
Relational Data Models for Genetic VCF data

Mohamed Sabri Haodi
Free University of Bozen-Bolzano

hmohamedsabri@unibz.it

Ozan Kahramanoğulları
Free University of Bozen-Bolzano
okahramanogullari@unibz.it

Anton Dignös
Free University of Bozen-Bolzano

anton.dignoes@unibz.it

Johann Gamper
Free University of Bozen-Bolzano

johann.gamper@unibz.it

ABSTRACT

The Variant Call Format (VCF) and its binary counterpart (BCF)

are commonly used in bioinformatics for storing gene sequence

data. While VCF oles provide compact storage, they require specioc

tools and scripts for querying, thereby missing the rich function-

ality arsenal of database management systems and their potential

for integration in multiomics pipelines. In this paper, we leverage

Relational Database Management Systems (RDBMS) to enhance

eociency and nexibility in storing and querying large-scale ge-

netic datasets. We map the VCF ole structure to narrow, wide, and

array-based data models that are further reoned using JSON data

structures, resulting in eight data models. Our experimental eval-

uation shows that RDBMS provide competitive performance in

comparison with specialized state-of-the-art tools while making

full-nedged database capabilities available for genetic data analysis.

PVLDB Reference Format:

Mohamed Sabri Haodi, Ozan Kahramanoğulları, Anton Dignös, and Johann

Gamper. Relational Data Models for Genetic VCF data. PVLDB, 18(11): 4045

- 4053, 2025.

doi:10.14778/3749646.3749674

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://gitlab.inf.unibz.it/dbs/vcf_to_rdbms.

1 INTRODUCTION

The increasing volume of data in bioinformatics, especially in ge-

nomics, presents new challenges for data storage and analysis. As

the cost of collecting genetic data continues to decrease, the num-

ber and scale of sequencing studies rises [25, 30, 33]. Over the next

decade, it is estimated that the amount of genetic data will reach

petabytes [16]. This surge in genomic data is also leading to a new

standard of healthcare, where treatments are tailored to an individ-

ual9s genetic makeup [11, 23]. This trajectory on multiple fronts is

creating a pressing need for scalable solutions to store and query

massive volumes of genetic data.

Genetic data is typically stored in Variant Call Format (VCF)

oles [8, 12, 16], which provide a standardized way to represent

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749674

genetic variants across samples. A VCF ole usually contains infor-

mation on millions of gene variants for thousands of individuals.

Existing tools, such as BCF Tools [29], excel at handling smaller

genetic datasets of VCF oles. However, their performance is less ef-

fective when dealing with massive cohorts with millions of samples.

This limitation stems from bottlenecks in input/output operations,

memory usage, and functionality. BCF Tools is well suited for vari-

ant analysis tasks [8] but cannot independently perform analysis

tasks, such as Genome-Wide Association Studies (GWAS) [34]. For

such complex analyses, BCF Tools works in conjunction with other

specialized tools. In response to the challenges posed by the text-

based structure of VCF oles and the limitations of existing tools like

BCF Tools, various approaches were proposed, e.g., [7, 9, 12, 14].

RDBMSs provide a promising setting for facilitating complex

analytical queries, data integration with diferent datasets, and

enhanced data management capabilities, including indexing and

access control. To this end, in this paper, we provide a systematic

comparison of standard RDBMS data models, exploring a range of

mapping strategies, from more direct translations to more RDBMS-

centric reorganizations. We set out by mapping the VCF ole struc-

ture to three standard data models, namely, wide and narrow table-

based and array-based data models. We reone our analysis by in-

troducing JSON data structures into our data models. This results

in a total of eight diferent data models that optimize performance

for various query types. We discuss the design decisions for each

model as well as our implementation of the models in PostgreSQL.

In a detailed performance evaluation, we compare our models to

state-of-the-art competitors, i.e., BCF Tools and TileDB-VCF, for

storage and query runtime, and query selectivity.

Our results show that each model presents distinct trade-ofs in

terms of storage requirements, query performance, and nexibility.

Overall, our Array and JSON models provide competitive perfor-

mance compared to specialized tools while bringing about a rich set

of relational database capabilities to genetic data analysis. We show

the impact of query selectivity and dataset size on each model9s

performance, thereby exposing the model9s suitability for specioc

workloads. Our ondings ofer insights into the trade-ofs between

various data models, enabling researchers to make informed deci-

sions based on their specioc requirements, whether they prioritize

speed, storage, or the ability to handle complex queries.

The main contributions can be summarized as follows:

• Wepresent eight novelmodels to store VCF data in RDBMSs,

aiming to optimize performance for various query types.

• We implement the proposed models in PostgreSQL.

• We experimentally compare our proposed models to ex-

isting state-of-the-art competitors, revealing the need for

4045

https://doi.org/10.14778/3749646.3749674
https://gitlab.inf.unibz.it/dbs/vcf_to_rdbms
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749674
https://www.acm.org/publications/policies/artifact-review-and-badging-current

scalable solutions for processing genetic data and the rich

functionalities ofered by RDBMSs.

The remainder of this paper is structured as follows: Section 2 dis-

cusses related work. Section 3 provides an overview of the VCF

ole structure. Our proposed RDBMS data models for genomic data

are introduced in Section 4 and empirically evaluated in Section 5.

Section 6 explores trade-ofs between data models and query per-

formance, relating our ondings to existing genomic data strategies.

Section 7 summarizes our ondings and outlines future work.

2 RELATEDWORK

Tools and data models used in genomic research can be categorized

into command-line utilities, libraries, and database systems.

Command-line utilities provide a direct way to work with

VCF oles. Examples include vcf2fhir, an open-source utility that

converts VCF oles into HL7 FHIR format for genomics-EHR integra-

tion [9], VCF-kit, a collection of utilities that analyze and annotate

VCF oles [7], and bio-vcf, a tool for oltering and converting VCF

oles into diferent formats [12]. While these tools are convenient

for basic tasks, they lack advanced customization capabilities and

require other tools for analyses with multiple oltering steps and

data integration. Furthermore, the limited automation features of

these tools hinder worknow repeatability on diferent datasets.

Despite these limitations, command-line utilities like BCF Tools

and Tabix are state-of-the-art in this category as they balance perfor-

mance and ease of use. BCF Tools is a command-line suite speciocally

designed for working with VCF and BCF (Binary VCF) oles, ofer-

ing a set of functionalities for various processing tasks. It allows

the retrieval of specioc samples or variants, e.g., based on location

and variant type. BCF Tools also supports calculating summary

statistics as well as manipulating oles in analysis worknows [29].

Tabix, which complements BCF Tools, is a generic indexer for TAB-

delimited genome position oles as VCF oles. It creates an index ole

for a given input data ole. After indexing, Tabix can retrieve data

lines overlapping regions [17]. This allows BCF Tools to eociently

extract and analyze data from large VCF oles.

Libraries ofer more nexibility than command-line utilities as

they can be integrated into custom scripts and applications. They

allow for more complex operations and analyses on VCF oles. How-

ever, they tend to specialize in a specioc set of features, rather than

providing a general platform for programmatic data analysis, which

limits their applicability. Examples of such libraries include: vcnib,

a C++ library that provides a variety of functionalities for parsing

and manipulating VCF oles [7]; cyvcf2, a Python library for fast

parsing and querying of VCF oles [26]; hts-nim, a library for reading

and writing high-throughput sequencing data [27].

Database systems ofer powerful functionalities for storing, re-

trieving, and analyzing large volumes of data. Among these systems,

TileDB-VCF is notable for its custom design tailored speciocally for

genetic data [24, 32]. It is an open-source C++ library that leverages

the TileDB Embedded platform, a multi-dimensional array database

system with high performance and the ability to scale for large

volumes of genetic data due to its database roots. The core function-

ality of TileDB-VCF is its use of 3D sparse arrays for storing samples

in a compressed and lossless manner by applying diferent com-

pressors to VCF oelds based on the data types and characteristics.

