep-
resents a neighbor of the reference item; the x-axis shows
Euclidean explanation distance, the y-axis rank difference,
and hue indicates feature similarity. Methods using rank as
the profit function (ShaRP and HIL Std rank) perform best,
with ShaRP leading. These are the only methods that consis-
tently produce similar explanations for items with similar
features and outcomes.

In Figure 7, only the rank QoI methods produce the expected

shape. Both ShaRP (Figure 7e) and HIL-Std-Rank (Figure 7f in our

implementation) generate similar explanations for similarly ranked,

feature-similar items, with ShaRP forming slightly denser clusters.

In contrast, SHAP (Figure 7d), a score-based method, reflects pri-

marily feature distance: its plot shows darkening bands away from

the origin, but assigns nearly identical explanations to items with

similar features even when their ranks differ substantially.

LIME (Figure 7c), another score-based method, reflects both

feature and rank distance but fails to distinguish explanations

as clearly as rank-based methods. Score-based methods generally

struggle to capture the nonlinear relationship between score and

rank. DEXER (Figure 7b), which uses linear regression to predict

rank and SHAP for explanations, performs similarly to other score-

based approaches. While non-linear models might better approxi-

mate rank, our approach directly integrates rank into the Shapley

value utility. HRE (Figure 7a) shows no clear pattern with respect to

rank or feature distance; similar and dissimilar explanations appear

across all ranks and hues. This is expected, as HRE depends on local

neighbors, which can vary widely in features and outcomes.

In the full version [27], we provide additional sensitivity results,

comparing ShaRP with rank QoI to HIL Std rank and analyzing

a score-based task. We show that ShaRP outperforms HIL across

datasets and that ShaRPwith score QoI aligns well with the diagonal

in score-based tasks—underscoring the importance of choosing a

QoI aligned with the explanation goal.

In summary, explanations for the rank QoI, which we are intro-

ducing in this paper, are able to more accurately explain ranking

tasks compared to other local feature-based explanation methods.

We also quantified agreement between explanations produced

by different methods. We show these results in Appendix E.2.

8.2.2 Fidelity. It is possible to calculate Fidelity for SHAP, LIME,

ShaRP, and the HIL-score. It is impossible to compute Fidelity for

HIL-rank and all the HRE methods. All methods except HIL-score

perform very well. We compute the Fidelity averaged across all

items in all datasets. All methods are executed using their rec-

ommended settings to compute explanations for score QoI. Addi-

tionally, we compute fidelity for ShaRP for the rank QoI. Recall

that ShaRP is the only method that can compute an explanation for
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Figure 8: Running time of approximation for ACS Income (AK). In (a) and (b), max coalition size is 9; in (c) and (d), sample size
is 100. Speedup is computed vs. to exact times in Table 2, see Table 5 in the Appendix for additional information. Due to a slight
difference in the tie breaking method, the dataset’s size (and maximum sample size) was set to 3,348.

this QoI. LIME, SHAP and ShaRP are all achieving high explana-

tion fidelity, on average ranging from 0.94-0.98, 0.97-1.00 and 1.00

correspondingly. HIL has reasonable fidelity for CSR (0.85) but does

not perform consistently on other datasets ranging from 0.14-0.64.

See Table 4 in the full version of the paper [27] for details.

8.3 Efficiency and Approximation
8.3.1 Running time of exact computation. In our first experiment,

we measure the exact computation time for the rank and score

QoIs, and the pairwise method with rank QoI, on three real and

one synthetic dataset from Table 1. We include only one synthetic

dataset, as all have the same size (𝑚 = 2,000) and at most three

features; differences in correlation structure do not affect runtime.

We omit the top-𝑘 QoI, as its implementation mirrors the rank QoI,

resulting in indistinguishable runtimes.

Table 2 presents the results, reporting the time to generate an

explanation per point, averaged over 100 points for CSR, THE, SYN,

and ACS-AK, and over 83 points (dataset size) for ATP. Runtime for

rank and score QoIs increases with both the number of items (𝑚

in Algorithm 1) and features (𝑑), as exact computation scales lin-

early with𝑚 and exponentially with 𝑑 (2
𝑑 − 1 coalitions). Pairwise

methods involve only two items, so their runtime is independent

of𝑚 but remains exponential in 𝑑 . Our pairwise method for rank

QoI also requires recomputing ranks after each intervention (line 7,

Algorithm 2), which scales linearly with𝑚 in our implementation.

