
RICH: Real-time Identification of negative Cycles for
High-e�iciency Arbitrage

Bingqiao Luo
National University of

Singapore
luo.bingqiao@u.nus.edu

Jiaxin Jiang∗
National University of

Singapore
jiangjx@comp.nus.edu.sg

Yuhang Chen
National University of

Singapore
yuhangc@comp.nus.edu.sg

Junyi Hou
National University of

Singapore
junyi.h@comp.nus.edu.sg

Cheng Jun Tey
National University of

Singapore
chengjuntey@u.nus.edu

Ziyang Qiu
National University of

Singapore
ziyangqiu@u.nus.edu

Bingsheng He
National University of

Singapore
hebs@comp.nus.edu.sg

Spencer Xiao
Tokka Labs

spencer.xiao@tokkalabs.com

Dominic Ong
Tokka Labs

dominic.ong@tokkalabs.com

Wee Howe Ang
Tokka Labs

weehowe.ang@tokkalabs.com

ABSTRACT
Arbitrage is a challenging data science problem characterized by
rapidly �uctuating price discrepancies across multiple markets,
necessitating real-time solutions. To overcome the challenge, we
model it as a :-hop negative cycle detection problem in graphs and
introduce RICH: Real-time Identi�cation of negative Cycles for
High-e�ciency arbitrage. RICH is a novel framework that lever-
ages color-coding and dynamic programming to accelerate the
identi�cation of negative-weight cycles without exhaustive graph
traversal. Additionally, RICH incorporates encoding techniques
and graph reduction to minimize computational overhead while
maintaining probabilistic guarantees. Our extensive experiments on
real-world datasets demonstrate that RICH is up to 32.69× faster
than state-of-the-art methods, enabling timely arbitrage execution
while outperforming existing methods in both speed and accuracy.
We further validate its e�ectiveness in identifying arbitrage oppor-
tunities in cryptocurrency markets and foreign exchange markets.

PVLDB Reference Format:
Bingqiao Luo, Jiaxin Jiang, Yuhang Chen, Junyi Hou, Cheng Jun Tey,
Ziyang Qiu, Bingsheng He, Spencer Xiao, Dominic Ong, and Wee Howe
Ang. RICH: Real-time Identi�cation of negative Cycles for High-e�ciency
Arbitrage. PVLDB, 18(11): 4081 - 4089, 2025.
doi:10.14778/3749646.3749678

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Xtra-Computing/RICH.

∗Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749678

1 INTRODUCTION
Arbitrage is a fundamental concept in the �nancial system, refer-
ring to the practice of exploiting price di�erences across multiple
markets to generate pro�t [16]. It is widely observed in various �-
nancial markets such as capital asset [42], foreign currency trading
[26], and stock exchanges [10], where pricing ine�ciencies create
opportunities for arbitrageurs. For example:

(1) Arbitrage in foreign currency trading [21, 26]. Triangular
arbitrage is a classic FX strategy, where a trader exchanges
through three currencies to exploit price discrepancies and re-
turn to the original currency. This opportunity is more common
during periods of high market volatility.

(2) Arbitrage in cryptocurrency market [18, 31]. The rise of
cryptocurrencies has enabled new arbitrage opportunities. Au-
tomated market makers (AMMs) [2] set prices on decentralized
exchanges, often causing liquidity imbalances. Cyclic arbitrage
that trading through multiple assets and returning to the origi-
nal for pro�t is common.

In this paper, we study arbitrage in the cryptocurrency market,
which o�ers real-time, open data, unlike traditional markets with
restricted or delayed access [33, 49]. In collaboration with our in-
dustry partner Tokka Labs, we leverage a robust data pipeline to
systematically identify arbitrage opportunities across multiple ex-
changes. In this paper, we use this data pipeline as an example and
it is common for arbitrage activities in di�erent companies [34, 50].
Data Pipeline for Arbitrage (Figure 1). Tokka Labs is a propri-
etary trading �rm specializing in high frequency on-chain trading
strategies. Deployed on over 40 on-chain venues, the team focuses
on market making, searching, and solving for top protocols on the
most popular blockchains in the world. Based on our discussions,
we illustrate this arbitrage data pipeline for trading �rms as a gen-
eral industry framework, outlining four key steps in the process: (1)
Graph Construction, where a directed token graph is built with
nodes representing cryptocurrency tokens (such as Bitcoin (BTC)
and Ethereum (ETH)) and edges representing tradable pairs de-
rived from AMM-based liquidity pools [45, 50]. Exchange rates are

4081

https://doi.org/10.14778/3749646.3749678
https://github.com/Xtra-Computing/RICH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749678
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Token pair liquidity pools
(2) Detection

K-hop negative cycle detection

k=3 w=-1 k=4 w=-2 k=5 w=-1

WBTC/
WETH

USDC/
DAI

USDT/
WETH

USDC/
WETH

USDC/
WBTC

DAI/
USDT

(3) Trade execution

(4) Block iteration

Token graph: G(1) Graph
construction

DAI/
WETH

USDT/
USDC

Figure 1: Data pipeline for arbitrage.

Randomized search strategies
frequently miss optimal solution.

20% (-10.43)
80% (-0.92)

(a) CDF of kNC weights.

Stuck in local traps

Most negative weight detected
by DFS-like method

Most negative weight detected
by greedy-like method

Stuck in local traps

(b) Weight vs. Time.

Figure 2: Example of challenges in a token graph.

transformed using logarithms to convert multiplicative price ratios
into additive edge weights, facilitating negative cycle detection; (2)
Negative Cycle Detection, which involves identifying :-hop most
negative-weight cycles (kMNC) in the transformed graph, indicat-
ing potential pro�table arbitrage sequences. The hop constraint :
prevents excessive gas fees and execution failures [39]. (3) Trade
Execution, where a detected negative cycle is traversed starting
from an arbitrary token, executing the sequence of trades to obtain
a net gain in the starting token; and (4) Block Iteration, in which
the entire pipeline is repeated for each newly mined blockchain
block to account for rapid updates in liquidity and prices [1, 18].

E�cient kMNC detection in large token graphs is crucial for
real-time, scalable arbitrage. Key challenges include:

Challenge 1: High Computational Complexity of kMNC Detection.
The kMNC problem is proven to be NP-complete, making exact
solutions infeasible for large-scale cryptomarkets with thousands of
tokens and pools [34]. As: increases, the number of potential cycles
grows exponentially, signi�cantly extending computation times and
making results highly sensitive to search heuristics. Figure 2a shows
the skewed distribution of :-hop negative cycle (kNC) weights in a
token graph. Randomized search methods often get stuck in local
optima and miss pro�table cycles without structural guidance [46].

Challenge 2: Inability of ExistingMethods to Escape Local Subgraph
Searches. State-of-the-art arbitrage detection algorithms typically
rely on local subgraph searches, restricting exploration to limited
regions of the token graph [50]. This prevents the discovery of
globally optimal negative cycles, resulting in suboptimal solutions
and longer detection times. As illustrated in Figure 2b, the most neg-
ative cycle weights improve gradually, but identifying the optimal
solution with existing methods can take over 40 seconds [34, 46].
Such local search traps hinder arbitrage detection e�ectiveness in
rapidly evolving markets and reduce potential pro�ts.