It includes features for ingesting VCF oles, performing genomic in-

terval intersections, and slicing variant records by genomic regions

across an arbitrary number of samples.

Other examples of database systems include TheSNPpit [14], a

high-performance database system for managing large-scale SNP

data, and Breedbase [20], an open-source web database that imple-

ments a novel data model for genotyping data.

Another work presented in [18] addresses similar challenges by

exploring relational databases in an array model, resembling one of

our eight models. The authors suggest that relational databases are

efective for large genotypic datasets, balancing performance and

storage, but do not compare them to BCF Tools. Our work takes

a broader approach by exploring standard and extended RDBMS

data models, including JSON structures, while preserving variant

information. This emphasis on VCF odelity sets our work apart, en-

abling richer analyses and greater nexibility for researchers. Finally,

we thoroughly compare all our models to state-of-the-art tools, i.e.,

BCF Tools and TileDB VCF, using comprehensive workloads.

The study in [15] explored the use of relational databases for ge-

nomic data by storing individual genotypes in a so-called mapping

table 3 a concept similar to our narrow models, where each variant-

sample genotype is a separate row. Our study advances this line

of research by providing a more extensive, large-scale evaluation,

investigating eight diferent relational models and ofering direct

performance comparisons with state-of-the-art tools. While evalu-

ation in [15] is limited to datasets of up to 100 million records, our

work assesses scalability using over 1.2 billion genotype records.

The work in [19] introduces a document-based approach that

maps VCF oles to JSON to integrate genetic variants with OWL-

based ontologies in MongoDB, leveraging JSON9s nexibility for

handling semi-structured data. In a similar vein, our Full JSON and

Full JSON ID models also use JSON, but within relational databases.

However, our study takes a broader perspective by evaluating how

various relational data models, including those incorporating JSON,

can eociently manage and query genomic variant data.

3 THE VCF FILE STRUCTURE

Genetic data is represented as sequences of letters denoting the

bases. For simplicity, we focus on DNA, where these bases are A, T,

C, and G. Other forms of genetic data follow the same scheme. The

human genome has a pair of 23 chromosomes with about 3 billion

bases. However, these numbers vary between species.

The Variant Call Format (VCF) has become the standard for

storing large-scale gene sequence data from genotyping and DNA

sequencing projects [10, 21, 22, 31]. VCF oles are widely used in

public genetic datasets, including the 1000 Genomes Project [6], as

well as datasets for animals [2], plants [20], or microorganisms [13].

VCF oles store genetic data in a compact form by exposing only

positions that difer from a reference genome, which is a complete

sequence of a particular genome assembly.

Figure 1 shows an example of raw genomic data and the cor-

responding VCF ole. The Raw genome data table shows the raw

DNA sequence of three samples: NA00001, NA00002, and NA00003,

together with a reference sequence. In ove positions, at least one

sample difers from the reference genome. The parts that overlap

with the reference in all samples are abbreviated with <..=. Because

4046

M
e
ta
-I
n
fo
rm
a
ti
o
n

F
ix
e
d

F
ie
ld
s

SamplesHeader

Genotypes

Raw genome data

Figure 1: Raw genome data and VCF �le structure

sequences come in pairs, there are two variants at each position,

e.g., G/G, one maternal and the other paternal. In the corresponding

VCF ole, we can distinguish three diferent blocks of information:

meta-information, oxed oelds, and samples.

The meta-information block provides essential context for inter-

preting the variant data, including ole format version, reference

genome, sample information, and detailed speciocations for oelds

like FILTER, INFO, FORMAT, and others.

The oxed oelds block contains general information about each

variant, including its chromosome (CHROM), position (POS), and op-

tional identioer (ID). The column REF stores the reference base/s,

whereas ALT stores alternative alleles (bases). QUAL, FILTER, and

INFO provide information about the quality score, olter status, and

additional information, respectively. The optional FORMAT oeld is

present if genotype/sample columns are included and deones the

format used to store genotypes in the sample block.

The samples block stores genotype data for each sample at the

positions listed in the oxed oelds block. Each column is a sample,

and each row a position. The corresponding data format is specioed

in the FORMAT oeld. Each cell contains two reads (one per parental

chromosome): 0 matches the reference in the REF column, 1 the

orst alternative in the ALT column, 2 the second, and so on. For

example, 0|0 means both alleles are reference, 0|1 is one reference

and one alternative, and 1|1 means both are the orst alternative.

4 RELATIONAL DATA MODELS FOR VCF

In this section, we introduce several data models we designed for

VCF data: Wide, Narrow, Array Plain , and Full JSON. Addition-

ally, we explored hybrid models, which we refer to as Wide JSON,

Narrow JSON, Array JSON, and Full JSON ID.

VCF data are typically used for read-heavy analysis, and mod-

iocations of the data often require ole regeneration from up-

stream pipelines [12]. Consequently, our data models prioritize

read queries.

4.1 Meta-Information and Fixed Fields

Across all data models, we extract the meta-information from the

VCF oles and map it to a relational model by creating dedicated

tables for each type of metadata. This structured approach ensures

that the metadata is organized and easily accessible.

vcf_oxed_oelds

ln chrom pos id ref alt qual �lter info format

1 20 14370 rs6054257 G A 29 PASS NS=3;DP=... GT:GQ:DP:HQ
2 20 17330 . T A 3 q10 NS=3;DP=... GT:GQ:DP:HQ
3 20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=... GT:GQ:DP:HQ

Figure 2: Fixed �elds table

The oxed oelds block of the VCF format is stored in a table named

fixed_fields as shown in Figure 2. Each tuple represents a row in

the oxed oelds block, where each oeld is stored as an attribute: chro-

mosome chrom, position pos, identioer id, reference base(s) ref,

alternative base(s) alt, quality qual, olter status filter, additional

information info, and format format.

Additionally, we add a column ln, which serves as a unique iden-

tioer. It corresponds to the line number in the VCF ole. This oeld is

crucial for maintaining the variants9 order and cross-referencing

between tables. We cannot use the ID oeld of the VCF standard

because it is not guaranteed to be unique for all variants. Some VCF

oles may contain multiple variants with the same ID, especially in

cases where the ID oeld is left blank or olled with a generic place-

holder. Similarly, the combination of the chrom and pos oelds from

the VCF ole might not be unique. In some cases, multiple distinct

variants can occur at the same position on the same chromosome.

These are often referred to as multi-allelic sites [28].

4.2 Samples Data Block

4.2.1 WideModels. TheWidemodel organizes genomic samples re-

lationally using a 2D matrix (variants as rows, samples as columns).

Due to column limits, samples are split into chunks and stored in

tables named vcf_wide_samples_chunk_i, where each row holds

a position9s genotype data. Figure 3a shows an example where each

chunk can store at most two samples.

The Wide JSON model shown in Figure 3b extends the Wide

model by storing genotypes as a JSON object. While straight-

forward in design, the Wide models do not scale well with

large numbers of samples. As the sample count grows, additional

vcf_wide_samples_chunk_i tables are needed, leading to increas-

ingly complex and slower joins. Moreover, the model handles vary-

ing sample counts per genotype ineociently.

