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ABSTRACT
Privacy risks in differentially private (DP) systems increase sig-

nificantly when data is correlated, as standard DP metrics often

underestimate the resulting privacy leakage, leaving sensitive in-

formation vulnerable. Given the ubiquity of dependencies in real-

world databases, this oversight poses a critical challenge for privacy

protections. Bayesian differential privacy (BDP) extends DP to ac-

count for these correlations, yet current BDP mechanisms indicate

a notable utility loss, limiting its adoption.

In this work, we address whether BDP can be realistically imple-

mented in common data structures without sacrificing utility—a key

factor for its applicability. By analyzing arbitrary and structured

correlation models, including Gaussian multivariate distributions

and Markov chains, we derive practical utility guarantees for BDP.

Our contributions include theoretical links between DP and BDP

and a novel methodology to adapt DP mechanisms to meet the

requirements of BDP. Through evaluations on real-world databases,

we demonstrate that our novel theorems enable the design of BDP

mechanisms that maintain competitive utility, paving the way for

practical privacy-preserving data practices in correlated settings.
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1 INTRODUCTION
Differential privacy (DP) [18] has become the leading framework

for preserving privacy in data analysis, providing formal guaran-

tees that protect individuals’ sensitive information. However, its

protection guarantees are limited to statistically independent data
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records, i.e., DP mechanisms can leak private information when the

underlying data is correlated. The limitations of DP for protecting

correlated data have been theoretically exposed [26, 34, 38, 49] and

empirically confirmed with attacks on real databases [25]. This is a

significant issue, as correlations among data records are common in

real-world databases, such as those induced by friendships in social

networks [33] or genetic similarities among family members [1].

As a response to the limitations of DP in the presence of correla-

tion, several instantiations of the Pufferfish framework–a general

methodology to define privacy notions–have been proposed to

specifically address this challenge [12, 23, 28, 32, 34]. Among them,

Bayesian Differential Privacy (BDP) [53] stands out for its simplicity

and generality: it provides a strict strengthening of DP, supports

arbitrary correlation structures, and preserves the composability

properties of DP–capabilities that are not generally achievable

within the Pufferfish framework. BDP also underlies extensions

such as prior DP [32] and correlated DP for location data [12].

While DP assumes that the adversary knows all records except

the target, BDP considers arbitrary priors, including those where

unknown records are correlated. It ensures bounded changes in

output distributions even when the target record is part of a cor-

related subset. When data are independent, BDP and DP coincide.

Under correlation, however, BDP quantifies worst-case leakage by

integrating the mechanism’s output with the data distribution via

Bayes’ rule, capturing adversarial advantages that DP overlooks.

Hence, BDP mitigates correlation-driven reconstruction attacks

that breach DP guarantees, as empirically shown in [8].

Although BDP provides a robust framework for assessing privacy

leakage under data dependencies, its practical applicability remains

uncertain. The few mechanisms that satisfy this notion [8, 53] are

limited to specific correlation models, such as Gaussian Markov ran-

dom fields–a subclass of multivariate Gaussian distributions form-

ing a Markov random field where missing edges correspond to ze-

ros in the inverse covariance matrix [44]–and binary-state Markov

chains with a symmetric transition matrix. Given the scarcity of

mechanisms and their applicability restrictions, it remains unclear

whether BDP can serve as a usable privacy notion. Moreover, the

only solution for Gaussian Markov fields reported highly conserva-

tive utility, since noise addition scales linearly with the number of

records in the database and their only mitigation is to weaken BDP

privacy by incorporating assumptions about the adversary [53].

In summary, DP privacy leakage estimation does not provide

sufficient protection under data dependencies, and there is a need

for improved utility with the robust BDP framework. Motivated by
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this issue, this paper examines BDP’s utility from both theoretical

and practical perspectives, analyzing its limitations and propos-

ing new strategies to reduce utility loss while maintaining BDP

privacy guarantees. Particularly, we present theoretical bounds on

the accuracy of BDP mechanisms and derive specific utility guar-

antees when certain correlation models are assumed. To formally

analyze utility, we use the standard utility metric for DP mecha-

nisms, (𝛼, 𝛽)-accuracy [18, 51], due to its mathematical formalism

and broad applicability. For the experimental results, we focus on

two specific, albeit common, tasks: counting and sum queries [18].

Prior impossibility results [27, 28] show that strong utility under

BDP without distributional assumptions is fundamentally limited.

We extend this insight by proving that, without any assumption on

the data correlation model, no BDP mechanism can simultaneously

guarantee meaningful (𝛼, 𝛽)-accuracy and valid privacy. Thus, the

rest of our work examines whether targeting specific correlation

models can improve utility.

Particularly, we analyze the impact of limiting the amount of

correlated records, and we investigate the applicability of BDP to

both discrete and continuous correlation models. For the discrete

case, we analyze data following a Markov chain and, for continuous

data, we analyze multivariate Gaussian correlation. We focus on

these two particular correlation models following previous work

in BDP [32, 53] and due to their relevance in many real-world

applications such as medical [6], location [20], or activity data [16].

For each correlation model studied, we prove novel theorems

that bound the BDP leakage of a DP mechanism. Notably, our BDP

leakage bound for Gaussian multivariate models is tighter than

that provided in [53], and our correlation model is broader. These

privacy bounds provide a systematic way to build BDP mechanisms

by adjusting the parameters of existing DP mechanisms. Using this

approach, we propose novel BDP mechanisms based on Laplace

noise. Furthermore, we calculate the accuracy of our BDP mecha-

nisms showing the improved accuracy compared to scenarios where

protection is required against any correlation.

Finally, we provide insight into how our theoretical results apply

in practice to real-world data containing Gaussian and Markov

correlations. This allows us to confirm that our results enhance the

utility of BDP mechanisms in actual applications.

In summary, this work makes the following main contributions:

• We prove a bound on the BDP leakage of a DP mechanism

with a fixed number of arbitrarily correlated records, show-

ing it is tight. We call this the general bound.
• We derive a tighter BDP leakage bound for DP mechanisms

under multivariate Gaussian correlations, improving on the

general bound and prior work. This provides a systematic

method for constructing more accurate BDP mechanisms

tailored to Gaussian dependencies.

• We derive a BDP leakage bound for DP mechanisms un-

der Markovian correlations, improving the general bound

when transition probabilities are similar. This enables the

design of mechanisms that are more accurate than prior

approaches in Markov settings.

The paper is organized as follows: In Sections 2 and 3, we review

relevant prior work and provide the necessary preliminaries. We

then present our analysis of arbitrary correlation limiting the num-

ber of correlated records in Section 4. In Section 5, we analyze the

impact of Gaussian correlation on BDP and provide our improved

bound in Theorem 5.8. In Section 6, we present analogous results

for the Markov scenario. Finally, we discuss our empirical study in

Section 7, demonstrating the practical relevance of our theoretical

results, and conclude with a brief summary in Section 8.

We provide detailed proofs in the long version of this paper

(arXiv:2506.21308) together with the code used for our experiments

accessible in https://github.com/lange-martin/privacy-utility-bdp.

2 RELATEDWORK
The challenge of designing privacy mechanisms that remain ro-

bust under arbitrary correlations has been a central concern in the

development of privacy frameworks. Foundational work by Kifer

and Machanavajjhala [26] introduced free-lunch Privacy, the first

formalism to consider the impact of correlations on privacy guaran-

tees. Their no-free-lunch theorem shows that, under arbitrary data

distributions, achievable utility is fundamentally constrained. How-

ever, they express utility in terms of discriminants–an abstraction

that is neither intuitively interpretable nor translatable into practi-

cal utility metrics. Kifer and Machanavajjhala [28] further raise this

concern defining the general Pufferfish framework for privacy no-

tions proving that any Pufferfish notion protecting against arbitrary

correlations will face the same free-lunch utility challenge.

The existing strategy for obtaining Pufferfish privacy [46] mech-

anisms requires noise calibration based on theWasserstein distance.

It does not, however, provide a closed-form solution, but requires

computing the Wasserstein distance between the conditional out-

put distributions corresponding to all pairs of sensitive values. This

is computationally intractable [41, 46] in the general case. While a

closed-form mechanism is derived for specific Markov chain mod-

els, it relies on a weakened instantiation of Pufferfish that assumes

limited adversarial background knowledge and, therefore, cannot

be meaningfully compared to BDP.

The only concrete evidence of the potential applicability of pure

BDP in practice has been provided in the context of Gaussian and

Markov correlation models. In their foundational work, Yang et al.

proposed adapting the Laplace mechanism to defend against corre-

lated leakage in Gaussian Markov Random Fields. They also estab-

lished preliminary theoretical connections between DP and BDP in

this setting. Despite these important contributions, the proposed

mechanisms face several limitations: (1) the approach is restricted

to Gaussian Markov models, which greatly limits its practical scope.

(2) Even within this narrow domain, privacy guarantees degrade lin-

early with the number of correlated records, resulting in excessive

noise that renders themechanism impractical. Although the authors

suggest mitigating this by limiting the adversary’s knowledge, such

a compromise weakens the privacy model and undermines the core

guarantees of BDP. (3) The proposed mechanisms remain purely

theoretical and have not been evaluated in real-world scenarios,

leaving their practical effectiveness uncertain.

A more recent effort by Chakrabarti et al. [8] proposes an adap-

tation of the randomized response to BDP on binary Markov chains.

However, this mechanism is extremely constrained: it only applies

to lazy, binary, stationary Markov chains and does not provide any
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Notation Description

X Domain of a single record 𝑥 ∈ X.

M : X𝑛 → Y Randomized mechanism with input from do-

main X𝑛 and output in codomain Y.

X = (𝑋1, . . . , 𝑋𝑛 ) Random vector representing the input of M.

𝑌 Random variable representing output of M.

[𝑛] Set {1, . . . , 𝑛} for 𝑛 ∈ N.

