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ABSTRACT

Data cleaning is an essential technique to enhance data quality.
Despite the proposal of various algorithms with di�erent clean-
ing strategies, current automated cleaning technologies still fall
short of practical requirements when dealing with large-scale data
containing mixed errors. This paper presents UniClean to e�-
ciently solve the mixed error cleaning problem with three key
technical contributions. (1) A uni�ed construction and extension
method for cleaners, enabling cleaning methods to easily utilize
various cleaners to perform cleaning tasks. (2) Three optimization
strategies to achieve e�ciency-oriented cleaning preparation. (3) A
cleaning algorithm based on an optimized cleaning process to ef-
fectively clean mixed errors. UniClean achieves a time complexity
of $ ( |�error |

4 · |$? | + |� | · |�error |), signi�cantly enhancing scal-
ability. Experiments on public and large-scale enterprise datasets
demonstrate that UniClean achieves over 40% improvement across
�ve metrics, compared to �ve state-of-the-art cleaning methods,
and delivers more than 30% gains in F1 and REDR on complex
datasets, while completing the cleaning process within hours even
for millions of records.
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1 INTRODUCTION
In recent years, data science has driven profound transformations
in scienti�c exploration and societal progress, fostering a growing
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recognition that high-quality datasets are fundamental to the e�ec-
tiveness of data analysis and applications [1, 9, 37, 45]. High-quality
data ensures the accuracy and reliability of information, serving as
an indispensable prerequisite for trustworthy decision-making[24].
However, the rapid accumulation of data have given rise to frequent
and increasingly complex data quality issues, which not only ele-
vate the human labor costs involved in data preprocessing but also
undermine the precision of data analysis outcomes [23, 30, 49, 51].

Data cleaning is crucial for addressing data quality issues, involv-
ing detecting and repairing errors [6, 18, 19]. Various algorithms
have been proposed, rule-based [7, 11, 25, 35, 48], data distribution-
based [20, 28, 41, 53], knowledge bases [10, 27, 40], and human-in-
the-loop (including crowdsourcing and LLM) [52, 54] approaches.
Researchers are exploring the integration of multiple cleaning sig-

nals [47] for better solutions, including user-de�ned rules, expert
knowledge, and dataset characteristics, to devise superior cleaning
solutions. However, current techniques still fall short in practical
applications, especially with multiple error types (e.g., missing val-
ues, outliers, rule violations). While error detection achieves high
accuracy and recall (exceeding 0.9 and 0.8) according to recent exper-
iments [2, 32, 42, 43, 54], automated repair remains unsatisfactory
and unstable, demanding improvements in existing technologies:

(1) Multiple cleaning methods (refer to cleaners in De�ni-
tion 3.1) are essential for handling heterogeneous error types in
dynamic and large-scale datasets. However, existing techniques typ-
ically target a single error type per scenario [38], and lack uni�ed
mechanisms for con�guring and coordinating multiple cleaners.
As a result, users often face repeated con�guration and manual
intervention, which limits cleaning e�ciency and scalability. (2)
Downstream users expect both improved data quality and inter-

pretability in data cleaning, requiring transparent explanations of
error repair mechanisms and reuse of proven historical strategies.
However, existing frameworks prioritize cell-level �xes while ne-
glecting global cleaner orchestration and work�ow optimization,
limiting adaptability and interpretability in dynamic data scenarios.
Thus, ensuring a reasonable repair operation sequence and coordi-
nating multiple cleaning methods are vital for e�ective cleaning on
mixed errors. We illustrate this issue with Example 1.1.
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Table 1: Multiple errors in a restaurant dataset.
DBAName AKAName City Zip Address

C1: John Veliotis Sr. Johnny o’s Cicago – 3465S MorganST
C2: John Veliotis Sr. John o’s Chicago 60608 3465S NorganST
C3: Johnny o’s Johnny o’s Cicago 60608 3465S MorganST
C4: Johnny o’s Johnny o’s Chicago 60609 3465S MorganST
C5: John Veliotis Sr. John o’s Cicago 60609 3465S MorganST
C6: El Cafetal Del Tio Corp MI CAFETRAL Cicago 60608 3465S NorganST

Repair Operations from Cleaner Workflow B

l1
[DBAName=John Veliotis Sr., City=Cicago]  

[Zip=60609] ,from oc1

l2 [Zip=60609,Zip=60608]  [City=Cicago],from oc2

l3
[Address=3465S MorganST, City=Cicago]  

[Zip=60609],from oc3

l4
[DBAName=John Veliotis Sr.] 
 [AKAName=John o9s],from oc4

l5 Same as L1,from om1

l6 Same as L3,from om2

l7 [ City="Chicago"]  [City="Cicago"],from on1

l8 Same as L4,from on2

l9 Same as l1,from oc1

l10
Same as l3,from oc3

l11
Same as l4,from oc4

Repair Operations from Cleaner Workflow A

L1 [Zip=60608]  [City=Chicago],from om1

L2 [ City="Cicago"] [City="Chicago"],from on1

L3
[DBAName=Johnny o9s]  [DBAName=John 

Veliotis Sr.],from om2

L4
[Address=3465S NorganST]  

[Address=3465S MorganST],from on2

L5
[DBAName=John Veliotis Sr.]  

[AKAName=Johnny o9s ],from oc4

L6

[Address=3465S MorganST, City=Chicago]  
[Zip=60608],from oc3

[DBAName=John Veliotis Sr., City=Chicago] 
 [Zip=60609],from oc1

F1=1 EDR=1 REDR=1 NumOp=6 F1=0.31 EDR=-0.31 REDR=0 NumOp=11

oc3,oc1 oc4 on2 om2 on1 om1 

0 3 5 7 9 11 error0=13

oc1 oc2 oc3 oc4 om1 om2 on1 on2 oc1 oc3 oc4

13 15 16 17 15 13 15 13 14 15 17

(a)Cleaner workflow with UniClean (b)Cleaner Workflow with greedy approach
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Figure 1: Comparison of cleaning e�ectiveness

Example 1.1. There are various data quality issues in Table 1,

including incorrect values (C4[DBAName]), missing values (C1[Zip]),

rule violations (C4[City] and C3[AKAName]), and typos (C4[Address]).

These mixed errors are addressed using three types of cleaners, illus-

trated in Figure 1: 1© Rule-based cleaners: Cleaner >21 identi�es

a violation between C1 and C5 and �lls the missing Zip in C1 with

"60609", 2© Distribution-based cleaners: Cleaner >=1 marks C2 and

C4 as outliers for the City, replacing them with "Cicago" (a typo er-

ror). 3© External knowledge-enhanced cleaners: With external

dictionaries or annotations, cleaner ><2 corrects inconsistent values

like "Johnny o’s" in C3 and C4, replacing them with "John Veliotis Sr".

However, we �nd that globally, relying on a single cleaner (e.g.,

>21 or >=1) proves insu�cient for mixed-error cleaning due to limited

coverage ( low recall) and the risk of introducing new errors ( low
accuracy). For instance, the rule-based cleaner >21 may detect rule-

based inconsistencies (e.g., zip-code mismatches between C1 and C5) but

fails to repair spelling mistakes or outlier distributions. Conversely, the

distribution-based cleaner >=1 can address abnormal numeric values

but is unable to handle rule con�icts or missing references.

To handle mixed-error types while minimizing error propaga-
tion, we compare a greedy approach (iteratively applying cleaners
based on detected errors) with an optimal cleaner execution sequenc-

ing method for cleaning (i.e., UniClean proposed in this paper
in Fig. 1). The greedy method’s local repair of AKAName (;4) inad-
vertently introduces new DBAName inconsistencies, necessitating a
suboptimal follow-up �x (;11). In contrast, UniClean �rst resolves
DBAName via ><2, then applies >24 to AKAName, reducing total oper-
ations and propagated errors. By prioritizing critical attributes (e.g.,
City) early, UniClean enables subsequent cleaners (e.g., >23) to
generate higher-quality repairs without interference from errors.

Furthermore, when di�erent cleaners propose con�icting repairs
for the same attribute, choosing the repair with lower cost and
higher global bene�t is essential. In Figure 1(b), both >23 and >21
can repair Zip, but >21 requires modifying more cells, resulting in

a higher repair cost. UniClean selects >23’s repair, thus reducing
downstream inconsistencies and overall repair e�ort. In contrast,
the greedy method’s local �x (e.g., ;2) satis�es >22 but raises new
errors for >21, >23, and >=1, demonstrating that global sequencing
and strategic selection are crucial for handling mixed-error data.

Challenges. It is evident that orchestrating e�ective repair oper-
ation sequence for multi-error data cleaning is crucial for maximiz-
ing cleaner e�cacy [21]. However, achieving this is not straight-
forward. Technical challenges include: (1) High complexity of

repair operations sequence combinations. Mixed-error datasets
demand collaborative cleaners, leading to a combinatorial explo-
sion in repair planning. Each error instance (cell) tie to a candidate
repair operation, but global cleaning quality depends heavily on the
execution order of these rules due to interdependencies (e.g., Exam-
ple 1.1). This necessitates exploring $ ( |�error |!) repair operations
sequences over |�error | errors. Each step may invoke one of |$? |
candidate cleaners, typically with $ ( |� |2) time complexity [43],
leading to an overall cost of $ ( |�error |! · |$? | · |� |

2). The problem
thus constitutes a repair scheduling challenge rather than a di-
rect error-type-to-cleaner mapping. (2) High maintenance costs

for diverse cleaners. Despite advances in cleaner automation,
many still require manual parameter tuning, particularly for multi-
error scenarios. Integrating new cleaners demands labor-intensive
framework adjustments, complicating system maintenance. This
complexity hinders the global evaluation of cleaning e�ectiveness
and the development of optimal repair strategies. (3) High adapt-

ability costs in dynamic big data. Rapid data changes make it
di�cult to reuse historical cell-level repair strategies due to shift-
ing error locations. This often requires re-executing the cleaning
framework, increasing costs.

