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ABSTRACT
Database systems underpin modern computing infrastructure, yet
their environmental impact remains a significant blind spot in both
industry and research. As data volumes grow exponentially, the
energy consumption, carbon emissions, andwater usage of database
operations increasingly threaten global sustainability goals. Our
paper explores this multidimensional environmental footprint and
proposes a vision where sustainability becomes a first-class design
criterion alongside traditional performance metrics. We reimagine
database architectures that incorporate environmental awareness
throughout both hardware and software layers. By identifying crit-
ical research challenges, we establish a foundation for database
systems that can deliver high performance while meeting the envi-
ronmental demands of our resource-constrained world.
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1 INTRODUCTION
The exponential growth of digital data has made database systems
a critical foundation of modern computing infrastructure [20], yet
their environmental impact remains a significant blind spot in both
industry practice and academic research. Database systems medi-
ate between users and an ever-expanding digital corpus, powering
everything from financial transactions to scientific discoveries. As
the global "datasphere" expands from 33 zettabytes in 2018 to a pro-
jected 394 zettabytes by 2028 [40], the environmental consequences
of database operations are becoming increasingly significant. The
data centers hosting these systems already consume approximately
1.5% of the world’s electricity [83], a figure expected to more than
double by 2030, reaching roughly 945 TWh annually, comparable
to Japan’s entire power consumption in 2024 [83].

This trajectory places database systems on a collision course
with global climate objectives. While governing bodies have estab-
lished legally binding net-zero emissions targets to be reached by
2050 [21, 26, 27], the expanding energy footprint of data centers and
database systems threatens to undermine these goals [13, 41, 64, 90].
Unlike other computing domains, the database community has been
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slow to recognize sustainability as a fundamental design concern. In
contrast, the artificial intelligence community has begun accounting
for the carbon footprint of model training and inference, calling
for "Green AI" practices that prioritize efficiency [19, 48, 61, 68, 94].
Hardware architects routinely consider environmental impact in
their designs [15, 31, 85], and cloud providers increasingly publish
sustainability metrics [24, 39, 70]. Yet database systems, which often
serve as the computational foundation for these other technolo-
gies [9, 95], have not received proportional attention in sustainable
computing research and practice.

Traditional database performance engineering focuses primarily
on query execution time, throughput, and resource utilization, treat-
ing energy as merely an operational cost rather than a constrained
resource with environmental implications. Benchmark standards
in the database community rarely incorporate environmental met-
rics, and premier database conferences feature few papers explicitly
addressing sustainability. Though every database operation, from
queries to index updates, has environmental consequences through
CPU, memory, and storage hardware usage, these impacts remain
largely unaccounted in system evaluations.

In this context, a handful of pioneering works in "green database"
research have primarily focused on energy-efficient query process-
ing [28, 49, 88]. While these efforts show potential energy savings,
they address just one environmental dimension. Truly sustainable
approaches must consider the multidimensional nature of environ-
mental footprints, where complex interactions between factors defy
simple optimizations and demand holistic solutions.

We posit that environmental efficiency must be elevated to a first-
class design and evaluation criterion for database systems, on par
with traditional metrics like performance and scalability. Rather
than superficial "green" optimizations layered onto existing designs;
this calls for a fundamental reimagining of how database systems
are architected, deployed, and evaluated. This paper informs this
conversation with the following contributions:

(1) We provide a comprehensive analysis of the multidimen-
sional environmental impact of database systems, revealing
complex interdependenciesbetweenoperational energycon-
sumption, carbon emissions, water footprint, and hardware
manufacturing costs.

(2) Wepropose avision for environmentally-consciousdatabase
architectures that integrate sustainability considerations at
every level of system design, from storage management to
query processing.

(3) We identify key research challenges and opportunities for
database systems tominimize their environmental footprint,
highlighting the technical innovations needed to realize
sustainable database systems.
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2 THEMULTIDIMENSIONALNATURE
OFDATABASE ENVIRONMENTAL IMPACT

Database systems’ environmental impact extends beyond energy
consumption, encompassing complex, interconnected dimensions
that current research and engineering practices have yet to fully
address. Understanding thismultidimensional impact is essential for
reimagining database technologies in an increasingly data-driven
but resource-constrained world.

