Enhancing Transaction Processing through Indirection Skipping

Riki Otaki Jun Hyuk Chang
University of Chicago University of Chicago
rotaki@uchicago.edu junhyukc@uchicago.edu

ABSTRACT

In modern database management systems (DBMS), data retrieval
typically requires traversing multiple layers—such as secondary
indexes, primary indexes, and buffer pools—which introduces sig-
nificant overhead and creates performance bottlenecks. In this pa-
per, we propose a novel method that minimizes this overhead by
establishing more direct access paths during data retrieval. Our ex-
perimental results demonstrate substantial efficiency gains across
various DBMS components, including secondary indexing and con-
currency control mechanisms. Specifically, we observe that imple-
menting direct access paths can boost the throughput of transaction
processing systems by up to 19.7x when executing the TPC-C-
like benchmark with 40 threads. Furthermore, our approach holds
promise for broader applications, potentially transforming data re-
trieval practices by enabling efficient handling of data movements
with minimal overhead.

PVLDB Reference Format:

Riki Otaki, Jun Hyuk Chang, Aaron J. Elmore, and Goetz Graefe.
Enhancing Transaction Processing through Indirection Skipping. PVLDB,
18(11): 4104 - 4116, 2025.

doi:10.14778/3749646.3749680

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/rotaki/LIPAH/tree/vldb2025.

1 INTRODUCTION

A well-known maxim in computer science attributed to David
Wheeler suggests that "all problems in computer science can be
solved by another level of indirection" [1]. DBMSs exemplify this
principle through decoupling physical storage from logical data re-
trieval [9, 10, 38]. However, the caveat "except for the problem of too
many layers of indirection" cautions against potential performance
drawbacks from overusing this technique. A DBMS internally em-
ploys multiple layers of indirection to organize the physical records.
Each indirection adds new functionality to the system, but also
introduces overhead to the data retrieval process. In this paper, we
explore strategies to minimize the performance penalties associated
with the indirection layers in the data retrieval processes within
DBMSs.

An indirection can be defined as a translation mechanism that
maps one address to another. There are multiple layers of indirec-
tion in the data retrieval process in a DBMS. Figure 1 illustrates

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
do0i:10.14778/3749646.3749680

4104

Aaron J. Elmore Goetz Graefe

University of Chicago Google
aelmore@cs.uchicago.edu goetzg@google.com
Buffer Pool

Transaction Page-to-Frame

Secondary Index

Primary Index
X

X

X

Frame ID

Secondary Key Primary Key Page 1D

Direct Access 1

Direct Access 2

Direct Access 3

Figure 1: Layers of Indirection in Data Retrieval — Pages con-
taining data records are accessed through secondary indexes, pri-
mary indexes, and the page-to-frame mapping in the buffer pool in
the DBMS. Note that although the diagram implies that the buffer
pool interaction occurs only at the end of the index traversal, in
practice each node access during the traversal results in a separate
invocation of the buffer pool manager. Points of contention are
marked with X. Direct accesses enable skipping of the indirection
layers.

these layers of indirection in the data retrieval process performed
by a transaction in a DBMS. As an example, a transaction might con-
sult a secondary index, which maps secondary keys to primary keys.
The primary index then maps primary keys to the addresses of the
pages containing the data records. When accessing the pages dur-
ing the traversal of the indexes, the buffer pool manager translates
those page IDs into frame IDs, locating the corresponding data in
memory. Each of these indirections is necessary to retrieve physical
objects using logical identifiers, since objects are often physically
organized in ways different from their logical usage. These indirec-
tion layers enable rapid access to target objects without full scans
of the data storage.

Although these indirections make data access faster, they do not
come for free. For example, with two five-level indexes, accessing a
record requires 10 page accesses and 10 page-to-frame mappings. A
transaction with 100 index accesses incurs 1, 000 page accesses and
1,000 mapping operations—significant overhead [20]. Additionally,
there are points of contention in the indirection layers. For example,
the root node of a B*-tree primary index will be accessed by all
record accesses. If the root node is protected by a reader-writer
latch, a cache-line invalidation due to the read-latch modifying the
latch word will impede scalability in multi-core systems [28, 29, 31].

Pointer swizzling [14] is one technique devised to reduce the
overhead of the indirection layer in the data retrieval process. This
technique has been explored in B*-tree indexes residing in the
buffer pool of the DBMS [18, 28, 32]. The key idea is to embed phys-
ical frame addresses or raw pointers of child pages in their parent
page of the B*-tree to directly access a child page without going

https://doi.org/10.14778/3749646.3749680
https://github.com/rotaki/LIPAH/tree/vldb2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749680
https://www.acm.org/publications/policies/artifact-review-and-badging-current

through the page-to-frame mapping in the buffer pool when it is in
memory. The page-to-frame mapping of the buffer pool is one of
the points with high contention in database systems with high con-
currency [18, 28]. With pointer swizzling, the contention is reduced
because the page-to-frame mapping is bypassed. A reference of a
page is implemented as a 64-bit union type which can store either a
logical page ID or a physical frame address. If a page moves to mem-
ory from disk, it is swizzled from the logical page ID to the physical
frame address. On the other hand, if the page moves to disk from
memory, the word is unswizzled from the physical frame address to
the logical page ID. Although this technique is effective in reducing
the overhead of the indirection layer, it is not easy to apply to many
systems. The primary challenge lies in invalidating the physical
frame address when the page is offloaded to disk. When evicting a
page from the buffer pool, all the physical frame addresses pointing
to the evicted page must be invalidated to prevent the use of the
stale physical frame addresses. This requires ownership tracking
of the references. Furthermore, before evicting the page, all the
physical frame addresses in the page must be invalidated. Due to
these complexities, it is difficult to incrementally adopt the pointer
swizzling technique and apply it to the existing systems. Strategies
for mitigating the overhead of this invalidation process have been
proposed, such as limiting the number of owners of the physical
frame addresses [18, 28] but it is still not easy to implement and
maintain.

In this paper, we generalize the idea of pointer swizzling to a
broader context within database systems, such as secondary in-
dexes and transaction read/write sets. Additionally, we simplify the
implementation of the pointer swizzling technique by only using
the physical address as a hint to locate the data record, while using
the logical ID as a fallback when the hint is no longer valid. This
is achieved by maintaining both the logical ID and the physical
address of the object as a reference to the object, which we call Log-
ical ID with Physical Address Hinting (LIPAH). Figure 1 shows the
applicability of LIPAH to the components of the database system.
Direct access 1 skips page-to-frame mapping in the buffer pool,
direct access 2 skips the primary index and the page-to-frame map-
ping, and direct access 3 skips the secondary index, primary index,
and the page-to-frame mapping. We believe that the applicability of
LIPAH is not limited to the database systems, but it can be applied
to many systems where objects dynamically change locations.

The main contributions of this paper are as follows:

e We demonstrate that indirection skipping demonstrated by
pointer swizzling can be generalized to a broader context
within database systems, such as secondary indexes and
transaction read/write sets.

We provide a general technique called Logical ID with Phys-
ical Address Hinting (LIPAH) to support indirection skip-
ping without eager invalidation of the physical addresses
of objects (introduced in our vision paper on a resource-
efficient DBMS where all temporary and persistent state
reside in paged structures [34]).

We illustrate concrete implementation techniques to sup-
port LIPAH effectively in concurrency control protocols in
transaction processing systems.

4105

e We evaluate the performance of LIPAH using TPC-C-like
benchmark [4] and show that LIPAH can improve the per-
formance of transaction processing systems, achieving up
to 19.7x throughput when executed with 40 threads.

2 BACKGROUND AND RELATED WORK

This section provides background information on how data is re-
trieved in a DBMS. Specifically, the section illustrates how data
is organized in on-disk systems, how data modifications are han-
dled in transaction processing, and how certain techniques in the
buffer pool manager can reduce contention and overhead in the
data retrieval process.

2.1 Retrieving Data in On-Disk DBMS

In on-disk systems, records are typically stored in pages stored
in files. There are several ways to organize the records in a file
such as a heap file, a sequential file, a hash partitioned file, a B*-
tree organized file [37]. Records are identified either by physical
addresses or by logical identifiers. A physical address typically
consists of a page ID and a slot ID in a page. With the physical
address, a record can be retrieved directly from a file. In contrast,
a logical identifier is independent of the physical organization of
the records. A logical identifier is either a system-generated unique
integer or a schema-defined primary key. With the logical identifier,
records are retrieved through an indirection layer that maps the
logical identifier to the record such as a hash table or B -tree.

Logical identifiers are essential because a record’s physical ad-
dress can frequently change during updates, especially in OLTP
workloads. Frequent operations—insertions, updates, and deletions—
can force records to move due to page overflows, underflows, or data
reorganization (like hash re-partitioning or B*-tree re-balancing)
caused by page size limits. Similarly, in multi-version systems, up-
dating a record creates a new version that is stored separately
[11, 26, 35] (or through in-place updates that may change its lo-
cation due to size differences [8, 13, 33]) to support concurrency
control. In contrast, logical identifiers remain constant regardless
of these physical relocations.