Motivated by this, we propose the UniClean solution to address
the key issue in this paper: how to automatically generate the
optimal cleaning operations in a mixed-error data environment at
a low time cost. Our contributions are as follows.
• Uni�ed construction and extensibility of cleaners. We de-
sign UniClean to unify a comprehensive set of row-based, column-
based, and knowledge-enhanced cleaners (currently 73 in our li-
brary, with over 8K lines of codes), which accommodating external
cleaners without altering the overall framework structure. We theo-
retically prove its completeness (CCC Theorem 4.1), ensuring that
all potential cleaning scenarios are covered.
• E�ciency-oriented cleaning preparation. We develop three
e�ciency-optimized strategies for large-scale mixed-error clean-
ing: (1) Dependency-based cleaner classi�cation with topological
ordering to minimize repair con�icts; (2) a quality-centric coreset ex-
tractionmethod to reduce computational load via error-distribution
sampling; (3) data partitioning to separate repair operations into
independent blocks according to operation scopes. The strategies
jointly reduce the overall complexity from$

(

( |�error |!) · |$? | · |� |
2
)

to $
(

|�error |
4 · |$? | + |� | · |�error |

)

, while maintaining cleaning
e�ectiveness, guaranteed by the Independence and Consistency prop-
erties (ICC Theorem 4.2).
• Iterative optimized cleaning work�ow.We propose a multi-
granularity cleaning work�ow mechanism (ICW Algorithm 4) that
combines provenance analysis and dynamic weight updating. At a
�ne-grained level, ICW incrementally selects optimal record-level
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repair by optimizing a global objective function & derived from
cleaners. At a coarse-grained level, it builds a reusable work�ow for
low-overhead migration to multi-version or dynamic data scenarios.
CQD Theorem 4.3 con�rms that ICW progressively improves data
quality under iterative updates.
•We evaluate UniClean on seven real-world datasets using two
novel metrics: Record Error Reduction Rate (REDR), a record-level
metric designed to re�ect the overall usability of data records after
cleaning, and Cleaning Time cost per 100 Records (CTR). Compared
to �ve SOTA methods, UniClean achieves: >40% improvement in
cleaning e�ectiveness across most cases, <10% performance degra-
dation on large-scale vs. smaller native data, and >30% gains in
F1/REDR on complex datasets while halving processing time for
10K+ records. Results validate its superior e�ectiveness and scala-

bility for mixed-error data cleaning.
Organization. Section 2 presents related work. Section 3 out-

lines the studied cleaning problem. Section 4 introduces the steps
of UniClean and provides theoretical analysis. Section 5 reports
the experimental results, and Section 6 draws the conclusion.

2 RELATED WORK
To achieve intelligent data cleaning, various methods have been
proposed, which can be categorized into three types. 1 Rule-

based Cleaners rely on logical or semantic constraints between
attributes to detect and repair data errors. Common attribute con-
straints include denial constraints (DC) [29] and functional depen-

dencies (FD) [3, 5], as well as their relaxed forms [14, 15]. Frame-
works such as Holistic [8], BigDansing [35], and Horizon [48]
improve cleaning e�ciency and accuracy using techniques like con-
�ict hypergraphs, rule engines, and functional dependency graphs.
While e�ective for large-scale data cleaning, these methods are
limited by the completeness and accuracy of the rules, especially
in complex or ill-de�ned scenarios [43]. 2 Distribution-based

Cleaners detect and repair errors by analyzing the contextual dis-
tribution or statistical characteristics of rows. They can rely on
explicit statistical rules [26] or machine learning models [22, 39].
Baran [41] optimizes cleaning using contextual information. Ma-
chine learning-based methods, like Scared [53], handle complex
distribution anomalies but often require high model complexity
and labeled data [38]. 3 External Knowledge-enhanced Clean-

ers enhance traditional rule-based or distribution-based cleaners
by incorporating external knowledge, such as ground-truth labels,
domain dictionaries, or semantic embeddings (e.g., Wikipedia or ex-
pert annotations). These cleaners improve detection precision by en-
abling additional constraint discovery and prune low-quality repair
candidates using label- or distribution-informed priors. For instance,
CoCo [27] extends rule-based cleaning by supporting interactive
acquisition of consistency constraints [10], while Baran [41] aug-
ments distribution-based methods with annotated labels to enhance
repair accuracy. Despite their e�ectiveness, such approaches often
rely on substantial human supervision, increasing development and
integration overhead.

Advancements also focuses on integrating multiple cleaning
strategies to enhance repair e�ectiveness. Broadly, they can be cat-
egorized as: 4 Fixed-cleaner Integration Cleaners automate
repair by leveraging prede�ned cleaner sets. For example, Holo-

Clean [47] employs probabilistic graphical models to integrate

repairs from outlier detection, constraint violation resolution, and
missing value imputation. While e�ective in static, well-de�ned sce-
narios, these methods lack adaptability and �exibility for complex
data challenges [10]. 5 User-logic Extension Cleaners provide
�exibility by supporting custom repair logic. NADEEF [10] com-
bines multi-signal inputs with user-de�ned rules, enabling cleaning
work�ows for diverse tasks. However, such methods heavily rely on
manual e�ort, reducing automation and increasing implementation
complexity [47].

We survey several advanced cleaning systems in Table 3 in Sec-
tion 5. Despite advancements, existing methods still lack automated,
�exible framework for robust mixed-error handling with minimal
precon�guration. Our proposed UniClean addresses this gap by
o�ering a scalable solution for data cleaning.

3 OVERVIEW OF UNICLEAN
3.1 Preliminaries

�CCA (R) = (�1, ..., �<) denotes the set of attributes in a database
relation R. � is an instance of R containing = tuples, each in the
domain�><(�1)×· · ·×�><(�<).�><(�) represents the domain
of attribute �. A cell C [�] denotes the data value of tuple C on �.

Definition 3.1. A cleaner is an instance of a data cleaning

method. Formally, a cleaner > de�ned onR is a mapping [Detect, 5 ] :

[�B ] → [�) ], where �B = (�1, . . . , �<′ ) is a set of source at-

tributes, and �) is a single target attribute. The error repair logic 5 :

�><(�1) × · · · × �><(�<′ ) → �><(�) ) determines the corrected

value in the single target cell C .�) based on the speci�c values of

the source cells C .�B . The error detector Detect : �><(�1) × · · · ×

�><(�<′ ) × �><(�) ) → [0, 1] evaluates at the cell level the error

status of each target cell C .�) during the mapping process.

Detect in our framework returns a probability of error for each
target cell, and each error repair logic 5 derived from the source cells
C .�B overwrites exactly one target cell C .�) . Figure 3(a) illustrates
a series of data cleaners. Cleaner o<1 : 5Zip = Ext.Zip→ City =

Ext.City. Here, AB = {Zip} and A) = City. The detector Detect
evaluates at the cell level whether the cell C .City with Zip = 60608

has the correct value Chicago.
In complex data cleaning work�ows, multiple errors across at-

tributes often require collaboration among cleaners. As shown in
Figure 3(a), cleaners o21, o<1, and o=1 all target the City for cor-
rection. However, o<1 and o=1 have con�icting repair operations,
leading to redundancy and interference. Moreover, o21 introduces a
misspelled Cicago, which disrupts the outlier detection logic of o=1.
The root causes of these issues are: (8) o<1 and o=1 both modify
the target A) = City but use di�erent repair logic f and detection
logic Detect, and (88) o21’s target A) = City is the source attribute
AB = City for o=1. Even for cleaners targeting entire tuples, their
detectors operate at the cell level, assessing each tuple C separately
for each source-target attribute pair (C .�B , C .�) ), with actual repairs
conducted at the cell level on the target cell C .�) .

When multiple cleaners modify overlapping attributes, grouping
mutually dependent cleaners into a cleaning block is essential. This
block-based organization (8) reduces redundant con�ict resolution,
(88) enables e�cient search for an execution order, and (888) provides a
natural unit for cost-aware optimization. We therefore �rst introduce
cleaner association rules to systematically build such blocks before
presenting the overall processing �ow.
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Definition 3.2. A cleaner association rule A de�nes the as-

sociation conditions between two data cleaners. For a set of clean-

ers $? = {>1, . . . , >=}, where >8 = �(ğ → �)ğ , there exist 8 and 9

(8 ≠ 9) such that: (8) If �)ğ ∈ �( Ġ
, then there is an association rule

A : >8 → > 9 . (88) If �)ğ = �)Ġ
, there is a mutual rule A : >8 → > 9 and

> 9 → >8 . That is, if �)ğ of >8 is in the source attribute set �( Ġ
of > 9 ,

the result of >8 a�ects the execution of > 9 . Similarly, if two cleaners

share the same target attribute, they mutually in�uence each other.

Based on these mappings, cleaners can be classi�ed and ordered to

achieve an optimal cleaning process with minimal interference.

Definition 3.3. A cleaner workflow CL is an ordered set of

cleaning blocks, each representing a sequence of cleaners, denoted

as CL = (�1, . . . ,�<), where each �8 is an ordered set representing

an independent cleaning block. Speci�cally, (8) within each block

�8 = (>81, >82, . . . , >8=), for all >8? , >8@ ∈ �8 (? ≠ @), there exists

mutual dependency >8? → >8@ and >8@ → >8? , and (88) between

di�erent blocks � 9 and �8 ( 9 < 8), for all > 9A ∈ � 9 and >8? , >8@ ∈ �8 ,

there does not exist a dependency >8? → > 9A or >8@ → > 9A .

The execution order within the same cleaning block �8 follows
the cleaner sequence. Cleaning blocks �1, . . . ,�< are executed in
topological order derived from their cleaning dependencies.

Definition 3.4. In a �ow CL, each cleaning block�8 produces a

set of data repair operations !8 = {;1, . . . , ;@}. A data repair opera-

tions ; ∈ !8 is de�ned as ∃>8 ∈ �: , >8 = 5 : �(ğ → �)ğ , such that ; :

�(ğ , E�ďğ
→ �)ğ , E�Đğ

, where �(ğ is a set of source attributes. E�ďğ
is

a set of values in �><(�(ğ ) that speci�es the tuples to be repaired.

Example 3.1. As shown in Figure 1, the clean work�ow �! =

{><1, >=1, ><2, >=2, >24, >23, >21} includes a repair block� = {>23, >21}

consisting of two cleaners. Both >23 and >21 target Zip for repairing,

but their source attributes and repair logic di�er. Additionally, the

target City of >23 serves as a source attribute for >21, making the

execution order critical to repair e�ectiveness. The repair operations

generated by this block, ! = {;1, ;2}, are as follows:

1© Operation ;1: Address = 3465S MorganST, City = Chicago→ Zip = 60608, 23.

2© Operation ;2: DBAName = John Veliotis Sr., City = Chicago→ Zip = 60609, 21.