To address these challenges, we proposeRICH for e�cient kMNC
detection in �nancial graphs. Our main contributions are:
• Color-Coding Based Detection:We propose a Color-Coding

based algorithm that e�ciently detects kMNC in polynomial
time with a high probability of identifying the optimal solution
with rigorous probabilistic guarantees.

ETH/LTC

ETH
/BTC

1000 BTC1026.84 BTC

BT
C/
LT
C 0.03

6.97

223.66

(a) Arbitrage.

!! !"

!# !$
!%

!! !"

!# !$
!%

w(u,v)=-log(r(u→v))

!!"#
!!"$

!!"%
!!"&

!!"'
!!"(

!!")

!!"*

w2
w3

w1
w4

w5
w6

w7

w8

(b) Negative cycle.

Figure 3: Example of arbitrage and negative cycles.

• E�cient Dynamic Programming:We design tailored dynamic
programming (DP) techniques specialized for cycle detection
under hop constraints, which avoid redundant computation and
speed up detection within each color-coding instance.

• Color-Coding-AwareOptimizations:Wedevelop bitwise color-
set encoding and color-guided graph reduction within the color-
coding framework, greatly reducing search space and overhead.
These optimizations enable RICH to scale to large graphs and
support real-time cycle detection.

• Empirical Validation:We conduct extensive experiments demon-
strating that our solution is up to 32.69x faster than state-of-
the-art methods. Additionally, case studies in cryptocurrency
markets and foreign exchangemarkets validateRICH’s capability
to execute arbitrage swiftly in real-world scenarios, highlighting
its practical e�ectiveness and reliability.

2 BACKGROUND AND RELATEDWORK
2.1 Preliminaries
Graph. We consider a directed and weighted graph ⌧ = (+ , ⇢),
where + represents the set of vertices (nodes) and ⇢ ✓ + ⇥ +
represents the set of directed edges. For any vertex D, we use # (D)
to denote the set of neighbors of D, i.e., # (D) = {E | (D, E) 2 ⇢}.
Cyclic Arbitrage. Cyclic arbitrage exploits price discrepancies
across a cycle of token exchanges to generate pro�t. An arbitrageur
trades through multiple pairs and returns to the original token with
more than they started. Figure 3a shows an example of arbitrage that
sequentially trades BTC for ETH, ETH for Litecoin (LTC), and LTC
back to BTC to capture pro�table price discrepancies [41]. Detecting
such cycles is key for automated crypto trading strategies.

Example 2.1. Consider the cycle E2 ! E0 ! E4 ! E2 in Fig-
ure 3b (LHS), where each edge encodes an exchange rate
A (D ! E). After a logarithmic transformation, the edge
weights become F (D, E) = � log(A (D ! E)) (RHS). If the
total weightF1 +F2 +F3 < 0, this implies a pro�table arbi-
trage, since the product of the exchange rates exceeds one:
A (E2 ! E0) · A (E0 ! E4) · A (E4 ! E2) > 1. The more negative
the total weight, the higher the potential arbitrage pro�t.

Edge Weight. Each edge (D, E) 2 ⇢ represents a trading pair from
token D to token E with an exchange rate A (D ! E). For example,
the exchange rate A (BTC ! ETH) has �uctuated between 12 and
48 over the past �ve years. To facilitate e�cient cycle detection,
we transform the exchange rates into edge weights with a loga-
rithmic function:F (D, E) = � log (A (D ! E)). This process converts
the multiplicative relationship of exchange rates into an additive
framework, enabling the use of negative cycle detection algorithms.

4082

2.2 Problem Statement and Baseline Solution
Simple Cycle. A simple cycle in ⌧ is a sequence of vertices ⇠ =
(E1, E2, . . . , E: , E1) such that each pair (E8 , E8+1) is a directed edge in
⇢, and all vertices E1, E2, . . . , E: are non-repeated except E:+1 = E1.
K-hop Negative Cycle. The weight of a cycle ⇠ is de�ned as the
total sum of the edge weights along the cycle. A :-hop negative
cycle is a cycle ⇠ = (E1, E2, . . . , E: , E1) in the graph, where the sum
of the edge weights along the :-hop cycle is negative:

F (⇠) =
:’
8=1

F (E8 , E8+1) < 0,

where E:+1 = E1. For instance, a 3-hop negative cycle consists
of three distinct vertices E1, E2, E3 and three directed edges (E1, E2),
(E2, E3), and (E3, E1), forming a complete cycle with exactly 3 hops.
Problem Statement (kMNC). Given a directed and weighted
graph⌧ = (+ , ⇢), a speci�ed cycle hop : , and edge weightsF (D, E)
de�ned for all (D, E) 2 ⇢, the objective is to identify a simple :-hop
most negative-weight cycle (kMNC).1

T������ 2.2. Let ⌧ = (+ , ⇢) be a directed, weighted graph with
an edge-weight function F : ⇢ ! R. Given an integer : and a
threshold ⇥ 2 R, the decision problem

“Is there a simple cycle of exactly : hops with total weight < ⇥?”

is NP-complete. Consequently, the optimization problem of �nding a
most negative :-hop cycle is NP-hard.

Proof Sketch. The problem is NP-complete. The detailed proof
appears in Section A.2 of [32]. É

2.3 Related Work
Negative cycle detection. Negative cycle detection has been stud-
ied for decades [12, 13]. Algorithms like BFM [4, 19, 36], Gold-
berg–Radzik [24], and Pallottino’s Algorithm [20] integrate cycle
detection strategies such as walk-to-the-root, amortized search, and
admissible graph search [23]. Recent advances enhance e�ciency
with low-diameter SCC partitioning, recursive scaling, and dense
distance graphs [7, 8, 29]. However, most of these methods focus
on detecting the existence of a negative cycle rather than accu-
rately identifying the most negative cycles. Additionally, they often
struggle with hop constraints, reducing their e�ciency.
Cycle Enumeration. Graph query techniques have been widely
applied to real-world problems [11, 27, 47], in particular for cycle
and s-t path enumeration in graphs [6, 28, 37, 43, 44]. The enu-
meration of hop-constrained cycles has been approached using
hot point based index [40], subgraph isomorphism optimization
[15], adjacency matrix trace and matrix multiplication [22], and
advanced pruning techniques [25]. While these algorithms can
enumerate all hop-constrained cycles or paths, they often ignore
edge weights during detection. In cryptocurrency markets, the set
of tokens and trading pairs is stable over short periods, but edge
weights (exchange rates) change rapidly, especially in active pools.
These frequent updates impact many cycles, making cycle weight

1This supports �xed-hop arbitrage strategies used in practice, where exact cycle length
is crucial. The at-most-: variant returns the best cycle within a hop budget but cannot
isolate the optimal one at a speci�c length, limiting its use in layered strategies. It can
be supported with minor extensions (see Appendix C of [32]).

Table 1: Comparison of RICH and previous algorithms.