Frequent updates to the physical addresses of records are prob-
lematic if secondary data structures reference them by their phys-
ical addresses. For example, in PostgreSQL, indexes point to the
physical address of a record, which is kept in a heap-organized
file. Updating a record normally requires inserting a new entry in
every index that references it [24, 35]. The Heap-Only Tuple (HOT)
optimization skips this step when (i) none of the modified columns
are indexed and (ii) the new tuple still fits on the same page as the
old one [6]. This is a significant overhead in the data retrieval pro-
cess. MySQL, on the other hand, stores records in a clustered index
(B*-tree organized file) with logical identifiers [2]. The secondary
indexes point to the logical identifiers of the records. Hence, the
secondary indexes do not need to be updated when the record is
updated unless the search key of the secondary index is modified.

Although using the logical identifiers reduces the overhead of
updating the secondary indexes, there are several advantages of us-
ing the physical addresses in the secondary indexes. First, accessing
by a physical address is faster than accessing by a logical identi-
fier. If secondary indexes point to the search key of the primary

index, then the search time will roughly be doubled because two
lookups are required to retrieve a record. On the other hand, if the
secondary index points to the physical address of the record, the
record can be retrieved directly from the file after the secondary
index lookup. Second, using physical addresses reduces the con-
tention in the indirection layer. If multiple secondary indexes point
to the same primary index, then the primary index will be a point
of contention that throttles the scalability of the system if a search
must be performed in the primary index for each secondary index
lookup. For example, if the primary index is a B*-tree, then the root
node of the B*-tree will be contended because all the lookups pass
through the root node. In contrast, secondary indexes that point to
the physical address of a record exhibit less centralized contention
because the records are distributed across multiple pages in a file.
Oracle uses a hybrid approach where secondary index entries
contain both the logical key and 10-byte physical address infor-
mation (file ID, page ID, slot ID) [19, 22]. If the physical address
is accurate, records are accessed directly. If stale due to record
movement, the logical key is used to consult the primary index.

2.2 Installing Updates To Shared Database

Concurrency control protocols that ensure serializability can be
categorized into two types based on how they install modifications
to records during transaction execution.

Immediate Modifications. The first type is called immediate
modification [37]. In this approach, during the execution of a trans-
action, records in a shared database are updated in-place (or, in
multi-version systems, a new version of a record is created in the
shared database). To avoid cascading aborts, the transaction must
protect the installed updates from being read or written to by other
transactions until the transaction commits.

To protect the installed updates, systems employ locks, transac-
tion IDs, timestamps, or a combination thereof [7, 11, 13, 23, 26, 33].
With locks, other transactions cannot read or write the record until
the transaction releases the lock. With transaction IDs, other trans-
actions must check the transaction status table to determine if the
record is produced by a committed transaction. With timestamps,
other transactions check the visibility of the record by comparing
the timestamp of the record with the timestamp of the transaction.
When aborting a transaction, the installed updates must be rolled
back. This is done by restoring the before-image of the record as the
latest version of the record. With the transaction ID, the system may
simply mark the transaction as aborted in the transaction status
table so that other transactions can ignore the updates. The actual
removal of the installed updates can be done eagerly right after the
transaction aborts, or lazily during the next access to the record, if
the system maintains the old versions of the record accessible in
the shared database.

Deferred Modifications. The second category installs updates
only after the serial order of the transactions is determined. This is
called deferred modifications [37]. Deferred modifications are often
used in single-version optimistic concurrency control protocols
[21, 25, 40, 41] but can also be used in pessimistic and multi-version
systems [30]. In the optimistic approach, the transaction stores
the updates in a private workspace until the transaction commits.
The transaction validates its read and write set during the commit

4106

phase. If the validation is successful, the transaction will install the
updates to the records in the shared database. If the validation fails,
the transaction aborts. In this approach, aborting transactions does
not require rolling back because the updates are not installed to the
shared database.

With deferred modifications, a read-modify-write transaction
will access a record at least twice during the transaction processing.
The first access will be during the execution phase to read the record,
to check its existence, or to verify its non-existence of the record.
The second access will be after the commit phase to actually install
the updates. In in-memory database systems, second access is often
done through a record pointer kept in the private workspace of the
transaction [21, 40, 41]. Hence, the second access is fast. In on-disk
systems, the second access cannot be done through a record pointer
because the record might have moved to a different location due
to memory-disk swapping or page reorganizations [25]. Records
are accessed through a logical key which goes through the index
structure to locate the record, which may incur additional disk I/O
by the buffer pool manager. Hence, many on-disk systems employ
the first approach of immediate modifications to avoid a second
disk access [7]. Note that some in-memory immediate modification
systems also require accessing the record twice if concurrency
control primitives such as locks are co-located with the record
representation in the shared database [15, 36].

2.3 Reducing Contention In Buffer Pool

The buffer pool manager caches frequently accessed pages in mem-
ory to reduce disk overhead in a data retrieval process. The buffer
pool is implemented as a fully associative cache where a page can
be placed anywhere in a set of page frames. Therefore, the buffer
pool manager must have a mechanism to locate a page in the buffer
pool. This is typically done by maintaining a page-to-frame map-
ping table that maps a page ID to a frame ID in memory [12]. When
a page is requested, the buffer pool manager consults the mapping
table to locate a page in the buffer pool. If the page is not in the
buffer pool, the buffer pool manager must load it from the disk.
The page-to-frame mapping table is a point of contention and
thus a bottleneck in scaling the system [18, 28]. The mapping table
must ensure that no two pages are mapped to the same frame
and that no page is mapped to more than one frame. Latches are
often used to ensure the consistency of the mapping table when
multiple threads insert or remove an entry from the table [3]. This
limits the scalability of the system. To address this problem, several
techniques have been proposed.
Pointer Swizzling. The idea of pointer swizzling in the buffer pool
is to use frame pointers to directly access a page in the buffer pool
without consulting the page-to-frame mapping table [18, 28, 32].
A page reference is implemented using a union type that stores
either a logical page ID or a physical frame address. The reference is
swizzled to the frame address when a page is loaded into the buffer
pool and un-swizzled to the page ID when a page is evicted from the
buffer pool. If all pages are in memory, pages are accessed with zero
overhead from the mapping table because physical addresses enable
direct access to the pages. However, careful management of page
references is required when evicting a page from the buffer pool.
For example, when evicting a page, the buffer pool manager must

identify all the owners of the page reference with a physical frame
address, and it must un-swizzle them before evicting it in order
to avoid dangling pointers. Additionally, the buffer pool manager
must ensure that frame pointers do not get written to disk. Thus,
un-swizzling physical pointers residing in the evicting page is also
necessary. This increases complexity in the buffer pool manage-
ment. Consequently, past research has limited the applicability of
pointer swizzling to data structures that do not have more than
one incoming reference to a page [18, 28]. Hence, data structures
with intricate pointer dependencies, such as graphs and B*-trees
with sibling pointers, secondary indexes with pointers to primary
index pages, are not supported because they make it difficult to
determine which page to evict first.

Virtual-Memory Assisted Buffer Management. vmcache is an
approach to reduce the overhead of converting the page ID to the
physical frame pointer by eliminating the page-to-frame mapping
table entirely [27]. The page-to-frame mapping table in the con-
ventional buffer pool manager serves two purposes: to track which
pages are in memory and to locate a frame of a page. To keep track
of which pages are in memory, vimcache uses an array of 64-bit
words with each word representing the status of a page on the
underlying storage device. The word is not only used to determine
whether the corresponding page is in memory or on disk but also
for latching the page. To remove the necessity for finding the frame
of a page, vimcache uses a preallocated virtual memory address
that is initialized with the same size as the storage device. This
virtual memory address is mapped one-to-one with the underlying
storage device, which eliminates the need to map the page ID to
the frame address. The buffer pool manager reads and writes pages
to and from the pre-determined virtual memory addresses to serve
the page requests and evictions. By employing these techniques,
vmcache removes the page-to-frame mapping table entirely and
reduces the overhead of the buffer pool management.

3 INDIRECTION SKIPPING WITH LIPAH

In our earlier vision paper on building a resource-efficient DBMS
fully based on paged memory, including query operator state [34],
we introduced the concept of Logical ID with Physical Address
Hinting (LIPAH) as a novel approach to reduce the contention
and overhead in buffer pool management. In that paper, we dis-
cussed how using a pair—a logical identifier coupled with a physical
address—can improve data retrieval efficiency compared to tradi-
tional pointer swizzling techniques. Building on that vision, this
section provides a detailed discussion of LIPAH and its applications
not only in buffer pool management but also in secondary indexes
and transaction read/write sets.