Con�ict exists between ;1 and ;2 as generated by >23 and >21. Eval-

uation reveals that applying ;1 maximizes the block’s overall satis-

faction even though it repairs fewer cells. Consequently, the repair

block is updated to ! = {;1} and � = {>23}, generating an optimal

cleaning work�ow that balances �ne- and coarse-grained operations.

3.2 Problem statement
Given a library of cleaners$? and a data instance � under schema
R, the mixed error cleaning problem is to determine a cleaning
process �ow CL and the corresponding set of cell-level repair oper-
ations, such that the cleaned dataset �′ = !1 · . . . · !< (�) achieves
optimal data quality. Both detection and repair are performed ex-
plicitly at the cell level: even when cleaners aggregate evidence
across entire tuples (such as row distribution-based cleaners), their
resulting repair operations still individually target single cells C .�) .

In mixed-error cleaning tasks, we aim to globally optimize the
cleaning process to leverage each cleaner’s maximum potential.
At each repair step, repair operations are carefully selected within
cleaning blocks based on cell-level detection scores, ensuring the
greatest cumulative improvement in data quality. Additionally, the
cleaning cost is evaluated by comparing the original � and the re-
paired�′, selecting the repair con�guration that optimally balances

quality improvement and minimal data modi�cation. Formally, we
de�ne the global cleaning e�ectiveness objective & as follows:

CL,Operations = arg min
(CL,Operations)

[& (�,CL,Operations)] (1)

where

& =

∑

ĥ∈ÿğ ∈CL
Ĉğ ∈Operations

Fĥ ·
∑

Ī ∈Ĉğ (Ā )

Detectĥ (C ) + 2>BC (�, !ğ (� ) ) . (2)

Here, !8 (�) denotes the dataset cleaned by block �8 ,F> is the con-
�dence weight of cleaner > in block �8 . The cleaning cost function
2>BC (�, !8 (�)) represents the modi�cation cost (e.g., the number
of records or �elds modi�ed). This helps minimize large-scale data
changes and reduces the intrusiveness of the cleaning process.

The cleaning capability of a block�8 is measured by the weighted
results of its detectors. Speci�cally, for each cleaner > with [Detect,
5 ], Detect> (C) evaluates the probability of an error in C of the
cleaned dataset !8 (�). Therefore,

∑

C ∈!ğ (� ) Detect> (C) measures
the error level in !8 (�). The lower the error level, the higher the
cleaning quality and capability of �8 . Our optimization goal is to
adjust the contribution weights, = {F> | > ∈

⋃

�ğ ∈CL�8 } to
generate the optimal cleaner order CL and the corresponding set of
data repairOperations, such that& (�,CL,Operations) is minimized.

UniClean optimizes the cleaning process �ow and repair oper-
ations through standardized interfaces, dependency analysis, and
cost-aware strategies. Section 4 presents its detailed steps.

4 THE PIPELINE OF UNICLEAN
We �rst outline the key steps of UniClean, and then provide de-
tailed descriptions of each step in Sections 4.1-4.3. As shown in
Figure 2, UniClean integrates three core components:

In cleaner construction phase, we implement standardized
interfaces in UniClean to support the speci�cation and collabora-
tive use of di�erent cleaners. Cleaners are classi�ed into Column

rule-based and Row distribution-based cleaners, that can be option-
ally extended with external knowledge. In addition, Cleaning cost
function is introduced to quantify the cost of cleaning operations.

In cleaning preparation phase, we partition cleaners into in-
dependent cleaning blocks �! and extract core sample sets (8 for
each block, which are further divided into sub-blocks �;>2:8 =

{�1, . . . , �<} (Algorithms 1, 2, 3). These steps ensures that the clean-
ing objective function & on the core set is equivalent to that on the
full dataset, as guaranteed by Theorem 4.2. The theoretical support
narrows the search space for repair operations, reduces computa-
tional complexity, and ensures both the consistency and e�ciency
of the cleaning process.

In data cleaning phase, we propose a global optimization frame-
work to dynamically generate and apply repair operations$?4A0C8>=
= {!1, . . . , !=} across the cleaning work�ow �!, guided by the ob-
jective function & (Algorithm 4). Cleaner weights ,8 = {F> |

> ∈
⋃

�ğ ∈�! �8 } are iteratively updated through repair tracing
to optimize execution order and adapt strategies to varying data
distributions. We guarantee global error reduction and cleaning
consistency, as formalized in Theorem 4.3.

Upon completion,UniClean outputs themacro cleaningwork-

�ow �!, cleaner weights,8 , �ne-grained repair operation

sequences !8 , and the �nal cleaned dataset �′.
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Figure 2: The overview of UniClean.

4.1 Uni�ed construction of cleaners
4.1.1 Cleaner classification and construction. To address diverse
errors, we observe that existing cleaners exhibit heterogeneous
interfaces and procedures. Thus, as the initial step inUniClean, we
establish standardized cleaner interfaces to unify error-handling
capabilities. We categorize the cleaners in De�nition 3.1 into two
categories, along with the cleaning cost function.

Definition 4.1. Column rule-based cleaners (>2 : [�B ] →

[�) ]) capture column dependencies such as CFDs, or DCs, where

�B functionally determines �) . For a tuple C ∈ � , Pr(C .�) | C .�B )

is the correctness probability, and the detector is Detect(C .�) ) =

1−Pr(C .�) | C .�B ). Row distribution-based cleaners (>A : [�B ]→

[�) ]) enforce that the values of (�B , �) ) across tuples follow an

expected joint distribution constructed from prior knowledge. Such

prior information may include external data rules (e.g., historical

business knowledge) or internal statistical preferences (e.g., frequency

distributions and co-occurrence patterns mined by ML models [13, 34,

41, 47]). The detector is Detect(C .�) ) = 1 − Pr(C .�B , C .�) ).

Cleaning cost function. UniClean also supports cost-sensitive

cleaning. Formally, for each C ∈ � , the repair cost is de�ned as

�>BC (C) = 2>BC (C .�) , C .�
′
)
), where 2>BC (0, 1) quanti�es the modi-

�cation cost between the original and repaired values.
The complexity of both cleaner types depends on the underlying

detection logic: it is typically $ (1) for simple rules (e.g., regex or
type checks), and commonly$ ( |� |) for most statistical or learning-
based detectors [43]. The cost function supports $ (1) evaluation
and is customizable. Users may incorporate cleaner execution com-
plexity into 2>BC (0, 1) via adjustable penaltyweights, allowing trade-
o�s between cleaning e�ectiveness and computational cost.

We emphasize that UniClean supports optional integration of
external knowledge (e.g., data constraints, dictionaries, custom re-
pair operations) to enhance cleaning capabilities. This extensibility
enables adaptation to diverse data scenarios, leveraging external
information to re�ne error detection and repair processes.

Example 4.1. Figure 3 shows that UniClean incorporates three

representative cleaners to address data quality issues: (1) Column

rule-based cleaner >21 detects errors using strict attribute relation-

ships, AB = (City, DBAName) and A) = Zip. The detection function

is Detect>ę1 (C) = 1 − Pr(C .Zip | C .City, C .DBAName). For C .City =

Chicago and C .DBAName = Hilton Garden Inn, � contains C8 .Zip =

60608 and C7, C10, C11, C12 .Zip = 60611, giving Detect>ę1 (C8) = 1−
1
5 =

4
5 , and Detect>ę1 (C7) = Detect>ę1 (C9) =

1
5 . (2) Row distribution-

based cleaner >=2 ensures consistency by evaluating the distribution

of AB = Address, with Detect>Ĥ2 (C) = 1 − Pr(C .Address). Records

C2, C6 in Table 1 form one cluster, and C1, C3, C4, C5 form another, with

Pr(C2 .Address) = Pr(C6 .Address) =
2
6 , yielding Detect>Ĥ2 (C2) =

Detect>Ĥ2 (C6) = 1 − 2
6 =

2
3 . (3) Knowledge-enhanced cleaners

(><1 : Zip → City, ><2 : DBAName → DBAName). ><1 integrates

column rules with external dictionaries to validate A) = DBAName,

while ><2 combines row distributions with external knowledge to

repair AB = Address by aligning with patterns from Ext_DBAName.

Each cleaner in UniClean operates independently, iterating until all

tuples satisfy Detect> (C) = 0, ensuring thorough cleaning.

4.1.2 Completeness of Cleaner Construction. The proposed cleaner
construction approach uni�es the use of row and column correla-
tions, o�ering a structured methodology for data cleaning. This ap-
proach integrates advanced techniques such as denial constraint re-
pair [29] and stream data cleaning under speed constraints [12, 50].
Next, we prove the completeness of our approach, ensuring e�ective
and accurate cleaning through row- and column-related cleaners.

Theorem 4.1 (Completeness of CleanerConstruction (CCC)).

If �) ∈ �CCA (R) has neither row dependency (detectable by row dis-

tribution cleaners) nor column dependency (detectable by column rule

cleaners), then cleaning �) is equivalent to random replacement in

a probabilistic sense, assuming a maximum-entropy (i.e., uniform)

distribution when no external or prior knowledge is available.

Proof. Assume cleaning the target attribute �) ∈ �CCA (R)

under the known correct values of the source attribute set �( . (8)
For any tuple C ∈ � , if �) has no column dependency with the
source attributes {�(1, . . . , �(: }, as modeled by column rule-based
cleaners, the probability that C .�) is correct is: Pr(�) = C .�) |

�(1 = C .�(1, �(2 = C .�(2, . . . , �(: = C .�(: ) = Pr(�) = C .�) ). (88)
If �) exhibits no row dependency with the source attributes and no
external or prior distributional information is available, we invoke
the maximum-entropy principle, which posits that in the absence
of any known constraints or domain knowledge, the most unbiased
probabilistic model is the one that maximizes entropy [33], i.e., the
uniform distribution: Pr(�) = C .�) ) =

1
|�>< (�Đ ) |

.

Combining the above, when there is neither row dependency nor

column dependency, and given the absence of external knowledge
or detectable internal correlations, the probability that C .�) is cor-
rect defaults to the maximum-entropy assumption: Pr(�) = C .�) |

�(1 = C .�(1, �(2 = C .�(2, . . . , �(: = C .�(: ) =
1

|�>< (�Đ ) |
. Thus,

under these assumptions, the success probability of correctly re-
pairing C .�) is equivalent in expectation to uniformly choosing a
value at random from the domain �><(�) ). □

This equivalence, however, is strictly in the probabilistic sense
under the maximum-entropy assumption rather than implying that
�) is truly uniform in real-world data. In practice, if any skewed or
structured distribution exists, it can be exploited by row distribution
cleaners. thus, maximum entropy is only assumed after exhaustively
failing to detect any informative dependency, either internal or
external. Therefore, without dependencies or additional external
knowledge, no deterministic cleaning strategy can consistently
outperform random guessing in terms of repair accuracy.