X𝐾 = (𝑋𝑖1 , . . . , 𝑋𝑖𝑘 ) Random vector formed by a subset 𝐾 =

{𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑛] of the random variables

𝑋1, . . . , 𝑋𝑛 .

x𝐾 = (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) Database with 𝑘 records belonging to X𝑘

Table 1: Notation summary

general bounds relating DP and BDP leakage. Moreover, the only

closed-form expression for mechanism parameters holds under the

restrictive assumption of a symmetric transition matrix, limiting

its usability even further.

In response to these limitations, several relaxed privacy notions

have been proposed to strike a better balance between privacy and

utility. Mutual Information Privacy (MI DP) [13] and its extension

to Pufferfish [41], for example, can be viewed as a relaxation of

Pufferfish, offering a framework where traditional mechanisms

such as Laplace and Gaussian can be calibrated to account for corre-

lation. These methods yield promising theoretical utility guarantees.

However, MI guarantees are weaker; in particular, MI characterizes

average-case privacy leakage rather than worst-case guarantees,

and therefore cannot substitute the BDP framework when worst-

case guarantees are desired.

In conclusion, while previous work highlights the limitations of

DP protection and the need for BDP as a privacy standard, the chal-

lenge of providing utility with BDP protection remains unsolved,

and the relationship between DP and BDP is not fully understood.

3 BACKGROUND
In this section, we present the fundamental definitions and notation

(summarized in Table 1) necessary to understand this work.

3.1 Differential Privacy and Metric Privacy
The bounded formulation of DP [18] assumes that the database con-

sists of a finite number 𝑛 of rows, 𝐷 = (𝑥1, . . . , 𝑥𝑛) ∈ X𝑛, drawn
from the joint distribution of the random vector X = (𝑋1, . . . , 𝑋𝑛),
where each row represents data associated with an individual, sam-

pled from a universe of records X. We use [𝑛] := {1, . . . , 𝑛} to

denote the set of indices. For a subset 𝐾 = {𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑛], we
define the subvector X𝐾 ∈ X𝑘 as X𝐾 := (𝑋𝑖1 , . . . , 𝑋𝑖𝑘 ). In particu-

lar, X−𝑖 denotes X𝐾 with 𝐾 = [𝑛] \ {𝑖}. The attacker is assumed

to know all records except for a target index 𝑖 ∈ [𝑛], for which all

possible values 𝑥𝑖 and 𝑥
′
𝑖
must be indistinguishable. Formally,

Definition 3.1 (Differential Privacy [18]). A randomized mech-

anism M : X𝑛 → Y is called 𝜀-differentially private, if for all
measurable sets 𝑆 ⊆ Y any target index 𝑖 ∈ [𝑛], any target values

𝑥𝑖 , 𝑥
′
𝑖
∈ X, and any remaining values x ∈ X𝑛−1, we have

Pr[𝑌 ∈ 𝑆 | X−𝑖 = x, 𝑋𝑖 = 𝑥𝑖 ] ≤ e
𝜀
Pr[𝑌 ∈ 𝑆 | X−𝑖 = x, 𝑋𝑖 = 𝑥 ′𝑖 ] .

The output ofM is represented by the random variable𝑌 , which

depends on the input data. The DP leakage 𝜀 governs the privacy-

utility trade-off: a smaller 𝜀 means that the output distributions

for neighboring inputs are “closer together”, resulting in higher

privacy with an opposing effect on utility (see Proposition 3.5).

We focus on a bounded DP due to its broad applicability and

its close relation to BDP. However, other neighboring definitions,

i.e., specifications of which information can change while ensuring

that the output probabilities remain similar up to 𝑒𝜀 , exist [15].

For instance, in streaming data applications, it is common to use

event-level DP [18]: While each stream belongs to an individual, two

streams are neighbors if they differ in one single time step value.

We will see an example of the application of this neighborhood

in Section 7. The change of neighborhood allows to encode protec-

tion against different privacy threats [9, 15]. To obtain a general

framework suitable to model a large variety of privacy problems,

Chatzikokolakis et al. [9] introduce metric privacy as a generaliza-

tion of DP that encapsulates the neighborhood notion and privacy

leakage 𝜀 into a single parameter 𝑑 , which determines the level of

indistinguishability between databases:

Definition 3.2 (Metric Privacy [9]). Given 𝑑 : X2𝑛 → R a pseudo-

metric, a randomized mechanismM : X𝑛 → Y is called 𝑑-private
if for all databases 𝐷,𝐷′ ∈ X𝑛 and all measurable sets 𝑆 ⊆ Y we

have

Pr

M
[𝑌 ∈ 𝑆 | X = 𝐷] ≤ 𝑒𝑑 (𝐷,𝐷

′ )
Pr

M
[𝑌 ∈ 𝑆 | X = 𝐷′] .

This definition makes it challenging for an adversary to distin-

guish between databases 𝐷 and 𝐷′
that are “close” according to the

metric 𝑑 . However, if the two databases are significantly different,

the output distributions can differ more, making it easier for the

adversary to distinguish them. Note that 𝑑-privacy is equivalent to

DP when considering the Hamming distance scaled by 𝜀.

One of the earliest and most common methods proven to satisfy

𝜀-DP is the Laplace mechanism [18]:

Definition 3.3 (Laplace Mechanism [18]). Let 𝑓 : X𝑛 → R𝑘 be a

function and its sensitivity defined as

Δ𝑓 := sup

𝑑𝐻 (𝐷,𝐷 ′ )=1
| |𝑓 (𝐷) − 𝑓 (𝐷′) | |1 .

Given that sensitivity Δ𝑓 < ∞ and 𝜀 > 0, the Laplace mechanism

is defined for all 𝐷 ∈ X𝑛 asM𝜀,𝑓 (𝐷) = 𝑓 (𝐷) + (𝑍1, . . . , 𝑍𝑘 ) where
𝑍𝑖 are i.i.d. random variables that follow the Laplace distribution

centered at 0 and with scale
Δ𝑓
𝜀 .

While M𝜀,𝑓 provides 𝜀-DP, adding noise to the output of a func-

tion 𝑓 undoubtedly has an impact on utility. A well-established

metric for quantifying the utility of a private mechanism is the

(𝛼, 𝛽)-accuracy [5, 34]. It provides a measure of how well the mech-

anism approximates a true statistic or function while considering

the inherent randomness introduced by the mechanism:

Definition 3.4 ((𝛼, 𝛽)-Accuracy [5]). A randomized mechanism

M is (𝛼, 𝛽)-accurate with respect to function 𝑓 if for all databases
𝐷 ∈ X𝑛 we have

Pr[|M(𝐷) − 𝑓 (𝐷) | ≥ 𝛼] ≤ 𝛽.
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A randomized mechanism M is (𝛼, 𝛽)-accurate if an error of

magnitude 𝛼 has a probability of at most 𝛽 . Thus, the smaller 𝛼

and/or 𝛽 , the better the accuracy of mechanism M. Here, 𝛼 quanti-

fies the error tolerance, and 𝛽 the failure probability. More precisely,

it refers to the utility guarantee that with probability at least 1 − 𝛽 ,
the mechanism’s output is within an interval of radius 𝛼 centered

on the true value. For example, the Laplace mechanism verifies:

Proposition 3.5 ([18]). Let M𝜀,𝑓 be the Laplace mechanism. Let
𝛽 ∈ (0, 1] be a probability. ThenM𝜀,𝑓 is (𝛼, 𝛽)-accurate with respect

to 𝑓 with 𝛼 = ln

(︁
𝛽−1

)︁ Δ𝑓
𝜀 .

This accuracy result for the Laplace mechanism is tight [18].

3.2 Bayesian Differential Privacy
BDP [53] is an instantiation of the general Pufferfish framework

that extends DP privacy guarantees to settings with correlated

data. It assumes the adversary is uncertain between two possible

records 𝑥𝑖 , 𝑥
′
𝑖
, analogously to DP. However, it eliminates the notion

of neighboring databases in order to consider different possible

adversaries with different background knowledge. Formally, the

adversary (𝐾, 𝑖) is targeting the record at position 𝑖 and already

knows the values of the sub vector x𝐾 on the database. Then, for

each adversary, Bayesian leakage is defined as follows:

Definition 3.6 (Adversary-specific BDPL [53]). Given M : X𝑛 →
Y a randomized mechanism, X the input random vector follow-

ing the distribution 𝜋 , the targeted record index 𝑖 ∈ [𝑛], and the

known record indices 𝐾 ⊆ [𝑛]\{𝑖}, the adversary-specific Bayesian
differential privacy leakage is

BDPL(𝐾,𝑖 ) = sup

𝑥𝑖 ,𝑥
′
𝑖
,x𝐾 ,𝑆

ln

Pr[𝑌 ∈ 𝑆 | X𝐾 = x𝐾 , 𝑋𝑖 = 𝑥𝑖 ]
Pr[𝑌 ∈ 𝑆 | X𝐾 = x𝐾 , 𝑋𝑖 = 𝑥 ′𝑖 ]

,

where the supremum is taken over all the possible target values

𝑥𝑖 , 𝑥
′
𝑖
∈ X, all the possible known vector values x𝐾 ∈ X𝐾 and all

the measurable sets 𝑆 ⊆ Y.

When computing the adversary-specific BDPL, the correlation

between the unknown and known records modifies the final leakage

since given the unknown remaining indices𝑈 , we have

Pr[𝑌 ∈ 𝑆 | x𝐾 , 𝑥𝑖 ] =
∑︂

x𝑈 ∈X𝑢
Pr[𝑌 ∈ 𝑆 | x𝐾 , 𝑥𝑖 , x𝑈 ] Pr[x𝑈 | x𝐾 , 𝑥𝑖 ],

where 𝑢 = |𝑈 | = 𝑛 − 𝑘 − 1. The sum must be substituted by an

integral in the continuous case.

While the adversary-specific BDPL only accounts for a particular

case, we aim to protect against any possible adversary. Therefore,

to compute the worst-case leakage we take the supremum:

Definition 3.7 (Bayesian DP [53]). A mechanism M satisfies 𝜀-
Bayesian differentially privacy if

BDPL(M) = sup

𝐾,𝑖

BDPL(𝐾,𝑖 ) (M) ≤ 𝜀,

where the supremum is taken over all the possible set of indices

𝑖 ∈ [𝑛] and 𝐾 ⊆ [𝑛] \ {𝑖}. BDPL(M) is called Bayesian differential
privacy leakage.