4.2.2 NarrowModels. In theNarrowmodel, all sample data is stored

in a single table, vcf_narrow_samples (Figure 4a), where each row

4047

vcf_wide_samples_chunk_1

ln na00001 na00002

1 0|0:48:1:51,51 1|0:48:8:51,51
2 0|0:49:3:58,50 0|1:3:5:65,3
3 1|2:21:6:23,27 2|1:2:0:18,2

vcf_wide_samples_chunk_2

ln na00003

1 1/1:43:5:.
2 0/0:41:3
3 2/2:35:4

(a) VCF Wide model
vcf_wide_json_samples_chunk_1

ln na00001 na00002

1 {"DP": 1, "GQ": 48, "GT": 0/0, "HQ": 51,51} · · ·

2 {"DP": 3, "GQ": 49, "GT": 0/0, "HQ": 58,50} · · ·

3 {"DP": 6, "GQ": 21, "GT": 1/2, "HQ": 23,27} · · ·

vcf_wide_json_samples_chunk_2

ln na00003

1 {"DP": 5, "GQ": 43, "GT": 1/1}
2 {"DP": 3, "GQ": 41, "GT": 0/0}
3 {"DP": 4, "GQ": 35, "GT": 2/2}

(b) VCF Wide JSON model

Figure 3: VCF Wide and VCF Wide JSON models

represents a variant-sample pair, identioed by the ln and the s_id

attributes, with the genotype. This approach, known as <nattening=

or <unpivoting,= transforms wide-format data into a narrow format,

with each row capturing one data point and its attributes. The

Narrow model avoids the need for many joins in large datasets;

however, the table storing the data can be very large.

The Narrow JSON model extends the Narrow model by encapsu-

lating each combination of genotype and sample ID as a singular

observation in JSON format, as in Figure 4b.

vcf_narrow_samples

ln s_id genotypes

1 NA00001 0|0:48:1:51,51
1 NA00002 1|0:48:8:51,51
1 NA00003 1/1:43:5:.
2 NA00001 0|0:49:3:58,50
2 NA00002 0|1:3:5:65,3
2 NA00003 0/0:41:3
3 NA00001 1|2:21:6:23,27
3 NA00002 2|1:2:0:18,2
3 NA00003 2/2:35:4

(a) VCF Narrow

vcf_narrow_json_samples

ln s_id genotypes

1 NA00001 {"DP": 1, "GQ": 48, "GT": 0/0, "HQ": 51,51}
1 NA00002 {"DP": 8, "GQ": 48, "GT": 1/0, "HQ": 51,51}
1 NA00003 {"DP": 5, "GQ": 43, "GT": 1/1}
2 NA00001 {"DP": 3, "GQ": 49, "GT": 0/0, "HQ": 58,50}
2 NA00002 {"DP": 5, "GQ": 3, "GT": 0/1, "HQ": 65,3}
2 NA00003 {"DP": 3, "GQ": 41, "GT": 0/0}
3 NA00001 {"DP": 6, "GQ": 21, "GT": 1/2, "HQ": 23,27}
3 NA00002 {"DP": 0, "GQ": 2, "GT": 2/1, "HQ": 18,2}
3 NA00003 {"DP": 4, "GQ": 35, "GT": 2/2}

(b) VCF Narrow JSON

Figure 4: VCF Narrow and VCF Narrow JSON models

4.2.3 Array Models. The Array Plain model tackles the Narrow

model9s size issue by storing each VCF row as tuple in a table

vcf_array_genotypes, where an array is used to store all samples9

genotypes (cf. Figure 5a). To enable eocient access, a separate table

vcf_array_indices is created that maps each sample ID to its

index in the array.

vcf_array_genotypes

ln genotypes

1 ["0|0:48:1:51,51", "1|0:48:8:51,51", "1/1:43:5:."]
2 ["0|0:49:3:58,50", "0|1:3:5:65,3", "0/0:41:3"]
3 ["1|2:21:6:23,27", "2|1:2:0:18,2", "2/2:35:4"]

vcf_array_indices

s_id e_id

NA00001 1
NA00002 2
NA00003 3

(a) VCF Array Plain
vcf_array_json_genotypes

ln genotypes

1 [{"DP": 1, "GQ": 48, "GT": "0/0", "HQ": "51,51"}, . . .]
2 [{"DP": 3, "GQ": 49, "GT": "0/0", "HQ": "58,50"}, . . .]
3 [{"DP": 6, "GQ": 21, "GT": "1/2", "HQ": "23,27"}, . . .]

vcf_array_json_indices

s_id e_id

NA00001 1
NA00002 2
NA00003 3

(b) VCF Array JSON

Figure 5: VCF Array Plain and VCF Array JSON models

The Array JSON model extends the array model by storing geno-

types as an array of JSON objects, each encapsulating a distinct

genotype of a sample (cf. Figure 5b).

4.2.4 JSONModels. Besides nat (wide and narrow) and array-based

models, we explored JSON-based data models for encoding geno-

types. JSON9s nexibility within a relational schema allows complex

queries via database JSON functions and avoids the sparsity and

storage overhead of dedicated relational columns for annotations.

The alternative of deoning a compressed custom data type would

require additional decompression steps for retrieval.

The Full JSON model stores both sample IDs and genotypes

together in a JSON object (see Figure 6a). Each row of the

vcf_json_samples table contains a JSON array, where each el-

ement is a JSON object with a sample ID and its genotype data.

Unlike the Array JSON model, which stores genotypes as JSON ob-

jects in an array without sample IDs, this model explicitly includes

the sample ID within each genotype entry.

In the Full JSON ID model in Figure 6b, each genotype is a single

JSON object in the vcf_js_id_samples table with a separate table

for sample ID mapping, similar to the Array models. This addi-

tional table, vcf_js_id_indices, provides a mapping between the

sample IDs and their indices in the genotypes array.

vcf_json_samples

ln sample_genotype

1 {{"s_id": "NA00001", "genotype": {"DP": "1", "GT": "0|0", "GQ": "48", "HQ": "51,51"}}, . . . }
2 {{"s_id": "NA00001", "genotype": {"DP": "3", "GT": "0|0", "GQ": "49", "HQ": "58,50"}}, . . . }
3 {{"s_id": "NA00001", "genotype": {"DP": "6", "GT": "1|2", "GQ": "21", "HQ": "23,27"}}, . . . }

(a) VCF Full JSON model
vcf_js_id_samples

ln genotypes

1 {{"DP": "1", "GT": "0|0", "GQ": "48", "HQ": "51,51"}, . . . }
2 {{"DP": "3", "GT": "0|0", "GQ": "49", "HQ": "58,50"}, . . . }
3 {{"DP": "6", "GT": "1|2", "GQ": "21", "HQ": "23,27"}, . . . }

vcf_js_id_indices

s_id e_id

NA00001 1
NA00002 2
NA00003 3

(b) VCF Full JSON ID model

Figure 6: VCF Full JSON and VCF Full JSON ID models

4.3 Summary of Data Models

Table 1 summarizes the diferent genotype storage models above.

It categorizes each model based on the data type used to represent

genotypes (strings or JSON objects) and the method for associat-

ing genotypes with their Sample ID (same table or separate table).

The models vary from direct translations (Wide models) and more

RDBMS-centric reorganizations (Narrow models) to models using

arrays and JSON.Moreover, diferent ways of storing sample IDs are

considered, namely, in the same table as column names or column

values, and in a separate table.

Table 1: Summary of the proposed models

Sample ID in separate table Sample ID in same table

Genotype as string Array Plain Narrow, Wide
Genotype as JSON Array JSON, Full JSON ID Narrow/Wide/Full JSON

5 EXPERIMENTAL EVALUATION

5.1 Setup

5.1.1 Environment. We conducted the experiments on a server

equipped with a 64-core Intel® Xeon® Gold 6246R CPU@ 3.40GHz.

The server9s conoguration included 92 GiB of main memory and

4048

high-capacity hard disk drives (HDDs) for data storage, ofering

several terabytes of capacity.

The system was running on Ubuntu 22.04.4 LTS (Jammy). Post-

greSQL 13.2 served as the primary database management system

conogured using PGTune (https://pgtune.leopard.in.ua). We used

Python 3.10.14 for the scripts and tests.