Feature PathEnum [43] DeFi-ARB [50] Goldphish [34] BriDe [46] RICH (Ours)
Accuracy Guarantees 3 7 7 3 3

Hop Constraint Support 3 7 3 3 3
Avoids Local Subgraph Traps 7 7 7 7 3

Avoids Redundant Cycle Traversal 7 7 3 7 3

Graph

Cycle Hop k

Color-Coding
Cycle Detection

(DFS+DP)

Bitwise OperationGraph Reduction

kMNC

Input RICH Output

Optimization

Figure 4: An overview of RICH.

computation the main bottleneck. Existing methods struggle to
e�ciently solve the kMNC problem under such conditions.
Crypto arbitrage detection. Arbitrage detection in cryptocur-
rencies has seen signi�cant advancements recently [5, 38, 39, 45].
DeFi-ARB [50] was among the �rst to detect arbitrage transac-
tions on DEXs, using the BFM algorithm for negative cycle detec-
tion and logical modeling to identify non-cyclic complex strategies.
Goldphish [34] employed a greedy-based algorithm to traverse the
token graph, combining heuristics to limit cycle length, exchange,
and pivot tokens for detecting arbitrage cycles. DFS-based methods
have been used to �nd arbitrage cycles [14, 46]; [48] adapts BFM
for non-loop arbitrage paths. However, these approaches depend
on heavy heuristics for graph reduction, limiting scalability.

Therefore, we propose RICH: Real-time Identi�cation of nega-
tive Cycles for High-e�ciency arbitrage. Table 1 summarized the
comparison between RICH and the previous methods.

3 DESIGN AND IMPLEMENTATION OF RICH
Overview (Figure 4).We break down RICH’s core components:
(1) Color-Coding. Section 3.1 revisits the color-codingmethod, which

assigns : colors to graph vertices to detect multicolored cycles,
ensuring each vertex in a cycle has a unique color and avoiding
local substructure traps.

(2) Weighted Cycle Detection. Section 3.2 extends color-coding to
weighted graphs via DFS to identify the kMNC. Repeated ran-
domization ensures the most negative multicolored :-hop cycle
is detected with high probability.

(3) Dynamic Programming (DP) for E�ciency. Although DFS can
�nd multicolored cycles, it often revisits overlapping subpaths.
Section 3.3 presents a DP approach that caches intermediate
results by vertex and color set, greatly reducing redundancy
and accelerating the search.

(4) Optimizations. Section 4 presents two optimizations: bitwise
color-set encoding for $ (1) operations and graph reduction
that prunes nodes with a single valid same-color neighbor.
Both greatly shrink the search space while preserving :-hop
multicolored cycle detection.

3.1 Randomized Color-Coding Revisit
Color-coding [3] e�ciently detects �xed-length simple cycles by
focusing on multicolored paths, reducing redundant computation.

4083

!! !"

!# !$
!%

!! !"

!# !$
!%

!! !"

!# !$
!%

!! !"

!# !$
!%

Instance 1 Instance 3Instance 2 Instance 4

Figure 5: Example of four color coding instances with :=3.

Algorithm 1: Randomized Color-Coding for :-Hop Cycles
Input: ⌧ = (+ ,⇢) , cycle hop : , number of color-coding instances ✓
Output: A set C of all discovered :-hop simple cycles

1 Initialize: C ú

2 for 8 1 to ✓ do // Perform ✓ color-coding instances
3 foreach // Assign random color to vertex E E 2 + do
4 U (E) rand({1, . . . ,: })
5 C8 F���M�����������C�����

�
⌧, U, :

�
6 C C [C8

7 return C

Unlike repeated random search, which may revisit nodes and miss
valid cycles, color-coding guarantees e�cient and correct detection.

De�nition 3.1 (Color-Coding Instance). Given a directed graph
⌧ = (+ , ⇢), a cycle length : , and a random color assignment U :
+ ! {1, . . . ,:}, a color-coding instance is one execution of assigning
colors to vertices, where each vertex E independently receives a
color U (E) chosen uniformly at random from {1, . . . ,:}.

Color-coding Paradigm (Algorithm 1). This paradigm generates
✓ distinct color-coding instances, each by assigning a random color
U (E) 2 {1, . . . ,:} to every vertex E . In each instance, F���M�����
�������C����� identi�es any simple cycles of length : where all
vertices have distinct colors (i.e., multicolored cycles). Such cycles
are guaranteed to be simple since no vertex color repeats. All cycles
discovered across the color-coding instances are accumulated in C.
Ultimately, C contains the union of all :-hop simple cycles found.

L���� 3.2. Any :-hop multicolored cycle in ⌧ is necessarily a
:-hop simple cycle.

P����. If each of the : vertices in a cycle has a distinct color,
none of the vertices (and thus none of the edges) can repeat in the
cycle. Hence, the cycle is simple [35]. É

Example 3.3. Figure 5 illustrates four color-coding instances of
the graph⌧ in Figure 3b. Each instance is created by indepen-
dently assigning one of three colors to every vertex in⌧ . In the
�rst instance, a multicolored cycle ⇠1 = {E2, E0, E4} is success-
fully detected because each vertex in the cycle has a distinct
color. Similarly, in the second instance, another multicolored
cycle ⇠2 = {E1, E0, E4} is identi�ed. Consequently, the set of
simple cycles found in the original graph is C = {⇠1,⇠2}.

3.2 Color-Coding for Weighted Cycle Detection
Traditional color-coding [3] e�ectively detects simple cycles but
does not account for cycle weights, limiting its applicability in
arbitrage scenarios. To overcome this limitation, RICH introduces
an extended color-coding algorithm designed for kMNC. The most
negative :-hop cycle is formalized as follows.

De�nition 3.4 (:-Hop Most Negative Cycle). The :-hop most neg-
ative cycle in a directed graph ⌧ = (+ , ⇢) is denoted by ⇠⇤:

⇠⇤ = arg min
⇠✓⌧

length(⇠)=:

F (⇠),

where F (⇠) represents the total weight of cycle ⇠ , calculated as
the sum of the weights of its constituent edges.

L���� 3.5 (M��������� P����������� �� C�����C�����). Let
⇠⇤ be the:-hopmost negative cycle in a directed graph⌧ . In any color-
coding instance that assigns each vertex in ⌧ a random color from
{1, . . . ,:}, if all vertices of ⇠⇤ receive distinct colors (thus forming
a multicolored cycle), then ⇠⇤ remains the unique minimal-weight
cycle of length : in that instance.

P����. Suppose, for contradiction, that there exists a multicol-
ored :-hop cycle ⇠0 in the same color-coding instance such that

F (⇠0
) < F (⇠⇤

) .

Since the color assignment does not alter the edge weights, ⇠0 is a
valid :-hop cycle in⌧ with total weight lower than that of⇠⇤. This
contradicts the de�nition of⇠⇤ as the cycle with the minimal weight
among all :-hop cycles in⌧ . Hence, no such cycle⇠0 can exist, and
⇠⇤ remains the unique minimal-weight cycle in that instance. É

Probability of Detecting I⇤. Lemma 3.5 underpins the analysis
of detecting the globally minimal cycle ⇠⇤. In any color-coding
instance, if all: vertices of⇠⇤ are colored distinctly, then⇠⇤ remains
the unique minimal-weight :-hop cycle in that instance. Because
each vertex’s color is chosen uniformly and independently from
{1, . . . ,:}, the probability of ⇠⇤ becoming a multicolored cycle in
one instance is :!

::
. Over ✓ independent color-coding instances, the

probability of never observing ⇠⇤ in a fully distinct coloring is⇣
1 � :!

::

⌘✓
, leading to a detection probability of 1 �

⇣
1 � :!

::

⌘✓
. As

✓ increases, the probability of ⇠⇤ appearing in at least one color-
coding instance approaches 1. This analysis provides a probabilistic
guarantee that ⇠⇤ will be captured as ✓ increases, indicating that
the optimal solution is found with high probability.