3.1 Buffer Pool Management

LIPAH reduces contention in the buffer pool manager [34] by using
a “fat-pointer” to access a frame in the buffer pool. The fat-pointer
here is a pair of page ID (logical identifier) and a frame ID (phys-
ical address hint). Using the pair, a frame is directly accessed by
its frame ID, and if it does not contain the expected page ID, the
mapping table is consulted. The logical key serves two purposes—to
validate the physical address hint and to locate the object when the
hint is invalid. Since the physical address is only a hint, it can be

4107

updated lazily. With pointer swizzling, ownership of pointers must
be tracked because they must be updated when the object transfers
between memory and disk. In contrast, LIPAH does not require
ownership tracking because the physical address can be stale—the
logical part of the pair can be used to locate the object when the
physical address is invalid. By using LIPAH, data structures with
complex pointer dependencies can be stored in the buffer pool,
which was difficult to achieve with pointer swizzling.

3.2 Secondary Indexes

Secondary indexes are used to locate records when records are
not necessarily physically organized by attribute keys used in a
search query. Secondary indexes map a secondary key to either
a physical address of a record or a key in a primary index. In the
case of the former, the physical addresses must be updated when
records are moved due to data modification or reorganization in
the primary index. In the case of the latter, updates to the primary
index do not always propagate to the secondary index but a lookup
in the primary index is required to locate a record after locating
the primary key in the secondary index.

Similar to Oracle’s database [19, 22] that uses a combination of a
logical key and a physical row ID to locate a record in the primary
index, we propose a middle ground between these two approaches
by storing both the logical ID and the physical address of a record in
the secondary index. We use the physical address as a hint to locate
a record first, and if the hint is not valid, the logical key is used to
locate the record in the primary index. Here, the physical address is
not limited to the page ID and slot ID but may also include the frame
ID in the buffer pool, which makes it different from the Oracle’s
approach. Moreover, we aim to identify the optimal combination
of these physical address components because there is a potential
trade-off between the size of the physical address and the speedup
of a record access gained by the hint.

In order to utilize LIPAH, a validation step must ensure that a
physical location hint is still valid. The validation process depends
on the elements included in the hint. For example, if the hint is a
page ID, validation must ensure that a record is still in the page.
If the frame ID is included in the hint, we can bypass the page-to-
frame mapping table in the buffer pool but the additional validation
must ensure that the hinted page is still in that frame. If the hint
consists of a page ID and a slot ID within the page, the validation
must ensure that a record is still in the slot. A detailed validation
process is described in Section 4.

If the validation fails, the search must be performed with the
logical key from the point where the stale hint was used. After
locating the record, the physical location hint is updated with the
new physical location of the record. Since the physical location is
only used as a hint, the hint can be updated lazily. For example, if
repairing the hint is expensive due to contention on a page, it can
be delayed until the contention is resolved.

3.3 Read and Write Sets in Transactions

In transaction processing systems, read and write sets of a transac-
tion are often maintained in the private workspace of the transac-
tion. They are used for validating operations and installing modifica-
tions in optimistic concurrency control protocols, and for cleaning

up the transaction after the transaction is finished such as releasing
locks, and rolling back the transaction in case of abort. In in-memory
systems, the read and write sets accommodate keys and pointers to
records that are accessed by the transaction as described in Section
2.2. During a transaction’s execution phase, a record is accessed by
a key and its pointer will be cached in the read and write set. When
the record needs to be accessed again during the validation phase
or during rollback, the pointer is used to access the record directly.
However, in on-disk systems, a memory pointer cannot be used to
locate the record because the pages that contain the record can be
moved from memory to disk due to eviction. Moreover, identifiers
such as page ID and slot ID cannot be used, since data reorganiza-
tion operations—such as page compaction, splits, and merges—can
alter the physical location of the record.

Similar to the approach we described for the secondary index in
the previous subsection, we propose to store the physical location
of a record in the read and write sets as a hint. If the hint does
not match the actual physical location of the record, indexes are
consulted to locate the record. The physical hint can potentially
bypass multiple page accesses when lookups for both secondary
and primary indexes are skipped. This also prevents transactions
from accessing the root node of the indexes (if the indexes are B*-
trees) multiple times, which can become a bottleneck in multi-core
systems [29, 31].

Concurrency control protocols without validation phases such
as 2PL can also benefit from the physical location hint in case of
abort. When a transaction with immediate modification is aborted,
the transaction must roll back its changes. The physical location
hint can be used to locate the records that were modified by the
transaction. Additionally, queries such as SELECT ... FOR UPDATE,
which use a read-modify-write pattern, can naturally benefit from
the physical location hint because the record must be located again
during the update phase after the read phase, eliminating redundant
index traversals.

4 IMPLEMENTATION DETAILS

In this section, we describe the implementation of LIPAH—from the
buffer pool at the system’s foundation to its use in index structures
(e.g., trees and hash tables) and integration into transaction process-
ing. Notably, the buffer pool manager and index structures share
key similarities. Both store objects accessible via logical identifiers
(page IDs for the buffer pool, keys for indexes) and offer a conceptu-
ally similar Get function. This function not only takes in the logical
key but also an optional physical address hint to bypass standard
lookup steps (e.g., the page-to-frame mapping or tree traversal). If
the hint is invalid, the system retrieves the object using the logical
key and updates the hint with the current physical location.

4.1 Buffer Pool Manager

We implement a standard buffer pool with a fixed number of frames.
Each frame contains a fixed size page and in-memory metadata
such as a dirty flag, a page ID, and a frame latch. The buffer pool
is essentially a fully associative cache of pages. Hence, in order to
locate a frame that contains a page, a hash table is maintained that
maps a page ID to a frame ID.

4108

Data Types and Addressable Space. Page and frame IDs are
32-bit unsigned integers; with 16 KiB pages this yields 64 TiB of
addressable space per ID. Because a page ID is an offset within its
file, a single file is capped at the same 64 TiB. To grow beyond that
limit we add a 16-bit container ID that maps to a file, so an on-disk
block is uniquely identified by the pair of container ID and page ID.
Because every index structure keeps its container ID in a metadata
page, embedded physical-address hints do not need to store the
container ID.

Applying LIPAH to Paged Data Structures. A page-based data
structure on the buffer pool is a good candidate for LIPAH. These
data structures often have a parent-child relationship between pages
and they are linked together by page IDs. For example, B*-tree
indexes and hash indexes with buckets implemented as a linked list
can benefit from LIPAH. By integrating a physical address, which
in this case is the frame ID of the page, into a page reference, we
can directly access a frame that potentially contains a desired page
without going through the page-to-frame mapping table. This is
especially useful when the working set fits in memory because
there will be zero accesses to the mapping table after the initial
access, thanks to the cached hint. When the working set does not fit
in memory, pages will be evicted from the buffer pool and the hint
will be naturally expired. During a traversal of the data structure, if
a child page is not found in the expected frame, the frame hint will
be repaired. Our system currently repairs the hint opportunistically
(i.e., when a write-latch can be acquired without waiting), which is
described in detail in Section 4.4.

4.2 Indexes

Foster B-tree. To evaluate LIPAH, we implement a Foster B-tree
[17], which is a variant of the write-optimized B*-tree [16]. This
design ensures that each node has only one incoming edge, allowing
for lazy reorganization. The key advantage is that leaf nodes can
split without updating their parent nodes. When a leaf node splits, it
creates a foster child page linked to the original leaf. This simplifies
transaction processing under LIPAH by avoiding the need to cache
an address of a parent node of the leaf in the transaction’s read/write
set, in case of a leaf page split when installing updates from the
transaction’s private workspace. The foster relationship is resolved
eventually by other transactions traversing the tree from the root
to the leaf, connecting the foster child to the parent node [17].
Although our prototype employs a Foster B-tree, LIPAH is not
limited to that structure. Indexes that lack Foster-style splits can
still use LIPAH by recording the parent page’s physical address in
the transaction’s read/write set whenever a split or merge might
occur. More broadly, LIPAH integrates cleanly with conventional
B*-trees, hash indexes, and other common index structures.

Node Page. Each node of a tree is a fixed-size page on a buffer pool
frame. A slotted page enhanced with metadata (e.g., tombstone,
height, node location, record count) is used to store records. Each
page incorporates fence keys that delineate a key range of a subtree
rooted at that page. Slots, arranged in sorted order by key, reference
index entries containing both the key and the corresponding record
in a contiguous memory region. To retrieve a record, a binary search
is conducted on the slots, after which the record is accessed from
the memory region. With slot IDs—implemented as 32-bit unsigned

Hints

A
r \

Primary key | Frame ID (4 bytes) | Page ID (4 bytes) | Slot ID (4 bytes)

Expected Frame of Hinted Page Expected Page and Slot of Record
(Page ID) in Buffer Pool (Primary key) in Primary Index

Figure 2: An Entry of a Secondary Index With Complete
Hints

integers—a slot can be directly accessed without a binary search.
Concurrent access to a node page is controlled by a frame-latch
implemented as a readers-writer lock.