When database systems process queries, they generate opera-
tional carbon emissions through electricity consumption that can
vary by location and timing. A query executed in a coal-dependent
region may produce orders of magnitude more carbon dioxide than
the identical query in a solar-powered region. This temporal and
spatial variability in grid carbon intensity creates both challenges
and opportunities for environmental optimization [31].

Perhaps more surprising than operational impact is the signifi-
cant environmental footprint embedded in database hardware man-
ufacturing and disposal, called embodied carbon or Scope 3 emis-
sions [93]. Research byGupta et al. [32] reveals that the role ofmanu-
facturingcarbonemissions in theoverall carbon footprintofdata cen-
ters is becoming more and more significant as the energy grid decar-
bonizes.Microsoft’s data corroborates this finding [54], showing that
with 70-75% renewable energy powering operations, nearly half of a
data center’s carbon emissions stem from hardware manufacturing.

This embodied impact becomes increasingly significant as hard-
ware performance improvements plateau and newer server gener-
ations yield diminishing performance gains, leading organizations
that replace hardware on traditional 3-4 year cycles to incur sub-
stantial environmental costs for relatively modest performance im-
provements [10, 42]. Bodner et al. [10] demonstrate that for common
database workloads, hardware upgrades based solely on raw perfor-
mance metrics provide minimal benefit once technology improve-
ments slow, yet still incur the full manufacturing carbon penalty.

Database systems often require extensive storage resources, and
the embodied carbon differences between storage technologies are
substantial [31, 86]. Storage devices represent a particularly impor-
tant consideration for database systems. SSD-based storage racks
emit approximately ten times more embodied carbon per terabyte
than older HDD racks, with storage devices accounting for approx-
imately 81% of the total embodied emissions in SSD-based infras-
tructure [58]. This means that high-performance storage systems
in data centers may generate most of their environmental impact
through hardware manufacturing rather than operation.

While carbon emissions have received some attention, the water
footprint of database operations represents another dimension of
environmental impact that receives insufficient attention in database
research. Similar to carbon footprints, the water impact of database
systems can be divided into two fundamental categories [37]: oper-
ational water footprint and manufacturing water footprint.

Operationalwater footprintderivesprimarily fromelectricity con-
sumption and system cooling, particularly in cloud computing and
data centers, requiring distinction between water withdrawal and
consumption [55, 59].Waterwithdrawal refers to the total volume of
water removed from a source,much ofwhichmay be returned, while
water consumption specifically measures the volume of water that

is not returned to the original source due to evaporation, transpira-
tion, or incorporation into byproducts. For database environmental
assessment, consumption is the more critical metric as it represents
permanent removal from the local water cycle. This focus on con-
sumption, particularly of blue water (fresh surface and groundwater
resources from rivers, lakes, and aquifers) [77], provides a more ac-
curate picture of long-term environmental impact than withdrawal
figures alone. Table 1 presents the consumptive water footprint per
unit of power for different energy sources to highlight the differences
in water intensity for different variations of the energy grid [44].

Table 1:Water Footprint of Various Energy Sources

Energy Source (L/MWh) Energy Source (L/MWh)

Biomass 1,817 Geothermal 1,363
Hydropower 51,480 Natural Gas 700
Nuclear 2,200 Solar 45
Oil 1,746 Wind 1.85
Coal 1,817

The geographical variation in water availability introduces an-
other layer of complexity. Regions differ in their water stress levels,
making the environmental impact of water consumption location-
dependent. An environmentally-conscious database systemmight
deliberately schedule water-intensive computations in regions with
abundant non-potable water resources, while minimizing water-
dependent operations in drought-prone areas. Innovative infrastruc-
ture approaches are already exploring unconventional solutions to
these challenges. Microsoft’s Project Natick [14] demonstrates an
alternative approach by submerging data centers underwater, using
the ocean itself for cooling and eliminating freshwater consumption.

Beyond these operational requirements, themanufacturingwater
footprint constitutes the second major category of database water
impact, encompassing the total volume of freshwater used during
the production of hardware components. This includes both direct
water use in manufacturing processes and indirect consumption
through the supply chain. Semiconductor fabrication facilities are
particularlywater-intensive, requiring ultra-purewater for chip pro-
duction as a single facility can consumemillions of gallons daily [91].
Beyond chip fabrication, water is consumed throughout the hard-
ware lifecycle: in metal mining [65], silicon wafer production [91],
component assembly [25], and wastewater treatment [81].