In the following, we demonstrate how to employ depth-�rst
search (DFS) to e�ciently detect all such multicolored cycles.

De�nition 3.6 (Color-Coding for Paths). Let U : + ! {1, . . . ,:}
be a color function that assigns each vertex E 2 + a color U (E).
For a path ? = [E1, E2, . . . , E=], the color set is de�ned as: U (?) =
{U (E1),U (E2), . . . ,U (E=)}. The set denotes unique colors of ? .

De�nition 3.7 (Path Concatenation). Let ? = [E1, E2, . . . , E=] and
@ = [E=, E=+1, . . . , E<] be two paths in a graph ⌧ = (+ , ⇢), where
the last vertex of ? is the �rst vertex of @ (i.e., E= = E=). The con-
catenation of paths ? and @, denoted by ? · @, is the new path:
? · @ = [E1, E2, . . . , E=, E=+1, . . . , E<]. This operation combines the
two paths into a single continuous path.

Color-Coding Enhanced Depth-First Search (Algorithm 2).
The algorithm searches for the most negative :-hop cycle ⇠⇤ by
initiating a depth-�rst search (DFS) from each vertex in the graph
(Line 3). For every DFS invocation, it examines each neighbor D
of the current vertex E . If the color of D is already present in the
current path and D is not the starting vertex ? [0] (Line 8), the

4084

Algorithm 2: DFS for kMNC
Input: Graph (+ ,⇢) , color function U : + ! {1, . . . ,: }, cycle hop :
Output: :-hop most negative cycle⇠⇤

1 ⇠⇤
 ;, F (⇠⇤

) +1

2 foreach E 2 + do
3 DFS(E, [E], 0) remove E from+ ;

4 return⇠⇤

5 Function DFS(E, ? , F):
6 foreach D 2 # (E) do /* Explore neighbors of E */
7 if U (D) 2 U (?) and D < ? [0] then
8 continue

9 ?0
 ? · [E,D], � F + F (E,D)

10 if D = ? [0] and |? | = : then
11 if � < F (⇠⇤

) then
12 ⇠⇤

 ?0 , F (⇠⇤
) �

13 continue

14 if |? | < : then /* Continue DFS if path not yet :-hop */
15 DFS(D, ?0 , �)

neighbor is skipped to maintain a multicolored path. Otherwise, D
is appended to the path, and the cumulative weight � is updated
(Line 9). If appending D returns to the starting vertex and the path
length reaches : (Line 10), a valid :-hop cycle is formed by closing
the loop. The algorithm then compares the weight of this cycle
with the current most negative cycle ⇠⇤ and updates ⇠⇤ if the new
cycle has a smaller weight (Lines 12). If the path length is still less
than : (Line 14), the DFS continues recursively with the extended
path and updated weight. After all vertices have been explored, the
algorithm returns ⇠⇤ as the most negative :-hop cycle found.
Vertex Removal for E�ciency.When DFS starts from vertex E
(Line 3, Algorithm 2), it explores all multicolored paths of length
up to : from E . Any cycle containing E can thus be found with
E as the root. After �nishing DFS from E , we remove E from the
graph (Line 3) so later DFS will not revisit it. In practice, this can
reduce the branching factor for the remaining vertices, thereby
accelerating searches in dense graphs.

L���� 3.8 (S��� V����� R������). Let⌧ = (+ , ⇢) be a directed
graph and : � 2. Given a color assignment U : + ! {1, . . . ,:},
de�ne DFS(E) as a depth-: search from E that only extends a path
[E1, . . . , E8] to E8+1 if U (E8+1) 8 {U (E1), . . . ,U (E8)}, except when clos-
ing a cycle to E1. Then, any simple:-hop cycle⇠ = (E = D1,D2, . . . ,D: ,
D:+1 = E) with distinct colors U (D8) is found by DFS(E). Thus, remov-
ing E after DFS(E) does not miss any such cycle containing E .

P����. Since { U (D1), . . . ,U (D:) } are all distinct, the DFS from
E = D1 will not skip any edge (D8 ,D8+1) for 1  8 < : . It can thus
form the path [D1, . . . ,D:]. Closing the cycle atD:+1 = D1 is allowed
because it returns to the start vertex. Hence, every multicolored
:-hop cycle through E appears in DFS(E). Removing E afterward
thus excludes no cycle that includes E . É

Detection Probability in Multiple Color-Coding Instances.
As the number of coloring processes increases, the probability of
detection improves. For example, when the length of a cycle ⇠
is : = 4 and ✓ = 50 independent instances are performed, the
probability of missing ⇠ across all trials is approximately 0.73%.
This corresponds to a probability of successfully detecting the most
negative cycle of about 99.27%.

Algorithm 3: DP for kMNC
Input:⌧ = (+ ,⇢) , color function U : + ! {1, . . . ,: }, cycle length :
Output: :-hop most negative cycle⇠⇤

1 ⇠⇤
 ;, F (⇠⇤

) +1

2 foreach E 2 + do
3 3? [E] [{U (E) }] 0 /* Initialize DP state */

4 for ; = 1 to : � 1 do
5 foreach E 2 + do
6 foreach color set U (?) with 3? [E] [U (?)] de�ned do
7 F 3? [E] [U (?)]
8 foreach D 2 # (E) do
9 if U (D) 8 U (?) then
10 U (?0

) U (?) [{U (D) }
11 F0

 3? [D] [U (?0
)]

12 3? [D] [U (?0
)] min{F0,F + F (E,D) }

13 foreach E 2 + do
14 foreach color set U (?) with |U (?) | = : and 3? [E] [U (?)] de�ned do
15 if ? [0] 2 # (E) then
16 F 3? [E] [U (?)] + F (E, ? [0])
17 if F < F (⇠⇤

) then
18 Update⇠⇤ with the cycle corresponding to state
19 F (⇠⇤

) F

20 return⇠⇤

3.3 Dynamic Programming
While Algorithm 2 correctly solves the kMNC problem, its DFS-
based approach su�ers from signi�cant redundancy. In the DFS
process, many subpaths are revisited multiple times as they are
shared among di�erent search branches. This repeated exploration
increases the computational cost, particularly in dense graphs. To
alleviate this ine�ciency, we propose a dynamic programming (DP)
method that reuses the results of previously computed subpaths.
DP State.We represent the DP state as 3? [E] [U (?)], where E de-
notes the current vertex in the path, and U (?) includes the colors of
nodes in the current path ? . Each state stores the minimum weight
of any valid path ending at E with color sequence U (?), enabling
e�cient reuse of previously computed subpaths.
Transition Function.When extending a path ending at vertex E
with cumulative weightF to a neighbor D, we update the DP table:

3? [D] [U (?0)] = min(3? [D] [U (?0)],3? [E] [U (?)] +F (E,D))

where E is the current node, D is its neighbor, ?0 is the extended
path ensuring unique colors, and F (E,D) is the edge weight. The
transition updates the DP table by keeping the minimal weight path
for each state, ensuring only lower-weight paths are considered.
Dynamic Programming for kMNC (Algorithm 3). The algo-
rithm detects kMNC⇠⇤ using a DP approach. For each vertex E 2 + ,
the recursive function DP is invoked with the starting path ? = [E],
initial weightF = 0, and an empty DP table (Line 3). Starting from
E , the algorithm extends the current path ? by exploring all neigh-
bors D (Line 8). If the color of D does not exist in the current path,
D is appended to ? , and the cumulative weight is updated. The DP
table is checked and updated if the new path o�ers a lower weight
for the state 3? [D] [U (?)] (Lines 9–12). If the path length remains
less than : , the algorithm recurses with the updated state. When the
path reaches : , the algorithm checks if the current vertex connects
back to the starting vertex (Line 15). If the edge exists, the cycle

4085

o-orange b-blue
g-green y-yellow

2) dp[!!][o,g,b]
= min(-3, 1) = -3

1) dp[!"][o,g] = -1
dp[!#][o,g] = -1

3) dp[!$][o,g,b,y] = -6
dp[!%][o,g,b,y]= -5

!!
!"