5.1.2 Dataset. In the experiments, we used the chromosome 22

VCF ole of the 1000 Genomes Project [6]. This VCF ole contains a

detailed record of human genetic variation with extensive coverage

across various populations. We expanded the number of samples in

this dataset by 400%, resulting in 12.808 samples, aligning with the

sample size considered in the CHRIS study [25]. We did not modify

the number of variants in the dataset. The variant distribution and

allele frequencies present in the original dataset were maintained.

5.1.3 Workloads. We used three diferent workload patterns: Access

retrieves all VCF entries for specioed sample IDs and/or variant

ranges, with <%= indicating the selected amount and <All= meaning

no olter. Variant Filtering builds on Access by also oltering variants

based on oxed oelds, returning only those that meet the condition.

Sample Filtering extends Access by oltering on genotype values,

returning, for each variant, only the sample IDs that satisfy the

condition. These are the core operations directly applicable to raw

VCF data for downstream analyses, simulating various real-world

scenarios, as supported by common bioinformatics practices [1, 8].

For our experiments, we set a timeout of one hour, repeated each

query ten times, and calculated the truncated mean execution time.

5.1.4 Implementation Details. We benchmarked TileDB-VCF 0.35.0

(with TileDB Embedded 2.24.0) and BCF Tools 1.20 with Tabix (ht-

slib) 1.20. We use the following column data types: genotype strings

use VARCHAR to accommodate the signiocant variations in their

length, and identioers such as sample ID use INT to ensure a suo-

cient range. Most tables use line_nb as the primary key (PK), while

Narrow models use a composite PK (line_nb, sample_id), and Ar-

ray/Full JSON models use element_id. PostgreSQL automatically

indices PKs; additionally, we created a multicolumn index on chrom

and pos in fixed_fields to optimize oltering. For JSON models,

we used JSONB for its compression and advanced features. We refer

to the source code for further details.

5.2 Overall Query Runtime Performance

In the orst set of experiments, we evaluate which model in Section 4

performs best in general and is the most robust for query runtime

using four workload settings (see Figure 7).

Figure 7a shows the results for selecting a single sample across

increasing variant ranges (data access pattern). The Array and Full

JSON ID models have low initial runtimes with moderate growth.

The Narrow and Wide models perform exceptionally well, with

only modest runtime increases. This eociency is due to the Narrow

model9s storing each variant-sample pair as a tuple (cf. Figure 4) and

the Wide models9 columnar structure (cf. Figures 3a and 3b), where

retrieving data for one specioc sample involves directly accessing

the corresponding column. Both models enable fast retrieval for a

specioc sample across variants.

Figure 7b shows model performance for retrieving increasing

numbers of samples, without restricting the variant range. The

Array Plain Array JSON Full JSON Full JSON ID Narrow Narrow JSON Wide Wide JSON

1 10 20 30 40 50 60 70 80 90

10
−1

10
0

10
1

10
2

10
3

Number of Variants [k]

T
im

e
(s
ec
)

(a) Range of variants for a sample

12
80

25
61

38
42

51
23

64
04

76
84

89
65

10
24
6

11
52
710

2

10
3

10
4

Number of Samples

T
im

e
(s
ec
)

(b) Set of samples across all variants

12
80

25
61

38
42

51
23

64
04

76
84

89
65

10
24
6

11
52
710

2

10
3

10
4

Number of Samples

T
im

e
(s
ec
)

(c) All variants where�� ≥ 0.01 for a
set of samples

1 10 20 30 40 50 60 70 80 90

10
0

10
1

10
2

10
3

10
4

Number of Variants [k]

T
im

e
(s
ec
)

(d) All homozygous samples for a
range of variants

Figure 7: Query runtime evaluation of the proposed models

Array models scale best, as they store all sample genotypes for a

position in a single array (cf. Figure 5a), enabling eocient multi-

sample retrieval. The Full JSON ID model, though starting with a

higher initial runtime, also scales well due to its structural similarity

to the Array models (cf. Figure 6b). In contrast, the Narrow and Full

JSON models did not complete within the timeout for any sample

size: the Narrow models perform poorly with more samples due

to their long format, while the Full JSON model9s nested structure

makes sample access increasingly costly.

In the next experiment, we show the behavior for the variant

oltering workload pattern in Figure 7c. We use a condition on the

oxed oelds (i.e., AF ≥ 0.01) with a selectivity of 24.36% for an in-

creasing number of samples, and do not use a restriction on the

range of variants. The Full JSON ID model shows an increasing

runtime with increasing sample sizes. The Wide models maintain

a lower runtime. The Array models demonstrate low and stable

runtime, with the Array Plain model being the most eocient. The

Narrow model timed out when retrieving 3,482 samples, highlight-

ing a scalability problem. Additionally, the Full JSON and Narrow

JSON models timed out across all sample sizes.

In the next experiment in Figure 7d, we explore the sample

oltering workload pattern for an increasing range of variants, i.e.,

we select the sample IDs and variants for which a condition on the

genotypes is met. Speciocally, we select, for an increasing range

of variants, all homozygous samples, where the selectivity on the

genotype is 86.86%. The runtime of the Narrowmodels signiocantly

increases for larger ranges of variants. Additionally, theWide model

times out at 10K variants, while the Wide JSON model times out

at 20K variants. In contrast, the Array and JSON models show low

and very similar runtimes.

In summary, we can observe that Array Plain is the overall best

and most robust model in terms of runtime. For an increasing num-

ber of samples, Narrow models and JSON deteriorate substantially

in performance. Similarly, Wide models sufer in performance and

are competitive only if up to 10% of the samples are used. Full JSON

ID is consistently worse than Array Plain. For multiple variants, the

4049

https://pgtune.leopard.in.ua

Table 2: Runtime comparison in seconds without index (left column) and with index (right column); * indicates a timeout

Workload Array Plain Array JSON Full JSON Full JSON ID Narrow Narrow JSON Wide Wide JSON

W1-A (All samples - 1 variant) 2.5 0.4 1.7 1.1 13.6 3.7 291.2 280.6 20.0 0.7 4.6 1.2 451.0 327.9 437.4 318.1
W1-B (1 sample - All variants) 336.6 333.6 526.2 518.0 * * * * 2107.2 1054.8 4123.2 1088.4 * * * *
W2-A (Sample olter - 1 variant) 7.0 2.3 4.9 2.8 0.6 0.2 306.9 0.4 2791.6 9.3 2835.6 6.9 442.8 0.2 429.6 0.2
W2-B (Sample olter - 10K variants) 322.5 8.2 * 10.7 9.6 9.5 322.5 8.2 * 150.6 * 177.7 * * * *
W3-A (Variant olter - 1 sample) 87.6 49.8 151.2 114.0 310.2 282.0 514.2 326.5 40.8 31.2 96.0 47.0 675.6 17.4 655.3 19.7
W3-B (Variant olter - 1k samples) 118.8 65.2 141.6 53.0 * * 236.1 129.4 376.8 294.3 * * 725.2 17.9 719.0 41.1

diference between the approaches generally remains the same. For

sample oltering workloads 3 unlike variant oltering 3 the nexibility

of JSON and the faster parsing of complex annotations (as in Full

JSON ID) outweigh the cost of increased storage. This is primar-

ily because direct key-based access to values ofers a signiocant

advantage for sample oltering.