This explains why pairwise QoI for THE (𝑚 = 1,397, 𝑑 = 5) runs

slower than for ATP (𝑚 = 86, 𝑑 = 6). Exact computation is particu-

larly challenging for ACS-AK due to its higher feature count. We

next demonstrate how approximations can mitigate this cost.

Table 2: Running time of exact computation, cold start.

avg. time (sec)

dataset # tuples # features score rank pair

ATP 86 6 0.004 0.026 0.004

CSR 189 5 0.002 0.022 0.003

THE 1,397 5 0.011 0.423 0.007

SYN 2,000 3 0.002 0.126 0.003

ACS-AK 3,546 10 1,960.7 1,956.8 2.53

8.3.2 Running time and quality of approximation. To reduce run-

time, we implement two approximation methods: limiting the num-

ber of samples and bounding coalition size. We report running time

and fidelity (Eq. 8) to assess approximation quality. Figure 8 shows

results for ACS-AK, see Appendix G for ATP and CS Rankings.

Figure 8a shows the speed-up achieved by reducing the number

of samples 𝑚. Lowering 𝑚 from 1, 348 (exact) to 20, while main-

taining a maximum of size 9 coalitions (the largest possible for 10

features), accelerates rank QoI by a factor of 79, reducing runtime

from 1956 sec to 45 sec. Crucially, this performance gain does not

compromise fidelity, which remains above 0.99 (out of 1) across

all sample sizes in all experiments(detailed in the full paper [27]).

Figures 8c and 8d show speed-up and fidelity when bounding coali-

tion size. The largest speed-up occurs for coalition size 1, though

fidelity is lower: at least 0.81 for rank and 0.85 for score (fidelity

is 1 for pairwise). Fidelity improves with coalition size 3, reaching

0.86 for rank and 0.89 for score.

Table 3 shows per-tuple explanation times across different maxi-

mum coalition and sample sizes, highlighting the trade-off between

runtime and fidelity. For large datasets, approximate methods yield

substantial speedups with minimal fidelity loss. In ACS (AK), for

example, a ranking can be explained in 9.45 seconds (vs. 1,956 sec-

onds for exact computation). Warm start is typically 3 times faster

than cold start, and pairwise explanations are the fastest overall.

Figures 8b and 8a illustrate how fidelity and runtime vary with

sample size. As shown in Table 5, runtime grows linearly with sam-

ple size, while fidelity decreases gradually, reflecting a favorable

accuracy–efficiency trade-off.

In summary, reducing the number of samples and bounding coali-

tion size improves runtime while maintaining high explanation

fidelity. Computing Shapley values is exponential in the number of

features, and it is common to develop model-specific approxima-

tions for explainers like SHAP [21]. Designing more sophisticated

custom optimizations for our QIIs is in our immediate plans.

9 USER STUDY
We conducted an IRB-approved study (NYU IRB-FY2025-9983) to

explore how users interpret rank-based vs. score-based explana-

tions, using CS Rankings. We summarize the study protocol and

the results, see Appendix H and I in the full paper [27] for details.

Participant recruitment and study protocol. Through our institu-

tion, we recruited 13 participants: 6 PhD students, 3 postdocs, 2
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Table 3: Running time of optimized computation. Running times are reported per data point, in seconds. Parameter optimization
was performed separately for each dataset. The optimal RFC for ACS (AK) used 100 estimators, compared to 10 for ACS (TX),
resulting in faster cold-start inference per tuple for ACS (TX).

avg. time (sec) fidelity

dataset # tuples # features start max coal. size sample size score rank pair score rank pair