!#
!$

!%

!&
!!

!"

!#
!$

!%

!&
!!

!"

!#
!$

!%

!&
!!

!"

!#
!$

!%

!&

-1 -2

-1 2

-3
1

-2
-2

'"=[(&("(!($(&],)" =-5
'#=[(&("(!(%(&],)# =-7

Directed graph G

Figure 6: Example of dynamic programming state transition.

(1) Checking (Bit Masking) &

(2) Addition (Set Bits) |

0 1 0 1

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 1 1 1 1 1 0 1

() () () ()

Color Mask

⍺ (p) = { } 0 1 0 1 0 1 0 1 0 1 0 1

Color Color Color Color()
()

Exists
Does not exist

Figure 7: Example of bitwise operation.

weight is computed and compared with⇠⇤. If the new cycle is more
negative, ⇠⇤ is updated (Lines 19). At the end, ⇠⇤ is returned.
Complexity. The overall time complexity of Algorithm 3 is $ (2: ·

|+ | · |⇢ |). This is because in the worst case each vertex can have up
to 2: distinct DP states (one for each subset of the : colors), and
for each state the algorithm processes all outgoing edges.

Example 3.9. Figure 6 illustrates a traversal starting from E0
to �nd a 4-hop cycle. The algorithm begins by traversing from
E0 through E1 and E2, updating the DP table accordingly. Upon
reaching E3, it detects that two paths share the same color set
and updates 3? [E3] with the smallest weight as the state. The
traversal then continues to E4 and E5, further updating the
DP table. While the path reaches : , the algorithm checks for
cycles and identi�es two negative cycles: ⇠1 with a weight of
-5 and ⇠2 with a weight of -6. Among them, ⇠2 is the kMNC.

4 OPTIMIZATIONS
4.1 Bitwise Operation for Color-Coding
We introduce a bitwise color-set representation to accelerate color-
coding operations. Instead of using unordered sets with $ (=) com-
plexity, we encode each color set as a single integer, with the 8-th bit
indicating the presence of color 8 . This enables constant-time ($ (1))
checks and updates, while reducing memory usage and avoiding
pointer overhead. This representation is both e�cient and compact.

O�������� 1 (C���� C�������). Checks if the color of E= , U (E=),
is in the color set U (?) via bitwise AND operation:

Check(U (?),U (E=)) = U (?)&(1 ⌧ U (E=)),

O�������� 2 (C���� A�������). Adds the color of E= , U (E=), to
the set U (?) via bitwise OR operation:

Add(U (?),U (E=)) = U (?) | (1 ⌧ U (E=)),

The complexity of Operations 1 and 2 is$ (1), as bitwise AND/OR
are constant-time regardless of the color set size.

Example 4.1. Consider : = 4, each color can be e�ciently
represented as a 4-bit integer as shown in Figure 7. A color
set can also be represented using a 4-bit integer, where each
bit position corresponds to a speci�c color. For example, for
U (?) = { 1�, 3�}, it is encoded as 0101. (1) To check if color 1�
exists in U (?), perform a bitwise ANDwith 0001: 0101&0001 =
0001. Since the result is nonzero, color 1� exists; and (2) To add
color 4�, apply a bitwise OR with 1000: 0101 | 1000 = 1101.

4.2 Color-Coding Based Graph Reduction
We introduce a color-guided graph reduction that prunes nodes
based on coloring semantics and graph structure to address a key
ine�ciency in kMNC. Nodes sharing the same color with their only
valid neighbor cannot be part of any multicolored cycle and are
removed with their edges. This one-pass reduction signi�cantly
shrinks the graph before enumeration while preserving correctness.
Though simple, this targeted use of color information is novel in
the context of color-coding and proves highly e�ective in practice.

!!

!" !#

!$!%

!&

(1) Initial graph (2) First pruned graph (3) Final pruned graph

!" !#

!$!%

!" !#

!$
Initial prune Secondary prune

Figure 8: Example of the iterative graph pruning process.

Example 4.2. Figure 8 illustrates the iterative graph pruning
process in three steps. (1) In the initial graph, nodes E0 and
E1, each with one valid neighbor (E3 and E6, respectively) and
the same color, are marked for removal. (2) After pruning,
E0 and E1 are removed, and E3, now with one valid neighbor
(E6), is marked for removal. (3) In the �nal step, E3 is removed,
leaving E2, E5, and E6 with essential edges for cycle detection.

L���� 4.3 (P������ S������N������� N���� ���� ��� S���
C����). Let 0 be a node in a directed graph ⌧ with exactly one
neighbor 1, and suppose 0 and 1 are assigned the same color in an
instance. Both 0 and the edge (0,1) can be safely removed from ⌧
without impacting the detection of :-hop multicolored cycles.

P����. If a multicolored cycle ⇠ contained 0, it must include 1
(since 0 has only 1 as a neighbor), which contradicts that all nodes
in ⇠ have distinct colors. Thus, such a cycle cannot exist. É

5 EXPERIMENTS
5.1 Experiment Setup
Experiments were run on a Linux system with two Intel Xeon Silver
4314 CPUs, 503 GiB RAM, and g++ 11.4.0 (-O3 optimization). Each
was repeated three times with di�erent seeds to ensure robustness.
Datasets. Experiments were conducted on six datasets, as detailed
in Table 2. These datasets represent graphs where nodes are tokens
and edges are exchange pools, constructed from Uniswap V2 liquid-
ity pools at various blocks. On Ethereum, new blocks are produced
every 12–15 seconds on average [1]. As block number increases,
both node (|+ |) and edge (|⇢ |) counts grow, while average degree
decreases, re�ecting increasing ecosystem complexity. Each dataset

4086

Table 2: Statistics of experiment datasets.

Dataset |+ | |⇢ | Avg. Degree Max Degree
UNI1 11.6K 27.2K 4.69 11,177
UNI2 44.9K 99.7K 4.44 43,152
UNI3 70.4K 151.3K 4.30 68,202
UNI4 148.1K 307.9K 4.16 143,894
UNI5 262.1K 536.0K 4.08 257,868
UNI6 359.6K 734.1K 4.08 354,284

Table 3: Comparison of detection time (in seconds) across
datasets. The "Speedup" column shows the speedup of RICH
compared to the second-best algorithm. "TLE" indicates that
the runtime exceeded 3, 600 seconds.