The BDPL has a similar role to the privacy leakage 𝜀 in DP: It

measures the extent of a possible privacy violation by comparing

the difference in the output probabilities of mechanismM. A lower

BDPL corresponds to higher privacy because any adversary will be

less likely to differentiate between any two target values 𝑥𝑖 , 𝑥
′
𝑖
∈ X.

Particularly, if 𝑋𝑖 , 𝑋 𝑗 are mutually independent for all 𝑖 ≠ 𝑗 ∈ [𝑛]
then 𝜀-DP and 𝜀-BDP are equivalent [53].

While we have results on the accuracy loss associated with using

DP mechanisms [48], the impact of BDP protection on utility re-

mains unclear. The following sections aim to address this question

by analyzing various correlation scenarios.

4 LIMITED NUMBER OF CORRELATED
VARIABLES

To protect against potential correlations without making distri-

butional assumptions–which are often unclear or hard to esti-

mate [47]–a mechanism must satisfy BDP with respect to all pos-

sible correlation distributions 𝜋 , a condition we call protection

under arbitrary correlation. However, Kifer and Machanavajjhala

[28] showed that under this assumption, any Pufferfish notion–

including BDP–collapses to free-lunch privacy [27, 53]. This cor-

responds to a metric privacy model where all dataset pairs are

at distance 𝜀, forcing all query outputs 𝑓 (𝐷) and 𝑓 (𝐷′) to be 𝜀-

indistinguishable [17]–intuitively implying a complete loss of util-

ity. To our knowledge, we are the first to formalize this limitation

using the standard (𝛼, 𝛽)-accuracy metric, offering a concrete, in-

terpretable, and widely used measure of utility loss that enables

clearer reasoning and meaningful comparison across mechanisms.

Proposition 4.1. Let M : X𝑛 → R be an 𝜀-BDP mechanism
protecting against arbitrary correlation. Let 0 ≤ 𝛽 < 1

𝑒𝜀+1 be a real
number and let 𝑓 : X𝑛 → R be a deterministic function. If M is
(𝛼, 𝛽)-accurate w.r.t. 𝑓 , then

𝛼 >
1

2

max

𝐷,𝐷 ′
|𝑓 (𝐷) − 𝑓 (𝐷′) |.

Proof. We proceed by reductio ad absurdum. We assume that

M fulfills an (𝛼, 𝛽)-accuracy respect to 𝑓 with 𝛼 ≤ 1

2
|𝑓 (𝐷)− 𝑓 (𝐷′) |

and 𝛽 < 1

𝑒𝜀+1 and derive a contradiction for 𝐷′
:

Pr[ | 𝑓 (𝐷 ′ ) − M(𝐷 ′ ) | ≥ 𝛼 ] = Pr[M(𝐷 ′ ) ∈ R \ (𝑓 (𝐷 ′ ) − 𝛼, 𝑓 (𝐷 ′ ) + 𝛼 ) ]
≥ Pr[M(𝐷 ′ ) ∈ (𝑓 (𝐷 ) − 𝛼, 𝑓 (𝐷 ) + 𝛼 ) ]

[28]
≥ 𝑒−𝜀 Pr[M(𝐷 ) ∈ (𝑓 (𝐷 ) − 𝛼, 𝑓 (𝐷 ) + 𝛼 ) ]

= 𝑒−𝜀 (1 − Pr[M(𝐷 ) ∈ R \ (𝑓 (𝐷 ) − 𝛼, 𝑓 (𝐷 ) + 𝛼 ) ] )

= 𝑒−𝜀 (1 − Pr[ | 𝑓 (𝐷 ) − M(𝐷 ) | ≥ 𝛼 ] )
(∗)
≥ 𝑒−𝜀 (1 − 𝛽 ) = 1

𝑒𝜀 + 1

> 𝛽,

where (∗) follows from the (𝛼, 𝛽)-accuracy assumption. □

Specifically, the result from Proposition 4.1 indicates that for

theoretically relevant privacy levels 𝜀 ∈ (0, 4) [30], the only con-

fidence interval where we can reliably estimate the actual value

of our query function 𝑓 , with standard confidence levels (e.g., be-

tween 90% and 99%), includes almost all possible query values. For

instance, consider a free-lunch algorithm used to compute 𝑓 (𝐷),
where 𝑓 counts the number of infections in a database of 𝑛 in-

dividuals. If the algorithm outputs
𝑛
2
, it suggests that half of the

population is infected. However, with a 90% confidence interval,

we cannot tell whether there is no infection at all, or whether the

entire population is infected.
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While designing accurate BDP mechanisms is infeasible under

arbitrary correlation–potentially involving all records–it is often

reasonable in practice to assume that only subsets of records are

correlated. For instance, in the context of genomic data, an individ-

ual’s genome is strongly correlated with that of their relatives, but

not with the entire population [1]. Hence, we assume that only𝑚 of

𝑛 records in the database are correlated with each other, formally:

Definition 4.2. We say the random vector X = (𝑋1, . . . , 𝑋𝑛) has
at most𝑚 ≤ 𝑛 correlated random variables if there exist disjoint sets
of indices 𝐶1, . . . ,𝐶𝑟 that make up [𝑛] = ⋃︁𝑟

𝑙=1
𝐶𝑙 so that each set

𝐶𝑙 has maximum cardinality𝑚 ≥ |𝐶𝑙 | for any 𝑙 ∈ [𝑟 ], and for any

𝑙 ∈ [𝑟 ], the random variables {𝑋 𝑗 | 𝑗 ∈ 𝐶𝑙 } are independent of the
remaining random variables {𝑋 𝑗 | 𝑗 ∈ [𝑛] \𝐶𝑙 }.

This definition considers multiple groups of up to𝑚 correlated

records as long as they do not “overlap”, i.e., the records in one

group are independent of the records in the other groups. Otherwise,

we do not make any further assumptions about the distribution

of the data. This allows us to find acceptable utility guarantees in

Corollary 4.5 as long as𝑚 is sufficiently small.

4.1 Relationship between DP and BDP
We begin by introducing and proving a general bound on the BDP

leakage of an 𝜀-DP mechanism. Specifically, we show that if an 𝜀-DP

mechanism operates on data drawn from a distribution involving

at most𝑚 correlated random variables, then it satisfies𝑚𝜀-BDP.

The practice of scaling the DP leakage by the number of correlated

records to estimate worst-case leakage under correlation has been

used in prior work [10, 34], but to our knowledge, this approach

had not been formally shown to satisfy the BDP definition. We

further prove that this bound is tight.

Theorem 4.3 (The General Bound). Let X = (𝑋1, . . . , 𝑋𝑛) be a
random vector with at most𝑚 ≤ 𝑛 correlated random variables that
follows a distribution 𝜋 . Then, any 𝜀-DP mechanism with input data
drawn from distribution 𝜋 is𝑚𝜀-BDP.

Proof Sketch. Consider any adversary (𝐾, 𝑖) with 𝑖 ∈ [𝑛],𝐾 ⊆
[𝑛] \ {𝑖} and 𝑘 = |𝐾 |. Since {𝐶 𝑗 } 𝑗∈𝑟 is a partition of [𝑛], there exists
an 𝑙 ∈ [𝑟 ] so that we have target index 𝑖 ∈ 𝐶𝑙 . Thus,𝐶𝑙 contains the
index 𝑖 and all indices of random variables potentially correlated

with 𝑋𝑖 . Let set 𝐶̃ := 𝐶𝑙 \ 𝐾 be the indices of random variables

correlated with 𝑋𝑖 that are not already included in 𝐾 . Then, we first

show that the adversary-specific BDPL can be upper bounded as:

BDPL(𝐾,𝑖 ) ≤ sup

𝑆,x𝐾 ,x𝐶̃ ,x
′
𝐶̃

ln

Pr[𝑌 ∈ 𝑆 | x𝐾 , x𝐶̃ ]
Pr[𝑌 ∈ 𝑆 | x𝐾 , x′

𝐶̃
] .

Let the set𝑈 = [𝑛] \ (𝐾 ∪ 𝐶̃), with 𝑢 = |𝑈 |, include all remaining

indices. Since by hypotheses |𝐶̃ | ≤ |𝐶𝑙 | ≤ 𝑚, for any known values

x𝐾 ∈ X𝑘 , the correlated values x
𝐶̃
∈ X |𝐶̃ |

and x′
𝐶̃
∈ X |𝐶̃ |

we have

Pr

M
[𝑌 ∈ 𝑆 | x𝐾 , x𝐶̃ ] =

∫
X𝑢

Pr

M
[𝑌 ∈ 𝑆 | x𝐾 , x𝐶̃ , x𝑈 ] 𝑝X𝑈 (x𝑈 | x𝐾 , x𝐶̃ ) dx𝑈

≤
∫
X𝑢
𝑒𝑚𝜀 Pr

M
[𝑌 ∈ 𝑆 |x𝐾 , x′

𝐶̃
, x𝑈 ] 𝑝X𝑈 (x𝑈 |x𝐾 , x𝐶̃ ) dx𝑈

= 𝑒𝑚𝜀
∫
X𝑢

Pr

M
[𝑌 ∈ 𝑆 | x𝐾 , x′

𝐶̃
, x𝑈 ] 𝑝X𝑈 (x𝑈 | x𝐾 ) dx𝑈

𝑋1 = 0 𝑋1 = 1 Total

𝑋2 = 0
1

𝑟 2
𝑟−1
𝑟 2

1

𝑟

𝑋2 = 1
1

𝑟 3
𝑟 3−𝑟 2−1

𝑟 3
𝑟−1
𝑟

Total
1+𝑟
𝑟 3

𝑟 3−𝑟−1
𝑟 3

1

Table 2: Probability distribution of Example 4.4

= 𝑒𝑚𝜀
∫
X𝑢

Pr[𝑌 ∈ 𝑆 |x𝐾 , x′
𝐶̃
, x𝑈 ] 𝑝X𝑈 (x𝑈 |x𝐾 , x′

𝐶̃
) dx𝑈

= 𝑒𝑚𝜀 Pr[𝑌 ∈ 𝑆 | x𝐾 , x′
𝐶̃
] .

