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ABSTRACT
Balanced 𝑘-means ensures representative centroids by forming

equal-sized clusters, but struggles with slow clustering of mas-

sive distributed attributes and data-sharing restrictions. A common

approach is adapting it to a vertical federated learning (VFL) frame-

work, preventing raw data exposure by only intermediate result

exchange and accelerating clustering via parallelism, yet it remains

unexplored. In this paper, we propose a time-efficient, federated,

and balanced 𝑘-means algorithm, called Teb-means, to bridge the

gap. We first formulate the balanced 𝑘-means problem as a trace

maximization problem (TMP) and propose an efficient coordinate-

wise optimization (CO) scheme to solve it. We then integrate TMP

and CO into the VFL framework by demonstrating that TMP can

be decomposed into multiple subproblems based on each party’s

data, which can be solved using CO while exchanging only inter-

mediate results. Notably, we build a trade-off between utility and

communication efficiency by designing a greedy block-based strat-

egy for CO (GBCO). Our theoretical analysis shows that Teb-means
achieves linear time complexity on each client, and our communi-

cation round is constant in the mild condition. Experiments show

that Teb-means is on average 12.18× faster than other balanced

clustering algorithms that can be federated, while achieving better

balance without disrupting the cluster structure.
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1 INTRODUCTION
The 𝑘-means algorithm [34] can partition a dataset through cluster-

ing to support efficient analytics and learning [12, 20, 21, 29, 36, 44].

As one of the most well-known variants, balanced 𝑘-means [14,

31, 32] aims to partition data points into 𝑘 clusters such that the

points within a cluster are as close as possible, while also ensuring
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Figure 1: Balanced 𝑘-means is used in clustering-based index
construction for targeted advertising but loses effectiveness
under data-sharing restrictions.
equal cluster sizes. This algorithm improves the interpretability or

efficiency of analysis methods [10, 13, 23, 41, 48, 50], such as feature

quality in embedding [48], boosting retrieval precision in vector

search [13], and balancing workloads in wireless sensor networks

[49], by preventing the dominance of any single cluster.

Demand for Federated and Balanced 𝑘-means. However, the
rapid growth of massive attributes slow balanced clustering due to

the failure of pruning techniques [43], caused by the curse of dimen-

sionality [17, 25]. Meanwhile, stricter legal mandates [24, 28, 30, 51]

have outlawed data sharing, rendering balanced 𝑘-means inapplica-

ble and stalling analysis [13, 42, 48, 49]. For example, as shown in

Figure 1, balanced 𝑘-means serves as a cornerstone for clustering-

based indices, such as those used in SPANN [13] and SPfresh [45],

facilitating approximate nearest neighbor (ANN) search. The core

idea is that each centroid’s corresponding data is stored on disk,

and when a query arrives, it first identifies the closest centroids

and then retrieves the nearest point from the corresponding disk,

where balance ensures that no single disk is overloaded, preventing

increased latency [13]. Considering the following scenario:

Amazon Fresh, a grocery subsidiary of Amazon, purchases data

from sources such as Amazon Halo and One Medical, which collect

health and fitness attributes. It uses ANN to find users similar to new

customers and recommend their most frequently purchased foods.

However, the large-scale integrated user data often contains dozens or

even hundreds of attributes, significantly slowing balanced 𝑘-means

and causing the training server to frequently run out of memory or

time out due to high computational cost. Meanwhile, privacy laws

restrict data sharing, making recommendations impossible. For ex-

ample, with data sharing, the most similar user to Tom is ID = 2, but

without such sharing, no recommendations can be made, resulting in

missed opportunities for relevant products like chocolate for Tom.

Challenges in Adapting Existing Work to VFL. In this context,

efficient balance clustering with high dimensions, without expos-

ing raw data, has become a necessary step forward. One of the
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Table 1: Performance of two balanced clustering algorithms.
The deviation between the data points and their centers is
referred to as clustering loss, while the balance loss reflects
the deviation between each cluster size and the ideal size
(total number of data points divided by 𝑘).

Dataset
Clustering Loss Balance Loss

Lloyd FCFC BCLS Lloyd FCFC BCLS

NYC 2.20E+06 2.43E+06 6.57E+06 1.30E+10 1.23E+10 4.09E+07

Amazon 8.18E+07 7.00E+07 1.75E+08 7.39E+10 7.01E+10 4.69E+07

most popular approaches is adapting the algorithm to VFL frame-

works [22, 26, 27, 47, 52], which effectively handles non-shareable

data containing unique attributes while sharing the same user set.

In the VFL, accelerating model training can be achieved by paral-

lelizing the process across multiple clients while exchanging only

intermediate results. However, no federated and balanced 𝑘-means

algorithm exists. While several algorithms [11, 31, 32, 35] can be

adapted to VFL, two key challenges arise in our scenario: 1) disrup-

tion of cluster structure in high dimensions and 2) communication

bottlenecks in VFL, which we will elaborate as below:

Adopting soft-balanced 𝑘-means in VFL is a suitable choice, as

it achieves balance without strict enforcement and has lower time

complexity compared to the hard-balanced approach [11, 14, 35],

which exhibits superlinear time complexity. For instance, Liu et al.

[31] proposed BCLS, which applies square regression with a balance

constraint to achieve approximate balance. In a separate study, Liu

et al. [32] introduced FCFC, which modifies the objective function in

Lloyd’s algorithm [34] to enforce balance. However, it is sensitive to

the trade-off between clustering loss and balance loss in high dimen-

sions. As shown in Table 1, we compare the clustering performance

of BCLS and FCFC on two datasets, NYC (100𝑑) and Amazon (2400𝑑),

where 𝑑 represents the number of dimensions. BCLS achieves better
balance than Lloyd’s algorithm but significantly compromises clus-

tering loss. In contrast, FCFCmaintains a clustering loss comparable

to Lloyd’s algorithm but fails to preserve cluster balance.

Existing VFL frameworks for clustering algorithms face commu-

nication bottlenecks [16, 24, 30, 51] due to the strong influence of

dataset size on the communication round. To mitigate this, Ding et

al. [16] introduced a constant approximation scheme for 𝑘-means

clustering, resulting in a linear dependence between communica-

tion rounds and dataset size. Furthermore, Huang et al. [24] pro-

posed a method that reduces communication rounds by using a

coreset, achieving a sublinear dependence. However, even such

improvements remain inadequate in the era of big data [51].

Our Methodology and Contributions. In this paper, we propose

Teb-means to fill the gap while addressing the limitations of exist-

ing methods in the VFL framework. We first define the federated

and balanced 𝑘-means problem, incorporating both clustering loss

and balance loss into the loss function while specifying the loss

computations assigned to the clients and the central server. To

optimize the loss function efficiently, we reformulate it as a TMP

and propose a CO scheme for its solution. We integrate TMP and

CO into the VFL framework by demonstrating that TMP can be

decomposed into multiple subproblems, which are solved using CO

while transmitting only intermediate results to the central server.