The Efect of Indexing on Data Access. Table 2 compares the query

runtime without and with indexing across our diferent models

and workloads. Indexing signiocantly reduces runtime for variant-

centric access (W1-A) and single-variant sample oltering (W2-A)

across most models, demonstrating its efectiveness for selective

queries based on variant characteristics. This improvement is due to

the multi-column index on chrom and pos in the fixed_fields ta-

ble. Indexing also improves performance for variant oltering within

a specioed sample subset (W3-A andW3-B) by enabling direct ac-

cess to relevant records. However, it ofers less beneot for large

range queries by sample ID (W1-B), emphasizing the importance

of query selectivity. Narrow models beneot signiocantly from in-

dexing due to their one-grained structure, while Wide models see

smaller gains because of their multi-table design. JSON-based mod-

els show variable performance due to JSON parsing overhead. In

some workloads, indexing is essential for practical runtimes4as

evidenced by timeouts in its absence (e.g., W2-B) 3 highlighting its

necessity for handling complex oltering tasks eociently.

5.3 Comparative Analysis with State-of-the-Art

We benchmarked the performance of our best-performing model,

the Array Plain model, with the state-of-the-art tools, BCF Tools

and TileDB-VCF. We evaluated query runtimes across all workload

patterns with varying selectivities for variants and samples. The re-

sults are shown in Figures 8, 9, and 10. Each heatmap is color-coded,

indicating the runtime of the best approach. Each cell contains the

best-performing approach at the top and the second-best at the

bottom, with the number in between indicating the speed-up of the

orst compared to the second. The axes show the selectivities for

samples and variants (data access), where <All= indicates there is no

restriction on that dimension and <One= indicates a single variant

or sample. For sample oltering, the selectivity for the genotype is

constant and 86.86%, whereas for variant oltering, the selectivity

for the olter on the oxed oelds is constant with 24.36%.

For completeness, we also evaluated the performance of other

models (Full JSON ID and Wide models). These evaluations con-

ormed the ondings of Section 5.2, i.e., Full JSON ID exhibited slightly

faster performance than Array Plain for single-variant workloads.

However, it was slower in all other cases. Wide models demon-

strated superior performance for a very small number of samples

(up to 10%) but were considerably outperformed by Array Plain for

a larger number of samples.

Across all heatmaps, we observed a general trend of increased

runtime with larger selectivities that generate larger outputs.

TileDB-VCF only demonstrated competitive performance for work-

loads involving a single sample and is much slower in all other

cases. For the data access workload pattern shown in Figure 8, the

Array Plain model performs best when retrieving very few or all

samples, while BCF Tools, an optimized tool for these workloads,

performs slightly better for other selectivities. BCF Tools demon-

strated a signiocant advantage when retrieving a single variant and

specioc samples, beneoting from its optimized Tabix indexing.

One 1% 20% 40% 60% 80% All
Q_samples

Al
l

80
%

60
%

40
%

20
%

1%
On

e

Q_
va

ria
nt

s
TileDB-VCF

7.37
Array Plain

Array Plain
1.03

BCF Tools

BCF Tools
1.13

Array Plain

BCF Tools
1.41

Array Plain

BCF Tools
1.47

Array Plain

BCF Tools
1.47

Array Plain

BCF Tools
1.77

Array Plain

TileDB-VCF
1.5

Array Plain

Array Plain
1.17

BCF Tools

BCF Tools
1.2

Array Plain

BCF Tools
1.47

Array Plain

BCF Tools
1.73

Array Plain

BCF Tools
1.91

Array Plain

Array Plain
1.34

BCF Tools

TileDB-VCF
1.51

Array Plain

Array Plain
1.13

BCF Tools

BCF Tools
1.22

Array Plain

BCF Tools
1.51

Array Plain

BCF Tools
1.73

Array Plain

BCF Tools
1.95

Array Plain

Array Plain
1.37

BCF Tools

TileDB-VCF
1.41

Array Plain

Array Plain
1.17

BCF Tools

BCF Tools
1.21

Array Plain

BCF Tools
1.5

Array Plain

BCF Tools
1.73

Array Plain

BCF Tools
1.94

Array Plain

Array Plain
1.38

BCF Tools

TileDB-VCF
1.27

Array Plain

Array Plain
1.25

BCF Tools

BCF Tools
1.25

Array Plain

BCF Tools
1.54

Array Plain

BCF Tools
1.8

Array Plain

BCF Tools
2.01

Array Plain

Array Plain
1.38

BCF Tools

Array Plain
4.52

TileDB-VCF

Array Plain
2.47

BCF Tools

BCF Tools
1.09

Array Plain

BCF Tools
1.42

Array Plain

BCF Tools
1.64

Array Plain

BCF Tools
1.92

Array Plain

Array Plain
2.2

BCF Tools

Array Plain
3.33

BCF Tools

Array Plain
1.28

BCF Tools

BCF Tools
18.1

Array Plain

BCF Tools
31.7

Array Plain

BCF Tools
41.77

Array Plain

BCF Tools
47.6

Array Plain

Array Plain
1.11

BCF Tools
0

2

4

6

8

To
ta

l T
im

e
(m

in
ut

es
)

Figure 8: Data access by sample and variant

For the sample oltering workload pattern in Figure 9, we have

a similar picture, where BCF Tools and Array Plain perform the

best. For variant oltering in Figure 10, Array Plain consistently

outperformed BCF Tools, particularly for small subsets of samples,

due to its eocient oltering process using the oxed oelds table prior

to the join with the genotypes.

In summary, in the experiments in Figures 8 and 9, BCF Tools

shows better performance in many cases due to specioc optimiza-

tions for data access and sample oltering workloads, relying on

tools like Tabix for eocient indexing and retrieval. A more detailed

analysis reveals that Array Plain outperforms BCF Tools as the num-

ber of samples increases, which is increasingly common in newer

studies due to cheaper and faster sequencing technologies [16]. In

contrast, when the oltering condition is based on variants, Array

Plain performs best in almost all cases, and BCF Tools is never the

top performer (Figure 10).

Mixed Workload Analysis. In this experiment we compared Ar-

ray Plain and BCF Tools on mixed workloads composed of data

access, sample oltering, and variant oltering queries. A subset of

4050

One 1% 20% 40% 60% 80% All
Q_samples

Al
l

80
%

60
%

40
%

20
%

1%
On

e

Q_
va

ria
nt

s

TileDB-VCF
100.41

BCF Tools

TileDB-VCF
1.25

BCF Tools

BCF Tools
2.44

Array Plain

BCF Tools
1.8

Array Plain

BCF Tools
1.15

Array Plain

Array Plain
1.1

BCF Tools

Array Plain
1.42

BCF Tools

TileDB-VCF
95.85

BCF Tools

TileDB-VCF
2.35

BCF Tools

BCF Tools
2.16

Array Plain

BCF Tools
1.74

Array Plain

BCF Tools
1.15

Array Plain

BCF Tools
1.03

Array Plain

Array Plain
1.38

BCF Tools

TileDB-VCF
87.15

BCF Tools

TileDB-VCF
2.04

BCF Tools

BCF Tools
2.24

Array Plain

BCF Tools
1.79

Array Plain

BCF Tools
1.18

Array Plain

Array Plain
1.12

BCF Tools

Array Plain
1.4

BCF Tools

TileDB-VCF
81.36

BCF Tools

TileDB-VCF
2.16

BCF Tools

BCF Tools
2.21

Array Plain

BCF Tools
1.81

Array Plain

BCF Tools
1.18

Array Plain

Array Plain
1.14

BCF Tools

Array Plain
1.4

BCF Tools

TileDB-VCF
34.45

BCF Tools

TileDB-VCF
2.33

BCF Tools

BCF Tools
2.26

Array Plain

BCF Tools
1.8

Array Plain

BCF Tools
1.19

Array Plain

BCF Tools
1.03

Array Plain

Array Plain
1.47

BCF Tools

TileDB-VCF
12.94

Array Plain

TileDB-VCF
1.17

Array Plain

BCF Tools
1.77

Array Plain

BCF Tools
1.58

Array Plain

BCF Tools
1.21

Array Plain

Array Plain
1.12

BCF Tools

Array Plain
1.67

BCF Tools

Array Plain
1.82

BCF Tools

BCF Tools
4.7

Array Plain

BCF Tools
54.5

Array Plain

BCF Tools
48.0

Array Plain

BCF Tools
63.3

Array Plain

BCF Tools
72.35

Array Plain

Array Plain
6.67

BCF Tools
0

2

4

6

8

10

12

To
ta

l T
im

e
(m

in
ut

es
)