Combining both inequalities we obtain the result. □

This bound may seem overly pessimistic, seemly assuming per-

fect positive correlation–the records are fully dependent, changing

in lockstep: when one variable changes, the other changes in the

same direction by exactly the same amount. This corresponds to the

extreme case of linear dependence, where the Pearson correlation

coefficient is 𝜌 = 1, an edge case among all possible (including non-

linear) correlation models. However, as we show in the following

example, the bound remains tight even when this extreme case is

excluded. Specifically, we provide a counterexample in which the

bound holds even when 𝜌 is arbitrarily small–i.e., the variables do

not deterministically determine one another. This confirms both

the tightness of our result and that the bound cannot be improved,

even in the absence of perfect correlation.

Example 4.4. Let 𝑟 ∈ N. Table 2 shows a valid probability distri-

bution 𝜋 for X = (𝑋1, 𝑋2) where the Pearson correlation coefficient

satisfies:

𝜌𝑋1,𝑋2
=

√︂
𝑟 4−2 𝑟 3−𝑟 2+2 𝑟+1
𝑟 5−2 𝑟 3−𝑟 2+𝑟+1

𝑟→∞−−−−→ 0

Moreover, ifM is 𝜀-DP, then there are two neighboring databases

𝐷,𝐷′ ∈ {0, 1}2 for which the privacy loss reaches 𝜀; as is the case,

for instance, with the Generalized Randomized Response mecha-

nism [50]. Without loss of generality we assume they differ in the

first coordinate, otherwise by inverting Table 2 we get the same

result. Then, computing the BDPL we obtain for all 𝑆 ⊆ {0, 1}2:

e
BDPL ≥ Pr[𝑌 ∈𝑆 |𝑋1=0]

Pr[𝑌 ∈𝑆 |𝑋1=1] =
𝑒2𝜀 𝑟

𝑟+1 + 𝑒𝜀 1

𝑟+1
𝑒𝜀 𝑟 2−𝑟

𝑟 3−𝑟−1 + 𝑟 3−𝑟 2−1
𝑟 3−𝑟−1

,

for all 𝑟 ∈ N, therefore, taking the limit when 𝑟 tends to infinity we

have BDPL ≥ 2𝜀. According to the general bound BDPL ≤ 2𝜀 hence

we have BDPL = 2𝜀. Therefore, taking arbitrary large 𝑟 , we have 𝜌

arbitrary close to zero–making impossible perfect correlation– and

BDPL arbitrary close to 2𝜀.

Example 4.4 proves that, without additional hypotheses, the gen-

eral bound from Theorem 4.3 is tight, even if we limit the Pearson

correlation coefficient 𝜌 to be arbitrarily small.

4.2 Accuracy
Theorem 4.3 enables to use ( 𝜀𝑚 )-DP mechanisms as 𝜀-BDP mecha-

nisms. However, reducing 𝜀 in a DP mechanism often has a negative

impact on utility. In particular, we investigate the impact on the

accuracy of the Laplace mechanism. As a consequence of our result

Theorem 4.3 and Proposition 3.5 we obtain the following result:
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Corollary 4.5. Let M𝜀,𝑓 be the the Laplace 𝜀-DP mechanism
that approximates the query 𝑓 : X𝑛 → R with input described by
the random vector X = (𝑋1, . . . , 𝑋𝑛) with at most𝑚 ≤ 𝑛 correlated
random variables that follows distribution 𝜋 . Then, if M𝜀,𝑓 is (𝛼, 𝛽)-
accurate w.r.t. 𝑓 , there exists an 𝜀-BDP mechanism B whose input is
drawn from 𝜋 and that is (𝑚𝛼, 𝛽)-accurate w.r.t. 𝑓 .

This result shows that the error 𝛼 of the Laplace mechanism

increases proportionally with the number of correlated records

whenmoving from 𝜀-DP to 𝜀-BDP, andwhile making no assumption

about the distribution of the records. This may be acceptable when

the number of correlated records𝑚 is small. For example, if𝑚 = 2,

the error 𝛼 doubles when transitioning from DP to BDP. If the

DP mechanism’s error is small, this increase may be acceptable.

However, utility sharply decreases as𝑚 grows.

Since we have shown that our bound on BDPL is tight under the

assumption of arbitrary correlation, the utility bound cannot be

improved, even when the Pearson correlation coefficient is close to

zero. This motivates the next two sections, where we investigate

whether additional assumptions on the correlation model can lead

to tighter bounds, enabling reduced noise and improved utility

while still protecting against correlation attacks.

5 MULTIVARIATE GAUSSIAN CORRELATION
Awide variety of phenomena are effectively modeled using a Gauss-

ian distribution [42]. For example, physiological measures such as

height and weight are correlated among family members, and the

joint distribution of height and weight in a large population is

well fit by a bivariate Gaussian distribution [6]. Consequently, we

explore the applicability of BDP to multivariate Gaussian data.

When we are dealing with a database of 𝑛 records, and each

record is drawn from aGaussian distribution, we canmodel the joint

distribution of all records as a multivariate Gaussian distribution.

This model also captures linear correlation between records [45].

Definition 5.1 (Multivariate Gaussian Distribution [45]). Let X =

(𝑋1, . . . , 𝑋𝑛) be a random vector, let vector 𝜇 ∈ R𝑛 be real and

let matrix Σ ∈ R𝑛×𝑛 be symmetric and positive definite. We say

X follows the multivariate Gaussian distribution with mean 𝜇 and
covariance Σ if the probability density of X for any point x ∈ R𝑛 is

𝑝X (x) =
1√︁

(2𝜋)𝑛 |Σ|
exp(−1

2

(x − 𝜇)⊤Σ−1 (x − 𝜇)),

where |Σ| is the determinant of Σ. We write X ∼ N(𝜇, Σ).

We establish a relationship between DP and BDP for data drawn

from a multivariate Gaussian distribution, based on the maximum

Pearson correlation coefficient, which is calculated directly from the

covariance matrix [45]. This provides a new, tighter upper bound

for the BDPL that improves upon the specific Gaussian bound given

in [53] and upon the general bound 𝑛𝜀 for any correlation model.

However, our bound applies only to a specific class of mecha-

nisms: those that satisfy both DP and metric privacy under the ℓ1
metric. We show in Section 5.2 that the clipped Laplace mechanism

meets these criteria and develop a practical application in Sec-

tion 7.1. To establish this result, we first connect metric privacy

with an analogous form of BDP, termed Bayesian metric privacy,

which we define below.

5.1 Relationship between Metric Privacy and
Bayesian Metric Privacy

Unbounded continuous data domains, such us R𝑛 , usually produce

challenges on DP application due to infinite sensitivities [2]. In the

context of BDP, Yang, Sato, and Nakagawa [53] defined a relax-

ation to work in those domains: If the data domain is equivalent

to the real numbers (i.e., X𝑛 = R𝑛), they defined a modified leak-

age, BDPL(M;𝑀), where they only take into account the leakage

between points with a distance smaller than𝑀 ∈ R, i.e.,

sup

|𝑥𝑖−𝑥 ′𝑖 | ≤𝑀,x𝐾 ,𝑆
ln

Pr[𝑌 ∈ 𝑆 | X𝐾 = x𝐾 , 𝑋𝑖 = 𝑥𝑖 ]
Pr[𝑌 ∈ 𝑆 | X𝐾 = x𝐾 , 𝑋𝑖 = 𝑥 ′𝑖 ]

.

Applying this BDP relaxation leaves indistinguishability between

records at distances greater than 𝑀 entirely uncontrolled. While

this may increase applicability, it reduces privacy and limits insights

into the impact of correlation.

However, metric privacy provides a solution to quantify pri-

vacy leakage as the distance 𝑑 (𝐷, 𝐷′) for each pair of databases

𝐷,𝐷′
when the maximum privacy leakage cannot be bounded [9].

Therefore, we define Bayesian metric privacy as equivalent to met-

ric privacy where the indistinguishability between two records

𝑥, 𝑥 ′ depends on the distance 𝑑 (𝑥, 𝑥 ′) between them. Note that the

change from databases to records is necessary because BDP does

not apply to neighboring databases, but to target records, as we

describe in Section 3.2. In this way, we can work with R𝑛 as the

data domain without losing information about the privacy leakage.

Definition 5.2 (Target Dependent Leakage). Given a randomized

mechanism M : X𝑛 → Y, X the input random vector following

the distribution 𝜋 , the targeted record index 𝑖 ∈ [𝑛], and the known
record indices 𝐾 ⊆ [𝑛]\{𝑖}, the adversary-specific target dependent
BDPL ofM w.r.t. adversary (𝐾, 𝑖) for any target values 𝑥, 𝑥 ′ ∈ X is

BDPL(𝐾,𝑖 ) (𝑥, 𝑥 ′) = sup

x𝐾 ,𝑠
ln

𝑝𝑌 (𝑠 | X𝐾 = x𝐾 , 𝑋𝑖 = 𝑥)
𝑝𝑌 (𝑠 | X𝐾 = x𝐾 , 𝑋𝑖 = 𝑥 ′)

.

Given that we understand the leakage for each pair of data

records we can simply define Bayesian metric privacy analogously

to the original metric privacy notion:

Definition 5.3 (BayesianMetric Privacy). Let𝑑 be a (pseudo)metric

on X2
. A mechanismM is Bayesian 𝑑-private if for all 𝑥, 𝑥 ′ ∈ X,

BDPL(𝑥, 𝑥 ′) = sup

𝑖,𝐾

BDPL(𝐾,𝑖 ) (𝑥, 𝑥 ′) ≤ 𝑑 (𝑥, 𝑥 ′),

where the supremum is taken over all the possible set of indices

𝑖 ∈ [𝑛] and 𝐾 ⊆ [𝑛] \ {𝑖}.
The only difference between BDP and Bayesian 𝑑-privacy is

that Bayesian 𝑑-privacy does not take the supremum over 𝑥, 𝑥 ′.
Moreover, both notions are equivalent when the distance metric is

defined as 𝑑 (𝑥, 𝑥 ′) = 𝜀 for 𝑥 ≠ 𝑥 ′ and 𝑑 (𝑥, 𝑥 ′) = 0 otherwise.