Moreover, we introduce GBCO, which batch-optimizes the data

points, achieving a trade-off between utility and communication

efficiency. Overall, our main contributions are:

• To the best of our knowledge, Teb-means is the first federated
and balanced 𝑘-means algorithm that can efficiently divide high-

dimensional data into approximately equal clusters, with at-

tributes distributed across different parties (see Section 4).

• Our theoretical analysis shows that Teb-means has linear time

complexity on each client and a constant communication round

in the mild condition (see Section 5).

• Experiments on 8 real-world datasets show that Teb-means is on
average 12.18× faster than other balanced clustering algorithms

adaptable to VFL, achieves better cluster balance, and maintains

clustering loss comparable to Lloyd’s algorithm (see Section 6).

2 RELATEDWORK
In this section, we review existing work on balanced clustering

algorithms, including hard-balanced and soft-balanced clustering.

Specifically, we discuss their methodologies and the bottlenecks

encountered by both types of balancing. We then review federated

clustering algorithms and discuss the limitations they face.

2.1 Balanced 𝑘-means Methodology
Hard-balanced Clustering. Hard-balanced 𝑘-means algorithms

[11, 35] were developed to enforce strict cluster size constraints.

Bradley et al. [11] introduced 𝑘 constraints into Lloyd’s algorithm to

enforce balance, whileMalinen et al. [35] formulated the assignment

process as a pairing problem and solved it using the Hungarian

algorithm to ensure strict balance. However, the time complexities

of their approaches are 𝑂 (𝑛3.5) and 𝑂 (𝑛3), respectively, where 𝑛
represents the data size. A bunch of acceleration techniques improve

the speed of this clustering by using the triangle inequality [18]

and bounding strategies [19]. However, these methods become

ineffective in high-dimensional spaces (e.g., above 10𝑑) due to the

curse of dimensionality [25].

Soft-balanced Clustering. Hard-balanced 𝑘-means is too restric-

tive for real-world applications, which has led to the adoption

of soft-balanced 𝑘-means, which aims for balance without strict

enforcement. Specifically, these algorithms add different types of

penalty constraints to Lloyd’s algorithm [34] to bring the clusters

closer to balance. For example, Althoff et al. [10] modified the 𝑘-

means assignment by introducing a penalty term based on cluster

size. Liu et al. [31] proposed using square regression with a balance

constraint for clustering. Liu et al. [32] proposed adding cluster

size variances as a penalty for balancing the clusters. However,

our experiments (see Section 6) show that both approaches disrupt

the structure of the clusters formed by Lloyd’s algorithm or have

limited effectiveness in maintaining balance.

2.2 VFL for 𝑘-means
Most existing studies [16, 24, 30, 51] on federated 𝑘-means have

been conducted within the framework of VFL. Ding et al. [16]

proposed an approximation algorithm for distributed dimensional

scenarios in 𝑘-means. This algorithm operates by the central server,

which is derived from the product of the clients, and the communi-

cation rounds depend on the number of clients and the dataset size.
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Table 2: Summary of notations.

Symbol Description

𝑑 ∈ Z+ The dataset dimension

𝑛 ∈ Z+ The size of dataset

𝑘 ∈ Z+ The number of clusters

𝑀 ∈ Z+ The number of data owner

𝑐 ∈ Z+ The number of dataset partitions

𝑛𝑐 ∈ Z+ The partitioned data scale

X ∈ R𝑛×𝑑
The dataset

x𝑖 ∈ R𝑑 The 𝑖-th row of X
o ∈ R𝑑 , O ∈ R𝑘×𝑑

The cluster centroid, a set of centroids

G ∈ R𝑘×𝑛
The indicator matrix with 𝑛 one-hot vectors

g𝑗 ∈ R𝑘
The 𝑗-th column of G

𝑔𝑖 𝑗 ∈ R𝑘
The (𝑖, 𝑗)-entry of G

Huang et al. [24] researched communication-efficient approaches

for VFL, focusing on scalability. They developed a comprehensive

paradigm based on the coreset. This coreset construction method

with sublinear communication under mild conditions. However,

both approaches still depend on the dataset size, and an increase in

data volume raises the number of communication rounds.

Li et al. [30] proposed a method to ensure differential privacy in

federated 𝑘-means with multiple clients and an untrusted server,

where each party generates a differentially private data synopsis.

This algorithm achieves a communication round that is independent

of 𝑛 and has the lowest observed communication round among

existing approaches. However, this method does not fully exploit

the potential for balancing. Moreover, Zhu et al. [51] proposed F3KM,
which we extend to support balanced 𝑘-means in VFL. After our

modification, its communication rounds can be constant. However,

F3KM exhibits poor performance in balancing (see Section 6).

3 PRELIMINARIES
In this section, several key concepts are introduced for understand-

ing our methodology. Specifically, we first present the notations

used in this paper and the formulation of the 𝑘-means problem.

Then, we provide an overview of VFL, followed by the formal defi-

nition of the federated and balanced 𝑘-means problem.

3.1 Notations
We use different text formatting styles to represent mathematical

concepts: plain letters for scalars, bold lowercase letters for data

points, and bold uppercase letters for a set containing data points.

For example, 𝑘 stands for a scalar, x represents a data point, and X
represents a dataset. Without loss of generality, we denote the 𝑑-

dimensional Euclidean space as R𝑑 , and the set of positive integers

as Z+. Moreover, we use [𝑘] to represent the set {1, 2, . . . , 𝑘}.
We consider a matrix X ∈ R𝑛×𝑑

, where the entry in the (𝑖, 𝑗)-th
position is denoted as x𝑖 𝑗 , and the 𝑖-th column of X is represented

by x𝑖 . The transpose of x𝑖 is written as x⊤
𝑖
, and the transpose of the

matrix X is denoted by X⊤. The Frobenius norm of X, expressed as

∥X∥𝐹 , is the square root of the sum of the squared elements of X:

∥X∥𝐹 =

√√√√ 𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

x2
𝑖 𝑗

=
√︁
Tr(X⊤X), (1)

where Tr(·) refers to the trace of a matrix, which is the sum of its

diagonal entries. Additionally, we define G ∈ R𝑘×𝑛
as an indicator

matrix, where each column contains exactly one “1” and the rest

are “0”. A full list of the notation is provided in Table 2.

3.2 𝑘-means Problem
We first introduce the classical 𝑘-means loss function, followed by a

reformulated version that depends solely on the indicator matrix G.
Several studies [32, 37, 38] have demonstrated that this reformula-

tion can improve clustering performance. Notably, the reformulated

one serves as the foundation for understanding Teb-means.