Applying LIPAH to Secondary Indexes. An entry of a secondary
index with LIPAH is a pair consisting of a primary key and a combi-
nation of page ID, frame ID and slot ID of the record in the primary
index as depicted in Figure 2. Any element in the superset of the
(Page ID, Frame ID, Slot ID) can be used as a hint. However, using
the frame ID or slot ID as a hint is not useful without the page ID.
Therefore, hints for secondary index are limited to (Page ID) and
(Page ID, Frame ID) (Page ID, Slot ID), and (Page ID, Frame ID,
Slot ID). After traversing the secondary index, the primary key and
the hint are fetched. The hint is used to directly access the record
in the primary index. Different hints require different validations.

e Frame ID Validation. The frame ID hint is used to directly
access a frame, with the expectation that the frame contains
a page corresponding to the page ID hint. It is validated by
checking that the page ID in the frame matches the page
ID hint. Even though the frame ID validation succeeds, it
may get repaired when the page ID hint is pointing to an
incorrect page.

Page ID Validation. The page read using the page ID hint
is validated by checking whether (a) the page is not deleted
(i.e., connected to the tree), (b) the page is a leaf page, and
(c) the primary key is in the range of the page’s fence keys.
Additionally, we check that the primary key is not in the
range of the foster child, which is a necessary step for a
Foster B-tree.

Slot ID Validation. After running the frame and/or page
validation, the slot ID hint is used to directly access the slot
in the page. The slot is validated by checking whether the
number of slots in the page can accommodate that slot ID,
and whether the slot points to a record with the primary key.
If the page ID validation fails, the slot ID hint is disregarded,
given the low probability that the slot hint is correct when
the page hint is erroneous.

If the validation fails, the search is continued from where the hint
failed. For example, if the slot validation fails, the search begins on
the page which was found by the frame and page hints. The system
then opportunistically repairs the slot ID with the new location of
the record. As we show in Section 5.3, the slot ID hint is invalidated
frequently, so we disable it by default in our implementation. More
details on the use of hints in secondary indexes are provided in
Section 4.4.

4109

Preventing Accesses to Removed Pages. Reorganization opera-
tions, such as page merges, may remove a page referenced by the
hint from the tree. Accessing a removed page can yield incorrect
results; therefore, a tombstone bit is employed to invalidate the
page ID during validation if it is set. Since setting the tombstone
bit marks the page as dirty and causes write amplification, deleted
pages are instead tracked in an in-memory lock-free data struc-
ture that records their page and frame IDs. These pages are reused
when a new page is required, reducing write amplification. When
a deleted page is reused, its tombstone bit is reset, and it is repopu-
lated with new records and fence keys. Thus, if there is no overlap
between the old and new fence key ranges, outdated references are
invalidated during page ID validation, thereby preserving system
correctness.

4.3 Concurrency Control Protocols

We implement pessimistic concurrency control with deferred mod-
ification using two-phase locking. During transaction execution,
each accessed key is locked, and the locks are only released upon
transaction commit or abort. We adopt a NOWAIT strategy for lock
acquisition, which causes an immediate abort if the requested lock
is not available. An in-memory concurrent hash table maps each key
to its lock object. The lock object is a signed integer representing
the lock state.

Each transaction maintains a read set and a write set to track
both lock acquisition history and in-flight data modifications. In the
deferred modification approach, any changes made by a transaction
are written to a private workspace during its execution phase. The
transaction installs these changes into the shared database after all
locks are acquired and the commit is assured. This strategy avoids
rolling back partially installed changes on abort. To protect against
phantoms, we employ next-key locking. Before inserting a new
record, the transaction locks the next key, then locks the to-be-
inserted key. After installing the new record in the shared database,
the transaction unlocks the next key while keeping the newly in-
serted key locked until commit. This ensures that concurrent range
scans either include the new record entirely (post-commit) or not
at all (pre-insert), thereby preventing phantoms.

Potential Extensions. Although our current implementation fo-
cuses on deferred modification with locking, it is straightforward
to adapt the system for:

(1) Immediate Modification (Pessimistic). A transaction would
modify the shared database during its execution phase,
storing old values in its write set for rollback. This approach
ensures minimal commit overhead but necessitates undo
operations on abort or deadlock.

Optimistic Concurrency Control (Similar to Silo [40]). Each
record would carry a version number to track changes. A
transaction would gather read and write sets during execu-
tion, then lock its write set and validate all version numbers
before installing changes. A mismatch in any version would
trigger an abort and retry. Phantoms would be prevented
by page-level or range-based versioning.

@

4.4 Balancing Hint Benefits and Repair Costs

This section explains how each hint can become obsolete, weighs
the cost of refreshing it against the performance benefit, and sketches
an adaptive mechanism that throttles repairs during periods of high
churn.
Slot ID Hints (Tuple Position within a Leaf). Every insert,
delete, or in-place update inside the leaf shifts tuple offsets and
therefore immediately invalidates the hint. As Section 5.3 shows,
slot ID hints expire so frequently that the only benefit—skipping a
binary search in the leaf—is rarely worth the maintenance overhead.
Accordingly, our implementation disables slot ID hints by default.
Frame ID Hints (Buffer Pool Frame). A frame ID becomes stale
only when its page is evicted. While the working set fits in DRAM,
the hint remains valid; once the workload exceeds memory capacity,
the system is I/O-bound and an incorrect hint merely adds a single
in-memory lookup. We therefore refresh the hint opportunistically:
the frame is latched in exclusive mode to repair the hint only if
the latch can be acquired without waiting, and we do not set the
page’s dirty bit, because a frame hint is unlikely to survive the next
eviction anyway.
Page ID Hints (Page in the Primary Index). Page ID hints
survive evictions and break only on structural actions (splits and
merges), which are much rarer than evictions as shown in Sec-
tion 5.3. When the page latch is uncontended we correct the hint
and mark the page dirty so that the fix persists across future evic-
tions. Before following a page ID hint, the system first checks
whether the hinted leaf is memory resident; if it is not, we fall back
to a normal tree traversal. This check is based on the observation
that inner nodes of the primary index are typically stored in mem-
ory, as they are orders of magnitude fewer than leaves. Without
this check, a stale page ID could trigger an unnecessary I/O to fetch
the wrong leaf, negating the benefit of the hint.
Adaptive Repairing. A practical extension would monitor each
hint’s hit rate—e.g., in rolling ten-second windows—and suspend
opportunistic repairs when the hit rate drops below a threshold, as
happens during bulk loads or other high-churn phases. Although
we have not yet implemented this mechanism, it offers a lightweight
avenue to further reduce contention. More details on the cost of
repairing hints are provided in Section 5.4.

Taken together, these policies delineate when to initiate repairs
and illustrate how adaptive strategies can steer LIPAH under dy-
namic, skew-heavy, or rapidly evolving workloads.

5 EVALUATION

All experiments were conducted on a server equipped with dual-
socket Intel® Xeon® Silver 4116 CPUs. Each socket features 12
physical cores operating at a clock speed of 2.10 GHz, with hyper-
threading enabled (i.e., two threads per core) and 192 GB of RAM.
The external storage is an Intel 760p NVMe SSD rated at 340 kIOPS
on random-read and 275 KIOPS on random-write for 4 KiB blocks.
Pages are sized at 16 KiB. Thus, the theoretical maxima are 85
kIOPS on read and 69 kIOPS on write. We employ the io_uring
[39] interface with Direct I/O for all disk operations, ensuring that
the pages are not cached in the operating system’s page cache. For
the purpose of these experiments, the term "index" refers to a Foster
B-tree, regardless of whether it is a primary or secondary index.

4110

Additionally, unless specified, the key size is 10 bytes and the record
size is 100 bytes. The database system employed in our experiments
is implemented in Rust. Experiments are single-threaded except for
Sections 5.1 and 5.4. This evaluation seeks to address the following
research questions:

(1) Performance — How effective are hints in enhancing the
performance of transaction processing and index access?

(2) Robustness — How resilient are hints to modifications of
data? How do the hints perform under various data modifi-
cations?

(3) Overhead — What is the cost of repairing hints when
they are invalidated? What are the storage overheads of
maintaining hints?