In summary, Theorem 4.1 establishes the boundary of cleaner
construction: If a target attribute �) has repairable errors (i.e.,
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id DBAName	 Address	 City	 Zip	 Quaility

t1 John	Veliotis	Sr.	 3465S	MorganST Chicago	 --	 0

t2 John	Veliotis	Sr.	 3465S	MorganST Chicago	 60608 3/10

Compute:Quaility(t2)=(1-detectOc3(t2))*(1-detectOc1(t2))=(3/5)*(1/2)=3/10

t3 John	Veliotis	Sr.	 3465S	MorganST Chicago	 60608 3/10

t4 John	Veliotis	Sr.	 3465S	MorganST Chicago	 60609 1/5

t5 John	Veliotis	Sr. 3465S	MorganST Chicago	 60609 1/5

t6 El	Cafetal	Del	Tio	Corp 3465S	MorganST Chicago	 60608 3/5

t7 Hilton	Garden	Inn 10	E	GRAND	AVE Chicago	 60611 4/5

t8 Hilton	Garden	Inn 10	E	GRAND	AVE Chicago	 60608 1/25

t9 Mama	B'S	Pizzeria 	3304	N	WESTERN Chicago	 60618 1

t10 Hilton	Garden	Inn 10	E	GRAND	AVE Chicago	 60611 16/25

t11 Hilton	Garden	Inn 10	E	GRAND	AVE Chicago	 60611 16/25

t12 Hilton	Garden	Inn 10	E	GRAND	AVE Chicago	 60611 16/25

id Cleaner	Library

om1 f(Zip=Ext.Zip)=[City=Ext.City]	

om2
f(DBANamejExt_DBAName)=

[DBAName=Ext_DBAName]	

on1 f(City)=Max[City]	

on2 f(Address)=Max[Address]		

oc1 f(DBAName,City)=RepairFD(Zip)	

oc2 f(Zip)=RepairFD(City)

oc3 f(Address,City)=RepairFD(Zip)

oc4 f(DBAName)=RepairFD(AKAName)
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Figure 3: The demonstration of the cleaning process implemented by UniClean.

repair success probability exceeds random guessing), it must ex-
hibit structural patterns, i.e., patterns that our proposed rule-based
cleaners or distribution-based cleaners can exploit.

4.2 Cleaning preparation
To address mixed-error cleaning complexity, we optimize opera-
tional execution after uni�ed cleaner construction. Direct appli-
cation of multiple cleaners to large datasets is impractical due to
excessive repair operations. We tackle this via two strategies: (8)
Cleaners Pruning: minimize repair operations per block by limiting
the number of cleaners used, and (88) Data Scaling: reduce per-
block processing volume to constrain candidate operations. This
dual optimization ensures cleaning e�ciency while maintaining
e�ectiveness and minimizing downstream selection complexity.

4.2.1 Data blocking based on cleaner association analysis. We pro-
pose a multi-cleaner association method to handle dependencies
between cleaners. This approach groups cleaners sharing related
attributes into blocks and isolates unrelated ones, thereby reducing
candidate repair operations per block. Starting with the cleaner
library$? , we identify the source attribute set �( and target repair
attribute�) for each cleaner. Based on dependency conditions (Def-
inition 3.2), we build a cleaner dependency network (attribute as
vertices and cleaners as edges). We apply directed graph techniques
(e.g., vertex merging, cycle detection) to resolve dependencies and
generate a directed acyclic graph (DAG), and then derive an initial
cleaning work�ow �! and core set ( . Algorithm 1 outlines this
process, including the following steps:
1© Dependency graph construction. After initialing, for each
cleaner in $? , it identi�es the source �( and target �) and adds
the edge (�( , �) ) to � . This step costs $ ( |$? | · |�CCA |) in times.
2©Cycle detection andmerging.Cycles in the dependency graph
are detected and resolved by merging cycle nodes into a single
node, eliminating cyclic dependencies to ensure a DAG. The time
complexity of cycle detection and merging is $ ( |+ | + |� |), where
|+ | f |�CCA | represents the number of nodes, and |� | f |$? | rep-
resents the number of dependencies. In the worst case, merging
cycles across all nodes costs $ ( |�CCA | · ( |�CCA | + |$? |)) in time.
3© Topological sorting and block partitioning. The algorithm
performs a topological sort on the DAG to generate the execution
order of cleaning blocks, ensuring that each cleaner is processed
only after its dependencies have been resolved. Cleaners within the
same level can be executed in parallel, while blocks in di�erent lev-
els are processed sequentially. The time complexity of topological
sorting is $ ( |+ | + |� |), i.e., $ ( |�CCA | + |$? |).

TimeComplexity. From the above, in the worst case, the overall
time complexity of Algorithm 1 is $ ( |�CCA |2 + |�CCA | · |$? |).

Algorithm 1: CleanerAssociation

Input: Cleaner Set$? , Attribute Set �CCA
Output: Cleaner Association DAG:� , Initial Cleaner Work�ow:�!

1 Edges← ∅,� ← InitializeGraph(�CCA )

2 foreach >? ∈ $ do

3 src← >?.�B, tgt← >?.�C , Edges.add(src, tgt)

4 �.AddEdges(Edges) // Construct dependency graph

5 while exists cycles in� do

6 CycleNodes← DetectCycles(� ) // Identify cycles

7 MergedNode← MergeNodes(CycleNodes)

8 �.Update(MergedNode)

9 �!←TopologicalSort(� ) // Get initial cleaner workflow

10 return�,�!

Example 4.2. As illustrated in Figure 3, for the data in Table 1,

we construct graph � with attributes like City, Zip, and Address

as vertices, and cleaners like >21 connecting (City, DBAName) → Zip.

Cyclic dependencies in � are detected and resolved to produce a

DAG, ensuring the feasibility of topological sorting. Then, cleaners

are grouped into blocks �! based on dependency levels in the DAG.

For example, >21 and other cleaners in �1 are executed in parallel,

followed by cleaners in �2. By iteratively analyzing dependencies

and scheduling execution blocks, UniClean ensures e�cient and

dependency-respecting data cleaning.

4.2.2 Core set extraction based on quality evaluation. We next ex-
tract a subset of the large dataset to determine the best cleaning
strategy. Unlike conventional ML tasks that seek clean subsets, our
method retains dirty data to ensure comprehensive error coverage
while including clean data to guide accurate repair operation gen-
eration. To this end, we propose a quality evaluation-based method
for core set extraction, implemented via Spark-based sampling. As
outlined in Algorithm 2, we extract dirty data blocks and selects
clean data based on error label distribution. The process involves:
1© Data quality evaluation. For each cleaning block �8 ∈ �!, it
evaluates data quality on the full � . Using the detection functions
Detect> of the cleaners in �8 , the quality score of each tuple C is
approximated as the product of the quality scores from all cleaners
in�8 :&D0;8C~ (C) =

∏

>∈�ğ
(1 − Detect> (C)) . This score represents

the probability that 0 is correct under �8 . An error threshold is
estimated as: error\ =

1
|� |

∑

C ∈� (1 −&D0;8C~ (C)) . It represents
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tuples that are below the average quality threshold and have a
higher error probability. These tuples can aid in pruning repair
operations. This step incurs a time cost of $ ( |$? | · |� |2).
2© Core set sampling. Based on the quality scores, the algorithm
extracts a core set while preserving the quality distribution of the
original dataset. Records with &D0;8C~ (C) = 1 are removed, as
they are considered absolutely correct and irrelevant for cleaning.
Subsequently, records with&D0;8C~ (C) < error\ are selected, repre-
senting erroneous data that require immediate inclusion in the core
set. For these selected tuples, related tuples are identi�ed based on
the attribute set AT of the cleaning block �8 , grouping all tuples
sharing the same values inAT. Within each group, tuples are sorted
by &D0;8C~ (C) in descending order, and sampling is performed to
retain a proportional representation of the quality distribution.

This approach ensures the core set retains both representative
correct and erroneous records, maintaining the quality distribution
of the original dataset while signi�cantly reducing its size.

Time Complexity. For a cleaning work�ow �! containing
= f |$? | cleaning blocks, Algorithm 2’s complexity on� is$ ( |$? | ·
|� |2). Ideally, the core set includes all dirty data along with corre-
sponding clean data for assistance, reducing its size to $ ( |�error |),
where |�error | is the number of erroneous records.

Algorithm 2:�ality-based CoreSet

Input: Data � , Cleaning Block�ğ = {>ğ Ġ }

Output: Core Set (ğ , Quality Scores&D0;8C~ğ , Threshold errorĂ
1 Initialize (ğ ← ∅,&D0;8C~ğ ← ∅, errorĂ ← 0

// Step 1: Quality analysis

2 foreach C ∈ � do

3 &D0;8C~ğ (C ) ←
∏

ĥ∈ÿğ
(1 − Detectĥ (C ) )

4 errorĂ [8 ] ←
1
|Ā |

∑

Ī ∈Ā (1 − &D0;8C~ğ (C ) )

// Step 2: Core set selection

5 �error ← {C ∈ � | &D0;8C~ğ (C ) < errorĂ [8 ] }

6 (ğ ← (ğ ∪�error, � ′ ← � \�error

7 Group � ′ by attributes�ğ .AT

8 foreach group� in � ′ do

9 Sort� by&D0;8C~ğ (C ) in descending order

10 (ğ ← (ğ ∪ Sample(�, ProportionPreserve(&D0;8C~ğ ) )

// Sample from each group

11 return (ğ ,&D0;8C~ğ , errorĂ [8 ]

Example 4.3. Figure 3 shows that when processing the cleaning

block�8 = {>21 (F = 0.5), >23 (F = 0.5)}, core set extraction proceeds

as follows: (1) calculate detection values Detect>ę1 and Detect>ę3
for all tuples, and derive quality scores&D0;8C~ (C). (2) Classify tuples

as clean (&D0;8C~ (C) = 1), erroneous (&D0;8C~ (C) < 1
5 ), or intermedi-

ate. (3) Remove clean tuples, fully sample erroneous tuples (e.g., C1,

C8), and proportionally sample intermediate tuples based on related

group quality distribution. The resulting core set is balanced, retaining

high-quality and erroneous data for e�ective repair evaluation while

preserving the original dataset’s quality distribution.