Classical 𝑘-means Formulation. Let X ∈ R𝑛×𝑑
represent a ma-

trix of 𝑛 data points, where the 𝑖-th row, x𝑖 ∈ R𝑑 , denotes a single
data point. The 𝑘-means problem aims to partition the dataset into

𝑘 disjoint subsets, denoted as P = {P1, P2, . . . , P𝑘 }, that minimize

the sum of squared errors, expressed as:

min

P

𝑘∑︁
𝑗=1

∑︁
x𝑖 ∈P𝑗

∥x𝑖 − o𝑗 ∥22, (2)

where the centroid o𝑗 = 1

|P𝑗 |
∑
x𝑖 ∈P𝑗

x𝑖 is the mean of data points

in the cluster P𝑗 .

Reformulation. The 𝑘-means problem can be formally defined

using the cluster indicator matrix. Recall that the Frobenius norm of

a matrix (∥ · ∥𝐹 ) is the square root of the sum of the squared entries.

Hence, Problem (2) is equivalent to the following formulation:

min

G,O

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

∥x𝑖 − o𝑗 ∥22𝑔𝑖 𝑗 = min

G,O
∥X − G⊤O∥2𝐹 , (3)

where o𝑗 is the 𝑗-th row of O, and O ∈ R𝑘×𝑑
represents the centers

of the clusters. Additionally, G ∈ R𝑘×𝑛
is an indicator matrix con-

sisting of 𝑛 one-hot data points, where 𝑔𝑖 𝑗 ∈ {0, 1} is the (𝑖, 𝑗)-th
entry of G. For example, if x𝑖 belongs to cluster P𝑗 , then 𝑔𝑖 𝑗 = 1,

while all other entries in the 𝑗-th column of G are set to 0.

As shown in Problem (3), both the indicator matrix G and the

center matrix O are involved. Following [32, 38], we reformulate

the center matrix in terms of the indicator matrix, allowing the

optimization to focus on a single variable—the indicator matrix.

When O is fixed, the solution to G is

𝑔𝑖 𝑗 =

{
1, if 𝑗 = argmin𝑙 ∥x𝑖 − o𝑙 ∥22,
0, otherwise,

(4)

where o𝑙 is the 𝑙-th row of O.
When G is fixed, Problem (3) can be rewritten as:

min

G,O
= Tr((X − G⊤O) (X − G⊤O)⊤), (5)

where Tr(·) denotes the trace of a matrix (see Section 3.1). This is a

minimization problem with respect to O. A common approach to

finding the minimum is to compute the derivative and set it to zero.

Hence, we have:

O = (G⊤G)−1GX. (6)

By replacing O with (G⊤G)−1GX, the optimization problem can

be reformulated as follows:

min

G
Θ(G) = min

G
−Tr

(
(GG⊤)−1GXX⊤G⊤

)
, (7)
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where G⊤G is a diagonal matrix with the (𝑖, 𝑖) element equal to

g⊤
𝑖
g𝑖 ; g𝑖 denotes the 𝑖-th row of G. By removing the negative sign,

Problem (7) is reformulated as the maximization problem:

max

G
Θ(G) = max

G

𝑘∑︁
𝑖=1

g𝑖XX⊤g⊤𝑖
g𝑖g⊤𝑖

. (8)

3.3 Vertical Federated Learning (VFL)
Since 𝑘-means is an unsupervised learning method, we explain

the concept of VFL in the unsupervised setting to help readers

understand the federated nature of our problem. Specifically, for

training an unsupervised machine learning (ML) model on a single

server, the loss of the ML model on a dataset X can be defined as:

min

Θ
𝑓 (Θ;X), (9)

where 𝑓 (·) is the loss function, parameterized by Θ. While training

a joint model across multiple clients, ensuring that data processing

remains local makes the VFL framework the optimal choice [33].

Following [33, 46], a VFL assumes that data is partitioned by

feature space and aims to collaboratively train a joint model.

Let X be distributed across 𝑀 ∈ Z+ parties, such that X =

[X1,X2, . . . ,X𝑀 ] ∈ R𝑛×𝑑
, where X𝑚 ∈ R𝑛×𝑑𝑚

and

∑𝑀
𝑚=1 𝑑𝑚 = 𝑑 .

Each X𝑚 represents the data held by the𝑚-th data owner. Without

loss of generality, the global model can be decomposed into𝑀 local

models, each operating exclusively on local data. Specifically, G𝑚
denotes the loss function of the𝑚-th local model, parameterized

by 𝜃𝑚 . The global model relies solely on intermediate results from

the local models to refine itself, with its loss function represented

as F and parameterized by 𝛽 . Hence, we rewrite 𝑓 (Θ;X) as:

𝑓 (Θ;X) = F
(
𝛽 ; {G𝑚 (𝜃𝑚 ;X𝑚)}𝑀𝑚=1

)
. (10)

3.4 Problem Definition
We introduce the federated setting in our problem, and then present

the formal problem definition. Notably, instead of directly adding

a penalty term to the loss function that acts only as a constraint

[31, 32] during clustering, we introduce a weighting coefficient

to quantify the relative importance of the clustering and balance

losses, e.g., 𝜂 × clustering loss + (1 − 𝜂) × balance loss.
In the client, we define G and O as distributed across 𝑀 ∈ Z+

parties, such that G = [G1,G2, . . . ,G𝑀 ] ∈ R𝑘×𝑑
and O =

[O1,O2, . . . ,O𝑀 ] ∈ R𝑘×𝑑𝑚
, where G𝑚 ∈ R𝑑𝑚×𝑛 , O𝑚 ∈ R𝑑𝑚×𝑛 ,

and

∑𝑀
𝑚=1 𝑑𝑚 = 𝑑 . Hence, we define the loss of the𝑚-th client as:

G𝑚 (G𝑚,O𝑚 ;X𝑚) = ∥X𝑚 − G⊤𝑚O𝑚 ∥2𝐹 , (11)

where X𝑚 is only accessible to the𝑚-th local model.

In the central server, the global model is refined by aggregat-

ing intermediate results in two ways: 1) acquiring the value of

G𝑚 (G𝑚,O𝑚 ;X𝑚) from the local models, as shown in Equation (11),

and 2) calculating the balance loss as expressed by:

L(G, 𝑛, 𝑘) =
𝑘∑︁
𝑗=1

(
𝑛∑︁
𝑖=1

𝑔𝑖 𝑗 −
𝑛

𝑘

)
2

, (12)

where L measures the deviation of each cluster size from the ideal

balanced size, defined as the total number of data points divided

by 𝑘 ; 𝑔𝑖 𝑗 ∈ {0, 1} denotes the (𝑖, 𝑗)-entry of G; and G is globally

1 CO Scheme
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2 GBCO Scheme

Federated Clustering

3 Federated GBCO
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Clients
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Figure 2: An overview of Teb-means.

shared, containing only the cluster to which each point is assigned,

without exposing any point-specific details.