5.1 Transaction Processing Performance

To evaluate the performance of LIPAH, we compare the perfor-
mance of transaction processing with and without hints. We use
the TPC-C benchmark [4], excluding the keying and thinking times,
for this evaluation. The TPC-C benchmark simulates an online
transaction processing (OLTP) workload, where multiple transac-
tions concurrently access the shared database. We ran two sets of
experiments: one with the entire database in memory and another
with a larger-than-memory dataset. For the in-memory experiment,
we varied the number of threads and warehouses from 1 to 40, and
recorded the average throughput of 60 seconds for each configu-
ration after a warm-up phase. The experiment was repeated three
times for each configuration. For the larger-than-memory experi-
ment, we used a dataset of 500 warehouses, which is approximately
80 GiB in size, and a buffer pool of 32 GiB. We used 40 threads to run
the benchmark, where each thread accesses a random warehouse.
We started with an empty buffer pool and measured the throughput
and IOPS for 200 seconds.

We use 2PL with deferred modification as a proxy for protocols
that access the shared database twice (read then write), such as
OCC. Both approaches write to a private workspace then apply
changes after acquiring locks (2PL) or validation (OCC). While some
OCC variants store versioning information in indexes for validation
[40, 41], we focus on the common case where each write requires
two index accesses, assuming read/write sets fit in memory. To
assess the impact of hints, we evaluated six distinct configurations:

(1) Baseline (Conventional): No hints are used; page-to-
frame look-ups are resolved via a concurrent hash table [5],
similar to the approach in PostgreSQL [3].

Buffer Pool (BP) Skipping: Frame ID hints bypass the
buffer pool’s page-to-frame mapping.

Index Skipping: Page ID hints bypass the traversal from
the index root to the target leaf.

Index + BP Skipping: Both Frame ID and Page ID hints
are enabled.

(5) vincache [27]: Pages are addressed directly through the
operating system’s page table, removing the application-
level indirection.

Index Skipping + vincache: LIPAH’s index-skipping ap-
plies to vmcache-based systems, as it is independent of
page-to-frame mapping. This novel combination skips root-
to-leaf traversal in large, frequently accessed indexes.

@
®)
4)

(6)

vmcache Index Skipping + vmcache

60

40

.
| Mt AR A, Lo 3
iy x'v‘,u v‘-‘/i\,ﬁh I\ ‘F o

kIOPS

A
I -
| TS ""‘“‘!"}\

20

Conventional === Index Skipping BP Skipping ~ -----
I) j

g_?zoo e e ' 240 j /
) =¥ g 30 Fuil
= 150 =
2 2
5 100 52
: :
- - SR, -
k= E10F
= 0 E

o —— 0

0 10 20 30 40 0 50 100 150 200 0 50 100 200
Number of Threads (= Warehouses) Seconds Seconds
Throughput (kTPS) Throughput (kTPS) KIOPS (16 KiB pages)

(a) In-Memory TPC-C — Fixed one warehouse
per thread.

(b) Larger-than-memory TPC-C — 500 warehouses ~ 80 GiB, 32 GiB buffer pool, 40 threads.
Warehouses chosen at random per thread.

Figure 3: TPC-C Experiments: (a) In-Memory and (b) Larger-than-Memory.

To isolate the impact of the indirection mechanism on perfor-

mance, we integrated vimcache into our own prototype so that all
other components remain identical (clock eviction, Foster B-tree
index [18], 2PL, io_uring [39] backend with Direct I/O and the
same TPC-C driver). Logging was disabled to isolate indirection
skipping performance.
In-Memory TPC-C Performance. Figure 3a shows the TPC-C
throughput under different hint configurations when the entire
database fits in memory. Overall, enabling skipping in the buffer
pool and the index improves the throughput by up to 19.7x com-
pared to the conventional buffer pool when the number of threads is
40. Due to hyperthreading, the scalability growth is reduced when
more than 24 threads are utilized. Although the index skipping re-
duces the cost of traversing the index tree, it provides little benefit
without the BP skipping. This shows that BP skipping plays a more
critical role in terms of scalability. It applies to every page access in
the buffer pool, where a single page-to-frame mapping for all pages
becomes a bottleneck. Once BP skipping is enabled, index skipping
can further enhance the throughput because it cuts down the num-
ber of page accesses required per transaction. Index + BP Skipping
outperforms plain vimcache by ~ 1.3X, as vimcache does not skip the
index traversal and thus incurs the overhead of traversing the index
tree from root to leaf. Adding our index-skipping optimization to
vmcache enhances the throughput by ~ 1.3%, confirming that our
technique is complementary to OS-level indirections.

For memory-resident transactional workloads, our results show
that LIPAH significantly improves performance through both BP
skipping and index skipping. Importantly, it achieves these gains
without requiring tracking of the ownership of the references,
which is a common challenge in pointer swizzling.
Larger-than-Memory TPC-C Performance. Figure 3b shows the
TPC-C transaction-processing throughput and IOPS for the larger-
than-memory experiment. All variants that avoid the page-to-frame
mapping—BP Skipping, Index + BP Skipping, vimcache, and Index
Skipping + vmcache—converge at roughly 53 kIOPS (~ 30 KTPS).
Although frame IDs are frequently invalidated by page evictions,
checking an invalid frame has little impact on throughput because
the workload is I/O-bound. Adding our index-skipping optimization

4111

to either BP Skipping or vmcache does not improve throughput,
as most internal nodes of the Foster B-tree remain in memory and
traversing from root to leaf costs far less than reading leaf pages
from the SSD. The benchmark defines two secondary indexes, on
the customer and order tables. We confirmed that the customer
secondary index experiences no page ID invalidations because the
customer table sees neither inserts nor deletes in TPC-C. The order
secondary index does see invalidations, caused by the NewOrder
transaction inserting new rows, which affects around 20% of all
rows accessed through the index. In contrast, variants that consult
the page-to-frame mapping on every page access (Conventional and
Index Skipping) cap throughput at 10-15 kIOPS: their transactional
throughput is limited by contention on the mapping table, as also
observed in the in-memory TPC-C experiment (Fig. 3a).

In summary, under memory pressure the system becomes I/O-

bound, and eliminating latch contention on the page-to-frame map-
ping table is essential to fully exploit SSD bandwidth. An invalid
frame hint has negligible impact because throughput is I/O-bound,
and an invalid page hint rarely matters because page-ID invali-
dations are infrequent even when insertions are common on the
primary index. The rate of hint invalidations is examined in more
detail in Section 5.3.
LIPAH vs vincache. LIPAH translates logical page IDs to physical
frame addresses entirely in user space, whereas vmcache relies on
the operating-system page table and thus removes one layer of
indirection. Each design choice has practical consequences:

o Portability and Operational Effort. Because vmcache
has a stronger dependency on OS page-table, large deploy-
ments may need to load or maintain the exmap kernel
module when page-table scalability limits are reached [27].
Installing and tracking such modules typically requires
administrative privileges and re-compilation after kernel
upgrades. LIPAH, by contrast, incurs no kernel changes: the
page table lives in user space and the buffer-pool pages are
never unmapped, so remote TLB shoot-downs are avoided.
This user-space approach can simplify adoption on man-
aged or cloud platforms where kernel extensions are diffi-
cult.

e Metadata Footprint. Both approaches keep per-page meta-
data (dirty bit, latch state, and so on), but the allocation
strategy differs. vmcache pre-allocates metadata for every
on-disk page, leading to a footprint proportional to disk
size; LIPAH allocates metadata only for frames that actually
reside in the buffer pool and therefore scales with buffer-
pool size.

In short, LIPAH sidesteps OS-level dependencies and keeps meta-
data proportional to the resident working set, whereas vimcache
offers direct address translation at the cost of tighter coupling to
the kernel and a larger metadata reservation. LIPAH is a viable so-
lution for eliminating the overhead of accessing the page-to-frame
mapping in the buffer pool, while also being more portable and
flexible than vmcache.

5.2 Secondary Index Performance

Lookup with Correct Hints. We evaluate the performance of
index lookups under different hint types. Here, we aim to under-
stand which types of hints are useful when the hints are all correct.
We constructed a primary index with 1, 000, 000 entries and a corre-
sponding secondary index with one-to-one correspondence. Here
and in the next experiment, the buffer pool was sized to hold both
the primary and secondary indexes.

The lookup performance was quantified by measuring the av-
erage time required to retrieve all keys from the secondary index
in a random order, without any updates to the primary index. A
warm-up phase preloaded the indexes into memory, after which
the experiment was performed 20 times to determine the average
lookup time for each hint configuration. Five different hint types
were evaluated: No-hint, (Page ID), (Page ID, Frame ID), (Page ID,
Slot ID), and (Page ID, Frame ID, Slot ID). The hints were stored
alongside the secondary index entries, pointing to records in the
primary index. Here, frame hints for root-to-leaf traversals of each
index were enabled by default (i.e, the internal nodes of the Fos-
ter B-trees were connected with the page and frame ID). Only the
information stored in the leaf nodes of the secondary index were
varied between the different hint configurations. All the hints are
initially set to the correct address and they do not change during
the measurement. We changed the size of the records in the primary
index to evaluate the effectiveness of the hints.