Nowwe can prove the relation between a𝑑-private and a Bayesian

𝑑-private mechanism when the data distribution is a multivariate

Gaussian. Particularly, we focus on the ℓ1 distance due to its di-

rect application to the Gaussian case. We formalize the conditions

needed to obtain our bound:

Definition 5.4. For 𝜌 ∈ [0, 1] and 𝑛 ∈ N, we call the matrix

Σ𝜌 ∈ R𝑛×𝑛 a limited covariance matrix if
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• the matrix Σ𝜌 is symmetric and positive definite,

• the diagonal of Σ𝜌 is constant, i.e., there is a variance 𝜎
2 > 0

so that Σ𝜌,𝑖𝑖 = 𝜎
2
for all 𝑖 ∈ [𝑛] and,

• any pairwise correlation is limited by 𝜌 . I.e., for all 𝑖 ≠ 𝑗 we

have |Σ𝜌,𝑖 𝑗 | ≤ 𝜌𝜎2.

The first condition is required to be a valid covariance matrix for

a Gaussian distribution (see Definition 4.2). The second condition

ensures that no records have a deviating variance, i.e., all records

are drawn from the same one-dimensional distribution. The final

condition imposes that the maximum Pearson correlation coeffi-

cient between any two random variables 𝑋𝑖 and 𝑋 𝑗 is bounded by

𝜌 . If we limit 𝜌 to be small enough, we get the following bound:

Theorem 5.5. Let M with data domain R𝑛 be an (𝜀ℓ1)-private
mechanism where 𝜀 > 0 with input data drawn from a multivariate
Gaussian distribution N(𝜇, Σ𝜌 ) with mean 𝜇 ∈ R𝑛 , limited covari-
ance matrix Σ𝜌 ∈ R𝑛×𝑛 (Def. 5.4) and a maximum of𝑚 ≤ 𝑛 cor-
related variables such that 𝜌 (𝑚 − 2) < 1 is the maximum Pearson
coefficient. Then, for any 𝑥, 𝑥 ′ ∈ R we have

BDPL(𝑥, 𝑥 ′) ≤
(︄

𝑚2

4( 1𝜌 −𝑚 + 2)
+ 1

)︄
|𝑥 ′ − 𝑥 |.

Proof Sketch. If from the set of unknown records 𝑉 , none is

correlated with the target, 𝑈 = ∅, then the BDPL is the metric

privacy leakage and the inequality trivially holds. Otherwise, for

any adversary𝐻 , without loss of generality we reorder the subset of

known records correlated with the target as 𝐾 = {𝑚 −𝑘, . . . ,𝑚 − 1}
and 𝑖 =𝑚, denote 𝑇 = 𝐾 ∪ {𝑚} and we show that if the principal

submatrix Σ𝑇 is invertible, then

BDPL(𝐻,𝑚) (𝑥𝑚, 𝑥 ′𝑚) ≤ 𝜀 |𝑥𝑚 − 𝑥 ′𝑚 |
(︂
∥Σ𝑈 ;𝑇 Σ

−1
𝑇 e𝑘+1∥1 + 1

)︂
(1)

where e𝑘+1 ≡ (0, . . . , 0, 1)⊤ ∈ R𝑘+1 and the notation of the Gaussian
distribution N(𝜇, Σ) is reordered as

Σ𝜌 =
⎛⎜⎜⎝
Σ𝑈 Σ𝑈 ;𝑇 0
Σ⊤
𝑈 ;𝑇

Σ𝑇 0
0 0 Σ𝑆

⎞⎟⎟⎠ .
If𝑚 = 2, given than𝑈 ≠ ∅, then 𝑘 = 0 and Σ𝑈 ;𝑇 Σ

−1
𝑇

=
𝜌𝜎1𝜎2

𝜎2

2

≤ 𝜌 .

Using Eq. 1 we obtain: BDPL(𝐻,𝑖 ) (𝑥𝑖 , 𝑥 ′𝑖 ) ≤ (𝜌 + 1)𝜀 |𝑥 ′
𝑖
− 𝑥𝑖 |.

If𝑚 > 2, we prove that Σ𝑇 is invertible applying the Gershgorin

circle Theorem [21], to prove that the eigenvalues of Σ𝑇 obey the

following inequality

𝜆
(∗∗)
≥ (1 − 𝑘𝜌)𝜎2 > (1 − (𝑚 − 2) 1

𝑚 − 2

)𝜎2 = 0. (2)

This bound is positive since the number of known correlated records

𝑘 must be𝑚 − 2 or smaller because the target record is correlated

with at most𝑚 others, 𝑈 ≠ ∅, and 𝜌 (𝑚 − 1) < 1. Hence we can

apply Eq. 1 obtaining:

BDPL(𝐻,𝑖 ) (𝑥𝑖 , 𝑥 ′𝑖 ) ≤ ( ∥Σ𝑈 ;𝑇 Σ
−1
𝑇 e𝑘+1 ∥1 + 1) |𝑥𝑖 − 𝑥 ′𝑖 |𝜀

(∗)
≤

(︄
𝑢∑︂
𝑗=1

|
𝑘+1∑︂
𝑙=1

𝜌𝜎2

(1 − 𝑘𝜌 )𝜎2
| + 1

)︄
|𝑥𝑖 − 𝑥 ′𝑖 |𝜀

=

(︃
𝑢 (𝑘 + 1)𝜌
1 − 𝑘𝜌 + 1

)︃
|𝑥𝑖 − 𝑥 ′𝑖 |𝜀 ≤

(︄
𝑚2

4( 1

𝜌
−𝑚 + 2)

+ 1

)︄
|𝑥𝑖 − 𝑥 ′𝑖 |𝜀.

Where (∗) holds since the entries of Σ𝑈 ;𝑇 are bounded by 𝜌𝜎2 and

the one of Σ−1
𝑇

by
1

𝜆−
≤ 1

(1−𝑘𝜌 )𝜎2
as derived in Eq. 2. □

Theorem 5.5 provides a concrete formula for the increase in pri-

vacy leakage due to linear correlation relative to independent data.

Higher Pearson coefficients lead to greater leakage. Additionally,

we can extend this result to derive a relation between DP and BDP.

5.2 Relationship between DP and BDP
Observe that any 𝑑-private mechanism is an 𝜀-DP mechanism with

𝜀 = sup𝐷∼𝐷 ′ 𝑑 (𝐷,𝐷′). Moreover, any Bayesian 𝑑-private mecha-

nism is an 𝜀-BDP mechanism with 𝜀 = sup𝑥,𝑥 ′ 𝑑 (𝑥, 𝑥 ′). By leverag-

ing these relationships between privacy notions we can establish a

connection between DP and BDP. However, since this supremum

may be unbounded, it can lead to undesirable privacy guarantees. To

manage this relationship effectively we apply clipping techniques,

resulting in Theorem 5.8, which enables the construction of BDP

mechanisms from DP mechanisms. Formally, clipping is defined as:

Definition 5.6. For any interval 𝐼 = [𝑎, 𝑏] ⊂ R, we define the

clipping function 𝑐𝐼 : R𝑛 → R𝑛 , which, for all 𝐷 ∈ R𝑛 and all

𝑖 ∈ [𝑛], outputs
𝑐𝐼 (𝐷)𝑖 = max(𝑎,min(𝑏, 𝐷𝑖 )).

Let M : R𝑛 → R be a mechanism. We define its clipped version
M𝐼 : R𝑛 → R asM𝐼 = M ◦ 𝑐𝐼 .

Due to the data domain reduction, we can bound the DP leakage

of 𝜀ℓ1-private mechanisms.

Lemma 5.7. IfM : R𝑛 → R is 𝜀ℓ1-private, then its clipped version
M𝐼 is 𝜀ℓ1-private and (𝑀𝜀)-DP with𝑀 = |𝑏 − 𝑎 |.

With Lemma 5.7 and Theorem 5.5, we can directly show that

this class of DP mechanisms has a limited BDPL.

Theorem 5.8 (The Gaussian Bound). LetM𝐼 with data domain
R𝑛 be the clipped version of an 𝜀ℓ1-private mechanism M where
𝜀 > 0 and input data drawn from amultivariate Gaussian distribution
N(𝜇, Σ𝜌 ) with mean 𝜇 ∈ R𝑛 , maximum number of correlated records
𝑚 ≤ 𝑛 and limited covariance matrix Σ𝜌 ∈ R𝑛×𝑛 (Def. 5.4) such
that 𝜌 (𝑚 − 2) < 1 is the maximum correlation coefficient. Then, the
clipped mechanismM𝐼 is(︄

𝑚2

4( 1𝜌 −𝑚 + 2)
+ 1

)︄
𝑀𝜀-BDP.

where𝑀 is the diameter of the interval 𝐼 .

The proof follows directly from Theorem 5.5 taking the supre-

mum over all data records, subject to the clipping constraint.

Theorem 5.8 allows us to systematically build a BDP mechanism

by recalibrating the noise of a DP mechanism when 𝜌 (𝑚 − 2) < 1.

For instance, given the clipped Laplace mechanismM𝐼 that adds

noise to a data point 𝑥 ∈ R following Lap(𝑀𝜏 ), where

𝜏 = 𝜀
4( 1𝜌 −𝑚 + 2)

𝑚2 + 4( 1𝜌 −𝑚 + 2)
, (3)

we obtain an 𝜀-BDP mechanism. Moreover,

𝑚2

4( 1𝜌 −𝑚 + 2)
+ 1 ≤ 𝑚 if and only if 𝜌 ≤ 𝑚 − 1

5

4
𝑚2 − 3𝑚 + 2

. (4)
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Figure 1: Relative accuracy of an 𝜀-BDP mechanism to an
𝜀-DP mechanism for a Multivariate Gaussian distribution.