Definition 1. (Federated and Balanced 𝑘-means) Federated
balanced 𝑘-means enables data owners to collaboratively partition a

dataset into 𝑘 disjoint subsets, minimizing the total squared distance

between distributed data and their cluster centers while balancing

each cluster, as formulated below:

min

G,O
{F(G,O, 𝑛, 𝑘 ;X) = 𝜂

𝑀∑︁
𝑚=1

G(G𝑚,O𝑚 ;X𝑚 ) + (1 − 𝜂 )L(G, 𝑛, 𝑘 ) },

(13)

where F is the loss function of the global model, and 𝜂 serves as

a weighting coefficient, indicating the importance of the deviation

between data points and their corresponding cluster centers, referred

to as the clustering loss, and the deviation between the size of each

cluster and the ideal size, known as the balance loss.

4 TEB-MEANS
When addressing our problem (see Definition 1), we convert it into

the following three subproblems:

(1) How can the loss function (13) be efficiently minimized?

(2) How do the proposed methods perform in a VFL framework if

the data can only remain on clients and cannot be transmitted?

(3) How can we improve communication efficiency, given each

outer iteration requires 𝑛 inner iterations?

We propose Teb-means to address the subproblems. We first in-

troduce an effective stepwise optimization strategy that transforms

the loss function (13) into a TMP, and solves it using the CO scheme,

as shown in Figure 2(a) (see Section 4.1). Before addressing (2), we

refine the CO scheme to improve iteration efficiency and reduce

communication rounds in the VFL setting. We propose GBCO, a CO

variant that improves iteration efficiency by eliminating inefficient

one-by-one processing and mitigating slow loss reduction from

sequential updates, as illustrated in Figure 2(b) (see Section 4.2.1).

For (2), we show that TMP can be decomposed into multiple sub-

problems, each solved on a client using GBCO. Clients execute

computations as directed by the central server and transmit only

intermediate results as shown in Figure 2(c) (see Section 4.2.2).

4.1 CO for Stepwise Optimization
We first convert the loss function (13) into a TMP. We then apply

the CO to iteratively assign data points to clusters by minimizing

the loss function along coordinate directions, avoiding full reliance

on previous iteration information, as in Lloyd-based balanced clus-

tering algorithms. Notably, we introduce a variable to eliminate

parsing and redundancy in G, reducing memory cost and precom-

puting intermediate results to avoid unnecessary computations.
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Figure 3: Examples of different forms of indicator matrices.
Loss Function Reformulation. We reformulate the loss function

(13) into a form executable on a single server, expressed as follows:

min

G,O
𝜂∥X − G⊤O∥2𝐹 + (1 − 𝜂)

𝑘∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

g𝑖 𝑗 −
𝑛

𝑘
)2 . (14)

Recall Equations (6) and (8), we transform Equation (14) into a

univariate optimization problem, which can be expressed as follows:

max

G
{𝜑 (G) := 𝜂

𝑘∑︁
𝑖=1

g𝑖XX⊤g⊤𝑖
g𝑖g⊤𝑖

+ (1 − 𝜂 )
𝑘∑︁
𝑖=1

∥g𝑖g⊤𝑖 −
𝑛

𝑘
∥2
2
} . (15)

Recall that G has 𝑛 columns, each representing a data point,

where the position of 1 in a column indicates its assigned cluster.

For example, as shown in Figure 3(a), the 3 × 3 indicator matrix

shows that the first data point (1st column) belongs to the third

cluster (3rd row), the second to the first cluster, and the third to the

second cluster. Optimizing objectives (15) determines how to assign

data points to clusters. Here, we optimize the objective function

by completing the assignment in 𝑛 iterations, with each iteration

updating one column (i.e., assigning one data point to a cluster),

greedily ensuring that each assignment maximizes the loss function.

Candidate Selection. Updating one column of G means adjust-

ing the position of 1 in that column (i.e., determining which row

it belongs to). This can be achieved by selecting one from the 𝑘

candidates in {G(1) ,G(2) , . . . ,G(𝑘 ) }. Specifically, when updating

the 𝑗-th column of G, the only difference between G(ℎ)
𝑗

and G(𝑙 )
𝑗

lies in the (ℎ, 𝑗)-th and (𝑙, 𝑗)-th entries. The (ℎ, 𝑗)-th entry of G(ℎ)
𝑗

is 1, and all other entries are 0, with a similar structure for G(𝑙 )
𝑗
.

For instance, as shown in Figure 3(b), the only difference between

G(2)
1

and G(3)
1

is the position of the "1" in the first column, while

the entries in the other columns remain the same.Hence, the 𝑗-th

subproblem can be defined as follows:

max

ℎ∈ [𝑘 ]
{𝜑 (G(ℎ)

𝑗
) =𝜂

𝑘∑︁
𝑖=1

g(ℎ)
𝑖

XX⊤ (g(ℎ)
𝑖
)⊤

g(ℎ)
𝑖
(g(ℎ)

𝑖
)⊤

+ (1 − 𝜂 )
𝑘∑︁
𝑖=1

∥g(ℎ)
𝑖
(g(ℎ)

𝑖
)⊤− 𝑛

𝑘
∥2
2
},

(16)

where ℎ ∈ [𝑘], with [𝑘] denoting the set {1, 2, . . . , 𝑘}, and the 𝑖-th

row of G(ℎ)
𝑗

is denoted as g(ℎ)
𝑖

, with the subscript 𝑗 omitted.

Loss Function Simplication. Equation (16) contains redundant

computations that can be removed to improve efficiency. This is

becauseG(ℎ) andG(𝑙 ) (ℎ, 𝑙 = 1, 2, . . . , 𝑘 ,ℎ ≠ 𝑙 ) share many common

entries and differ only in the ℎ-th and 𝑙-th columns. We apply the

method from [38] to simplify Equation (16). A variableG(0)
𝑗
∈ R𝑘×𝑛

is introduced to simplify the loss function and reduce computational

complexity. The entries in the 𝑗-th column of G(0)
𝑗

are 0, while the

entries in the other columns remain the same as those in G(ℎ)
𝑗

.

Hence, we provide an equivalent formulation for Problem (16):

max

ℎ∈ [𝑘 ]
𝜓 (ℎ, 𝑗 ) = max

ℎ∈ [𝑘 ]
𝜑 (G(ℎ)

𝑗
) − 𝜑 (G(0)

𝑗
)

= max

ℎ∈ [𝑘 ]
𝜂 (

𝑘∑︁
𝑖=1

g(ℎ)
𝑖

XX⊤ (g(ℎ)
𝑖
)⊤

g(ℎ)
𝑖
(g(ℎ)

𝑖
)⊤

−
𝑘∑︁
𝑗=1

g(0)
𝑖

XX⊤ (g(0)
𝑖
)⊤

g(0)
𝑖
(g(0)

𝑖
)⊤

)

+(1 − 𝜂 ) (
𝑘∑︁
𝑖=1

∥g(ℎ)
𝑖
(g(ℎ)

𝑖
)⊤ − 𝑛

𝑘
∥2
2
−

𝑘∑︁
𝑖=1

∥g(0)
𝑖
(g(0)