Figure 9: Sample �ltering

One 1% 20% 40% 60% 80% All
Q_samples

Al
l

80
%

60
%

40
%

20
%

1%
On

e

Q_
va

ria
nt

s

TileDB-VCF
2.62

Array Plain

Array Plain
3.27

BCF Tools

Array Plain
2.95

BCF Tools

Array Plain
2.14

BCF Tools

Array Plain
1.82

BCF Tools

Array Plain
1.64

BCF Tools

Array Plain
3.93

BCF Tools

TileDB-VCF
6.22

Array Plain

Array Plain
3.62

BCF Tools

Array Plain
2.4

BCF Tools

Array Plain
1.8

BCF Tools

Array Plain
1.48

BCF Tools

Array Plain
1.28

BCF Tools

Array Plain
2.97

BCF Tools

TileDB-VCF
5.84

Array Plain

Array Plain
3.64

BCF Tools

Array Plain
2.41

BCF Tools

Array Plain
1.84

BCF Tools

Array Plain
1.52

BCF Tools

Array Plain
1.29

BCF Tools

Array Plain
2.88

BCF Tools

TileDB-VCF
4.61

Array Plain

Array Plain
3.69

BCF Tools

Array Plain
2.5

BCF Tools

Array Plain
1.87

BCF Tools

Array Plain
1.56

BCF Tools

Array Plain
1.32

BCF Tools

Array Plain
2.82

BCF Tools

TileDB-VCF
4.52

Array Plain

Array Plain
3.33

BCF Tools

Array Plain
2.38

BCF Tools

Array Plain
1.81

BCF Tools

Array Plain
1.47

BCF Tools

Array Plain
1.23

BCF Tools

Array Plain
2.87

BCF Tools

TileDB-VCF
1.86

Array Plain

Array Plain
4.93

BCF Tools

Array Plain
3.38

BCF Tools

Array Plain
2.24

BCF Tools

Array Plain
1.69

BCF Tools

Array Plain
1.45

BCF Tools

Array Plain
4.54

BCF Tools

Array Plain
60.0

BCF Tools

Array Plain
30.0

BCF Tools

Array Plain
4.29

BCF Tools

Array Plain
2.31

BCF Tools

Array Plain
1.43

BCF Tools

Array Plain
1.15

BCF Tools

Array Plain
10.0

BCF Tools
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l T
im

e
(m

in
ut

es
)

Figure 10: Variant �ltering

the experimental results is presented in Table 3. Array Plain per-

forms best when variant oltering is the dominant workload, thanks

to its columnar-like storage of oxed oelds, which is optimized for

scanning variant-level annotations. It also performs well in sample

oltering, particularly when oltering across all samples, as genotypes

are stored contiguously within a single array. However, unnesting

this array becomes a bottleneck when accessing specioc sample

genotypes. In contrast, BCF Tools excels in data access and sample

oltering due to eocient Tabix indexing. Its performance degrades

with increased variant oltering, as it requires parsing individual

records, whereas Array Plain beneots from direct access to oxed

oelds, ofering a clear speed advantage.

Table 3: Mixed workload performance of Array Plain and BCF Tools

Access Sample Variant Array BCF Access Sample Variant Array BCF

80 % 10 % 10 % 26 106 33 % 0 % 67 % 81 51
67 % 33 % 0 % 12 120 10 % 80 % 10 % 31 101
67 % 0 % 33 % 46 86 10 % 10 % 80 % 121 11
33 % 67 % 0 % 15 117 0 % 67 % 33 % 46 86
33 % 33 % 34 % 26 106 0 % 33 % 67 % 122 10

Varying the Query Selectivity. We investigated how the selectivity

of the genotype olter in sample oltering afects various approaches.

We used two cells in Figure 9 for which the selectivity of the geno-

type olter was 86.86%. We varied this selectivity using diferent

genotype olters. The results are shown in Figure 11. In Figure 11a,

we see the diference between the Array Plain model and BCF Tools

reduces for smaller selectivities, and in Figure 11b, we see that the

Array Plain model is much more eocient with smaller selectivities

compared to BCF Tools. This indicates that for smaller selectivities,

the Array Plain model has an advantage over BCF Tools.

Array Plain BCF Tools

020406080100
50

60

70

80

90

100

110

120

Selectivity (%)

T
im

e
(s
ec
)

(a) 40% samples and 20% variants

020406080100
100

150

200

250

300

350

400

Selectivity (%)

T
im

e
(s
ec
)

(b) 80% samples and 40% variants

Figure 11: Sample �ltering with di�erent genotype �lters

5.4 Storage and Memory Scalability

We evaluated the storage requirements of our models and state-

of-the-art approaches. The results, including the size of the com-

pressed and uncompressed VCF ole, are shown in Figure 12. TileDB

200 refers to a conoguration with a sample batch size of 200 dur-

ing ingestion. We found that 200 was the largest batch size that

avoided excessive memory usage and system crashes while min-

imizing disk space. Wide and Narrow models have a very large

storage requirement. Other DBMS approaches, including TileDB

200, are in the order of compressed VCF data, much smaller than

the uncompressed VCF.

10
0

10
1

10
2

10
3

3
7
.
5

5
.
0
9

9
.
4
1

8
.
8
7

1
2
.
5

2
1
.
4
6

1
3
.
2
9

8
7
.
5
6

1
6
8
.
9
7

1
3
2
.
6
2

2
0
2
.
9
4

Data model

Si
ze

(G
iB
)

VCF ole VCF compressed

TileDB 200 Array Plain

Array JSON Full JSON

Full JSON ID Narrow

Narrow JSON Wide

Wide JSON

Figure 12: Storage size Comparison for di�erent data models

We also measured the peak memory usage of all the approaches.

DBMS approaches ofer constant, very low main memory require-

ments similar to BCF tools. However, TileDB-VCF requires a very

large amount of main memory. Whereas other approaches are in

the order of 10 to 100 MiB, TileDB-VCF for the same workload and

dataset requires tens of GiB.

In summary, the Array Plain model is overall the most eocient

and robust approach in terms of query runtime among all RDBMS

approaches. Similarly, it also requires the least amount of storage.

In comparison to BCF Tools, a specialized tool optimized for these

tasks, the Array Plain approach ofers competitive performance

and robustness, while making available all the features of RDBMS

to genetic data analysis.

6 DISCUSSION

Our study provides a comprehensive comparison of diferent ap-

proaches for storing and querying VCF data. Our results highlight

4051

Table 4: Comparison of RDBMS, VCF/BCF Tools, and TileDB-VCF for managing and storing genetics data.

Feature RDBMS VCF/BCF Tools TileDB-VCF

Data Structure Tables with relations Flat oles (TSV) Multi-dimensional dense arrays
Data Integrity Constraints and data types Prone to errors Data integrity checks
Scalability Eocient with large data Bulky with large data Scales well, fast retrieval
Querying Powerful capabilities Requires specialized tools Eocient with specioc subsets
Data Integration Seamless with bio-data sources Limited capabilities Limited compared to RDBMS

Standardization Standardized models (HGNC3) No inherent standardization User-deoned schemas

Security Robust access control Limited security features Supports access control
Backup/ Recovery Built-in mechanisms Requires separate backup Requires conoguration
Collaboration Multiple user access Reliance on specioc tools Limited compared to RDBMS
Other Considerations (Downstream Analysis)

GWAS/phenotyping Eocient format conversion/join Requires data conversion Eocient for specioc subsets
Filtering/Annotation Built-in Requires exporting/re-importing Within the array structure

the trade-ofs between simplicity, eociency, and nexibility in ge-

nomic data representation. Table 4 collects these trade-ofs, com-

paring key features of RDBMS, VCF/BCF Tools, and TileDB-VCF.