4.2.3 Data partitioning based on cleaner classification. After classi-
fying cleaners by attribute associations, con�icts or independence
may arise among �ne-grained cleaners. For example, interdepen-
dent cleaners >23 and >21 may generate overlapping repair opera-
tions (Figure 1), requiring selection and ordering. Non-con�icting
operations can be applied directly. To simplify cleaning search, we

propose a data blocking method based on cleaner classi�cation. We
group tuples likely to generate con�icting operations into blocks,
ensuring cleaners between blocks do not con�ict. This reduces the
time for searching and evaluating repair operations. The process is
detailed in Algorithm 3, consisting of two iterative phases.
1©Preliminary partitioning. For each cleaner >8 9 ∈ �8 , the core
set (8 is aggregated based on the cleaner’s source attributes �B 9 .
Tuples with identical values in �B 9 are assigned to the same prelim-

inary block. The result is an initial block list �;>2: init8 , where each
block groups records that are likely to share the same repair path.
At this stage, blocks ensure attribute-level consistency but do not
yet account for potential inter-cleaner interactions.
2© Iterative block expansion. To enhance the repair e�ect for
low-quality tuples (with&D0;8C~ (C) < error\ ), blocks are iteratively
expanded. For each low-quality C , additional cleaners >8: ∈ �8
( 9 ≠ :) are applied based on their source attributes �B: . Related
tuples sharing the same �B: values are identi�ed and merged into
the block containing C . This iterative expansion continues until all
low-quality tuples are adequately covered, ensuring blocks capture
cross-cleaner interactions while preserving high-quality tuples.

Speci�cally, these data blocks exhibit the following properties.

Proposition 4.1. The �nal stable block list �;>2:8 exhibits the
following properties: 1© Each low-quality record C belongs to a single

block and does not cross blocks: ∀C ∈ �8 ∈ �;>2:, 9 ≠ 8, C ∉ � 9 . 2©
Repair operations generated by cleaners >8 9 ∈ �8 for each block �8
are independent and non-con�icting. 3© The core set (8 is completely

partitioned by Algorithm 3, i.e., (8 =
⋃

�∈�;>2:ğ �.

Algorithm 3: DataPartition

Input: Core Set (ğ , Cleaning Block�ğ = {>ğ Ġ }, Threshold errorĂ
Output: Stable Block List �;>2:ğ = {�1, . . . , �ģ }

1 Initialize �;>2: initğ ← ∅

2 foreach >ğ Ġ ∈ �ğ do

3 foreach C ∈ (ğ do

4 if C .�ĩ Ġ is unique then

5 Assign C to a preliminary block � based on �ĩ Ġ

6 �;>2: initğ ← Preliminary blocks

7 Iterative Block Expansion:

8 foreach Record C ∈ (ğ where&D0;8C~ (C ) < errorĂ do

9 foreach >ğġ ∈ �ğ | 9 ≠ : do

10 Identify related records 1 ∈ (ğ where 1.�ĩġ = C .�ĩġ

11 Merge 1 into the block containing C

12 Finalize Blocks:

13 foreach Block � ∈ �;>2: initğ do

14 Ensure (ğ ←
⋃

þ∈þĢĥęġğ
�

15 Remove duplicates and con�icts between blocks

16 return �;>2:ğ

Time Complexity. Algorithm 3 requires performing one par-
titioning operation on each block �8 in the cleaning process �! =

{�1, ...�=} with a time complexity of $ ( |�8 | · |� |). Therefore, the
time complexity of applying Algorithm 3 to all cleaning blocks in
�! on � is $ ( |$? | · |� |).

Example 4.4. As illustrated in Figure 3, consider the sampled

data {C1, C2, C3, C4, C6, C8, C10, C11} for data partitioning. The cleaning
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block �8 includes two cleaners, >21 and >22, with their respective tar-

get attributes AT. Initially, the data is partitioned based on >21 .AT.

Records are grouped by identical values in >21 .AT, resulting in the fol-

lowing blocks: �;>2: init8 = {{C1, C2, C3, C4}, {C6}, {C8, C10, C11}}. Next,

the algorithm examines >22 .AT to identify relationships between

blocks. Record C6 shares attributes in >22 .AT with records in the

block {C1, C2, C3, C4}. These blocks are merged, resulting in �;>2:8 =

{{C1, C2, C3, C4, C6}, {C8, C10, C11}}. For tuples with&D0;8C~ (C) < error\ =
1
5 (e.g., C1 and C8), the algorithm ensures no further blocks need to

be merged, as no other tuples are associated with these low-quality

tuples. Thus, the partitioning process terminates with the �nal block

list: �;>2:8 = {{C1, C2, C3, C4, C6}, {C8, C10, C11}}.

Considering the operations conducted during data preprocessing,
We report the theoretical guarantees of the algorithms employed
in Theorem 4.2 for data cleaning preparation phase.

Theorem 4.2 (Independence and consistency of cleaning

workflow (ICC)). For independent cleaning blocks within one core

set, the cleaning objective function is equivalent to the global cleaning

objective function& on the entire � . This is guaranteed through three

key properties: independence of cleaning blocks, consistency of quality

distribution in sampled data, and independence of partitioned data.

Proof. (8) The independence of cleaning blocks ensures that
repair operations in di�erent blocks do not interfere with each
other, and each block’s cleaning results are independent of others.
By performing a topological sort on the dependency graph (as de-
scribed in Section 4.2.1), the execution order of cleaners adheres to
the dependency relationships de�ned in De�nition 3.2. For cleaning
blocks �8ġ ∈ level8 and � 9ģ ∈ level9 (8 < 9 ), repair operations !8ġ
and !9ģ satisfy !8ġ ∩ !9ģ = ∅,∀�8ġ ∈ level8 ,� 9ģ ∈ level9 . This
ensures that repair operations across levels are non-con�icting.

(88) Consistency of quality distribution in sampled data.

The consistency of sampled data ensures that the cleaning objec-
tive on sampled data aligns with that on the full dataset. As de-
�ned in Section 3.2, the cleaning objective function & minimizes:
∑

�ğ ∈CL
∑

>∈�ğ

∑

C ∈;ğ (� ) F> · Detect> (C) . Detect> (C) denotes the
error probability of C in cleaner > . Algorithm 2 ensures the quality
distribution of sampled data maintains the same relative order as
� , enabling repair operations generated on the core set ( to match
those on � : !( (C) = !� (C),∀C ∈ ( ¦ �.

(888) Independence of partitioned data. The partitioning in
Algorithm 3 within a cleaning block �8 ensures that each low-
quality tuple belongs to only one data block. For any C ∈ �8 and
1 ∉ �8 : ∀>8 9 ∈ �8 , if 1.�B8 9 = C .�B8 9 , then 1 ∈ �8 . This guarantees
that repair operations within each block are independent and non-
con�icting, avoiding interference between blocks. □

Accordingly, our algorithms for data cleaning and cleaner prepa-
ration reduce the search space and computational complexity, while
preserving cleaning consistency with the full dataset.

4.3 Data cleaning
To address complex data errors where repair operations impact
subsequent detection e�cacy, we propose a globally optimized
cleaning orchestration strategy. This method selects repair opera-
tions to maximize the collective performance of all detectors within
cleaning blocks, thereby fully exploiting cleaner capabilities. For
a given work�ow �! and its corresponding core set ( , we deter-
mine the optimal repair operation set Operation that maximizes

data quality while satisfying the objective function Q. Our cleaning
process, outlined in Algorithm 4, comprises the following steps:

Step 1: Layered processing of cleaning blocks. Cleaning
blocks �8 ∈ �! are processed in a topological order of layers level8 .
For each block, we extract the core set (8 with Algorithm 3, gener-
ate a candidate repair operation parameter pool and arrange the
sequences of repair operations within the pool (see Sect. 4.3.1-4.3.2).

Step 2: Dynamic adjustment cleaning strategy. After exe-
cuting each cleaning block �8 , we apply the generated set of repair
operations to � . We are then able to trace the cleaners based on the
e�ectiveness of the operations and dynamically adjust the cleaner
weights (see Sect. 4.3.3). Subsequently, we re-execute Step 1, opti-
mizing the cleaning e�ect of Step 2 based on the current block’s
cleaner weights and reducing unnecessary computations.

The cleaning process terminates when no executable repair op-
erations can be identi�ed for any cleaning block.

4.3.1 Candidate Repair Parameter Pool Generation (GenerateFixes).

The generation of candidate repair operations is based on the pro-
cess outlined in De�nition 3.3, with additional pruning using exter-
nal knowledge bases to remove unnecessary parameters. Repairs
are generated by iterating over partitioned tuples C ∈ �8 in each
block, guided by quality scores and the error threshold. The steps
are as follows: 1©Generate predicate conditions. For such tuples
that&D0;8C~ (C) < error\ , collect values of source attributes >.�B to
form predicates, de�ning the range of records needing repair. 2©
Generate repair values. For tuples that &D0;8C~ (1) > error\ , �l-
ter repair values using external knowledge bases, excluding invalid
entries. Valid repair values are retained as candidates, enhancing
accuracy and coverage. 3© Generate repair operations. Com-
bine predicates and repair values for each cleaner’s target attribute
to de�ne repair operations. Con�icting or redundant repairs are
resolved using additional knowledge-base-de�ned rules.

Time Complexity. Based on Theorem 4.2, the repair operations
within each block are independent. Let the size of the dataset after
sampling and blocking within �8 be |�8 | with an average error rate
of rate8 , the number of erroneous tuples is |�8 | · rate8 , and each
tuple generates$ (1) predicates and repair values. Thus, for a block
�8 , it total costs $ ( |�8 | · |�8 | · rate8 ).