𝑖
)⊤ − 𝑛

𝑘
∥2
2
)

= max

ℎ∈ [𝑘 ]
𝜂 (

g(ℎ)
ℎ

XX⊤ (g(ℎ)
ℎ
)⊤

g(ℎ)
ℎ
(g(ℎ)

ℎ
)⊤

−
g(0)
ℎ

XX⊤ (g(0)
ℎ
)⊤

g(0)
ℎ
(g(0)

ℎ
)⊤

)

+(1 − 𝜂 ) ( ∥g(ℎ)
ℎ
(g(ℎ)

ℎ
)⊤ − 𝑛

𝑘
∥2
2
− ∥g(0)

ℎ
(g(0)

ℎ
)⊤ − 𝑛

𝑘
∥2
2
)

, (17)

where the equation only contains only two terms, whereas Prob-

lem (16) includes 𝑘 terms. Despite this difference, the two opti-

mization problems are equivalent, which significantly decreases

the computational complexity. An example is shown in Figure 3(c),

where the result of G(2)
1
− G(0)

1
leaves only the first column con-

taining 1, while all other columns contain only 0 and are removed.

Space Storage Reduction. When updating the 𝑗-th column of G,
𝑘 + 1 variables, denoted as G(0)

𝑗
,G(1)

𝑗
· · · ,G(𝑘 )

𝑗
, need to be stored

in memory, which is memory-intensive. To reduce the memory

cost, we use the current variable G to replace the 𝑘 + 1 variable,
including Gℎ

(ℎ = 1, 2, . . . , 𝑘) and G0
. Specifically, we record the

position of element 1 in the 𝑖-th row as 𝑤 (𝑤 = 1, 2, . . . , 𝑘). g(ℎ)
ℎ

denotes the ℎ-th row of G(𝑘 ) , g(0)
ℎ

is the ℎ-th row of G(0) , and
gℎ represents the ℎ-th row of the current G. We derive 𝜓 (ℎ, 𝑗) in
Problem (17) under two cases:

Case 1. When ℎ = 𝑤 and g(ℎ)
ℎ

= gℎ , the 𝑗-th entry of both g(ℎ)
ℎ

and gℎ is 1. We define 𝜅ℎ = gℎ − g
(0)
ℎ

, meaning that the 𝑖-th entry

of 𝜅ℎ is 1, while all other entries are 0. The equation g(ℎ)
ℎ
(g(ℎ)

ℎ
)⊤ −

𝑧ℎ = gℎg⊤ℎ − 𝑧ℎ holds. Moreover, since g(0)
ℎ

= gℎ − 𝜅ℎ , we have
(gℎ − 𝜅ℎ) (gℎ − 𝜅ℎ)⊤ = gℎg⊤ℎ − 1. To simplify notation, we define

aℎ = gℎX, aℎa⊤ℎ = gℎXX⊤g⊤ℎ , and bℎ = gℎg⊤ℎ . The resulting

simplified equation is as follows:

𝜓 (ℎ, 𝑗 ) = 𝜂 (
aℎa⊤ℎ
bℎ
−

aℎa⊤ℎ − 2x𝑗 a⊤ℎ + x𝑗x
⊤
𝑗

bℎ − 1

) + 2(1 − 𝜂 ) ( 𝑘bℎ − 𝑛 − 𝑘
𝑘

) .
(18)

Case 2. When ℎ ≠ 𝑤 , we have g(0)
ℎ

= gℎ , and the 𝑗-th entry of

both g(ℎ)
ℎ

and gℎ is 1. We define 𝜅ℎ = g(ℎ)
ℎ
− gℎ , meaning that the

𝑗-th entry of 𝜅ℎ is 1, while all other entries remain 0. Thus, g(ℎ)
ℎ

=
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Al g o rit h m 1: C O _ f o r _ B a l a n c e d _ 𝑘 _ M e a n s (X , 𝑘, 𝑛)

I n p ut: X : t h e d at as et, 𝑘 : n u m b er of cl ust ers, 𝑛 : n u m b er of p oi nts.

O ut p ut: G : t h e i n di c at or m atri x.

1 I n i t i a l i z e G b y k - m e a n s + + ;

2 C o m p ut e a n d st or e g ℎ X , g ℎ g ⊤
ℎ

, g ℎ X X ⊤ g ⊤
ℎ

, a n d x 𝑗 x
⊤
𝑗 ,

∀ ℎ ∈ [ 𝑘 ], 𝑗 ∈ [ 𝑛 ] ;

3 w hil e n o t c o n v e r g e d o
4 f o r 𝑗 ← 1 t o 𝑛 d o
5 C o m p ut e 𝜑 (ℎ, 𝑗 ) , ℎ ∈ [ 𝑘 ] b y E q u ati o n ( 2 0 );

6 U p d at e t h e 𝑗-t h c ol u m n of G b y E q u ati o n ( 2 1 );

7 U p d at e g ℎ X , g ℎ g ⊤
ℎ

, a n d g ℎ X X ⊤ g ⊤
ℎ

b y E q u ati o ns ( 2 2 )

& ( 2 3 );

8 r et u r n G ;

C e n t r al S e r v e r

Cl u s t e ri n g L o s s

0 1 0

1 0 0

0 0 1

1 1 0

0 0 0

0 0 1

U p d a t e I n di c a t o r M a t ri x 

i d2

i d3

i d1

Cli e n t 1

i d2

i d3

i d1

Cli e n t 3

i d2

i d3

i d1

Cli e n t 2

C o m p u t e O bj e c ti v e s 𝜓

Cl u s t e ri n g L o s s 
i n E a c h Cli e n t

S e n d I n di c a t o r 
M a t ri x t o Cli e n t

Cl u s t e ri n g L o s s

B al a n c e L o s s

Fi g u r e 4: A n e x a m pl e of o u r V F L f r a m e w o r k f o r G B C O.

𝜅 ℎ + g ℎ , a n d t h e e x p a nsi o n gi v es (𝜅 ℎ + g ℎ ) (𝜅 ℎ + g ℎ ) ⊤ = g ℎ g ⊤
ℎ

+ 1 .