Dataset RICH PathEnum DeFi-ARB GoldPhish BriDe Speedup vs. 2nd

UNI1 0.94 51.42 36.20 1.50 37.23 1.6x *

UNI2 2.80 2160.00 551.12 17.65 493.80 6.3x *

UNI3 3.64 TLE 1292.53 45.75 594.82 12.57x *

UNI4 18.61 TLE TLE 292.76 955.14 15.73x *

UNI5 33.67 TLE TLE 1011.79 1064.73 30.05x *

UNI6 47.52 TLE TLE 1892.73 1553.31 32.69x *

represents the complete token graph accumulated up to a speci�c
block, thereby capturing all pools available at that time.
Baselines. We choose three state-of-the-art solutions for arbitrage
detection in cryptocurrency markets. We include a state-of-the-
art algorithm for hop-constrained path enumeration, modi�ed for
negative cycle detection. The evaluated algorithms are listed below:
• PathEnum (2021) [43] developed an e�cient index-based al-

gorithm for hop-constrained s-t path enumeration. We follow
the open-source implementation of PathEnum, building query-
dependent indexes for each source node. For each node, we
identify all incoming neighbors, enumerate hop-constrained s–t
path, and reconnect them to the source to form cycles.

• DeFi-ARB (2021) [50] applied BFM-like algorithms to detect neg-
ative cycles in directed weighted graphs.

• GoldPhish (2023) [34] applied greedy-based algorithm to identify
cyclical arbitrage. We extended the original code, which only
detected 3-hop cycles, to handle longer cycles.

• BriDe (2024) [46] applied DFS-like method to detect arbitrage
cycles and optimize transaction order to maximize pro�ts.

Metrics.We evaluate detection time—how quickly the algorithm
�nds the kMNC, critical for timely arbitrage [17]—andmost negative
weight, which indicates pro�t potential (Section 2.1). Detection
accuracy is measured by relative error (f): f = |F⇤

�F |

|F⇤ |
⇥ 100%,

whereF⇤ andF are the optimal and detected cycle weights.
Default Settings. In our experiments, the default parameters are
: = 5 and ✓ = 30. For practical reasons such as gas fees and high
runtime of exact enumeration, we focus on :  5. Prior work shows
cycles longer than 5 hops are rare (under 2%) in crypto markets [34,
45]. Additional results for larger : appear in Appendix C [32].

5.2 E�ciency
Overall e�ciency. Table 3 compares the detection time of dif-
ferent algorithms across six datasets, showing that RICH consis-
tently outperforms all baselines. Speci�cally, RICH outperforms

GoldPhish (speedup: 1.6⇥–39.82⇥) and BriDe (31.62⇥–176.21⇥),
while PathEnum and DeFi-ARB exceeds the runtime limit when
graph size is big. The e�ciency of RICH arises from its linear-time
techniques and optimizations that minimize redundant computa-
tions and reduce the search space. In contrast, other methods ex-
perience exponential growth due to exhaustive cycle enumeration,
resulting in signi�cantly higher detection times.
Impact of cycle length : (Figure 9).We evaluate the e�ciency
of cycle detection by varying the cycle hop : from 3 to 6. First, com-
pared to enumeration-based methods such as BriDe and PathEnum,
RICH demonstrates increasing advantages as : grows. Although
BriDe slightly outperforms RICH at : = 3, RICH achieves 32⇥ to
176⇥ speedups by : = 5 and 330⇥ to 2194⇥ at : = 6. This high-
lights that RICH reduces redundant traversals for longer cycles.
In contrast, enumeration methods become exponentially slower
with : due to redundant path explorations. Second, compared to
greedy methods such asGoldPhish andDeFi-ARB, RICHmaintains
an advantage, albeit with diminishing returns as : increases. This
trend re�ects the greedy nature ofGoldPhish andDeFi-ARB, which
reduce their search space as : increases while missing some cycles.
We also evaluate RICH for larger : in Appendix C [32].
Scalability (Figure 10). We evaluate the scalability of RICH on
datasets of varying sizes, with |⇢ | ranging from 27K to 734K. As
shown in Figure 10, when the graph size increases, RICH demon-
strates a clear scalability advantage over other baselines. Compared
to the second-best method, RICH achieves a substantial speedup,
ranging from 1.6⇥ on the smallest dataset to 32.69⇥ on the largest.
These results highlight RICH’s superior scalability. These results
showcase RICH’s superior scalability.
Impact of dynamic programming (Figure 11). Figure 11 com-
pares the detection time of kMNC using DFS (Algorithm 2) and DP
(Algorithm 3). As shown, RICH-DP achieves a speedup of 1.11⇥
to 4.62⇥ over the DFS-based approach. DFS-based detection su�er
from redundant path traversals, leading to ine�ciencies in large
graphs. In contrast, the DP-based approach e�ectively eliminates
these redundancies by storing and reusing intermediate results.
Ablation study (Figure 11).We analyze the impact of di�erent
optimizations in RICH by evaluating the detection time across �ve
variants: (1) Full: The complete RICH algorithm with both graph
reduction and bitwise operations. (2) w/o bit operations: The
same as Full, except removing bitwise operations. (3) w/o graph
reduction: The same as Full, except removing graph reduction. (4)
w/o both optimizations (DP): A baseline dynamic programming
approach without bitwise operations or graph reduction.

(1) Impact of removing bit operations: Excluding bitwise oper-
ations slows down RICH (Full) by 52.6% to 90.3%, with larger
graphs exhibiting a more pronounced slowdown. This is be-
cause bitwise operations signi�cantly accelerate state transi-
tions in the dynamic programming process, particularly in large
graphs where frequent state updates are required.

(2) Impact of removing graph reduction: Excluding graph re-
duction slows RICH by 2.2% to 9.8%, despite reducing graph
size by over 20%. This indicates that while reducing the graph
size lowers traversal cost, its direct impact on overall e�ciency
is smaller compared to bitwise operations.

4087

Figure 9: Vary : on UNI3. Figure 10: Scalability. Figure 11: RICH variants. Figure 12: Vary ✓ . Figure 13: Time-Weight.

Table 4: Maximummemory consumption (MB).

Dataset : = 3 : = 4 : = 5 : = 6

UNI1 59.8 65.0 67.7 69.5
UNI2 207.3 227.4 239.0 249.0
UNI3 310.2 342.9 361.9 376.9
UNI4 621.5 721.9 825.3 941.6
UNI5 1,077.0 1,245.5 1,432.5 1,668.2
UNI6 1,473.1 1,712.6 1,923.1 2,290.5

Table 5: Most negative cycle weights across datasets. For time-
outs, the best result within 3,600 seconds is reported.

Dataset RICH PathEnum DeFi-ARB GoldPhish BriDe f (%)

UNI1 -91.12 -91.14 -81.17 -91.14 -91.14 0.02
UNI2 -142.47 -148.25 -102.66 -148.25 -148.25 3.90
UNI3 -147.78 -151.87 -126.79 -151.87 -151.87 2.70
UNI4 -139.49 -110.28 -93.60 -139.49 -139.49 0.00
UNI5 -117.92 -106.41 -42.15 -118.20 -118.20 0.24
UNI6 -151.87 -126.48 -130.95 -156.69 -156.69 3.08

(3) Impact of removing both optimizations: When both bitwise
operations and graph reduction are removed (DP), performance
drops drastically, with slowdowns ranging from 59.3% to 99.6%.
This highlights that the combination of both optimizations is
crucial for achieving signi�cant speed improvements, and their
e�ects are complementary in improving e�ciency.