4.3.2 Operations Sequence Orchestration (FixSearch). To address
the proposed cleaning problem, UniClean is designed to prioritize
applying repair operations that minimize the detector scores of
all cleaners within the cleaning block. By iteratively analyzing the
impact of each repair operation on data quality and cleaner perfor-
mance, it dynamically adjusts the operation sequence to ensure that
each repair step contributes optimally towards the global optimiza-
tion goal. The core of function FixSearch function comprises the
following steps: 1© Evaluate candidate repairs. For each repair
; ∈ !8 , assess its impact on the objective function Q, including the
weighted sum of detector scores and the introduced repair cost. 2©
Select and apply optimal repair. Iteratively select the repair ;∗

that minimizes the overall error probability of all cleaners within
the block. Apply ;∗, update the dataset and its &D0;8C~ (C),∀C ∈ �8 ,
and remove ;∗ from the candidate pool. 3© Dynamic repair oper-

ations sequence adjustment. Continuously update the candidate
pool by removing invalid or con�icting repairs and stopping when
no repairs further reduce errors or all errors are resolved.
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Time Complexity. Evaluating repairs in a block �8 requires
computing new data quality scores and detection functions with
complexity $ ( |�8 |

2 · �8 ). Iterating through $ ( |�8 | · rate8 ) repair
operations leads to total complexity $ ( |�8 |4 · rate28 · |�8 |).
4.3.3 Traceability of Repair Operations and Iteration (UpdateWeights).

UniClean continuously optimizes the cleaning work�ow by dy-
namically adjusting cleaner weights through repair traceability.
Speci�cally, each repair operation is traced back to its originat-
ing cleaner and quantitatively evaluated based on its impact on
the global & . An operation is considered e�ective if its applica-
tion leads to a signi�cant decrease in & ; otherwise, it is treated
as redundant or even harmful. This enables UniClean to (1) de-
grade the weight of cleaners that consistently yield low-impact
or ine�ective repairs and exclude them from subsequent �x gen-
eration (GenerateFixes), and (2) prioritize high-weight cleaners
when searching for high-quality repairs (FixSearch). As a result,
the cleaner library is progressively re�ned by pruning underper-
forming cleaners and preserving only impactful operations. This
iterative mechanism ensures that the cleaning work�ow remains
adaptive for the current error distribution.

Time Complexity of Algorithm 4. Applying repairs to �

requires $ ( |� |2 · rate8 ) per repair operation. Over : iterations,
we have

∑:
8=1

(

rate8 · |�8 |
)

≈ |�error |, yielding total complexity
$
(

|� |2 · |�error |
2 · |$? | + |� | · |�error |

)

. As |�error | diminishes with
iterations, the ideal core set |� | =

∑

|�8 | should minimally cover
all dirty data. Under this optimality condition, complexity reduces
to $ ( |�error |

4 · |$? | + |� | · |�error |). In practical execution, due
to optimized sampling block sizes, the introduction of additional
knowledge bases, and a gradual decrease in error rate across rounds,
the complexity tends towards the optimal case.

Recall the time complexity of $ ( |�error |! · |$? | · |� |
2) for the

cleaning problem mentioned in Section 1, our proposed UniClean

signi�cantly reduces the computational cost of data cleaning. This
demonstrates its advantage for large-scale data cleaning tasks.

Example 4.5. As shown in Figure 3, after the partitioning, can-

didate repairs are generated per block. In Block 1, ;1 is selected over

;2 based on lower & values. Similarly, in Block 2, repair ;3 is selected

as it yields the best improvement in & among available candidates.

Once selection is completed, suboptimal repairs (;2 ) and outdated or

con�icting repairs (;4 ) are discarded. Finally, the selected repairs are

analyzed to trace their origins. All chosen repairs ;1 and ;3 are found

to originate from the cleaner >23. As a result, the weight of the �nal

cleaning block in �! is updated to prioritize >23 in future iterations.

4.3.4 Validity of the Cleaning Objective Function. We discuss the
validity of the cleaning objective proposed in this paper, namely
the e�ectiveness of the cleaning operations executed with respect
to the objective function & , in Theorem 4.3.

Theorem 4.3 (Consistency of & with Data �ality Im-

provement (CQD)). The cleaning work�ow �! generated by Uni-

Clean, when minimizing & , ensures a monotonic reduction in the
expected number of data errors across work�ow levels.

Proof. Assume the following for each cleaner> = [Detect, 5 ] ∈

$? : (A1) Probabilistic coverage. Every erroneous cell is detectable
by at least one cleaner > ∈ $? once its source attributes �( are cor-
rect, and E[Detect> (C) | �( correct] > X , for some X > 0. (A2) Re-
liable repair in expectation. If �( is correct, the expected repair

Algorithm 4: Iterative Cleaning Workflow (ICW)

Input: Input: Dataset � , Cleaner Set$?

Output: Cleaned Data � ′ , Cleaner Work�ow�!′

1 (�,�!) ← CleanerAssociation(�,$? )// Algorithm 1

2 , ← InitializeWeights(�!) , Operations← ∅

3 foreach Cleaning Block�ğ ∈ �! do

4 (ğ ,�alityğ , errorĪ [8 ] ← CoreSet(�,�ğ )// Algorithm 2

5 �ğ ← DataPartition((ğ ,�ğ )// Algorithm 3

6 CandFixes← GenerateFixes(�ğ ,�ğ ,&D0;8C~ğ , errorĂ [8 ] )

7 OptimalFixes← FixSearch(CandFixes,, [8 ],�ğ , �ğ )

8 if OptimalFixes ≠ ∅ then

9 � ← ApplyFixes(�,OptimalFixes)

10 Operations← Operations ∪ OptimalFixes

11 else

12 break;

13 , ← UpdateWeights(, [8 ],OptimalFixes)

14 if NoFurtherFixes(�!,� ) then

15 break;

16 foreach Cleaning Block�ğ ∈ �! do

17 Sort the cleaners in�ğ by, [8 ] in descending order

18 return �,�!

output 5 (�( ) is close to the true value�
∗
)
, i.e., E[Loss(5 (�( ), �

∗
)
)]

f n , for a small n > 0. (A3) Topological execution. Cleaners are
applied level by level according to the attribute dependency order.
We assume that all �rst-layer attributes that do not depend on other
attributes (i.e., primary key attributes in �) are initially correct.

We then analyze how the expected number of remaining errors
evolves across work�ow levels. At level 8 , we express the total
expected errors as:

Num(8 )error =
∑

>∈$?

∑

C ∈�

Detect> (C | �( is correct at level 8).

This term represents the cumulative detection scores for tuples
whose source attributes �( have been correctly repaired by level 8 .
Under assumptions (A1)–(A3), each repair at level 8 strictly reduces
the number of detectable errors in subsequent levels. In particular,
for any cleaner > 9 ∈ level8 (8 g 2), its dependent attributes �( Ġ

have already been repaired by cleaners in level8−1 or earlier. Thus,
we have

E[Num(8 )error] f E[Num
(8−1)
error ],

with the inequality being strict unless no �xable errors remain
at that stage. This ensures the global error trend decreases as the
cleaning work�ow progresses.

Consider the objective function & in Section 3.2, whereF> > 0

is the cleaner-speci�c weight. Since Detect> (C) approximates the
probability that C is erroneous under cleaner > , and & aggregates

these scores across �!, we have E[&] ∝ E[Num(: )error], implying
that minimizing & (�!) is equivalent to minimizing the expected
number of remaining data errors.

Therefore, minimizing & over �! guarantees a monotonic im-

provement in expected data quality across levels. Note that this mono-
tonicity holds in expectation. Individual tuple errors may �uctuate,
but the global error trend decreases consistently. □

4125



5 EXPERIMENTAL EVALUATION
5.1 Experimental settings
Datasets. We evaluated our approach on six standard data clean-
ing benchmark datasets and one large enterprise dataset (Table 2).
These datasets exhibit real-world error patterns including missing
values (MV) [46], typo outliers (T) [31, 44], attribute dependency vi-
olations (VAD) [36], and format inconsistencies (FI) [6].C-Rate and
R-Rate denote cell-level and record-level error rates respectively.

Table 2: Summary of datasets.
Datasets #row #col C-Rate,% R-Rate, % Error Types

Hospital 1,000 19 2.67 40.70 T, VAD
Flights 2,376 7 34.51 80.13 MV, FI, VAD
Beers 2,410 11 13.93 100.00 MV, FI, VAD

Rayyan 1,000 11 9.03 78.40 MV, T, FI, VAD
Tax 200,000 15 0.10 1.46 T, FI, VAD

Soccer 200,000 10 1.56 15.64 T, VAD
Commercial 40,000,000 107 6.76 84.43 MV, T, VAD

Comparison Methods. Besides our UniClean, we evaluate �ve
mainstream systems: Holistic, BigDansing, Horizon, Baran, and
HoloClean. These cover the �ve cleaning strategies in Section 2
and are summarised in Table 3. All baselines are executed with their
o�cial open-source implementations and default hyper-parameters.
We prepare each system with the necessary pre-con�gurations (e.g.,
various rules and ground-truth labels GT) as required.
Metrics. Five kinds of metrics are used to evaluate the cleaning per-

formance: (1) % =
#correctRepCells

#RepCells represents the ratio of correctly

modi�ed errors to the total number of repairs, ' =
#correctRepCells

#ErrCells
denotes the ratio of correctly modi�ed errors to the total num-
ber of errors, �1 =

2%'
%+' . (2) Hybrid Distance (��)[43] quanti-

�es the discrepancy between repaired and ground-truth values
by integrating structured and unstructured attribute di�erences:
�� = F1 · MSE + F2 · Jac_dis, where MSE measures numerical
deviation and Jac_dis captures categorical/textual divergence. Un-
less otherwise speci�ed, we setF1 = F2 = 0.5 to ensure balanced
treatment across attribute types. (3) Error-Reduction Rate (EDR)
[43] measures the reduction of errors from a cell perspective. A
cell is counted as correct only when its post-clean value exactly
matches the ground truth; partial �xes are still regarded as errors.
In addition, we propose two novel metrics speci�cally for evalu-
ating mixed-error cleaning problems: (4) Record Error Reduction

Rate ('��' =
disĚ2ę−disĨ2ę

disĚ2ę
), where dis322 is the distance between

dirty data and clean data, and disA22 is the distance between re-
paired and clean data. Di�erent from the cell-level EDR, where each
cell is independently evaluated, REDR assesses consistency at the
record level: any remaining error in a single cell makes the entire
record unusable. REDR highlights improvements in the number
of completely error-free records, which is crucial for downstream
tasks (e.g., ML model training) that require fully consistent inputs.