A d diti o n all y, si n c e g
(0 )
ℎ

= g ℎ , it f oll o ws t h at g ℎ (g
(0 )
ℎ

) ⊤ = g ℎ g ⊤
ℎ

.
T h e c orr es p o n di n g si m pli fi e d e q u ati o n is as f oll o ws:

𝜓 (ℎ, 𝑗 ) = 𝜂 (
a ℎ a ⊤

ℎ
+ 2 x 𝑗 a

⊤
ℎ

+ x 𝑗 x
⊤
𝑗

b ℎ + 1
−

a ℎ a ⊤
ℎ

b ℎ
) +2 (1 − 𝜂 ) (

𝑘 b ℎ − 𝑛 + 𝑘

𝑘
) . ( 1 9)

T h er ef or e, b as e d o n t h e a b o v e t w o c as es, 𝜓 (ℎ, 𝑗 ) is gi v e n b y:

𝜓 (ℎ, 𝑗 ) =






𝜂 (
a ℎ a ⊤

ℎ
b ℎ

−
a ℎ a ⊤

ℎ
− 2 x 𝑗 a ⊤

ℎ
+ x 𝑗 x ⊤

𝑗
b ℎ − 1 ) + 2 (1 − 𝜂 ) (

𝑘 b ℎ − 𝑛 − 𝑘
𝑘 ), if ℎ = 𝑤,

𝜂 (
a ℎ a ⊤

ℎ
+ 2 x 𝑗 a ⊤

ℎ
+ x 𝑗 x ⊤

𝑗
b ℎ + 1 −

a ℎ a ⊤
ℎ

b ℎ
) + 2 (1 − 𝜂 ) (

𝑘 b ℎ − 𝑛 + 𝑘
𝑘 ), if ℎ ≠ 𝑤.

( 2 0)

R e c all E q u ati o n ( 4 ) a n d E q u ati o n (2 0 ), t h e u p d at e r ul e f or t h e
𝑗-t h c ol u m n of G is gi v e n b y:

g 𝑖 𝑟 =
1 , if 𝑟 = ar g m a x ℎ 𝜓 (ℎ, 𝑗 ),

0 , ot h er wis e.
( 2 1)

Ti m e C o m pl e xit y R e d u cti o n. T o i m pr o v e t h e e ffi ci e n c y of t h e al-
g orit h m, w e als o f oll o w [ 1 5 ] t h at pr o p os es a n i n cr e m e nt al u p d ati n g
a p pr o a c h. T his a p pr o a c h r e d u c es c o m p ut ati o n al c osts b y u p d ati n g
o nl y t h e m o di fi e d t er ms, t h er e b y g e n er ati n g r es ults m or e q ui c kl y
a n d r e q uiri n g l ess st or a g e c o m p ar e d t o r e c o m p uti n g all t er ms.

C o nsi d er t h e l oss f u n cti o n d e fi n e d i n E q u ati o n ( 2 0 ), w hi c h h as
f o ur t er ms: g ℎ X , g ℎ X X ⊤ g ⊤

ℎ
, g ℎ g ⊤

ℎ
, a n d x ⊤

𝑗 x 𝑗 . T h e t er m x ⊤
𝑗 x 𝑗 d o es

n ot n e e d t o b e u p d at e d, as it c a n b e pr e c o m p ut e d a n d st or e d. F or
u p d ati n g a ℎ a n d b ℎ , t w o c as es s h o ul d b e c o nsi d er e d: 1) W h e n 𝑤 = 𝑟 ,
t h e i n di c at or m atri x G r e m ai ns u n c h a n g e d, s o t h e ot h er t er ms d o
n ot r e q uir e u p d ati n g; 2) W h e n 𝑤 ≠ 𝑟 , t h e (𝑤, 𝑗 )-t h a n d (𝑟, 𝑗 )-t h
el e m e nts of G s h o ul d b e s w a p p e d, m e a ni n g t h at g 𝑤 𝑗 a n d g 𝑟 𝑗 ar e

Al g o rit h m 2: G B C O _ f o r _ B a l a n c e d _ 𝑘 _ M e a n s (X , 𝑘, 𝑛, 𝑐 )

I n p ut: X : t h e d at as et, 𝑘 : # of cl ust ers, 𝑛 : # of p oi nts, 𝑓 : # of bl o c ks.

O ut p ut: G : t h e i n di c at or m atri x.

1 I niti ali z e G b y k - m e a n s + + ;

2 Di vi d e { 1 , 2 , . . . , 𝑛} i nt o 𝑐 bl o c ks: { F 1 , . . . , F 𝑐 } ;

3 C o m p ut e a n d st or e g ℎ X , g ℎ g ⊤
ℎ

, g ℎ X X ⊤ g ⊤
ℎ

, a n d x 𝑗 x
⊤
𝑗 ,

ℎ ∈ [ 𝑘 ], 𝑗 ∈ [ 𝑛 ] ;

4 G ← A n e m pt y s et us e d t o st or e t h e i n di c at or m atri x;

5 w hil e n o t c o n v e r g e d o

6 f o r i d x ← 1 t o 𝑓 d o
7 C o m p ut e 𝜙 (ℎ, 𝑗 ) , 𝑗 ∈ F i d x , ℎ ∈ [ 𝑘 ] usi n g E q u ati o n ( 2 0 );

8 G 0 ← Te m p or ar y v ari a bl e e q u al t o G ;

9 U p d at e t h e c ol u m ns of F i d x of G 0 usi n g E q u ati o n ( 2 1 );

1 0 A d d G 0 t o G ;

1 1 Fi n d t h e o pti m al G usi n g E q u ati o n ( 2 4 );

1 2 U p d at e X g ℎ , g ⊤
ℎ

g ℎ , a n d g ⊤
ℎ

X ⊤ X g ℎ usi n g E q u ati o ns ( 2 2 ) & (2 3 ) ;

1 3 r et u r n G ;

0 0 0

0 1 0

0 0 1

1 0 0

0

1

0

0

0 0 0

0 1 0

0 0 1

1 0 0

0

1

0

0

0

0

0

1

0 0 0

0 1 0

0 0 1

1 0 0

S e v e r 1 S e v e r 1 S e v e r 1 S e v e r 2

0

1

0

0

0

0

0

1

1

0

0

0

( � ) ( � ) ( � )

0 1 0

1 0 0

0 0 1

1 1 0

0 0 0

0 0 1

0 1 0

0 0 0

1 0 1

0 0 0

0 1 0

1 0 1

( � )  U p d ati n g O n e at a Ti m e ( � )  U p d ati n g i n B at c h e s

Fi g u r e 5: E x a m pl e s of t w o u p d ati n g m et h o d s.

e x c h a n g e d. T h e u p d at e pr o c ess is t h e n d es cri b e d as f oll o ws:

g X 𝑤 ← g X 𝑤 − x 𝑗 , g X 𝑟 ← g X 𝑟 + x 𝑗 ,

g 𝑤 g ⊤
𝑤 ← g 𝑤 g ⊤

𝑤 − 1 , g 𝑟 g ⊤
𝑟 ← g 𝑟 g ⊤

𝑟 + 1 .
( 2 2)

F urt h er, t h e u p d at e of a ℎ a ⊤
ℎ

= g ℎ X X ⊤ g ⊤
ℎ

d e p e n ds o n t h e u p-
d at e of X g ℎ . S p e ci fi c all y, w h e n 𝑤 = 𝑟 , X g ℎ r e m ai ns u n c h a n g e d
f or t h e n e xt it er ati o n, a n d c o ns e q u e ntl y, g ℎ X X ⊤ g ⊤

ℎ
als o r e m ai ns

u n c h a n g e d. O n t h e ot h er h a n d, w h e n 𝑞 ≠ 𝑝 , o nl y g X ℎ (f or ℎ = 𝑤, 𝑟 )
n e e ds t o b e u p d at e d a c c or di n g t o E q u ati o n ( 2 2 ). T h er ef or e, w e o nl y
n e e d t o u p d at e g ℎ X X ⊤ g ⊤

ℎ
usi n g t h e f oll o wi n g e q u ati o n:

g 𝑟 X X ⊤ g ⊤
𝑟 ← g 𝑟 X X ⊤ g ⊤

𝑟 − 2 x 𝑗 X
⊤
𝑤 g ⊤

𝑤 + x 𝑗 x
⊤
𝑗 ,

g 𝑤 X X ⊤ g ⊤
𝑤 ← g 𝑤 X X ⊤ g ⊤

𝑤 + 2 x 𝑗 X
⊤
𝑟 g ⊤

𝑟 + x 𝑗 x
⊤
𝑗 .