Memory cost. Table 4 shows memory usage for : = 3 to 6, which
grows with both : and graph size as expected (O(|+ |2:)). Even
for the largest graph, usage stays under 1% of available memory,
demonstrating that RICH is memory-e�cient and scalable.

5.3 E�ectiveness
Overall e�ectiveness.Table 5 compares themost negative weights
detected by each algorithm within 3,600 seconds limit. Among
the baselines, BriDe and PathEnum provide exact results, while
DeFi-ARB and GoldPhish are greedy methods that do not guaran-
tee exactness. For experiments that exceed the runtime limit, the
most negative weight detected within the time limit is recorded.
As shown, while RICH is a probabilistic method, it consistently
identi�es near-optimal negative weights, with relative errors rang-
ing from 0.02% to 3.90%. This performance re�ects RICH’s ability
to balance computational e�ciency and accuracy e�ectively. In
contrast, DeFi-ARB and PathEnum show noticeable discrepancies
compared to the global optimal detected by BriDe, whileGoldPhish,
as a greedy method, lacks accuracy guarantees.

Impact of number of color coding instances ✓ (Figure 12).
Theoretically, the number of ✓ required to detect⇠⇤ depends on the
cycle length : and the desired detection probability X . To ensure
that the probability of detecting ⇠⇤ is at least X , ✓ should satisfy
✓ � log(1�X)

log
⇣
1� :!

::

⌘ . We conducted experiments to evaluate the impact

of varying ✓ on both solution quality and execution time. Across
all datasets, the relative error with respect to the global optimum
decreases rapidly at �rst and then gradually plateaus. With ✓ = 30,
the relative error drops below 5% across all datasets.
Time-weight trade-o� (Figure 13). We evaluate the trade-o� be-
tween runtime and solution quality by comparing the most negative
weight detected by di�erent algorithms as time progresses. Since
coloring instances are assigned randomly, the detection time of
RICH scales proportionally with the number of instances ✓ . Within
15 seconds, RICH �nds the most negative cycle, outperforming
others by over 45% while competitors remain stuck in local optima.
This shows that, despite being probabilistic, RICH quickly reaches
high-quality solutions, making it practical for arbitrage trading.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented RICH, an e�cient algorithm for detect-
ing :-hop Most Negative Cycles in graphs—an essential capability
for real-time arbitrage detection in �nancial markets. By combining
color-coding with dynamic programming and optimizing with bit-
level operations and graph reduction, RICH achieves up to 32.69⇥
speedup over existing methods. Case studies (Appendix E [32])
show RICH provides accurate, real-time arbitrage insights in both
forex and crypto markets. The framework is versatile and can be ap-
plied to other �nancial domains. Future work (Appendix D [32]) in-
cludes parallelization and support for dynamic or streaming graphs.
Disclaimer. RICH is developed exclusively for academic research.
Its deployment in real-world trading scenarios must account for reg-
ulatory and ethical considerations. Any practical use is at the user’s
own risk and should carefully consider multiple market factors
such as slippage and execution delays.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of Tokka Labs
for funding this research. This research / project is supported by
the National Research Foundation, Singapore under its Industry
Alignment Fund – Pre-positioning (IAF-PP) Funding Initiative. Any
opinions, �ndings and conclusions or recommendations expressed
in this material are those of the author(s) and do not re�ect the
views of National Research Foundation, Singapore.

4088

REFERENCES
[1] [n.d.]. Ethereum Average Block Time Chart. https://etherscan.io/chart/blocktime

Accessed: December 8, 2024.
[2] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap V2 Core.

Whitepaper. https://uniswap.org/whitepaper.pdf Accessed: 2024-12-04.
[3] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. Journal of the

ACM (JACM) 42, 4 (1995), 844–856.
[4] Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics

16, 1 (1958), 87–90.
[5] Jan Arvid Berg, Robin Fritsch, Lioba Heimbach, and Roger Wattenhofer. 2022.

An empirical study of market ine�ciencies in Uniswap and SushiSwap. In In-
ternational Conference on Financial Cryptography and Data Security. Springer,
238–249.

[6] Jean-Claude Bermond and Carsten Thomassen. 1981. Cycles in digraphs–a
survey. Journal of Graph Theory 5, 1 (1981), 1–43.

[7] Aaron Bernstein, Danupon Nanongkai, and Christian Wul�-Nilsen. 2022.
Negative-weight single-source shortest paths in near-linear time. In 2022 IEEE
63rd annual symposium on foundations of computer science (FOCS). IEEE, 600–611.

[8] Karl Bringmann, Alejandro Cassis, and Nick Fischer. 2023. Negative-Weight
Single-Source Shortest Paths in Near-Linear Time: Now Faster!. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 515–538.

[9] Rohit Chandra. 2001. Parallel programming in OpenMP. Morgan kaufmann.
[10] Yong Chen, Zhi Da, and Dayong Huang. 2019. Arbitrage trading: The long and

the short of it. The Review of Financial Studies 32, 4 (2019), 1608–1646.
[11] Yuhang Chen, Jiaxin Jiang, Shixuan Sun, Bingsheng He, and Min Chen. 2024.

Rush: Real-time burst subgraph detection in dynamic graphs. Proceedings of the
VLDB Endowment 17, 11 (2024), 3657–3665.

[12] Boris VCherkassky, Loukas Georgiadis, AndrewVGoldberg, Robert E Tarjan, and
Renato F Werneck. 2010. Shortest-path feasibility algorithms: An experimental
evaluation. Journal of Experimental Algorithmics (JEA) 14 (2010), 2–7.

[13] Boris V Cherkassky and Andrew V Goldberg. 1999. Negative-cycle detection
algorithms. Mathematical Programming 85, 2 (1999).

[14] Tianyang Chi, Ningyu He, Xiaohui Hu, and Haoyu Wang. 2024. Remeasuring
the Arbitrage and Sandwich Attacks of Maximal Extractable Value in Ethereum.
arXiv preprint arXiv:2405.17944 (2024).

[15] Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams.
2019. Graph pattern detection: Hardness for all induced patterns and faster
non-induced cycles. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing. 1167–1178.

[16] Philip H Dybvig and Stephen A Ross. 1989. Arbitrage. In Finance. Springer,
57–71.

[17] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2019. SoK: Trans-
parent Dishonesty: front-running attacks on Blockchain. CoRR abs/1902.05164
(2019). arXiv:1902.05164 http://arxiv.org/abs/1902.05164

[18] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2020. Sok: Trans-
parent dishonesty: front-running attacks on blockchain. In Financial Cryptogra-
phy and Data Security: FC 2019 International Workshops, VOTING and WTSC, St.
Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised Selected Papers 23. Springer,
170–189.

[19] Lester Randolph Ford and Delbert R Fulkerson. 1956. Maximal �ow through a
network. Canadian journal of Mathematics 8 (1956), 399–404.

[20] Giorgio Gallo and Stefano Pallottino. 1988. Shortest path algorithms. Annals of
operations research 13, 1 (1988), 1–79.

[21] Robert Gębarowski, Paweł Oświęcimka, Marcin Wątorek, and Stanisław Drożdż.
2019. Detecting correlations and triangular arbitrage opportunities in the Forex
by means of multifractal detrended cross-correlations analysis. Nonlinear Dy-
namics 98, 3 (2019), 2349–2364.