Figure 4a shows the lookup performance with different hint
types. The lookup time with complete hints ((Page ID, Frame ID,
Slot ID)) is the lowest configuration across all record sizes. In this
scenario, the lookup time remains nearly constant, irrespective
of the record size, as the organization of the primary index does
not influence the retrieval time. Comparing (Page ID, Slot ID) and
(Page ID, Frame ID), we can see that with small record sizes, the
slot hint is more effective than the frame hint, while with larger
record sizes, their performance differences diminish. This is because
with small record sizes, binary searching the records in the primary
index leaf page is expensive, and slot hints can reduce the overhead
of binary search. However, with larger record sizes, the overhead
of binary search is less significant, and the overhead of accessing
the page-to-frame mapping is more significant because the number
of pages active in the buffer pool increases. In the No-hint case, the
lookup time increases with the record size because primary index

4112

grows with the record size. From record size 500 to 1000, the level
of the tree increases from 3 to 4, adding one page access per lookup.
Although the overhead associated with the binary search in the
primary index leaf page diminishes as record size increases, the
total number of pages in the primary index grows, thereby elevating
the fill factor of its internal nodes. This increased fill factor, in turn,
raises the overhead of performing binary searches at the internal
nodes, ultimately prolonging the lookup time slightly in the No-hint
case as record size increases. Overall, these experiments show that
in the best case, LIPAH offers significant improvements to index
lookups when the hints are accurate.

Lookup with Stale Hints. The performance benefits of LIPAH
are predicated on the hints being correct. However, in practice,
hints may become stale as described in Section 4.4. Therefore, we
evaluate the performance of lookup operations in the secondary in-
dex where hints are intentionally rendered incorrect. Analogous to
the preceding experiment, both a primary index and a correspond-
ing secondary index were constructed, which contains 1, 000, 000
entries. Here, complete hints ((Page ID, Frame ID, Slot ID)) are
embedded within the leaf nodes of the secondary index. Prior to
executing the lookup operations, a predetermined percentage of the
hints was deliberately invalidated by subtracting 1 from the correct
hints. The aggregate time required to perform lookup operations
on all keys in a random order was recorded. Each key was accessed
only once during the experiment, thereby eliminating any potential
benefits from subsequent hint repair.

Figure 4b illustrates the lookup performance when utilizing stale
hints. As the proportion of stale hints increases, the overhead asso-
ciated with the lookup operation correspondingly rises. A compar-
ative analysis of page, frame, and slot hints reveals that the page
hint has the most significant impact on lookup performance. This
effect is attributed to the reduction in page accesses achieved by
bypassing the root-to-leaf traversals in the primary index; each
access to an internal node mandates a binary search within that
node. In contrast, a stale frame hint imposes minimal overhead
relative to the other hint types. Here, a single thread is employed,
thereby eliminating any contention within the buffer pool. The
overhead incurred by a stale frame hint is limited to a single lookup
operation on the page-to-frame mapping, which is computation-
ally inexpensive. Conversely, a stale slot hint introduces greater
overhead compared to a stale frame hint, as it necessitates a binary
search on the leaf node of the primary index. When all elements
of the hint are incorrect, the performance degradation is most pro-
nounced. In this scenario, the overall cost is primarily attributable
to the outdated page ID and frame ID. Notably, the cost associated
with the slot hint is subsumed under the cost of the stale page ID
because, in our implementation, if a stale page is detected, the slot
hint is disregarded, given the low probability that the slot hint is
correct when the page hint is erroneous. This experiment is de-
signed to show performance degradation, as the percentage of read
operations uses an invalid hint where any repair is not used in
the future. We believe that this case is extremely unlikely for most
workloads, but still demonstrates that the performance penalty is
graceful and does not dominate the operation cost.

5000 : ,
172} i H
& |
> 4000 —@— No hint
5
5 3000 -l Page
5 3 Page, Frame
o 2000 A Page, Slot
53
< 1000 —W¥— Page, Frame, Slot
]
= 0
0 2000 4000

Record Size (bytes)

(a) Lookup Latency with Different Hint Types Under Varying Record
Size — Varying the record size affects the overhead of binary search in the leaf
page of the primary index, number of pages in the page-to-frame mapping in
the buffer pool, and the fill factor of certain pages in the primary index.

5000 T

—_
172}
=
> 4000 —— No hint
5
5 3000 -B- Page
= Frame
—~ 2000
% &~ Slot
% 1000 —¥— Page, Frame, Slot
3
0

0 50 100
Number of Stale Hints (%)

(b) Lookup Latency with Complete Hints ((Page ID, Frame ID, Slot
ID)) Under Varying Number of Stale Hints. — The number of stale hints
is set before the lookup operations. Hints not indicated in the legend were
remained as correct.

Figure 4: Secondary Index Lookup Performance: (a) Correct Hints Under Varying Record Sizes and (b) Complete Hints Under

Increasing Staleness.

5.3 Robustness of Hints to Data Modifications

We now assess the robustness of each hint type in the presence
of various data modifications. Hints that remain stable despite in-
sertions, updates, and deletions are more likely to preserve their
performance benefits over time. To quantify this stability, we simu-
late data modifications within the primary index and subsequently
evaluate their impact on the hints stored in the secondary index. Ini-
tially, a primary index and a corresponding secondary index were
constructed with 1,000, 000 entries. Each secondary index entry
contained complete hints ((Page ID, Frame ID, Slot ID)) with no
stale hints, ensuring that all hints accurately referenced their corre-
sponding records in the primary index. To evaluate the robustness
of these hints under modifications to the primary index, a desig-
nated number of records were inserted, updated, and deleted from
both indexes, and the number of valid hints in the secondary index
was subsequently recorded. Specifically, for insertions, a percentage
of the original number of records was added to both indexes; for
updates, a percentage of the original records in the primary index
was modified to values ranging from 0 to twice the original size;
and for deletions, a percentage of the original records was removed
from both indexes. These operations induce splits and merges in
the primary index nodes that potentially invalidate some hints in
the secondary index.

For these experiments, we evaluate the hint hit ratio which is
defined as the number of valid hints divided by the total number
of entries in the secondary index. We ran the experiment in two
scenarios: (1) an in-memory scenario, where the buffer pool is large
enough to accommodate both the primary and secondary indexes,
and (2) a larger-than-memory scenario, where the buffer pool is
sized to fit only the initial primary and secondary indexes, causing
pages to be swapped in and out of memory as modifications occur.
It is worth noting that these experiments cause a high number of
invalidations due to the use of a primary tree index with a high
percentage of modifications.

In-Memory Scenario. Figures 5a and 5b show the hint hit ratio of
the secondary index under the aforementioned data modifications.
Here, frame hints do not become invalid, as all the pages reside in
memory and the frame contains the hinted page as pages are not
evicted. As the number of records inserted increases, the number of

valid page and slot hints decreases. When the insertion percentage
reaches 100% (i.e., the number of records is doubled in the primary
index), the number of valid page hints decreases by 35%. The number
of valid slot hints declines more rapidly than that of valid page hint.
This discrepancy arises because page hints become invalid only
when the primary index expands sufficiently to trigger a leaf page
split, whereas slot hints are invalidated upon the insertion of a new
record into a leaf page, which necessitates a reorganization of the
slot array to preserve sorted order.

An alternative approach could be to use the record’s offset from
the beginning of the page as the hint instead of its slot ID, render-
ing the hint less susceptible to invalidation. This approach sounds
viable, as the record’s offset remains stable even if the slot array
is modified due to insertions—except in cases where a page com-
paction or reorganization operation (e.g., a page merge or split)
occurs. However, employing the offset introduces a new challenge:
if an operation alters a record’s offset and another value subse-
quently occupies the old offset position, it becomes unsafe to read
the data at the offset speculatively. In such cases, the value at the
offset may appear to be valid, but it might correspond to an entirely
different data entry. We therefore do not consider this approach.

In terms of deletions, the number of valid page hints does not
drop until around 60% of the records are deleted. This is because
page merges are triggered lazily. As with insertions, the slot hints
are more susceptible to deletions than the page and frame hints.
Larger-than-Memory Scenario. Figure 5c presents the stability
of hints under insertions in a larger-than-memory scenario. The
experiment demonstrates that page hints remain robust under mod-
ifications, except when the primary index is significantly altered. In
contrast, slot hints are vulnerable to invalidation even with minimal
insertions, and frame hints become invalid when the working set
exceeds the buffer pool. Nonetheless, stale slot and frame hints
pose minimal issues since validation is performed in memory-slot
validation merely compares keys, while frame validation confirms
the presence of a page. The potential cost lies in repairing hints
after invalidation, and the primary consideration is the impact on
performance with modifications. We evaluate both next.