( 2 3)

Al g o rit h m D e si g n. Al g orit h m 1 s h o ws t h at w e first i niti ali z e G
usi n g k - m e a n s + + ( Li n es 1 ), w hi c h h el ps a v oi d l o c al o pti m a a n d
a c c el er at es c o n v er g e n c e. T h e n, w e c o m p ut e a n d st or e g ℎ X , g ℎ g ⊤

ℎ
,

g ℎ X X ⊤ g ⊤
ℎ

, a n d x 𝑗 x
⊤
𝑗 , f or all ℎ ∈ [ 𝑘 ] a n d 𝑗 ∈ [ 𝑛 ] ( Li n es 2 ). N e xt, t h e

al g orit h m it er ati v el y u p d at es G b y c al c ul ati n g t h e l oss a n d u p d ati n g
t h e p ar a m et ers ( Li n es 5 -7 ) u ntil c o n v er g e n c e.

4. 2 V F L f o r G B C O

B ef or e i ntr o d u ci n g o ur f e d er at e d al g orit h m, w e pr o p os e G B C O,
w hi c h i m pr o v es C O’s it er ati o n e ffi ci e n c y, i n h er e ntl y i m pr o vi n g
c o m m u ni c ati o n e ffi ci e n c y i n t h e f e d er at e d s etti n g. We t h e n s h o w
t h at T M P c a n b e r e g ar d e d as m ulti pl e s u b pr o bl e ms, w h er e cli e nts
p erf or m c o m p ut ati o ns u n d er t h e c e ntr al s er v er’s g ui d a n c e t o gr e e d-
il y u p d at e t h e i n di c at or m atri x i n b at c h es. B ef or e d el vi n g i nt o t h e
d et ails, w e pr o vi d e a n e x a m pl e t o ill ustr at e t h e w or k fl o w b el o w.

A T o y E x a m pl e. R e c all t h at t h e g o al of t h e pr o bl e m is c al c ul ati n g G ,
w e us e a si m pl e e x a m pl e i n Fi g ur e 4 t o ill ustr at e t h e w or k fl o w of o ur
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VFL framework. It shows the process of updating a 3 × 3 indicator
matrix through a central server and three clients. In each iteration,

each client computes the clustering loss based on its local data and

uploads it to the central server. The central server then aggregates

the clustering loss, computes the balance loss, and updatesG, which
is sent back to the clients. This process repeats until convergence.

4.2.1 Improving Iteration Efficiency. We improve iteration effi-

ciency by mitigating the slow increase in Equation (17) caused

by one-by-one processing. As shown in Figure 5, we illustrate this

with a 3×3 indicator matrix: Figure 5(a) updates one entry at a time,

while Figure 5(b) updates in batches (batch size = 2). Moreover, we

update one block while keeping the others fixed and compute the

indicator matrix. The indicator matrix with the greatest increase in

Equation (17) is selected for the update.

Block-based Optimization. Unlike Algorithm 1 (Line 5), which

optimizes variables sequentially, we define 𝑛𝑐 = ⌈𝑛/𝑐⌉ as the num-

ber of blocks, where 𝑐 ≤ 𝑛 represents the number of columns (data

points) in each block. In each iteration of GBCO, the computation

step solves a block of columns rather than a single column of G and

updates the relevant terms. This approach lowers Algorithm 1’s

time complexity and improves its fit for distributed use.

Block Selection. Instead of cyclically updating (Algorithm 1,

Line 6), we select the block that maximizes the increase in Equa-

tion (17) and update them. For each block in {F1, F2, . . . , F𝑐 }, we
compute the corresponding {G = G1,G2, . . . ,G𝑐 }, and determine

the optimal F∗ using the following formula:

G∗ = arg max

G∈G
𝜑 (G), (24)

where the corresponding F∗ of G∗ is the block of columns to be

updated in the current iteration.

Algorithm Design. As shown in Algorithm 2, after initializing G
using k-means++, we divide {1, 2, · · · , 𝑛} into 𝑐 blocks (Line 2). In
each iteration, we first compute 𝜙 (ℎ, 𝑗) for 𝑗 ∈ Fidx (Line 7), which
identifies the row (cluster) to which the “1” in the 𝑗-th column (data

point) belongs. Then, we set a temporary variable G0 equal to G,
update the columns of Fidx in G0, and add G0 to G (Line 8-10).

Next, we evaluate Equation (13) over G0 ∈ G, and select one for

this iteration using Equation (21) (Line 11). This approach reduces

time complexity while keeping the increase in loss small during

batch updates. We iteratively repeat this process until convergence.

4.2.2 VFL Framework for GBCO. To better understand the notation
in this section, recall that {X𝑚}𝑀ℎ=1 represents the partition of X
along the feature dimension across 𝑀 local parties, where 𝑑𝑚 is

the number of features assigned to each client. Additionally, for

the 𝑖-th data point x𝑖 ∈ R𝑑 , we express it as x𝑖 = (x1𝑖 , x
2

𝑖
, . . . , x𝑀

𝑖
),

where x𝑚
𝑖
∈ R𝑑𝑚 for𝑚 ∈ [𝑀].

Client. For each client with data X𝑚 , its role is to assist the central

server by computing Equation (17), denoted as ComputeObj, and
updatingG, denoted as Update_G. In ComputeObj, the client focuses
solely on clustering loss, as balance loss is handled by the central

server. Thus, Equation (17) on the client can be rewritten as follows:

𝛾 (ℎ, 𝑗,𝑚) =
g(ℎ)
ℎ

X𝑚X⊤𝑚 (g
(ℎ)
ℎ
)⊤

g(ℎ)
ℎ
(g(ℎ)

ℎ
)⊤

−
g(0)
ℎ

X𝑚X⊤𝑚 (g
(0)
ℎ
)⊤

g(0)
ℎ
(g(0)

ℎ
)⊤

. (25)

Algorithm 3: GBCO_Center(𝑛, 𝑘 , 𝑐)
Input: 𝑛: # of points, 𝑘 : # of clusters, 𝑐 : # of blocks.
Output: G: the indicator matrix.