These environmental dimensions interact in complex ways re-
quiring holistic analysis. Optimizing for one dimension often cre-
ates unintended consequences elsewhere. For example, pursuing
operational carbon efficiency through specialized hardware accel-
eration [15, 78, 84] may reduce energy use but increase embodied
carbon from manufacturing specialized components. Conversely,
extending hardware lifespans reduces manufacturing impacts while
potentially increasing operational emissions [58].

Water and carbon footprints also exhibit complex tradeoffs. Hy-
droelectric power offers low carbon emissions but can have substan-
tial water impact through reservoir evaporation. Conversely, wind
power has minimal water requirements but may face intermittency
challenges that affect long-term database environmental impact.
These tradeoffs can be observed in Figure 1, which shows the carbon
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and water contributions of the energy sources in Ontario, Canada,
depicting the different environmental impact of these dimensions.

Figure 1: Carbon andWater Footprint of Energy Sources in
Ontario, Canada

Understanding these interactions is essential for developing truly
sustainable database systems. Environmental efficiency is multifac-
eted rather than one-dimensional, requiring sophisticated context-
aware approaches. This holistic understanding forms the foundation
for database architectures that balance complex environmental con-
siderations alongside traditional performance requirements.

3 HARDWARE-AWARE SUSTAINABLE
DATABASEARCHITECTURES

Database systems rely heavily on storage infrastructure, making
storage operations’ environmental impact a critical consideration
in sustainable design. The database-storage relationship presents
significant environmental optimization opportunities that research
has largely overlooked.

The storage technologies underpinning database systems repre-
sent a critical intersection of operational and embodied environmen-
tal impacts. Storage decisions affect not only energy consumption
during operation but also the long-termmanufacturing footprint of
the database server and the replacement frequency of hardware com-
ponents. While previous research has explored the performance im-
plicationsof storage technologies fordatabaseworkloads [18, 36], the
comprehensive environmental impact spanning operational carbon
emissions andwater consumption, aswell asmanufacturing impacts,
remains largely unquantified and underexplored.We envision future
database systems that fundamentally rethink their relationship with
storage media, incorporating environmental awareness throughout
the storage stack to maximize component longevity while minimiz-
ing both operational and embodied environmental impacts.

Storage Media Environmental Considerations. Modern database
servers predominantly use SSDs for their superior speed, but these
storage media suffer from wear effects that limit their endurance
based on the number of write operations performed over their life-
time and suffers from the limitation of small-granularity overwrites.
As highlighted in recent studies [58, 86], SSD-based storage racks
emit significantly more embodied carbon per terabyte than HDD al-
ternatives. This environmental cost necessitatesmaximizing storage
component lifespans through architectures that balance endurance
with performance considerations.

The environmental tradeoffs between HDDs and SSDs present
a nuanced challenge for database architects. While SSDs deliver

superior performance and energy efficiency, their limited write en-
durance and higher manufacturing footprint create sustainability
concerns. HDDs, conversely, offer nearly unlimited write endurance
and lower embodied environmental impact per terabyte, but at the
cost of lower performance, and higher energy consumption due to
mechanical operations and increased query execution time.

Despite the critical importanceof storage technologies indatabase
systems, comprehensive research comparing the environmental im-
pact of HDDs versus SSDs in database contexts remains sparse, pos-
ing a significant gap in sustainable database design understanding.
A truly environmentally-conscious database architecture requires
quantification of how different storage technologies affect the envi-
ronmental footprint across multiple dimensions: operational energy
use and resulting carbon/water footprints during workloads; man-
ufacturing carbon/water footprint considering replacement rates
from SSD wear versus HDDmechanical failures; and secondary per-
formance effects, such as increasedmemory requirements for slower
storage and their impact on overall system environmental footprint,
including energy consumption fromextendedquery execution times.