4113

—l- Page Frame —A— Slot
100 - - T 100 FEC T , .
3 — ‘! ‘\i\ ‘i\i .~,‘. -
s £ 50 \\ o 5E -
g ° i h\ § ; |
3 g o = op
= = i T B
a= T 40 : e 25 8
= \ = \ = Y
£ 20 \ £ 2 \ 1 o A‘A‘A‘AA‘L
"‘\A_._A A 0 40 80 100
. — kA A —A A A —A 0 ~ Ak A A A (1.00) (1.13) 127y (1.39) (1.52) (1.81)
0 20 40 60 80 100 0 20 40 60 80 100 Insertion (%)
Insertion (%) Deletion (%) (Total Pages / Total Frames)

(a) Insertion (In-Memory)

(b) Deletion (In-Memory)

(c) Insertion (Larger-than-Memory)

Figure 5: Hint Hit Ratio of the Secondary Index Under Various Data Modifications: (a, b) In-Memory and (c) Larger-than-Memory
— The hint hit ratio is defined as the number of valid hints divided by the total number of keys in the secondary index. Update operation
results on primary index records are omitted from this figure, as their impact was negligible, with the hint hit ratio remaining above 98%

after these modifications.

5.4 Overhead of Repairing Stale Hints

When hints become stale due to data modifications, the system can
either repair invalid hints when encountered or ignore them. The
repair strategy updates hints during lookup operations, benefiting
future accesses but incurring immediate overhead. The no-repair
strategy avoids this overhead but leads to cumulative performance
degradation.

To evaluate the robustness of LIPAH in the presence of stale
hints and the subsequent repair of these hints, we measure the
impact on secondary index lookup latency. Here we compare three
configurations: repairing stale hints, ignoring them (leaving stale
for the next read), and no hint. Our goal is to quantify the cost
and benefit of accessing a stale hint and repairing it. A primary
index and a corresponding secondary index containing 1,000, 000
entries are constructed. The secondary index includes complete
hints ((Page ID, Frame ID, Slot ID)) for each entry. Our workload
consists of key lookups in the secondary index that retrieve records
from the primary index and an operation deliberately invalidates a
hint by decrementing a random hint value (page, frame, or slot) by
one. Note that an invalid slot results in fresh search for the given
page and the ‘locality’ of the hint is not a factor—with the same
applied for the page and frame hints. Here, the buffer pool is large
enough to accommodate both the primary and secondary indexes.

Figure 6 illustrates the lookup latency when hint modifications
are interleaved with key lookups. A thread probabilistically selects
an action: when a hint modification is chosen, the hint is invalidated
according to a predefined ratio (e.g., 10% for page, 10% for frame,
etc.). With repair, the lookup operation corrects any invalid hints,
and valid hints are retained for future accesses. Without repair,
invalid hints are left and subsequent reads follow the same invalid
hint. We measured latency of 10 million key lookups, with latencies
summarized in a box-and-whisker plot (whiskers at the 2nd and
98th percentiles).

Single Thread Scenario. Figure 6a presents latency results for a
hint modification ratio of page 10%, frame 10%, and slot 80% using a
single thread. On average, the repair strategy outperformed both the
non-repair and baseline cases; however, at high hint modification
rates, the interquartile range (25-75%) increased due to the latency

4114

difference between accessing records with valid and invalid hints. In
the absence of repair, the accumulation of invalid hints resulted in
progressively degraded performance. Under a 20/80 key lookup to
hint modification ratio, performance disparity between with repair
and without repair arises primarily from accesses using incorrect
page IDs. At the end of the experiment, only 1.3% of page hints
remained correct without repair, compared to 71.7% with repair.
Thus, even when slot IDs are frequently invalidated, the repair
approach maintains superior performance provided a sufficient
number of page hints remain valid.

Figure 6b demonstrates lookup latency for a hint modification

ratio of page 50%, frame 10%, and slot 40%. Here, latency for both
with repair and without repair increased rapidly due to frequent
page ID invalidations. Although the repair strategy maintained an
advantage over the no-hint baseline in terms of the median value
up to a 40/60 lookup-to-modification ratio, it exhibited a larger
interquartile range when executed with hint modifications. At the
end of 20/80 experiment, 0% of page hints remained correct without
repair, whereas 33.6% were valid with repair; the repair approach
incurred additional latency when over 60% of reads involved invalid
page hints.
Multi-Threaded Scenario. Figure 6¢c shows the lookup latency
with a hint modification ratio of page 10%, frame 10%, and slot
80% using 10 threads. The trends observed in the single-threaded
experiment (Fig. 6a) are also evident here, with the repair approach
outperforming both the no-repair and no-hint configurations for
median latency. However, due to contention among threads, such
as accessing the root page of the index or the page-to-frame map-
ping, the latency increases. Without repair becomes increasingly
detrimental as following a stale hint leads to more costly lookups.
The repair approach, while incurring some additional overhead,
provides a more stable performance profile than without repair and
generally maintains better performance than the no-hint configu-
ration.

In practical workloads—where significant numbers of inserts
or deletes (necessary for page splits and merges) are infrequent—
the negative impact of invalid hints is reduced. However, if such
modifications become prevalent, the use of page hints may not

Without repair

I No hint

15000

i

10000

83

5000

N With repair

P P
2 6000 2 6000
£ g
3] 3]
Q Q
8 4000 R & I I P {4 & 4000 v]
< <
k g |le [[m k 8
5 5
Z 2000 FBIR- [1 Z 2000 -BIE-—
[=3 [=3
Q i =] f
— i ~ i

0 . 0 i

1

1

Lookup Latency (ns)

k{.%{' """ lﬁﬂl """ ;H{- """ L ﬁi i3

i i i i i

100/0 80/20 60 /40 40/ 60 20/80
Key Lookup / Hint Modification (%)

100/0

(a) Page 10 %, Frame 10 %, Slot 80 %
1 thread

80/20

(b) Page 50 %, Frame 10 %, Slot 40 %
1 thread

60 /40
Key Lookup / Hint Modification (%)

100/0 80/20 60 /40 40/ 60 20/80
Key Lookup / Hint Modification (%)

40/ 60 20/80

(c) Page 10 %, Frame 10 %, Slot 80 %
10 threads

Figure 6: Latency of Key Lookup Operations Mixed With Hint Modification Operations Comparing With Repair, No Repair,
and No Hint — A hint modification operation invalidates the hint based on a predefined ratio, denoted in the caption of each figure. This
operation is mixed with the key lookup operations. With repair, an invalid hint is fixed when it is encountered. Without repair, it is ignored
and left invalid for the next access. No hint configuration does not use any hints.

Table 1: Secondary Index Size Analysis — All values are in pages
except for the last column (MiB).

Hint Type Root Inner Leaf Total MiB
No hint 1 19 4058 4068 63.56
Page 1 21 4545 4567 71.36
Page, Frame 1 23 5025 5049 78.89
Page, Slot 1 23 5025 5049 78.89
Page, Frame, Slot 1 26 5524 5551 86.73

be advisable. Overall, our experiments demonstrate that while the
with-repair approach can exhibit a larger interquartile range than
without-repair and no-hint, they generally preserve superior lookup
performance to no hints when the proportion of invalid page hints
remains moderate.

5.5 Storage Overhead of Hints

One cost of LIPAH is the additional space consumed by the hint.
Here we evaluate the storage overhead of embedding hints into a
secondary index by comparing a baseline configuration with no
hints against with hints ((Page ID), (Page ID, Frame ID), (Page ID,
SlotID), and (Page ID, Frame ID, Slot ID).) For all the configurations,
a primary and a secondary index using 1,000, 000 entries with a
one-to-one correspondence between the indexes were built.

Table 1 summarizes the result. For all hint types, the secondary
index has three levels: root, inner, and leaf. In the No-hint configu-
ration, the secondary index occupied 4068 pages (63.56 MiB). With
complete hints ((Page ID, Frame ID, Slot ID})), each secondary index
entry grew from a payload of 10 bytes (just the primary key) to
22 bytes (the primary key plus three 4-byte hints), and the page
count increased to 5551 (86.73 MiB). This represents an overall
size increase by a factor of about 1.36—even though the per-entry
payload more than doubled.

4115

6 CONCLUSION

In this paper, we propose and evaluate the potential for indirection
skipping in transaction processing systems through the use of LI-
PAH. LIPAH utilizes a composite reference consisting of a logical
ID and a physical address to identify objects. The physical address
serves as an initial hint for object location, while the logical ID func-
tions as a fallback when the physical address becomes invalid. This
design renders LIPAH resilient to physical address invalidations
and facilitates efficient indirection skipping with minimal overhead
in reference maintenance.

Our implementation of LIPAH across primary indexes, secondary
indexes, and transaction read/write sets demonstrates that the ap-
proach can enhance the performance of TPC-C-like workloads by
up to 19.7X compared to baseline systems when using 40 threads.
Unlike pointer swizzling, LIPAH requires no ownership tracking of
references; unlike vmcache, it has fewer kernel dependencies and
maintains metadata proportional to buffer pool size rather than disk
size. Its simplicity also supports incremental adoption in existing
systems.