[22] Pierre-Louis Giscard, Nils Kriege, and Richard CWilson. 2019. A general purpose
algorithm for counting simple cycles and simple paths of any length. Algorithmica
81 (2019), 2716–2737.

[23] Andrew V Goldberg. 1995. Scaling algorithms for the shortest paths problem.
SIAM J. Comput. 24, 3 (1995), 494–504.

[24] Andrew V Goldberg and Tomasz Radzik. 1993. A heuristic improvement of the
Bellman-Ford algorithm. Citeseer.

[25] Anshul Gupta and Toyotaro Suzumura. 2021. Finding all bounded-length simple
cycles in a directed graph. arXiv preprint arXiv:2105.10094 (2021).

[26] Harald Hau. 2014. The exchange rate e�ect of multi-currency risk arbitrage.
Journal of International Money and Finance 47 (2014), 304–331.

[27] Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, and Johan Kok Zhi
Kang. 2022. Spade: A real-time fraud detection framework on evolving graphs.

Proceedings of the VLDB Endowment 16, 3 (2022), 461–469.
[28] Donald B Johnson. 1975. Finding all the elementary circuits of a directed graph.

SIAM J. Comput. 4, 1 (1975), 77–84.
[29] Adam Karczmarz. 2024. Max s, t-Flow Oracles and Negative Cycle Detection in

Planar Digraphs. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 1606–1620.

[30] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing �ll-reducing
orderings of sparse matrices. (1997).

[31] Sinan Krückeberg and Peter Scholz. 2020. Decentralized e�ciency? Arbitrage in
bitcoin markets. Financial Analysts Journal 76, 3 (2020), 135–152.

[32] Bingqiao Luo, Jiaxin Jiang, and Yuhang Chen et al. 2025. RICH: Real-Time Iden-
ti�cation of Negative Cycles for High-E�ciency Arbitrage. Technical Report.
Technical Report. Available online at https://drive.google.com/drive/folders/
13VD_zcsp2TPs1R3eG1JVG91mV6JBaQlm?usp=sharing. Accessed on May 31,
2025.

[33] Bingqiao Luo, Zhen Zhang, Qian Wang, and Bingsheng He. 2024. Multi-Chain
Graphs of Graphs: A New Approach to Analyzing Blockchain Datasets. Advances
in Neural Information Processing Systems 37 (2024), 28490–28514.

[34] RobertMcLaughlin, Christopher Kruegel, and Giovanni Vigna. 2023. A large scale
study of the ethereum arbitrage ecosystem. In 32nd USENIX Security Symposium
(USENIX Security 23). 3295–3312.

[35] Gary L Miller. 1984. Finding small simple cycle separators for 2-connected planar
graphs. In Proceedings of the sixteenth annual ACM symposium on Theory of
computing. 376–382.

[36] Edward F Moore. 1959. The shortest path through a maze. In Proc. of the In-
ternational Symposium on the Theory of Switching. Harvard University Press,
285–292.

[37] You Peng, Ying Zhang, Xuemin Lin, Wenjie Zhang, Lu Qin, and Jingren Zhou.
2019. Towards bridging theory and practice: hop-constrained s-t simple path
enumeration. Proc. VLDB Endow. 13, 4 (Dec. 2019), 463–476. https://doi.org/10.
14778/3372716.3372720

[38] Julien Piet, Jaiden Fairoze, and Nicholas Weaver. 2022. Extracting godl [sic] from
the salt mines: Ethereumminers extracting value. arXiv preprint arXiv:2203.15930
(2022).

[39] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain
extractable value: How dark is the forest?. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 198–214.

[40] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic
graphs. Proceedings of the VLDB Endowment 11, 12 (2018), 1876–1888.

[41] Igor Radovanovic. [n.d.]. Crypto Arbitrage Guide. https://algotrading101.com/
learn/crypto-arbitrage-guide/. Accessed: 2025-01-30.

[42] Stephen A Ross. 2013. The arbitrage theory of capital asset pricing. In Handbook
of the fundamentals of �nancial decision making: Part I. World Scienti�c, 11–30.

[43] Shixuan Sun, Yuhang Chen, Bingsheng He, and Bryan Hooi. 2021. Pathenum:
Towards real-time hop-constrained st path enumeration. In Proceedings of the
2021 international conference on management of data. 1758–1770.

[44] Robert Tarjan. 1973. Enumeration of the elementary circuits of a directed graph.
SIAM J. Comput. 2, 3 (1973), 211–216.

[45] Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Wat-
tenhofer. 2022. Cyclic arbitrage in decentralized exchanges. In Companion Pro-
ceedings of the Web Conference 2022. 12–19.

[46] Hulin Yang, Mingzhe Li, Jin Zhang, Alia Asheralieva, Qingsong Wei, and Siow
Mong Rick Goh. 2024. BriDe Arbitrager: Enhancing Arbitrage in Ethereum 2.0
via Bribery-enabled Delayed Block Production. arXiv preprint arXiv:2407.08537
(2024).

[47] Siyuan Yao, Yuchen Li, Shixuan Sun, Jiaxin Jiang, and Bingsheng He. 2024. ublade:
E�cient batch processing for uncertainty graph queries. Proceedings of the ACM
on Management of Data 2, 3 (2024), 1–24.

[48] Yu Zhang, Tao Yan, Jianhong Lin, Benjamin Kraner, and Claudio J Tessone.
2024. An Improved Algorithm to Identify More Arbitrage Opportunities on
Decentralized Exchanges. In 2024 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, 1–7.

[49] Zhen Zhang, Bingqiao Luo, Shengliang Lu, and Bingsheng He. 2023. Live graph
lab: Towards open, dynamic and real transaction graphs with NFT. Advances in
Neural Information Processing Systems 36 (2023), 18769–18793.

[50] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais.
2021. On the just-in-time discovery of pro�t-generating transactions in de�
protocols. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 919–936.

4089

https://etherscan.io/chart/blocktime
https://uniswap.org/whitepaper.pdf
http://arxiv.org/abs/1902.05164
https://drive.google.com/drive/folders/13VD_zcsp2TPs1R3eG1JVG91mV6JBaQlm?usp=sharing
https://drive.google.com/drive/folders/13VD_zcsp2TPs1R3eG1JVG91mV6JBaQlm?usp=sharing
https://doi.org/10.14778/3372716.3372720
https://doi.org/10.14778/3372716.3372720
https://algotrading101.com/learn/crypto-arbitrage-guide/
https://algotrading101.com/learn/crypto-arbitrage-guide/

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 Preliminaries
	2.2 Problem Statement and Baseline Solution
	2.3 Related Work

	3 Design and Implementation of RICH
	3.1 Randomized Color-Coding Revisit
	3.2 Color-Coding for Weighted Cycle Detection
	3.3 Dynamic Programming

	4 Optimizations
	4.1 Bitwise Operation for Color-Coding
	4.2 Color-Coding Based Graph Reduction

	5 Experiments
	5.1 Experiment Setup
	5.2 Efficiency
	5.3 Effectiveness

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Problem Motivation and Complexity
	A.1 Problem Definition and Motivation
	A.2 Detailed Proof of Theorem 2.2

	B Frequently Used Notations
	C Supplement Experiment Results
	D Future Extensions
	D.1 Parallel Execution
	D.2 kMNC in Dynamic and Streaming Graphs

	E Case Study on Real-market Validation.