Beyond theHDDvs. SSDdichotomy,modern storage technologies
come with unique sustainability implications that warrant exam-
ination. NVMe storage offers high throughput and has different
performance characteristics than traditional SATA SSDs [33], po-
tentially affecting its environmental footprint over time. Emerging
technologies likepersistentmemory (PMEM)andstorage-classmem-
ory (SCM) [8, 22, 67] promise to bridge the gap betweenmemory and
storage, creating new possibilities for performance optimization in
database systems. Architectural innovations like Compute Express
Link (CXL) and disaggregated memory [1, 29, 51] represent another
frontier in storage evolutionwhich promise to substantially improve
resource utilization and mitigate memory stranding by fundamen-
tally transforming how database systems access resources through
dynamic allocation.

Despite thegrowing researchon these technologies, their environ-
mental implications indatabase contexts remain largelyunexamined.
The database research community lacks systematic studies measur-
ing how these technologies affect the energy consumption across di-
verse workloads, including how any performance tradeoffsmight in-
fluence operational environmental impact through carbon emissions
and water consumption. Manufacturing impact represents another
critical dimension as no researchhas quantified the embodied carbon
andwater implications of these technologies compared to traditional
architectures. For instance, while researchers used an FPGA-based
CXL prototype to enable an in-memory database system to access
remotememory [51], they did not quantify the operational andman-
ufacturing environmental benefits or overheads. Developing such
environmental assessment frameworks, tailored to evaluate how ar-
chitectural choices affect overall system sustainability, will be essen-
tial for informeddecision-makingwhen adopting these technologies.

Workload-Specific Storage Challenges. Different database work-
loads affect storage media in profoundly different ways, presenting
unique environmental challenges. Analytical (OLAP) workloads are
primarily read-intensive, requiring the processing of large amounts
of data to obtain results and conclusions. The processing of this
kind of workload puts substantial pressure on memory and requires
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numerous I/O operations to bring data into memory and store in-
termediate results. Whenmemory cannot hold all the data and in-
termediate results, memory pressure increases, and much of the
processed data and intermediate results are written to and retrieved
from the storage medium. While SSDs provide superior speed for
these operations, each write contributes to the eventual wear-out of
the device, accelerating the need for replacement and thus increasing
the embodied environmental impact of the system.

OLTP workloads present different but equally significant chal-
lenges. These transactional workloads involve frequent inserts, up-
dates, and deletes of small amounts of data corresponding to individ-
ual transactions. OLTP traffic is characterized by millions of point
updates scattered across the logical address space, preventing the
flash-translation-layer (FTL) from grouping writes efficiently. Each
update triggers expensive read-modify-write garbage-collection
cycles that inflate the write amplification factor, reducing the en-
durance and lifetime of the storage component.

To address these challenges, we envision database architectures
that include storage-conscious design principles explicitly consider-
ing the characteristics and environmental implications of underlying
storage media. Storage-conscious design offers several sustainabil-
ity opportunities. First, database architectures should prioritize in-
memoryprocessing of queries anddata, exploiting availablememory
to minimize storage interactions. Techniques like column-oriented
storage, cache-aligned vectors [11, 73], hot/cold splitting [80], light-
weight compression [23], SIMD-friendly query operators [23, 46, 73],
and variable-size pages [63] can optimize main memory query pro-
cessing, especially for analyticalworkloads,whileminimizing I/Oop-
erations.While these techniquesareoftenemployed forperformance
reasons, their environmental benefits through reduced storage wear
remain largely unexplored andunquantified. Second, database query
optimizers and storage managers should be aware of and adapt to
the specific characteristics of the underlying storage technologies.
These advanced optimizers would distinguish write operations not
only by I/O cost but also by their aging effect on storage media,
potentially accepting slight performance tradeoffs when they yield
significant endurance benefits. This approach would require devel-
oping new cost models that quantify the "aging effect" of different
storage operations, enabling optimizers to balance performance
and storage longevity. While Pelley et al. [69] found that for read-
dominant analytical workloads, traditional optimizers may be suffi-
cient in terms of performance, storage-aware query optimization for
write-intensiveworkloadshas showntosignificantly improveperfor-
mance [7] and implicitly reduce thewrite-amplification effect. More-
over, studies demonstrated how understanding and actively manag-
ing the underlying storage behaviour can significantly reduce write-
amplification [16, 35]. Despite these advances, the environmental im-
plications of these optimizations remain largely unquantified. By in-
corporating wear-leveling awareness into database design, systems
can extend the useful life of storage components and reduce the envi-
ronmental impact associated with premature hardware replacement.