We believe that LIPAH is applicable to many systems in which
objects dynamically change locations, as opposed to remaining fixed
in a direct-mapped cache. In such systems, the physical location
of the object is tracked by a table that maps the object’s logical
name to its corresponding physical location, which is likely to
become a bottleneck during system scaling. With LIPAH in place,
the system can bypass the indirection layer and directly access the
object, thereby reducing the overhead associated with determining
the object’s location.

ACKNOWLEDGMENTS
This work was in part supported by NSF Award IIS-2048088 and
a Google Data Analytics and Insights (DANI) Award. The authors

would also like to thank the anonymous reviewers for their valuable
feedback.

REFERENCES

(1]

[20]

2024. Indirection. Wikipedia (July 2024). https://en.wikipedia.org/w/index.php?
title=Indirection&oldid=1232446174

2024. MySQL :: MySQL 8.4 Reference Manual :: 17.6.2.1 Clustered and Secondary
Indexes. https://dev.mysql.com/doc/refman/8.4/en/innodb-index-types.html
2024. Postgres/Src/Backend/Storage/Buffer/README at Master - Postgres/Post-
gres. https://github.com/postgres/postgres/blob/master/src/backend/storage/
buffer/README

2024. TPC-C Homepage. https://www.tpc.org/tpcc/

2024. Xacrimon/Dashmap: Blazing Fast Concurrent HashMap for Rust. https:
//github.com/xacrimon/dashmap

The PostgreSQL Global Development Group . 2024. 65.7. Heap-Only Tuples
(HOT). https://www.postgresql.org/docs/17/storage-hot.html

Adnan Alhomssi and Viktor Leis. 2023. Scalable and Robust Snapshot Isolation
for High-Performance Storage Engines. Proc. VLDB Endow. 16, 6 (Feb. 2023),
1426-1438.

Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian Diaconu,
Raghavendra Thallam Kodandaramaih, Hanuma Kodavalla, Prashanth Pur-
nananda, Adrian-Leonard Radu, Chaitanya Sreenivas Ravella, and Girish Mittur
Venkataramanappa. 2019. Constant Time Recovery in Azure SQL Database. Proc.
VLDB Endow. 12, 12 (Aug. 2019), 2143-2154.

Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A Structured Eng-
lish Query Language. In SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control. 249-264.

E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Communications of The Acm 13, 6 (June 1970), 377-387.

Cristian Diaconu, Craig Freedman, Erik Ismert, Paul Larson, Pravin Mittal, Ryan
Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In SIGMOD.

Wolfgang Effelsberg and Theo Haerder. 1984. Principles of Database Buffer
Management. ACM Transactions on Database Systems 9, 4 (Dec. 1984), 560-595.
Michael Freitag, Alfons Kemper, and Thomas Neumann. 2022. Memory-
Optimized Multi-Version Concurrency Control for Disk-Based Database Systems.
Proc. VLDB Endow. 15, 11 (July 2022), 2797-2810.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2 ed.).

Vibby Gottemukkala and Tobin J. Lehman. 1992. Locking and Latching in a
Memory-Resident Database System. In VLDB. 533-544.

Goetz Graefe. 2004. Write-Optimized b-Trees. In VLDB. 672-683.

Goetz Graefe, Hideaki Kimura, and Harumi Kuno. 2012. Foster B-Trees. ACM
Transactions on Database Systems 37, 3, Article 17 (Sept. 2012).

Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek, Mark
Lillibridge, and Alistair Veitch. 2014. In-Memory Performance for Big Data. Proc.
VLDB Endow. 8, 1 (Sept. 2014), 37-48.

Janis Greenberg and et al. 2024. Design Considerations for REFs.
https://docs.oracle.com/en/database/oracle/oracle-database/23/adobj/design-
considerations-for-REFs.html#GUID-79DD95A2-3080-47BC-95FB-
7FD42D1E1BBF

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP through the Looking Glass, and What We Found There. In SIGMOD.
981-992.

4116

[21]

[22]

[29]
(30]
(31]
(32]

(33]

[34]

Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2022.
Opportunities for Optimism in Contended Main-Memory Multicore Transactions.
The VLDB Journal 31, 6 (Nov. 2022), 1239-1261.

Donna Keesling and et al. 2024. Indexes and Index-Organized Tables.
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/indexes-
and-index-organized-tables.html#GUID-1A9D370B-12F0-4161-875E-
3121C8DEF2AD

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads.
In SIGMOD. 1675-1687.

Evan Klitzke. 2016. Why Uber Engineering Switched from Postgres to MySQL.
https://www.uber.com/en-BR/blog/postgres-to-mysql-migration/

H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems 6, 2 (June 1981), 213-226.
Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (Dec. 2011), 298-309.
Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Buffer Management. Proc. ACM Manag.
Data 1, 1, Article 7 (May 2023).

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-memory Data Management beyond Main Memory. In ICDE. 185~
196.

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The

ART of Practical Synchronization. In DaMoN. Article 3.
Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:

Dependably Fast Multi-Core in-Memory Transactions. In SIGMOD. 21-35.
Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness
for Fast Multicore Key-Value Storage. In EuroSys. 183-196.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with in-Memory Performance. In CIDR.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD. 677-689.

Riki Otaki, Jun Hyuk Chang, Charles Benello, Aaron J. Elmore, and Goetz Graefe.
2025. Resource-Adaptive Query Execution with Paged Memory Management. In
CIDR.

Andrew Pavlo and Bohan Zhang. 2023. The Part of PostgreSQL We Hate the
Most // Blog // Andy Pavlo - Carnegie Mellon University. https://www.cs.cmu.
edu/~pavlo/blog/2023/04/the- part-of-postgresql-we- hate-the-most.html

Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2015. VLL: A Lock Manager
Redesign for Main Memory Database Systems. The VLDB Journal 24, 5 (Oct.
2015), 681-705.

A. Silberschatz, H.F. Korth, and S. Sudarshan. 2020. Database System Concepts.
Michael Stonebraker and Joseph M. Hellerstein. 2005. What Goes Around And
Comes Around. In Readings in Database Systems (4th ed.). 2-41.

Linux Kernel Team. 2024. Efficient IO with Io_uring.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-Memory Databases. In SOSP. 18-32.
Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In SIGMOD. 1629-1642.

https://en.wikipedia.org/w/index.php?title=Indirection&oldid=1232446174
https://en.wikipedia.org/w/index.php?title=Indirection&oldid=1232446174
https://dev.mysql.com/doc/refman/8.4/en/innodb-index-types.html
https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README
https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README
https://www.tpc.org/tpcc/
https://github.com/xacrimon/dashmap
https://github.com/xacrimon/dashmap
https://www.postgresql.org/docs/17/storage-hot.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/adobj/design-considerations-for-REFs.html#GUID-79DD95A2-3080-47BC-95FB-7FD42D1E1BBF
https://docs.oracle.com/en/database/oracle/oracle-database/23/adobj/design-considerations-for-REFs.html#GUID-79DD95A2-3080-47BC-95FB-7FD42D1E1BBF
https://docs.oracle.com/en/database/oracle/oracle-database/23/adobj/design-considerations-for-REFs.html#GUID-79DD95A2-3080-47BC-95FB-7FD42D1E1BBF
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/indexes-and-index-organized-tables.html#GUID-1A9D370B-12F0-4161-875E-3121C8DEF2AD
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/indexes-and-index-organized-tables.html#GUID-1A9D370B-12F0-4161-875E-3121C8DEF2AD
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/indexes-and-index-organized-tables.html#GUID-1A9D370B-12F0-4161-875E-3121C8DEF2AD
https://www.uber.com/en-BR/blog/postgres-to-mysql-migration/
https://www.cs.cmu.edu/~pavlo/blog/2023/04/the-part-of-postgresql-we-hate-the-most.html
https://www.cs.cmu.edu/~pavlo/blog/2023/04/the-part-of-postgresql-we-hate-the-most.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Retrieving Data in On-Disk DBMS
	2.2 Installing Updates To Shared Database
	2.3 Reducing Contention In Buffer Pool

	3 Indirection Skipping with LIPAH
	3.1 Buffer Pool Management
	3.2 Secondary Indexes
	3.3 Read and Write Sets in Transactions

	4 Implementation Details
	4.1 Buffer Pool Manager
	4.2 Indexes
	4.3 Concurrency Control Protocols
	4.4 Balancing Hint Benefits and Repair Costs

	5 Evaluation
	5.1 Transaction Processing Performance
	5.2 Secondary Index Performance
	5.3 Robustness of Hints to Data Modifications
	5.4 Overhead of Repairing Stale Hints
	5.5 Storage Overhead of Hints

	6 Conclusion
	Acknowledgments
	References