(5) Cleaning Time per 100 Records (s)
(

�)' =
Time (s)
#Records

)

evaluates
cleaning e�ciency, expressed as the processing time per hundred
records, enabling an intuitive comparison across data scales.
Experimental reproducibility. UniClean is executed with three

explicit inputs: (1) Dirty data � , (2) Optional rule �les, and (3)
Cleaners. Our public Cleaner Library contains a total of 73 uni�ed
cleaners, composed as follows:

#Cleaners = (8 + 6)
︸ˉ̄︷︷ˉ̄︸

Base Cleaners

× 5
︸︷︷︸

Knowledge

+ 3
︸︷︷︸

Cost Function

= 73 types (3)

Table 3: Summary of comparison data cleaning methods.
No. Methods Strategies Target Error Types Precon�g

1 Holistic [8] 1 VAD DC
2 BigDansing [35] 1 VAD DC
3 Horizon [48] 1 VAD FD
4 Baran [41] 2 3 T, FI GT
5 HoloClean [47] 1 2 4 MV, FI, VAD DC
6 UniClean (Ours) 1 2 3 5 MV, T, FI, VAD FD,RE

The base cleaners include 8 row-distribution-based cleaners (e.g.,
Date, Float, Pattern) and 6 column-rule-based cleaners (e.g., CFD,
DC). These are optionally enhanced with 5 knowledge modules such
as DictValue and EditRule, and evaluated using 3 cost models
including Jaccard and EditDistance. All datasets, cleaners, rules,
injection scripts, and execution logs are available at our GitHub.
Implementation. We run experiments under macOS (M2, 16GB

RAM), Linux Ubuntu 18.04.6 LTS (Intel Xeon Silver 4210R CPU, 40
cores, 500GB RAM). Note that we also implement a visualization
interface for UniClean. We note that UniClean’s demo version is
recently accepted in [16], and the video is available at [17].

5.2 Performance evaluation on native errors

We evaluate the adaptive cleaning capabilities on datasets with
native errors, as reported in Table 4. Due to the inability of many
baselines to complete within 24 hours on the large-scale Tax and
Soccer datasets, we report the results for each algorithm on a
relatively extreme data volume. The ranking of each method on
each metric is indicated by circles following the speci�c scores.

Table 4: Overall performance comparison on datasets.
Datasets Algorithms F1 Score ↑ EDR ↑ HD ³ REDR ↑ CTR(s) ³

Hospital

UniClean 0.8847 1© 0.7839 1© 0.0521 1© 0.7543 1© 10.8115 2©
Horizon 0.5841 5© 0.0570 4© 0.0974 2© 0.0270 5© 0.3245 1©

Baran 0.5753 6© 0.4165 3© 0.1304 5© 0.3612 3© 43.1077 5©
HoloClean 0.6262 2© 0.4558 2© 0.1523 6© 0.4324 2© 15.0942 3©
BigDansing 0.6050 4© -0.0766 6© 0.1239 4© 0.0221 6© 23.2969 4©

Holistic 0.6080 3© -0.0236 5© 0.1157 3© 0.0442 4© 105.3257 6©

Flights

UniClean 0.6537 1© 0.5175 1© 0.0953 1© 0.1129 1© 3.5603 3©
Horizon 0.4049 5© 0.1148 4© 0.1782 3© -0.1534 6© 1.4109 1©

Baran 0.6278 2© 0.4478 2© 0.1231 2© 0.0326 3© 19.3508 4©
HoloClean 0.4763 3© 0.3508 3© 0.2018 6© 0.0604 2© 1.9327 2©
BigDansing 0.3870 6© -0.1382 6© 0.1999 5© -0.0693 5© 2694.6635 6©

Holistic 0.4067 4© -0.1191 5© 0.1944 4© -0.0636 4© 231.8536 5©

Beers

UniClean 0.8373 1© 0.8329 1© 0.0306 1© 0.7730 1© 1.2966 2©
Horizon 0.1051 3© 0.0027 3© 0.0794 3© 0.0000 3© 1.4270 3©
Baran 0.7976 2© 0.7868 2© 0.0538 2© 0.7224 2© 24.7956 5©

HoloClean 0.0535 6© -0.1704 6© 0.0942 6© 0.0000 3© 9.6334 4©
BigDansing 0.0940 4© -0.0104 4© 0.0822 4© 0.0000 3© 1.2669 1©

Holistic 0.0939 5© -0.0113 5© 0.0823 5© 0.0000 3© 65.4283 6©

Rayyan

UniClean 0.9213 1© 0.9005 1© 0.0078 1© 0.8827 1© 5.2378 2©
Horizon 0.0091 3© -0.5281 3© 0.0589 3© -0.1918 3© 2.3133 1©

Baran 0.2983 2© 0.1757 2© 0.0458 2© 0.1686 2© 27.3773 4©
HoloClean 0.0088 4© -1.9204 5© 0.1070 6© -0.2258 6© 10.8541 3©
BigDansing 0.0000 6© -1.3667 4© 0.0688 4© -0.1699 5© 83.3452 5©

Holistic 0.0006 5© -2.0654 6© 0.0807 5© -0.1956 4© 2017.2680 6©

Tax

UniClean(200k) 0.5011 1© 0.1005 1© 0.0018 2© 0.4250 1© 25.1793 3©
Horizon(10k) 0.0073 5© -87.5904 6© 0.0943 6© -57.1333 6© 11.1435 1©

Baran(10k) 0.0288 4© 0.0181 2© 0.0012 1© 0.0182 2© 38.0591 4©
HoloClean(10k) 0.0000 6© -0.6687 3© 0.0057 3© -0.6545 5© 12.4377 2©
BigDansing(10k) 0.0855 3© -1.2640 5© 0.0144 4© -0.0271 4© 103.8026 5©

Holistic(10k) 0.0876 2© -1.2427 4© 0.0241 5© -0.0353 3© 574.0921 6©

Soccer

UniClean(200k) 0.5341 1© 0.3301 1© 0.0354 2© 0.3442 1© 0.0343 1©

Horizon(200k) 0.3338 3© -2.9908 6© 0.0443 4© -2.9908 6© 0.1834 2©
Baran(10k) 0.3276 2© 0.2338 2© 0.0071 1© 0.2338 2© 23.7848 3©

HoloClean(10k) N/A 0.0000 3© 0.0135 3© 0.0000 3© 2.8439 2©
BigDansing(6k) 0.4121 4© -0.0858 4© 0.0509 5© -0.0133 4© 973.3974 4©

Holistic(6k) 0.4121 5© -0.0858 5© 0.0504 6© -0.0133 5© 230.0340 5©

Summary. Table 4 shows thatUniClean achieves the best cleaning
e�ectiveness in most cases and demonstrates superior e�ciency.
• Comprehensive data quality improvement. UniClean e�ec-
tively addresses mixed errors in real-world data, consistently out-
performing state-of-the-art baselines across both F1 and REDR. In
particular, REDR re�ects a more realistic evaluation of record-level
usability, which better aligns with the needs of data management
and downstream analysis tasks than traditional cell-level metrics.
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(b) Performance comparison of methods on three datasets.
Figure 4: Experiments under 8 di�erent error injection ratios with mixed error types.

UniClean achieves over 40% REDR improvement compared to the
best-performing baselines on all datasets except Beers, indicating
its superior capability in enhancing holistic record correctness.
• Large-scale data processing capability. UniClean demon-
strates strong scalability by e�ciently cleaning large datasets such
as Tax and Soccer, processing hundreds of thousands of records
within hours without truncation. It achieves REDR and F1 scores
exceeding 0.3 and 0.5, respectively, substantially outperforming
most baselines, which are typically limited to thousands of records
and prone to higher error rates.

We note that our reproduced baseline results align with a re-
cent study [43]. Scores in original basline papers often rely on
per-dataset hyperparameter tuning, and this limits comparability
under a uni�ed, fully reproducible evaluation protocol.

5.3 Experiments for mixed error injection

To assess the robustness of cleaning methods under diverse error
patterns, we inject multiple error types into real-world datasets
using Bart [4]. Following an attribute-level independent injection
strategy, each non-key attribute receives each error typewith a �xed
probability A4 ∈ [0.25%, 2%] per cell. The expected number of erro-
neous cells is< ·= ·: · A4 , where< is the number of attributes, = the
number of records, and : the number of error types. As = increases,
errors tend to occur on distinct tuples, yielding an approximate up-
per bound for the record-level error rate: RecordErrorRate ≈< ·: ·A4 .
As illustrated in Figure 4a, the resulting record-level error rates
range from 8% to 30% across datasets, exceeding the native error
levels and re�ecting realistic yet challenging dirty data scenarios.
Summary. Datasets with more attributes and constraints are more
susceptible to quality degradation under error injection, due to
increased opportunities for error propagation and rule violations.
Record-level error rates escalate more rapidly and reach higher
levels than cell-level rates, as a single erroneous cell can compro-
mise an entire record. This disparity underscores the compounding
e�ect of inter-attribute dependencies, where errors in one �eld can
cascade through related attributes, amplifying their impact on data
integrity and usability.

5.4 Evaluation under Varying Parameters

5.4.1 Performance with varying error rates. Figure 4b compares all
methods across 8 error injection rates, and Table 5 provides detailed
results for our proposed REDR and CTR metrics.

Summary. UniClean demonstrates stable and e�ective perfor-
mance across diverse error modes, consistently outperforming base-
lines whose cleaning quality degrades signi�cantly as error rates
increase. Its dependency-graph topological scheduling and block-
wise repair guarantee a monotone global-error reduction (Theorem
4.3), and the learned work�ows can be directly reused across di�er-
ent error distributions without retraining, achieving strong trans-
ferability. In scalability, UniClean e�ciently processes 106–107

tuples within hours, whereas baseline systems often fail beyond
10K–20K records. Although UniClean may not always achieve
the fastest CTR on small datasets, faster baselines typically su�er
from much higher residual errors, as re�ected by their signi�cantly
worse EDR and REDR scores. In most cases, UniClean surpasses
the best baseline by over 20% in overall cleaning quality, and con-
sistently achieves the best REDR across all datasets and error rates,
demonstrating superior stability and robustness.

5.4.2 Ablation study on cleaning preparation strategy. To assess
cleaning preparation impacts in UniClean, two experiments are
conducted: (8) Small-scale data. Four datasets (Hospital, Flights,
Beers, Rayyan) are tested without preparation strategies (Section
4.2), using baseline attribute partitioning and direct repairs (Fig. 5a).
(88) Large-Scale data. Public datasets are scaled to 1M records, with
additional tests on a 40M-record commercial dataset (Table 6).
Summary. Figure 5a shows that, without preparation strategies,
the repair operation generation and selection process substantially
increase the search space, leading to redundant operations, espe-
cially in complex datasets like Rayyan. UniClean achieves hour-
level cleaning speeds on expanded datasets (millions of records),
with under 10% performance deviation compared to small datasets.
On commercial data with tens of millions of records, UniClean
leverages multiple cleaners to complete the cleaning tasks within
hours, ful�lling large-scale enterprise processing demands.