Hence, the Gaussian bound improves on the general bound if 𝜌 is

on the order of 𝜌 ≈ 1

𝑚 . The higher the number of correlated records

𝑚, the better the relative improvement of the Gaussian-specific

bound compared to the general bound for small correlation.

Importantly, Yang et al. [53] establish a bound for Gaussian

Markov random fields. They establish that a clipped M𝜀,𝑓 satis-

fies (𝑛𝑀𝜀)-BDP, which coincides with the general bound when

all records are correlated. Theorem 5.8 applies to this particular

case since a Gaussian Markov random field is an example of Gauss-

ian Multivariate distribution. Moreover, our bound improves over

theirs in the same cases it improves over the general bound.

5.3 Accuracy
When the Pearson correlation is bounded as specified in Equa-

tion (4), it is guaranteed that a larger 𝜀′ than 𝜀
𝑚 is sufficient to

guarantee 𝜀-BDP via an 𝜀′-DP mechanism. Since a larger privacy

budget generally correlates with improved utility, we can there-

fore anticipate enhanced utility results. In particular, we express

the accuracy improvement of the Laplace mechanism calibrated to

protect data drawn from a multivariate Gaussian distribution. As a

consequence of our Theorem 5.8 and Proposition 3.5 from [18] we

obtain the following result:

Corollary 5.9. LetM𝜀,𝑓𝐼 be the clipped Laplace 𝜀-DP mechanism
that approximates the query 𝑓𝐼 as defined in 5.6 with input data
drawn from amultivariate Gaussian distributionN(𝜇, Σ𝜌 ) withmean
𝜇 ∈ R𝑛 and limited covariance Σ𝜌 ∈ R𝑛×𝑛 with a maximum number
of correlated variables 𝑚 ≤ 𝑛 such that 𝜌 (𝑚 − 2) < 1. Then, if
the Laplace mechanism M𝜀,𝑓𝐼 is (𝛼, 𝛽)-accurate w.r.t. 𝑓𝐼 , there exists
an 𝜀-BDP mechanism B whose input is drawn from 𝜋 and that is
(ℎ𝛼, 𝛽)-accurate w.r.t. 𝑓𝐼 with

ℎ =
𝑚2

4( 1𝜌 −𝑚 + 2)
+ 1.

The statement of Corollary 5.9 is visualized in Figure 1. This

figure shows that in order to provide similar utility to DP, 𝜌 must be

small. The larger the number of correlated records𝑚, the smaller 𝜌

has to be to provide similar utility. The results in this section enable

the protection of weakly correlated data drawn from a multivariate

Gaussian distribution. Furthermore, a comparison of the accuracy

achieved by our method versus the state-of-the-art bound from [53]

and the general BDP bound is presented in Figure 4, demonstrating

a consistent improvement enabled by our approach.

6 MARKOV CHAIN CORRELATION MODEL
In streaming processes or time series data, states at successive time

steps are often correlated, meaning that the state at a given time

step depends on the state at the previous one. For example, a user’s

location at time step 𝑡 is correlated with their location at 𝑡 − 1. This

dependency pattern is commonly modeled using Markov chains [4].

Consequently, in this section we investigate the impact of cor-

relations following a Markov model on the privacy leakage and

utility of BDP mechanisms. Particularly, we prove Theorem 6.2,

a new bound on the BDPL of any 𝜀-DP mechanism when data is

correlated corresponding to a Markov chain. Additionally, we use

our results to elaborate on the utility gain compared to protecting

against arbitrary correlation.

For the remainder of this work, we adopt the definition of a

Markov chain from [4], which specifically refers to finite, time-

homogeneous Markov chains, i.e., those with finite state spaces and

time-invariant transition probabilities. Formally,

Definition 6.1 (Markov Chain [4]). Let S be a finite set of possible

states of size 𝑠 ∈ N and let X = (𝑋1, . . . , 𝑋𝑛) be a random vector.

We say X is a Markov chain with transition matrix 𝑃 ∈ R𝑠×𝑠 and
initial distribution𝑤 ∈ R𝑠 if all of the following holds.

(1) For all states 𝑥,𝑦 ∈ S and all indices 𝑖 ∈ [𝑛 − 1] we have
Pr[𝑋𝑖+1 = 𝑥 |𝑋𝑖 = 𝑦] = 𝑃𝑦,𝑥 .

(2) For all states 𝑥 ∈ S we have Pr[𝑋1 = 𝑥] = 𝑤𝑥 .
(3) The Markov property: For all indices 𝑖 ∈ [𝑛 − 1] and for all

states 𝑥1, . . . , 𝑥𝑖 , 𝑥𝑖+1 ∈ S we have

Pr[𝑋𝑖+1 = 𝑥𝑖+1 | 𝑋1 = 𝑥1, . . . , 𝑋𝑖 = 𝑥𝑖 ]
= Pr[𝑋𝑖+1 = 𝑥𝑖+1 | 𝑋𝑖 = 𝑥𝑖 ] .

6.1 Relationship between DP and BDP
In this subsection, we show that it is possible to obtain a bound

on the BDPL of any DP mechanism based on the maximum ra-

tio between the largest and smallest transition probabilities in the

Markov chain. The intuition is that if all transition probabilities

are similar, changing the random variable 𝑋𝑖 from state 𝑥𝑖 to state

𝑥 ′
𝑖
will have minimal impact on the subsequent time steps of the

Markov chain. However, if the transition probabilities differ sig-

nificantly, this change could have a large effect over many time

steps. Formally, we bound the BDPL of a DP mechanism on data

that follows a Markov chain as follows:

Theorem 6.2 (The Markov Chain Bound). Let 𝑠 ∈ N be the
number of states. LetM : S𝑛 → Y be an 𝜀-DP mechanism. Let the
databases follow a Markov chain with transition matrix 𝑃 ∈ R𝑠×𝑠

and initial distribution𝑤 ∈ R𝑠 with the following properties:

(H1) For all 𝑥,𝑦 ∈ S we have 𝑃𝑥,𝑦 > 0 and,
(H2) 𝑤𝑃 = 𝑤 .

Then, M is an (𝜀 + 4 ln𝛾)-BDP mechanism where

𝛾 :=
max𝑥,𝑦∈S 𝑃𝑥𝑦
min𝑥,𝑦∈S 𝑃𝑥𝑦

.

Proof Sketch. If there are no unknown indices, BDPL(𝐾,𝑖 ) is
the DP leakage [53] and the inequality is trivially satisfied. Other-

wise, combining Bayes’ rule, Markov property, (H1) and (H2) we
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prove that:

Pr[x𝑈 |x𝐾 , 𝑥𝑖 ]
Pr[x𝑈 |x𝐾 , 𝑥 ′𝑖 ]

=
Pr[𝑥𝑖 |x𝐾 , x𝑈 ] Pr[𝑥 ′

𝑖
|x𝐾 ]

Pr[𝑥 ′
𝑖
|x𝐾 , x𝑈 ] Pr[𝑥𝑖 |x𝐾 ]

=
Pr[𝑥𝑖 |x−𝑖 ] Pr[𝑥 ′𝑖 |x𝐾 ]
Pr[𝑥 ′

𝑖
|x−𝑖 ] Pr[𝑥𝑖 |x𝐾 ] ≤ 𝛾2𝛾2 = 𝛾4 .

Note that if 𝐾 = ∅ the previous expression gets simplified to

Pr[x𝑈 |𝑥𝑖 ]
Pr[x𝑈 |𝑥 ′

𝑖
] =

Pr[𝑥𝑖 |x𝑈 ] Pr[𝑥 ′
𝑖
]

Pr[𝑥 ′
𝑖
|x𝑈 ] Pr[𝑥𝑖 ]

≤ 𝛾3 ≤ 𝛾4 .

Therefore,

Pr

M
[𝑌 ∈ 𝑆 |x𝐾 , 𝑥𝑖 ] =

∑︂
x𝑈 ∈S𝑢

Pr

M
[𝑌 ∈ 𝑆 |x𝐾 , 𝑥𝑖 , x𝑈 ] Pr

𝜋
[x𝑈 |x𝐾 , 𝑥𝑖 ]

=
∑︂

x𝑈 ∈S𝑢
Pr[𝑌 ∈ 𝑆 |x𝐾 , 𝑥𝑖 , x𝑈 ] Pr[x𝑈 |x𝐾 , 𝑥 ′𝑖 ]

Pr[x𝑈 |x𝐾 , 𝑥𝑖 ]
Pr[x𝑈 |x𝐾 , 𝑥 ′𝑖 ]

≤ 𝛾4 𝑒𝜀 Pr[𝑌 ∈ 𝑆 |x𝐾 , 𝑥 ′𝑖 ] . □

(H1) states that all entries in the transition matrix are strictly

positive, while (H2) requires that the initial distribution is a station-
ary distribution, meaning the distribution over states𝑤𝑡 (without

considering the previous one) remains constant at each time–a

common modeling assumption in various data mining tasks such

as weather forecasting [52] or electricity consumption [3]. Notably,

condition (H1) implies that the chain is both irreducible and aperi-

odic, which in turn guarantees the existence of a unique stationary

distribution𝑤 [31] satisfying (H2). Moreover, for any initial distri-

bution𝑤 ′
, the distribution at time 𝑡 converges geometrically fast to

𝑤 as 𝑡 increases [31]. Hence, even when the initial distribution is not

stationary, it asymptotically approaches the stationary distribution,

satisfying (H2) after discarding sufficient initial events.