4 SOFTWARE-LEVEL SUSTAINABLE
DATABASEARCHITECTURES

Energy proportionality. A fundamental goal for energy-efficient
and green database systems is to achieve energy proportionality,

where a system’s energy consumption scales linearlywith its compu-
tational workload. This principle was formally articulated and popu-
larized by Barroso and Holzle [6], where they found that the energy
efficiency of Google servers in the 20-30% utilization range, where
most systems operate, drops to less than half the energy efficiency at
peak performance levels. Today’s database servers remain far from
this ideal often consuming over half their maximum power even
when idle [52], due to fixed overheads in processors, memory, and
othercomponents.This inefficiencystems fromtwointerrelatedchal-
lenges: hardware limitations and database software design that fails
to effectively engage with available power management features.

On the hardware side, database workloads present unique energy
management challenges compared to general computing. The highly
variable resource utilization patterns of database operations [88, 97],
which shifts between CPU-intensive query execution, memory-
bound joins, and storage-intensive scans, requiremore sophisticated
power management capabilities than currently available. Database
servers need hardware components with finer-grained power states,
lower idle power consumption, and faster state transitions to accom-
modate these patterns and minimize performance penalties.

From the database software perspective, current systems largely
operate without awareness of their energy consumption, treating
hardware resources as always-on entities, without any distinction
in the underlying workload. Database management systems must
evolve to actively coordinate with underlying hardware power man-
agement features. This involves developing frameworks that can
dynamically adjust resources and power states, while maintaining
query performance guarantees, at least within specified bounds.

Prior researchhas exploredvarious approaches in energymanage-
ment: dynamic voltage/frequency scaling [6, 12, 89, 96], intelligent
buffer pool management to enable memory power-down [45], and
energy-aware query optimization [72, 88, 92] that considers power
alongside traditional performance metrics. However, these tech-
niques typically address only isolated aspects of the database stack
rather than providing comprehensive solutions.

Achieving energy-proportional database systems requires coor-
dinated innovation between hardware manufacturers and database
architects. Hardware vendors need to design software-aware power
management capabilities with appropriate granularity and transi-
tion speeds, while database developers must reimagine system ar-
chitectures to incorporate energy awareness throughout the query
lifecycle, from query parsing to execution to result delivery. In this
context, several open research questions remain on how to inte-
grate power-management primitives into database kernels, how to
maintain performance SLAs while dynamically power-capping or
power-gating components, and how to measure and optimize “work
per Joule” at the query level. Progress on these questions would
enable future database systems to provide the same computational
workwith reduced energy consumption, translating to lower carbon
emissions, reduced water footprints, and extended hardware lifes-
pans, aligning database technologywith broader sustainability goals.

Environmentally-Aware Workload Scheduling. A critical opportu-
nity for sustainable database systems lies in intelligently timing and
placing query execution tominimize environmental impact. The car-
bon intensity of electricity grids can fluctuate significantly within a
single day as renewable generation varies, whilewater requirements
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(a) Hyper carbon emissions during 04/01/2024 (b)CarbonEmissions byLocation andDBMS (August 2022)

Figure 2: Temporal and Regional Carbon Emissions Analysis

for electricity generation and cooling differ dramatically across re-
gions and seasons. Figure 2a shows the carbon emissions of the
Hyper [46] database for the TPC-Hworkload with scale factor 300
per 1000 executions, as if itwas executing at different times of the day,
while Figure 2b shows the carbon emissions of 4 different databases
across different locations. Thesefigures demonstrate how timing and
location significantly influence carbon footprint, revealing that envi-
ronmental impact extends beyond simple energy consumption met-
rics. Carbon emissions, however, represent just one of the environ-
mentaldimensions thatmustbeconsidered.Carbon intensityandwa-
ter usage interact in complex ways. For example, aggressively reduc-
ing carbonby shifting load to a "greener" regionmight increasewater
consumed for electricity generation at that location and vice versa.

Database systems are uniquely positioned to navigate these en-
vironmental tradeoffs due to their varied workload characteristics.
Unlike many computational systems that require immediate execu-
tion of all tasks, database workloads naturally contain a spectrum of
time-sensitivity requirements. This spectrum ranges frommission-
critical transactions thatmust execute immediately (OLTPworkload)
to numerous deferrable operations, like batch queries, index rebuilds,
statistics collection, maintenance tasks, RAID rebuilds [38, 87], data
scrubbing [79], metadata backups, and ETL processes [17, 82], all of
which offer significant flexibility in execution timing.