5.4.3 Ablation study on cleaning workflow optimization. The cleaner
execution order is generated based on the original errors by Uni-

Clean and applied to all datasets with varying error ratios. As
a comparison, cleaners were executed independently in a greedy
order on the same dataset. The results are shown in Figure 5b.
Summary. UniClean’s optimized cleaning order e�ectively co-
ordinates dependencies among cleaners, signi�cantly reducing re-
dundant repairs and con�icting operations. Results align with the
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Table 5: Performance comparison across our proposed metrics under 8 error injection ratios on real-world datasets.

Datasets Methods
REDR ↑ CTR(s/100 Records) ³

0.25% 0.5% 0.75% 1% 1.25% 1.5% 1.75% 2% 0.25% 0.5% 0.75% 1% 1.25% 1.5% 1.75% 2%

Hospital

UniClean 0.75 0.88 0.91 0.93 0.79 0.77 0.84 0.81 14.98 15.25 13.24 13.80 14.00 13.41 16.13 15.91
Horizon -0.01 -0.35 -0.03 0.40 0.42 -0.14 0.09 0.15 0.25 0.25 0.25 0.25 0.25 0.26 0.26 0.26

Baran 0.06 0.00 0.28 0.33 0.26 0.47 0.44 0.34 33.56 41.65 40.40 40.26 41.65 40.85 40.32 41.20
HoloClean 0.73 0.46 0.58 0.48 0.44 0.50 0.48 0.39 15.69 14.79 15.06 14.58 13.99 14.29 13.86 15.98
BigDansing -0.18 -0.08 -0.07 -0.01 -0.02 -0.01 -0.02 -0.00 22.10 32.45 24.63 23.13 34.72 29.10 32.67 29.70

Holistic -0.19 -0.14 -0.07 -0.04 -0.02 -0.01 -0.01 0.00 147.43 197.16 187.46 187.42 190.15 191.45 221.49 214.45

Flights

UniClean 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 2.51 2.60 2.83 2.87 3.11 2.48 2.54 2.50
Horizon -9.33 -5.73 -3.46 -2.45 -2.08 -1.60 -1.73 -1.16 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.15

Baran 0.26 0.36 0.63 0.36 0.72 0.46 0.70 0.36 11.01 12.19 12.48 12.19 12.17 12.34 12.28 12.80
HoloClean 0.82 0.71 0.69 0.71 0.76 0.73 0.76 0.74 3.51 3.47 3.41 3.50 3.17 3.29 3.04 3.00
BigDansing -1.60 -0.97 -0.60 -0.45 -0.36 -0.29 -0.27 -0.21 5.47 5.46 5.52 5.74 5.78 5.72 5.90 6.02

Holistic -1.60 -0.97 -0.60 -0.45 -0.38 -0.29 -0.27 -0.21 150.62 148.09 147.34 148.69 147.84 149.48 150.75 150.80

Beers

UniClean 0.35 0.39 0.55 0.57 0.58 0.66 0.65 0.64 2.32 2.32 2.19 3.08 2.66 2.57 2.63 2.72
Horizon -0.49 -0.43 -0.10 -0.08 -0.14 -0.01 -0.03 -0.03 1.35 1.39 1.37 1.39 1.40 1.41 1.48 1.44

Baran -0.07 -0.03 -0.10 0.04 -0.03 0.20 0.07 0.04 23.47 23.53 23.82 24.62 24.43 23.38 23.91 24.08
HoloClean -5.48 -4.18 -3.13 -2.35 -2.21 -1.71 -1.64 -1.45 9.16 8.92 8.85 8.70 8.69 8.86 8.57 8.55
BigDansing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.53 1.54 1.58 1.40 1.58 1.40 1.47 1.71

Holistic -0.14 -0.14 -0.11 -0.11 -0.08 -0.10 -0.09 -0.09 122.52 120.34 122.23 121.86 121.94 120.41 122.15 121.42

Rayyan

UniClean 0.29 0.25 0.13 0.14 0.10 0.22 0.13 0.10 2.27 2.34 3.18 4.83 8.20 9.43 4.47 4.60
Horizon -10.53 -7.54 -6.58 -5.29 -4.62 -4.18 -3.41 -3.16 0.35 0.36 0.36 0.36 0.30 0.37 0.33 0.36

Baran -0.18 -0.04 -0.01 0.01 -0.20 -0.70 0.02 -0.08 39.85 30.16 32.65 33.59 33.72 26.19 22.02 28.99
HoloClean -19.02 -13.63 -11.92 -9.77 -8.33 -7.64 -6.32 -5.92 9.81 9.98 9.43 11.29 9.71 9.95 11.42 12.15
BigDansing -47.27 -19.37 -14.67 -9.94 -9.09 -6.96 -5.58 -5.37 255.70 275.95 300.32 275.21 261.89 263.52 265.38 245.68

Holistic -46.67 -19.80 -14.78 -10.92 -8.92 -7.73 -6.13 -5.45 3062.12 2091.99 2778.68 2693.08 1892.64 1963.02 2430.18 2679.38

Tax

UniClean(200k) 0.66 0.69 0.70 0.71 0.69 0.70 0.76 0.72 1.43 1.98 0.72 0.68 0.72 0.78 1.77 0.97
Horizon(10k) -19.97 -10.11 -4.81 -4.67 -3.04 -3.28 -1.90 -2.25 12.48 13.13 12.42 13.12 12.89 12.51 13.14 12.43

Baran(10k) -0.16 -0.09 0.29 0.46 0.52 0.41 0.31 0.35 39.49 37.72 37.74 39.52 39.85 38.42 41.76 42.79
HoloClean(5k) 0.14 0.17 0.16 -0.01 0.20 0.19 -0.36 0.20 22.19 20.37 21.62 21.64 20.46 20.68 21.10 20.91
BigDansing(2k) -0.48 -0.25 -0.26 -0.15 -0.22 -0.15 -0.27 -0.17 5.35 5.37 54.29 193.82 267.31 188.78 65.16 167.46

Holistic(2k) -0.81 -0.33 -0.37 -0.31 -0.32 -0.22 -0.26 -0.26 25.53 25.32 26.26 25.64 25.44 25.73 25.37 25.55

Soccer

UniClean(200k) 0.94 0.90 0.92 0.90 0.84 0.81 0.79 0.77 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12
Horizon(200k) -18.15 -8.80 -5.79 -4.23 -3.26 -2.64 -2.20 -1.84 0.75 0.80 0.77 0.78 0.82 0.93 0.92 1.00

Baran(10k) 0.06 0.11 0.11 0.39 -0.09 0.30 0.13 0.11 24.63 24.77 24.31 25.04 25.08 25.09 25.10 25.69
HoloClean(5k) 0.26 0.34 0.46 0.49 0.56 0.51 0.55 0.59 5.76 5.36 4.82 4.82 3.95 4.47 4.37 4.60
BigDansing(2k) -0.11 -0.10 -0.03 -0.04 -0.02 -0.02 -0.05 -0.05 34.55 36.58 91.53 32.53 34.74 40.11 66.53 83.74

Holistic(2k) -0.09 -0.11 -0.04 -0.08 -0.09 -0.03 -0.08 -0.05 36.10 36.09 35.50 36.45 37.45 38.61 37.31 37.92

Table 6: Performance on scaled datasets with cleaning prepa-

ration strategies in the proposed UniClean.
Datasets F1 ↑ EDR ↑ REDR ↑ Time (hours)

Hospital (1M) 0.87 0.77 0.74 0.40
Flights (1M) 0.64 0.51 0.10 0.25
Beers (1M) 0.83 0.82 0.76 0.21
Rayyan (1M) 0.91 0.89 0.87 0.23
Tax (1M) 0.49 -0.04 0.41 3.50
Soccer (1M) 0.52 0.32 0.33 0.79
Commercial (40M) 0.84 0.70 0.77 3.10

S
F1

EDR

REDR

S

F1

EDR

REDR
S

F1

EDR

REDR

S

F1

EDR

REDR

20%

40%

60%

80%
>100%

With UniClean
Without UniClean
With UniClean
Without UniClean

(a) Evaluation of cleaning prepa-

ration on small datasets

SF1
REDR

EDR

S

F1

REDR

EDR

S

F1

REDR

EDR
S

F1 REDR EDR
S

F1

REDR

EDR

S

F1

REDR

EDR

S

F1
REDR

EDR

20%

40%

60%

80%

>100%

Hospital
Flights
Beers
Rayyan
Soccer
Commercial
Tax

Hospital
Flights
Beers
Rayyan
Soccer
Commercial
Tax

(b) Evaluation of cleaner execu-

tion work�ows on all datasets

Figure 5: Performance comparison before and after cleaning

strategy ablation.

simulation in Figure 1, i.e., compared to greedy strategies, Uni-
Clean generates more accurate repair operations (faster) while
avoiding error propagation (better performance). Importantly, the
work�ow optimised on the original error distribution retains over
80% of its original F1, EDR, and REDR across datasets with var-
ious increased error rates, whereas baseline systems require re-
training or full re-execution of the cleaning process to maintain

reasonable performance. This con�rms the transferability and ro-
bustness of UniClean’s cleaning work�ow compared to unordered
multi-cleaner strategies. In particular, on datasets with complex
dependency structures, UniClean improves F1, EDR, and REDR by
over 30%, while reducing the overall cleaning time for large-scale
datasets by more than half. By generating the optimal execution
order based on error distributions, UniClean ensures low-cost
migration to datasets with varying error versions.

6 CONCLUSION

This paper introduces UniClean, a system for large-scale mixed-
error cleaning through three integrated stages: uni�ed cleaner con-
struction, e�ciency-optimized preparation, and work�ow execu-
tion. It incorporates core-set extraction and quality-driven opti-
mizations to reduce computational costs while preserving clean-
ing e�cacy. Theoretical guarantees are provided for cleaner com-
pleteness, preparation independence, and objective function ef-
fectiveness. Experiments on real-world datasets show UniClean

outperforms state-of-the-art methods across metrics, achieving
>30% F1/EDR/REDR improvement on complex data with 1M+ tu-
ples, while completing cleaning within hours.
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