While prior work provides a mechanism for BDP protection of

lazy binary Markov chains with a symmetric transition matrix [8],

we present the first direct and general relationship between DP and

BDP leakage for arbitrary Markov chains, including non-binary

ones. When comparing this novel bound with the general one, for

any 𝜀 > 0 and maximum transition probability ratio 𝛾 ≥ 1, we have

𝜀 + 4 ln𝛾 < 𝑛𝜀 if and only if 𝛾 < exp

(︃
𝑛 − 1

4

𝜀

)︃
. (5)

Therefore, the Markov chain bound outperforms the general bound

in most cases. For instance, with an 𝜀-DP mechanism where 𝜀 = 0.5

and a database size of 𝑛 = 80, it remains tighter even when the

largest transition probability is 10, 000 times the smallest. For the

same 𝜀 = 0.5, the Markov bound only becomes looser than the

general one when the number of correlated records is small, e.g.,

𝑛 = 20, and the transition probability ratio 𝛾 is as high as 100, which

still represents a significant disparity.

Moreover, Theorem 6.2 enables the systematic design of BDP

mechanisms by adjusting the noise of an existing DP mechanism.

Noise calibration depends only on the maximum ratio between the

Markov transition probabilities of the model, 𝛾 , and the adjusted

mechanism must be calibrated to 𝜀′ = 𝜀 − 4 ln(𝛾). Note that the best
achievable BDPL using Theorem 6.2 is 𝜀 = 4 ln(𝛾), since 𝜀′ ≥ 0. Con-

sequently, the minimum achievable 𝜀 is fundamentally constrained

by the structure of the underlying Markov model–specifically by

the maximum transition ratio 𝛾 . We illustrate how the transition

matrix changes the minimum 𝜀 in theoretical settings in Figure 2,

and in real-world data in Section 7.

Figure 2: Accuracy of our mechanism vs. the one proposed
in [8] for 𝑛 = 700 and various self-transition probabilities 𝑃𝑠𝑠 .

6.2 Accuracy
The Markov chain bound enables us to derive improved utility

guarantees for the Laplace mechanism when 𝛾 is sufficiently small.

Corollary 6.3. Let M𝜀,𝑓 be the 𝜀-Laplace mechanism that ap-
proximates the query 𝑓 : S𝑛 → R and inputs a database drawn from
a Markov chain satisfying (H1) and (H2). IfM𝜀,𝑓 is (𝛼, 𝛽)-accurate
w.r.t. 𝑓 and 𝜀 ≥ 4 ln(𝛾) then, there exists an 𝜀-BDP mechanism B
that is (ℎ𝛼, 𝛽)-accurate w.r.t. 𝑓 with

ℎ =
𝜀

𝜀 − 4 ln(𝛾) .

The statement of Corollary 6.3 is visualized in Figure 3. This

figure shows that in order to provide similar utility guarantees to

DP, either the BDPL bound 𝜀 has to be larger than 5, or the ratio 𝛾

between different transition probabilities must be smaller than 3.

The only previous BDP mechanism for Markov chains [8], fo-

cuses on lazy binary Markov models with a symmetric transition

matrix, i.e., the probability of staying in the same state 𝑃𝑠𝑠–self-

transition probability–is constant for 𝑠 ∈ {0, 1}, and 𝑃𝑠𝑠 > 0.5. In

this regime, 𝛾 =
𝑃𝑠𝑠

1−𝑃𝑠𝑠 . Restricting ourselves to this setting, we find
that our mechanism achieves superior (𝛼, 𝛽)-accuracy, as shown
in Figure 2. The detailed formal analysis can be found in the long

version of this paper. It is important to note that while their mech-

anism supports arbitrary BDPL, ours applies only for 𝜀 ≥ 4 ln(𝛾).
However, our approach generalizes to arbitrary Markov chains,

whereas theirs is limited to lazy, symmetric binary models. In the

intersection of both applicability domains, our use of Laplace-based

recalibration yields improved utility.

In conclusion, the Markov-specific bound improves upon the

general bound under certain conditions and enables improved util-

ity (Figure 2) compared to prior work [8]. Its advantage is most

notable when the number of correlated records is large, as it re-

mains independent of dataset size–unlike the general bound, which

grows linearly. However, this comes at the cost of a minimum pri-

vacy level determined by the data distribution, a limitation absent

in the general bound and [8].

7 UTILITY EXPERIMENTS
Theoretical bounds on privacy and utility do not always translate

directly to practical implementations. For instance, while it may be

theoretically feasible to achieve a given (𝛼, 𝛽)-accuracy, designing
or implementing a mechanism that attains this in practice can
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Figure 3: Relative accuracy ℎ of an 𝜀-BDP to an 𝜀-DP mecha-
nism for Markov chain data respect to 𝛾 .

be challenging. In this section, we use our theoretical results to

construct a BDP mechanism and empirically evaluate its utility

on real-world databases that follow either multivariate Gaussian

correlations or Markov chains. Our objective is to demonstrate

that the utility gains predicted under specific correlation structures,

rather than arbitrary ones, are indeed achievable in practice as well

as measure the improvement over previous approaches.

We calibrated the Laplace mechanism using Theorem 5.8 and

Theorem 6.2 to derive BDP mechanisms. We then ran these BDP

mechanisms on the selected databases and compared the utility

results with those of BDP mechanisms designed to protect against

arbitrary correlation, in order to assess the improvements offered

by the correlation-specific approach. Moreover, we also plot, when

applicable, the accuracy results of the state-of-the-art solutions for

Gaussian BDP [53]. Unfortunately, none of the evaluated datasets

meet the strict assumptions needed to apply the only prior mech-

anism for Markov models [8]. Finally, we plot the utility of the

classical DP Laplace mechanism as a baseline, representing the

best-case utility achievable ignoring correlation.

7.1 Databases
We use four real-world databases, two for each correlation model.

Additionally, we use a synthetic dataset to test scalability for Gauss-

ian correlations. The selection criteria are public availability, quality

of the databases, and the fulfillment of the theoretical assumptions,

namely, following the correlation model and fulfilling the extra

hypotheses of the corresponding theorem in each case, regarding

the Pearson correlation coefficient and the transition matrix.

7.1.1 Multivariate Gaussian: We use two datasets that align well

with our modeling framework: the Galton Height Data [19], a his-

torical dataset originally compiled to study the correlation between

parents’ and children’s heights, and the FamilyIQ dataset [22],

which includes IQ scores of gifted children and their parents.

The Galton Height Data–considered a classical example of lin-

ear correlation modeling, where regression and correlation are

interpreted within the framework of a multivariate Gaussian dis-

tribution [35]–is especially well known in statistical analysis for

introducing the very concept of regression [6]. In contrast, several

studies provide evidence that IQ scores in the general population are

standardized to follow a multivariate Gaussian distribution, where

non-zero correlations are observed only among close relatives [43].

These properties make both datasets well-suited for evaluating the

practical transferability of our Gaussian-based bounds. Additionally,

Database 𝑛 𝑚 Parameters Sensitivity

Galton 897 3 𝜌 = 0.275 Δ𝑞 = 254 cm

FamilyIQ 868 2 𝜌 = 0.4483 Δ𝑞 = 120

SyntheticIQ 20000 2 𝜌 = 0.45 Δ𝑞 = 120

Activity 17568 𝑛 𝛾 = 7.54 Δ𝑞 = 1

Electricity 731 𝑛

70 kWh, 𝛾 = 3.29

80 kWh, 𝛾 = 4.49

90 kWh, 𝛾 = 8.43

Δ𝑞 = 1

Table 3: Data description.𝑚 is the max number of correlated
records and 𝑛 the total amount.

we generate the SyntheticIQ dataset to test the scalability of our

approach. Following the findings among several populations sum-

marized in [43], we generate data following a Gaussian distribution

with 𝜇 = 100, 𝜎2 = 15 and 𝜌 = 0.45 for parent-child.

To ensure bounded sensitivities, all records are clipped to the

range of 1cm to 254cm (0 to 100 inches) for Galton, and from 40 to

160 for IQ datasets as summarized in Table 3.

All explored datasets fulfill the conditions of our Theorem 5.8:

Galton Pearson correlation coefficient of 𝜌 = 0.275, satisfies the

condition 𝜌 = 0.275 < 1 = 1

𝑚−2 , hence our bounded-correlation
assumptions hold. For𝑚 = 2, the condition trivially holds for all 𝜌

values, so in particular for FamilyIQ and SyntheticIQ.

7.1.2 Markov Model: We study two use cases–human activity and

electricity consumption–well-suited for Markov modeling. Human

activity representations such as “inactive” versus “active” are mod-

eled by Markov chains [24]. Similarly, electricity usage patterns,

particularly transitions between high and low consumption periods,

have been effectively modeled using Markov processes [3, 14, 39].

We select a representative database for each domain to evaluate our

framework. For human activity, we use Activity Data [37], which

contains the time series of step counts recorded every 5 minutes

from a personal activity monitoring device worn by a single individ-

ual during October and November 2012. This allows us to extract

the “active” state if any steps are recorded and the “inactive” when

the user does not move. Besides, to assess the data size impact, we

split Activity data into 61 unique subdatabases, each corresponding

to the activity states of a single day and report the results in the

long version of this paper. For electricity usage, we use the Elec-

tricity Dataset [36], which captures a single residence electricity

usage in Canada from 2012 to 2014. We classify each hour as low or

high consumption depending on whether the usage falls below or

exceeds a fixed threshold of 80 kWh–the central value of the range.

Additionally, we study different threshold values, 70 and 90 kWh,

to assess their impact on utility. In all cases, we evaluate event-level

local privacy guarantees, assuming no trusted curator and focusing

on user-side privacy protection [18]. The technical details of the

three datasets are summarized in Table 3.

In order to fulfill the conditions of Theorem 6.2 we require the

transition probabilities of the Markov chain to be positive. We

calculate them empirically and receive the following transition
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Figure 4: Gaussian data results. Lines show theoretical error at 𝛽 = 5% and markers indicate empirical 95% upper bounds.

matrices for Activity and Electricity 70, 80, 90 kWh in this order:

(︄
0.882 0.117

0.305 0.695

)︄
,

(︄
0.445 0.555

0.149 0.850

)︄
,

(︄
0.818 0.182

0.371 0.629

)︄ (︄
0.894 0.106

0.478 0.522

)︄
,

representing 𝑃00, 𝑃01, 𝑃10, 𝑃11 with 𝑠 = 0 inactive/low consumption

and 𝑠 = 1 active/high consumption. Our theorem also requires

𝑤 to be a stationary distribution. While𝑤 can not be empirically

computed since we only have one initial state, both Markov chains

are irreducible, since both states are reachable from each other,

aperiodic, since 𝑃𝑠𝑠 ≠ 0 for both 𝑠 ∈ {0, 1}, and 𝑃𝑠𝑡 > 0 hence there

exists a stationary initial distribution [11]. Therefore, we conclude

that the databases fulfill the conditions for testing our results.