This comparison underscores each approach9s relative strengths

and weaknesses in the context of genomic data handling.

RDBMSs ofer signiocant advantages beyond read-optimized

storage, enabling complex SQL queries for nexible oltering and

aggregation across variant and sample attributes. Similar capabili-

ties are cumbersome with ole-based tools, particularly in scenarios

involving the integration of external datasets such as phenotypes,

clinical information, or other genomic annotations [4, 19]. RDBMSs

also provide beneots for data integration pipelines in multiomics

analysis, which is the new trend in studying biological processes,

where genotypes are stored and queried together with other types

of biomedical data such as proteomics, lipidomics, and others [3, 5].

Furthermore, for large-scale cohort studies, the robust indexing

features of the RDBMS bring about eociency in data retrieval, en-

hancing speed in read-heavy scenarios and providing performance

advantages for querying specioc data subsets. While the core vari-

ant and genotype information are typically static, updates can arise

in associated metadata or when participants decide to withdraw

from a cohort. Such updates are straightforward in RDBMS, while

VCF oles have to be created from scratch. Collectively, these beneots

establish a full-nedged RDBMS as a robust and versatile platform

for the diverse analytical demands of genomics and multiomics.

Our ondings highlight unique requirements when selecting a

data storage and query method. Although some models may out-

perform others in certain cases, the optimal choice depends on the

specioc features most crucial for the given task. Building on these

insights, we examine the characteristics of various data models:

Simplicity vs Complexity. The Wide models, while straightfor-

ward, are not suitable for large datasets due to their simplistic

two-dimensional approach. RDBMS limitations, i.e., the maximum

number of columns and oxed page size, can pose challenges in the

Wide models. Despite a more compact format, the Narrow mod-

els result in large tables as the number of genotype-sample pairs

increases, posing challenges in handling large genetic datasets.

Performance Variance. BCF Tools, while occasionally demonstrat-

ing competitive execution times, show a high variance in perfor-

mance, with certain queries taking la ong duration. TileDB-VCF,

on the other hand, performs well with some of the lower execution

times recorded. However, its performance is compromised by fre-

quent timeouts during various queries, with scalability challenges

or constraints when dealing with specioc data conogurations.

Balanced Performance. By extending the Arraymodels and requir-

ing a separate table for sample IDs, the Full JSON IDmodel provides

consistent performance across a range of queries, with a good bal-

ance between eociency and scalability. For tasks on large datasets,

the Full JSON ID model ofers easier data access and management

without signiocantly increasing storage requirements.

Eociency vs Flexibility. The Array models demonstrated signio-

cant scalability as the sample size increases. These models address

the size issue of the Narrow model by storing genotypes in a single

array, ofering better performance at the cost of less eocient data

access. The JSON model is simpler due to a compact encapsulation

with a straightforward structure. However, with larger datasets, the

JSONmodel does not scale as others do due to its inherent verbosity.

This may lead to increased storage requirements and performance

bottlenecks if individual genotype access is frequently required.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we utilize RDBMS to improve the eociency and

nexibility for storing and querying large-scale genetic data. We map

the structure of VCF oles into diferent models, exploring various

RDBMS concepts (standard relational columns, arrays, and JSON)

and considering the characteristics of typical query workloads. Our

experimental results highlight the trade-ofs between eociency,

scalability, and accessibility in genomic data management. RDBMS

ofers a promising approach to address scalability issues in genetic

data analysis, leveraging their robust data management capabilities

and extensive built-in query processing tailored for large-scale data.

Future research points in several directions. To improve runtime

performance and scalability, we will investigate cloud technologies,

distributed computing, and advanced index structures. Furthermore,

we will investigate the seamless integration of our data models with

existing pipelines by adhering to standards and APIs.

ACKNOWLEDGMENTS

We thank Christian Fuchsberger, David Emmert, and Michele Filosi

at Eurac for valuable feedback. This work was funded in part by the

Autonomous Province of Bozen-Bolzano, call Joint Projects South

Tyrol 3 Germany, project DyHealthNet 3 CUP: I53C22002980003.

3https://www.genenames.org/about/

4052

https://www.genenames.org/about/

REFERENCES
[1] Amira Al-Aamri, Syaoq Kamarul Azman, Gihan Daw Elbait, Habiba Alsafar,

and Andreas Henschel. 2023. Critical assessment of on-premise approaches to
scalable genome analysis. BMC bioinformatics 24, 1 (2023), 354.

[2] Ellie E Armstrong, Anubhab Khan, Ryan W Taylor, Alexandre Gouy, Gili Green-
baum, Alexandre Thiéry, Jonathan T Kang, Sergio A Redondo, Stefan Prost,
Gregory Barsh, et al. 2021. Recent evolutionary history of tigers highlights
contrasting roles of genetic drift and selection. Molecular Biology and Evolution
38, 6 (2021), 236632379.

[3] Liuyang Cai, Jun Qiao, Ruixin Zhou, Xinyi Wang, Yelan Li, Lei Jiang, Qiangwei
Zhou, Guoliang Li, Tao Xu, and Yuliang Feng. 2025. EXPRESSO: a multi-omics
database to explore multi-layered 3D genomic organization. Nucleic Acids Re-
search 53, D1 (2025), D793D90.

[4] Yi-Ming Chen, Tzu-Hung Hsiao, Ching-Heng Lin, and Yang C Fann. 2025. Un-
locking precision medicine: clinical applications of integrating health records,
genetics, and immunology through artiocial intelligence. Journal of Biomedical
Science 32, 1 (2025), 16.

[5] Ana Conesa and Stephan Beck. 2019. Making multi-omics data accessible to
researchers. Scientioc Data 6, 1 (October 2019), 251. https://doi.org/10.1038/
s41597-019-0258-4

[6] The 1000 Genomes Project Consortium. 2015. A global reference for human
genetic variation. Nature 526 (2015), 68374. https://doi.org/10.1038/nature15393

[7] Daniel E Cook and Erik C Andersen. 2017. VCF-kit: assorted utilities for the
variant call format. Bioinformatics 33, 10 (2017), 158131582.

[8] Petr Danecek, James K Bonoeld, Jennifer Liddle, John Marshall, Valeriu Ohan,
Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy,
Robert M Davies, et al. 2021. Twelve years of SAMtools and BCFtools. Gi-
gascience 10, 2 (2021), giab008.

[9] Robert H Dolin, Shaileshbhai R Gothi, Aziz Boxwala, Bret SE Heale, Ammar
Husami, James Jones, Himanshu Khangar, Shubham Londhe, Frank Naeymi-Rad,
Soujanya Rao, et al. 2021. vcf2fhir: a utility to convert VCF oles into HL7 FHIR
format for genomics-EHR integration. BMC bioinformatics 22 (2021), 1311.

[10] Ze-Zhen Du, Jia-Bao He, and Wen-Biao Jiao. 2024. A comprehensive benchmark
of graph-based genetic variant genotyping algorithms on plant genomes for
creating an accurate ensemble pipeline. Genome Biology 25, 1 (2024), 91.

[11] Holger Fröhlich, Rudi Balling, Niko Beerenwinkel, Oliver Kohlbacher, Santosh
Kumar, Thomas Lengauer, Marloes H Maathuis, Yves Moreau, Susan A Murphy,
Teresa M Przytycka, et al. 2018. From hype to reality: data science enabling
personalized medicine. BMC medicine 16 (2018), 1315.