This inherent flexibility makes database systems ideal candidates
for applying carbon and water-aware query scheduling approaches.
While few database-specific implementations exist [50], general-
purpose solutions offer valuable insights and foundational tech-
niques that can be adapted. Recent years have seen initial strides
in carbon-aware scheduling in cloud and distributed systems. No-
tably, Google has deployed a "carbon-intelligent" computing plat-
form [47, 74] that shifts flexible jobs to times and locations with
cleaner electricity grid. Using day-ahead grid carbon intensity pre-
dictions from Electricity Maps [57], the global scheduler defers non-
urgent jobs to align with renewable energy availability without
disrupting core services. Beyond industry, the research community
has proposed carbon-aware schedulers for cloud clusters that bal-
ance performance and cost with emissions; for example, GAIA [34]
optimizes batch job placement by considering execution latency,
monetary cost, and carbon emissions together. Similarly, Osnes

et al. [66] demonstrate wind-aware scheduling that defers latency-
insensitive tasks toperiodswith renewable energyavailability.These
efforts show that by when and where computations run, we can cut
a system’s carbon footprint without wholly sacrificing performance.

Water footprint, though receiving less attention than carbon until
recently, is equally vital for sustainable computing. Data centers
consume enormous amounts of water for cooling and indirectly
through electricity generation [62]. Pioneering research is nowhigh-
lighting how scheduling can reduce water usage [30]. For instance,
water-aware geo-distributed scheduling can exploit temporal and
regional differences inWater Usage Effectiveness [4] of data centers
bymovingworkloads to locations or timeswhere thewater footprint
is smaller [4, 43].Manybatchworkloads (likemachine learning train-
ing or periodic analytics) have flexibility in when and where they
execute, which creates an opportunity to time their execution during
"water-efficient" hours. Importantly, it’s not just the volume ofwater
that matters but also the scarcity of local water resources. Running a
job in an area experiencing drought or high water stress has a bigger
environmental impact than using the same amount of water in a
water-abundant area. Simply minimizing water consumption is not
sufficient, database systems should account for the regional precious-
ness of water by, for example, preferring to schedule in areas with
lowwater stress even if it means slightly higher water use overall.

The database community has yet to fully explore and implement
these techniques, particularly for distributed and cloud-native data-
base architectures where the flexibility in execution timing and loca-
tion is greatest. A key challenge in implementing environmentally-
aware database scheduling is respecting the complex interdepen-
dencies, consistency requirements, and performance SLAs that dis-
tinguish database operations from general batch jobs.

Building on innovations in distributed query processing, we can
envision a new class of environmentally-conscious database systems
that dynamically schedule queries by jointly optimizing carbon and
water metrics in real time. A compelling example of this architec-
tural direction isMotherDuck [3], which extendsDuckDB for hybrid
client-cloud processing. MotherDuck’s remote-local optimizer par-
titions query plans into fragments, executing them either locally or
remotely basedondata locality and estimateddata transfer cost,with
bridge operators inserted to move intermediate data between client
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and cloud. This flexible execution model presents a natural opportu-
nity for incorporating environmental awareness beyond traditional
metrics. In such an enhanced system, query optimizers would incor-
porate carbon intensity and water impact as first-class cost factors
alongside computational costs, I/O overhead, and network transfer
times. When planning query execution, the optimizer could weigh
environmental costs alongside performance considerations, poten-
tially routingcomputation-intensive fragments to regionswith lower
carbon emissions ormore sustainable cooling capabilities, while still
respecting the same execution constraints that systems like Mother-
Duck [3] already handle. This approach would enable databases to
make intelligent tradeoffs between performance, data locality, and
environmental impact within a single optimization framework.

By integrating these environmental considerations into database
query optimization and scheduling, we can create systems that sig-
nificantly reduce their ecological footprint while maintaining the
performance guarantees and consistency requirements that applica-
tions depend on. This approach leverages the inherent flexibility of
database workloads and the distributed nature of modern database
architectures to make meaningful contributions to sustainability
goals without compromising functionality.