ACS (AK) 3,348 10 cold 9 100 143.54 151.28 1.97 0.997 0.997 1.0

ACS (AK) 3,348 10 warm 9 100 40.42 41.56 1.64 0.997 0.997 1.0

ACS (AK) 3,348 10 warm 9 20 8.09 9.45 1.64 0.996 0.994 1.0

ACS (AK) 3,348 10 warm 7 20 7.95 9.28 1.64 0.960 0.951 1.0

ACS (AK) 3,348 10 warm 5 20 6.07 7.37 1.56 0.923 0.904 0.9

ACS (AK) 3,348 10 warm 3 20 2.08 3.39 1.35 0.886 0.856 0.9

ACS (AK) 3,348 10 warm 2 20 0.74 2.05 1.27 0.868 0.833 0.9

ACS (TX) 135,924 10 cold 9 100 126.39 139.69 7.69 0.998 0.997 1.0

ACS (TX) 135,924 10 warm 9 100 40.42 48.79 7.65 0.998 0.997 1.0

ACS (TX) 135,924 10 warm 9 20 8.07 16.28 7.59 0.992 0.989 1.0

ACS (TX) 135,924 10 warm 7 20 7.95 16.35 7.69 0.973 0.959 0.9

ACS (TX) 135,924 10 warm 5 20 6.27 14.33 7.50 0.944 0.913 0.9

ACS (TX) 135,924 10 warm 3 20 2.52 12.46 7.84 0.911 0.864 0.8

ACS (TX) 135,924 10 warm 2 20 0.93 10.98 7.13 0.894 0.839 0.8

professors, and 2 research staff. All completed forms detailing their

academic backgrounds and familiarity with explainability and the

dataset. Students and postdocs, all from CS, reported moderate to

high familiarity with explainability. Professors and staff, with social

science backgrounds applied to AI, showed varied familiarity with

explainability. CS Rankings familiarity ranged from high to low,

independent of seniority.

Participants were divided into Rank-Group (7 people) and Score-

Group (6 people). Both groups received an introductory document

corresponding to their group, completed a range of tasks that in-

cluded either rank-based or score-based explanations, and then

participated in a discussion. Each participants answered 22 ques-

tions, divided into 3 categories: understanding the rank of a specific

department (3 departments × 4 questions), understanding why one

department is ranked higher than another (3 department pairs ×
2 questions), and understanding feature importance trends across

the ranking (2 sets of 6 departments × 2 questions).

Results. Rank-Group outperformed Score-Group in terms of accu-

rately answering questions (73% vs. 67%), and also reported higher

confidence (4.15 vs. 3.90 on a 5-point Likert scale), see Table 6 in

Appendix H). Notably, Score-Group expressed greater distrust in

the ranking and the dataset, echoing findings from [1], for example:

“Maybe my mind started looking for some kind of [...] preconceived
biases and wondering? [...] There was one figure [...] towards the end.
The difference was almost imperceptible, and I kept thinking, why is
one ranked few points higher than the other?”

Several Score-Group participants noted needing multiple expla-

nations to understand the ranking, as score-based explanations lack

rank context. For example: “At first [for the items at the top of the
ranking], the differences were so big that [the answer] was very clear,
and then at the end, you know which one is better 1.05 or 1.08 [...]? So
it makes you want to go back to the earlier questions and makes you
question your initial impression and understanding of [the ranking].”.

While further study is needed to understand the sources of

mistrust and validate findings with more participants, our results

provide preliminary evidence that rank-based explanations better

support understanding and trust in ranking tasks as compared to

score-based explanations. Most importantly, several participants

underscored that they found feature-based explanations useful. For

example: “I thought that the experience is successful on raising aware-
ness and provoking critical thinking about using rankings.”

10 CONCLUSIONS
We introduced a comprehensive framework for quantifying feature

importance in selection and ranking. Given the impact of rankers

on individuals, organizations, and populations, understanding their

decisions is crucial for auditing and compliance (ensuring legal

adherence), recourse (helping individuals improve outcomes), and

design (optimizing ranking procedures). Our work addresses the

interpretability needs of these tasks.

We demonstrated the effectiveness of ShaRP through a qual-

itative analysis of an impactful real-world task—the ranking of

Computer Science departments. This was complemented by an

evaluation on real and synthetic datasets, revealing that our de-

fined profit functions provide valuable and complementary insights

beyond simple score-rank relationships. We showed that feature

importance varies with data distribution even when the scoring func-
tion is fixed and exhibits locality. Finally, we compared ShaRP to

other local feature-based explanation methods, showing it performs

favorably. ShaRP is an open-source Python library, and is the only

available library for explaining ranked outcomes in tabular data.
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