[12] Erik Garrison, Zev N Kronenberg, Eric T Dawson, Brent S Pedersen, and Pjotr
Prins. 2022. A spectrum of free software tools for processing the VCF variant
call format: vcnib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS computational biology
18, 5 (2022), e1009123.

[13] Jefry M Gaston, Eric J Alm, and An-Ni Zhang. 2024. Fast and accurate variant
identiocation tool for sequencing-based studies. BMC biology 22, 1 (2024), 90.

[14] Eildert Groeneveld and Helmut Lichtenberg. 2016. TheSNPpit4A High Perfor-
mance Database System for Managing Large Scale SNP Data. PLOS ONE 11,
10 (2016), e0164043. https://journals.plos.org/plosone/article/ole?id=10.1371/
journal.pone.0164043&type=printable

[15] Stefen Janetzki, Magnús Rafn Tiedemann, and Hardik Balar. 2015. Genome
data management using RDBMSs. Technical Report. Technical Report.
https://www.researchgate.net/proole/Hardik-Balar/publication/280232082_
Genome_Data_Management_using_RDBMSs/

[16] Kenneth Katz, Oleg Shutov, Richard Lapoint, Michael Kimelman, J Rodney Brister,
and Christopher O9Sullivan. 2022. The Sequence Read Archive: a decade more
of explosive growth. Nucleic acids research 50, D1 (2022), D3873D390.

[17] Heng Li. 2011. Tabix: fast retrieval of sequence features from generic TAB-
delimited oles. Bioinformatics 27, 5 (2011), 7183719.

[18] Ryan N Lichtenwalter, Katerina Zorina-Lichtenwalter, and Luda Diatchenko.
2017. Genotypic Data in Relational Databases: Eocient Storage and Rapid
Retrieval. In Advances in Databases and Information Systems: 21st European
Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings 21.
Springer, Nicosia, Cyprus, 4083421. https://link.springer.com/content/pdf/10.
1007/978-3-319-66917-5_27.pdf

[19] Jian Liu, Zhi Qu, Mo Yang, Jialiang Sun, Shuhui Su, and Lei Zhang. 2019. Jointly
integrating VCF-based variants and OWL-based biomedical ontologies in Mon-
goDB. IEEE/ACM transactions on computational biology and bioinformatics 17, 5
(2019), 150431515.

[20] Nicolas Morales, Guillaume J Bauchet, Titima Tantikanjana, Adrian F Powell,
Bryan J Ellerbrock, Isaak Y Tecle, and Lukas A Mueller. 2020. High density
genotype storage for plant breeding in the Chado schema of Breedbase. PLoS
One 15, 11 (2020), e0240059.

[21] Nature Genetics Nature and Nature Reviews Genetics. 2021. Milestones in
Genomic Sequencing. https://www.nature.com/immersive/d42859-020-00099-0/

[22] Hilde Nybom and Gunārs Lācis. 2021. Recent large-scale genotyping and pheno-
typing of plant genetic resources of vegetatively propagated crops. Plants 10, 2
(2021), 415.

[23] Tolulope O Olorunsogo, Obe Destiny Balogun, Oluwatoyin Ayo-Farai,
Oluwatosin Ogundairo, Chinedu Paschal Maduka, Chiamaka Chinaemelum
Okongwu, and Chinyere Onwumere. 2024. Bioinformatics and personalized
medicine in the US: A comprehensive review: Scrutinizing the advancements
in genomics and their potential to revolutionize healthcare delivery. World
Journal of Advanced Research and Reviews 21, 01 (2024), 3353351. https:
//doi.org/10.30574/wjarr.2024.21.1.0016

[24] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson.
2016. The tiledb array data storage manager. Proceedings of the VLDB Endowment
10, 4 (2016), 3493360.

[25] Cristian Pattaro, Martin Gögele, Deborah Mascalzoni, Roberto Melotti, Christine
Schwienbacher, Alessandro De Grandi, Luisa Foco, Yuri D9elia, Barbara Linder,
Christian Fuchsberger, et al. 2015. The Cooperative Health Research in South
Tyrol (CHRIS) study: rationale, objectives, and preliminary results. Journal of
translational medicine 13 (2015), 1316.

[26] Brent S Pedersen and Aaron R Quinlan. 2017. cyvcf2: fast, nexible variant analysis
with Python. Bioinformatics 33, 12 (2017), 186731869.

[27] Brent S Pedersen and Aaron R Quinlan. 2018. hts-nim: scripting high-
performance genomic analyses. Bioinformatics 34, 19 (2018), 3387.

[28] Benjamin A Pierce. 2017. Genetics: A conceptual approach. Macmillan Higher
Education, New York, NY.

[29] SAMtools. 2024. BCFtools by SAMtools. https://github.com/samtools/bcftools.
Accessed: 2025-06-21.

[30] Gary Saunders, Michael Baudis, Regina Becker, Sergi Beltran, Christophe Béroud,
Ewan Birney, Cath Brooksbank, Søren Brunak, Marc Van den Bulcke, Rachel
Drysdale, et al. 2019. Leveraging European infrastructures to access 1 million
human genomes by 2022. Nature Reviews Genetics 20, 11 (2019), 6933701.

[31] Tomoya Tanjo, Yosuke Kawai, Katsushi Tokunaga, OsamuOgasawara, andMasao
Nagasaki. 2021. Practical guide for managing large-scale human genome data in
research. Journal of Human Genetics 66, 1 (2021), 39352.

[32] TileDB-Inc. 2024. TileDB-VCF: Eocient variant-call data storage and retrieval.
https://github.com/TileDB-Inc/TileDB-VCF. Accessed: 2025-06-21.

[33] Clare Turnbull, Richard H Scott, Ellen Thomas, Louise Jones, Nirupa Murugaesu,
Freya Boardman Pretty, Dina Halai, Emma Baple, Clare Craig, Angela Hamblin,
et al. 2018. The 100 000 Genomes Project: bringing whole genome sequencing to
the NHS. Bmj 361 (2018), k1687. https://doi.org/10.1136/bmj.k1687

[34] Emil Ufelmann, Qin Qin Huang, Nchangwi Syntia Munung, Jantina De Vries,
Yukinori Okada, Alicia R Martin, Hilary C Martin, Tuuli Lappalainen, and
Danielle Posthuma. 2021. Genome-wide association studies. Nature Reviews
Methods Primers 1, 1 (2021), 59.

4053

https://doi.org/10.1038/s41597-019-0258-4
https://doi.org/10.1038/s41597-019-0258-4
https://doi.org/10.1038/nature15393
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164043&type=printable
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164043&type=printable
https://www.researchgate.net/profile/Hardik-Balar/publication/280232082_Genome_Data_Management_using_RDBMSs/
https://www.researchgate.net/profile/Hardik-Balar/publication/280232082_Genome_Data_Management_using_RDBMSs/
https://link.springer.com/content/pdf/10.1007/978-3-319-66917-5_27.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-66917-5_27.pdf
https://www.nature.com/immersive/d42859-020-00099-0/
https://doi.org/10.30574/wjarr.2024.21.1.0016
https://doi.org/10.30574/wjarr.2024.21.1.0016
https://github.com/samtools/bcftools
https://github.com/TileDB-Inc/TileDB-VCF
https://doi.org/10.1136/bmj.k1687

	Abstract
	1 Introduction
	2 Related Work
	3 The VCF File Structure
	4 Relational Data Models for VCF
	4.1 Meta-Information and Fixed Fields
	4.2 Samples Data Block
	4.3 Summary of Data Models

	5 Experimental Evaluation
	5.1 Setup
	5.2 Overall Query Runtime Performance
	5.3 Comparative Analysis with State-of-the-Art
	5.4 Storage and Memory Scalability

	6 Discussion
	7 Conclusions and Future Work
	Acknowledgments
	References