5 RESEARCHCHALLENGES
Database systems face challenges that expose current knowledge
andmethodological limitations, hindering environmentally efficient
data management development. Below we outline key challenge
areas revealing practical gaps and research opportunities:

LimitedTransparency inHardwareEmbodiedData. Afundamental
obstacle is the difficulty of obtaining accurate data on the embodied
carbon footprint of hardware components. Manufacturers often lack
transparency in disclosing the carbon impact of producing servers
and components, leaving researchers with coarse estimates [31, 75].
Inpractice, formosthardware components, novetted emission factor
is publicly available, forcing reliance on approximate models. This
data gapmakes it hard to quantify howmuch “hidden” carbon is asso-
ciated with database infrastructure, and thus hinders optimizations.

An even less-explored metric is the water footprint associated
withhardwaremanufacturing.Quantifying thewaterused inproduc-
ing computing equipment is extremely challenging due to a lack of
industry disclosure and modeling frameworks. Whereas carbon Life
Cycle Assessment reports provide at least some basis for estimating
embodied CO2, analogous methods for water are underdeveloped.
A recent study on AI infrastructure [53], for instance, had to exclude
the manufacturing water footprint entirely due to lack of data.

Challenges in Accounting for Operational Water Footprint. Calcu-
lating operational water footprints is complex due to widely varying
water intensity across electricity sources, locations, and water cat-
egories. Water footprint accounting distinguishes between different
categories, which introduces methodological complexity in defining
what “water footprint” should be counted. To make matters more
difficult, location-specific data on grid water usage are oftenmissing
or outdated. While some studies [44, 56, 60, 62] and databases [55]
publish average water-use factors for electricity generation, these
factors show large variance across regions and technologies and
may not capture real-time or regional specifics.

Inconsistent Methodologies for Electricity Carbon Intensity Across
Regions. Measuring the carbon footprint of electricity consumed
by a database system is crucial for sustainability, but current meth-
ods of calculating grid carbon intensity are inconsistent and non-
standardized [2]. Different countries and providers use varying
methodologies to estimate the carbon intensity of an energy source,
yielding to significantly different carbon intensity values for the
samemix of energy grid [76]. As a result, this lack of standardization
poses a challenge for database systems research: a “carbon-aware”
query scheduler or storage layout might perform well under one
carbon accounting scheme but appear suboptimal under another.
Addressing this issue will require harmonizing carbon intensity
methodologies at least for evaluation purposes.

Lack of Standardized Benchmarks for Environmental Efficiency.
Unlike performance and scalability, the environmental efficiency of
database systems currently lacks standardized benchmarks and eval-
uation methodologies. The database community has long relied on
benchmarks likeTPC-C, TPC-H, JOB, YCSB to compare performance
metrics. However, while some energy measurement methods exist
for existing benchmarks [71], there is no widely adopted, standard-
ized approach for sustainability metrics such as carbon and water
footprint per query. This absence of standardized evaluation meth-
ods makes it difficult to quantitatively compare systems or to track
progress across more than one sustainability dimension, and it also
means that researchers may overlook trade-offs. Recent work [5]
begins to address this gapby introducingEcoQuery1, a sustainability-
focused benchmark that extends traditional performance metrics
with environmental impact measurements. Developing these bench-
marks and agreeing on evaluation methodologies will be crucial for
driving research in sustainable database systems as it will enable
objective comparisons and help identify best-in-class designs that
minimize environmental impact across the board.

6 CONCLUSIONS
Database systems stand at a critical environmental crossroads. As
the digital datasphere expands exponentially, the environmental
footprint of database operations, spanning energy consumption, car-
bon emissions, andwater usage, demandsurgent attention fromboth
researchers and practitioners. In this vision paper, we have demon-
strated the multidimensional nature of database environmental im-
pact and proposed architectural approaches that elevate sustainabil-
ity toafirst-classdesignconsideration.Ourvisionextendsbeyonden-
ergy efficiency optimizations to advocate for fundamentally reimag-
ined database architectures that incorporate environmental aware-
ness at both hardware and software levels. By developing storage-
aware designs that maximize component longevity, implement-
ing energy-proportional operations through hardware-software
co-design, enabling carbon-aware and water-conscious workload
scheduling, and creating standardized environmental benchmarks,
we can transform how database systems interact with our increas-
ingly resource-constrained world.
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