7.2 Target Queries and Utility metrics
We focus our utility study on two concrete although commonly

used queries: sum and counting queries. Formally, given a database

𝐷 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where each 𝑥𝑖 represents a numerical value,

a sum query is defined as: 𝑞𝑆 (𝐷) =
∑︁𝑛
𝑖=1 𝑥𝑖 . In the case of the

Gaussian data, each 𝑥𝑖 corresponds to an individual’s height or IQ.

If each record is binary, i.e., 𝑥𝑖 ∈ {0, 1}, as is the case for the activity
and electricity datasets, 𝑞𝑆 (𝐷) is called a counting query since it

outputs the count of states with the attribute 1.

Our theoretical results are expressed in terms of (𝛼, 𝛽)-accuracy.
To evaluate empirical utility, we use the upper bound of a (1 − 𝛽)
confidence interval for the absolute query error, which serves as a

practical counterpart. Specifically, we report the upper limit of a

95% confidence interval (i.e., 𝛽 = 0.05), a standard choice in prac-

tice [29]. A smaller upper bound indicates higher utility. When this

bound is close to the theoretical error 𝛼 , it demonstrates a strong

alignment between empirical and theoretical results, highlighting

their practical applicability. To facilitate comparison with our the-

oretical results, we plot the theoretical error tolerance 𝛼 for each

mechanism, derived from Proposition 3.5 for the baseline DP mech-

anism and Corollary 4.5, Corollary 5.9, and Corollary 6.3 for the

general bound, the Gaussian bound and the Markov chain bound

respectively. Additionally, to give an idea of the impact on utility

in practice, we report the mean absolute percentage error (MAPE)

in the long version of this paper to estimate the expected relative

error for a single execution.

7.3 Mechanism and Experiment Design
In order to provide BDP mechanisms that approximate the target

queries presented in Section 7.2, we use the Laplace mechanism

with the noise calibrated through Theorem 4.3 for the DP baseline,

Theorem 5.8 for Gaussian data and Theorem 6.2 for Markov data.

In this section, we refer to the DP privacy leakage by 𝜏 , to avoid

confusion with the actual maximum BDPL denoted by 𝜀.

7.3.1 Gaussian Data. As explained in Section 7.1, we assume that

the dataset is drawn from a multivariate Gaussian distribution with

maximum number of correlated variables𝑚 respectively. Both the

general bound and state of the art [53] indicate that for the Laplace

mechanism M𝜏,𝑓 , we have 𝜀 = 𝑚𝜏 , i.e., 𝜀 = 3𝜏 for Galton and

𝜀 = 2𝜏 for IQ datasets. Alternatively, according to the Pearson

coefficients described in Table 3, Theorem 5.8 tells us thatM𝜏,𝑓 is 𝜀-

BDP, with 𝜀 ≈ 1.853𝜏, 1.45𝜏 for Galton and IQ datasets respectively.

Consequently, we fix BDPL values 𝜀 ∈ (0, 20] and compute the

corresponding 𝜏 using Eq. 3 for the Gaussian-specific correlation

approach and 𝜏 = 𝜀
3
for the general correlation and state of the

art. For 𝜀 ∈ (0, 5), we ensure strong theoretical privacy guarantees,

while also considering the higher range 𝜀 ∈ [5, 20], which has

shown empirical resilience to certain privacy attacks [7, 40].

7.3.2 Markov Data. As discussed in Section 7.1 we assume that the

data follows a Markov chain. According to the 𝛾 values summarized

in Table 3, Theorem 6.2 tells us that the Laplace mechanismM𝜏,𝑓

applied to a counting query 𝑓 is 𝜀-BDP, with

𝜀𝐴 = 𝜏 + 8.05, 𝜀𝐸,70 ≈ 𝜏 + 4.7, 𝜀𝐸,80 ≈ 𝜏 + 6.03, 𝜀𝐸,90 ≈ 𝜏 + 8.54, (6)

In comparison, with the general bound we have 𝜀 = 𝑛𝜏 for mecha-

nismM𝜏,𝑓 . Similar to Gaussian data, we apply the Laplace mech-

anism to compute the sum query of each subgroup with BDPL

values 𝜀 ∈ (0, 20] and compute the corresponding 𝜏 using Eq. 6 for

the Markov-specific mechanism and taking 𝜏 = 𝜀
𝑛 for the general

correlation approach. However, none of the datasets provide a sym-

metric transition matrix, which means that the proposal in [8] is

not applicable, making an empirical comparison impossible.

Note that while 𝜀-BDP can be provided for all values using the

general bound and state of the art [8], Eq.6 only allows for 𝜀 ≥
8.05, 6.9, 4.7 and 8.45 for Activity and Electricity data respectively,

since 𝜏 must be positive (see Section 6).

In all experiments, we calculate empirical confidence intervals

executing the mechanism for each dataset 1000 times.
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Figure 5: Markov data results. Lines show theoretical error
at 𝛽 = 5% and markers indicate empirical 95% upper bounds.

7.4 Results and Discussion
Figure 4 presents the results for the Gaussian models, including

our Gaussian-specific bound, the state-of-the-art bound from [53]

(which coincides with the general bound), and the DP Laplace

mechanism for sum queries. We plot the DP mechanism as the

baseline for the best possible utility; however, it is important to note

that DP does not offer meaningful protection in this experiment,

given correlation. Among the correlation-protecting mechanisms,

those that use the Gaussian bound consistently outperform the

s-o-t-a mechanism [53] for all 𝜀 in all datasets. Note that we plot

all results on a logarithmic scale. This makes it harder to visually

see the substantial reduction of error achieved by our mechanisms–

particularly for small values of 𝜀. For instance, for 𝜀 = 1 the error is

reduced by more than 400 units for both IQ datasets and 200 inches

for the Galton. Note that the Galton height data uses imperial units

(inches), thus the errors are also interpreted in inches.

The results for Markov chains are shown in Figure 5. Again, we

use the DP mechanism as the baseline for the best possible utility,

not as a comparable protective mechanism. For BDP mechanisms,

we observe that the different Markov models tested lead to varying

minimum achievable BDPL levels, as determined by our Markov-

based bound: Electricity 70 kWh yields the most favorable case

with a minimum 𝜀 = 4.9, while 90 kWh imposes the weakest bound

with a minimum 𝜀 = 8.45. In contrast, the general bound supports

all 𝜀 > 0. In all cases where the Markov chain bound is applicable,

mechanisms using it significantly outperform those relying on the

general bound. While the error of mechanisms based on the general

bound increases sharply, the error of both the Markov chain–based

mechanism and the standard DP mechanism remains stable. In

particular, in the Activity dataset the general bound results in a 10
5

times larger error than that of our proposed Markov chain bound.

This is because the general bound scales with the size of the database

𝑛, while the Markov bound is independent of 𝑛, highlighting the

huge benefit of using our novel bound for large datasets.

The results demonstrate that BDP mechanisms calibrated with

our newly proven Gaussian and Markov chain bounds outperform

prior BDP mechanisms and mechanisms calibrated with the general

bound in terms of utility on real-world data. Moreover, the empirical

errors from our experiments closely alignwith our theoretical utility

results, validating the practical applicability of our theorems. We

extend this study with the analysis of the relative error in the long

version of this paper obtaining similar results.

We acknowledge certain limitations when extrapolating our re-

sults. The validity of our experimental findings is constrained by

the specific databases used. While the Galton height data serves

as a well-known example of record correlation, it reflects only one

of many possible correlation patterns. Similarly, most practical ap-

plications of a Markov chain would involve more than two states,

introducing complexity beyond the binary-state model used in our

study. Nevertheless, our results provide valuable insight into the

practical applicability of our theorems and indicate their potential

for real-world scenarios. Furthermore, these experiments demon-

strate that achieving meaningful utility while protecting against

correlation is feasible in practice.

8 CONCLUSION
In this paper, we explored the utility of BDP mechanisms for cor-

related data. We addressed prior limitations by analyzing broader

correlation models and providing a detailed study of privacy-utility

trade-offs, supported by theoretical results and empirical evidence.

Specifically, we established new connections between DP and BDP

mechanisms and demonstrated how they can be leveraged for pri-

vacy protection under correlation.

We proved that any 𝜀-DP mechanism satisfies𝑚𝜀-BDP, where𝑚

is the size of the correlated group, and showed this bound is tight.

We then improved upon it by consideringmultivariate Gaussian and

Markovmodels, deriving novel bounds on BDP leakage that provide

stronger utility guarantees than the s-o-t-a approaches under the

same privacy constraints. The advantage of our correlation-specific

bounds is particularly evident under Markov-modeled correlations.

While mechanisms based on the general bound exhibit high sensi-

tivity to the number of correlated records, our Markov-based bound

remains robust and stable regardless of the dataset size.

While it remains a futile attempt to apply BDP without assuming

a specific correlation model, both our theoretical and experimen-

tal results demonstrate that it is possible to achieve better utility

without weakening the adversary model in practical scenarios: (a)

when the number of correlated records is small, (b) when the data

follows a weakly correlated Gaussian model, or (c) when the data

is a time series following a Markov chain with sufficiently similar

transition probabilities.

Overall, our Theorems 4.3, 5.8 and 6.2 advance the theoreti-

cal and practical understanding of BDP, enabling the reuse of DP

mechanisms in correlated settings. This opens future directions

for deriving correlation-specific bounds, allowing the design of

more accurate BDP mechanisms that protect against real-world,

correlation-based attacks.
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