1 Initialize G by Federated 𝑘-means++ ;

2 Divide {1, 2, . . . , 𝑛} into 𝑐 blocks: {F1, . . . , F𝑐 };
3 for𝑚 ∈ [𝑀 ] in parallel over local parties do
4 Call Initialization in Algorithm 4;

5 G ← An empty set used to store the indicator matrix;

6 while not converge do
7 for idx← 1 to 𝑐 do
8 Compute L(G) by calling Equation (12);

9 G0 ← Temporary variable equal to G;
10 Compute F(ℎ, 𝑗 ) ,𝑗 ∈ Fidx, ℎ ∈ [𝑘 ] by calling

ComputeObj in Algorithm 4;

11 Compute G by calling Update_G in Algorithm 4;

12 Adding G to G;
13 Find the optimal G using Equation (24);

14 return F;

Algorithm 4: GBCO_Client(X𝑚 , G)
Input: X𝑚 : the dataset of𝑚-th client, G: the indicator matrix.

1 if the server calls Initialization then
2 Compute and store gℎg⊤ℎ , gℎX𝑚X⊤𝑚g⊤

ℎ
, gℎX𝑚 , and

x⊤
𝑗
x𝑗 , 𝑚 ∈ [𝑀 ], 𝑗 ∈ [𝑛] locally;

3 if the center calls ComputeObj then
4 Compute 𝛾 (ℎ, 𝑗,𝑚), ℎ ∈ [𝑘 ], 𝑗 ∈ F

idx
,𝑚 ∈ [𝑀 ] by (27);

5 Upload 𝛾 (ℎ, 𝑗,𝑚), ℎ ∈ [𝑘 ], 𝑗 ∈ F
idx

,𝑚 ∈ [𝑀 ] to the center;

6 if the center calls Update_G then
7 Update gℎg⊤ℎ , gℎX𝑚X⊤𝑚g⊤

ℎ
, gℎX𝑚 , and

x𝑗x⊤𝑗 , 𝑚 ∈ [𝑀 ], 𝑗 ∈ [𝑛] by (29);

Here, we omit the cases ℎ = 𝑤 and ℎ ≠ 𝑤 as they have already

been discussed in Section 4.1. Thus, we directly present the formula:

𝛾 (ℎ, 𝑗,𝑚) =

gℎX𝑚X⊤𝑚g⊤

ℎ

gℎg⊤ℎ
−

gℎX𝑚X⊤𝑚g⊤
ℎ
−2x𝑗X⊤𝑚g⊤

ℎ
+x𝑗 x⊤𝑗

gℎg⊤ℎ −1
, if ℎ = 𝑤,

gℎX𝑚X⊤𝑚g⊤
ℎ
+2x𝑗X⊤𝑚g⊤

ℎ
+x𝑗 x⊤𝑗

gℎg⊤ℎ+1
−

gℎX𝑚X⊤𝑚g⊤
ℎ

gℎg⊤ℎ
, if ℎ ≠ 𝑤.

(26)

After computations, 𝛾 (ℎ, 𝑗,𝑚) is sent to the central server as an

intermediate result for computing Equation (17).

Central Server. The central server clusters the distributed data

by: 1) requesting each client to compute ComputeObj for cluster-

ing loss and 2) calculating balance loss, as shown in Equation (12).

Specifically, after gathering intermediate results from clients, in-

cluding 𝛾 (ℎ, 𝑗,𝑚) for 𝑚 ∈ [𝑀], and computing the balance loss,

Equation (20) is expressed as follows:

𝜓 (ℎ, 𝑗 ) =
{
𝜂
∑
𝑚∈𝑀𝛾 (ℎ, 𝑗,𝑚) +2(1 − 𝜂 ) (gℎg⊤ℎ −

𝑛
𝑘
) − (1 − 𝜂 ), ifℎ =𝑤,

𝜂
∑
𝑚∈𝑀𝛾 (ℎ, 𝑗,𝑚) +2(1 − 𝜂 ) (gℎg⊤ℎ −

𝑛
𝑘
) + (1 − 𝜂 ), ifℎ ≠𝑤.

(27)

We use the following equation to update the 𝑗-th column of G:

g𝑗𝑟 =

{
1, if 𝑟 = argmaxℎ F (ℎ, 𝑗),
0, otherwise.

(28)
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Table 3: Complexity analysis of different methods.
Method Cluster Time Communication
Name Balance Complexity Round

Lloyd [34] × 𝑂 (𝑛𝑑𝑚𝑘𝑇 ) 𝑇

CDKM [38] × 𝑂 (𝑛𝑑𝑚𝑘𝑇 ) 𝑛𝑇

BCLS [31] ✓ 𝑂 (𝑛2𝑘𝑇 + 𝑑2𝑚𝑇 ) 𝑛𝑇

FCFC [32] ✓ 𝑂 (𝑛𝑑𝑚𝑘𝑇 ) 𝑇

F3KM [52] ✓ 𝑂 (𝑛(𝑑𝑚 + 𝑙𝑚)𝑘𝑇 ) 𝑏𝑇

Teb-means ✓ 𝑂 (𝑛𝑑𝑚𝑘𝑇 ) 𝑐2𝑇

Reconsider the four terms in the loss function (27): gℎg⊤ℎ ,
gℎX𝑚X⊤𝑚g⊤

ℎ
, gℎX𝑚 , and x𝑚

𝑗
(x𝑚

𝑗
)⊤. Note that x𝑚

𝑗
(x𝑚

𝑗
)⊤ is a con-

stant on the client and does not require updating. Let 𝑟 represent

the current index of 1 in the 𝑗-th column of the indicator matrix G.
If 𝑟 = 𝑠 , G remains unchanged. Otherwise, if 𝑟 ≠ 𝑠 , the following

update formulas can be directly applied, using computations similar

to those in Equation (22) and Equation (23):

gX𝑤 ← Xg𝑤 − x𝑚𝑗 , gX𝑟 ← gX𝑟 + x𝑚𝑗 ,
g𝑤g⊤𝑤 ← g𝑤g⊤𝑤 − 1, g𝑟g⊤𝑟 ← g𝑟g⊤𝑟 + 1,

g𝑟XX⊤g⊤𝑟 ← g𝑟XX⊤g⊤𝑟 − 2x𝑚𝑗 X
⊤
𝑤g
⊤
𝑤 + x𝑚𝑗 (x

𝑚
𝑗 )
⊤,

g𝑤XX⊤g⊤𝑤 ← g𝑤XX⊤g⊤𝑤 + 2x𝑚𝑗 X
⊤
𝑟 g
⊤
𝑟 + x𝑚𝑗 (x

𝑚
𝑗 )
⊤ .

(29)

Algorithm Design. Details of federated GBCO on the central

server and client sides are detailed in Algorithms 3 and 4. The

central server first initializes the indicator matrix G using federated

𝑘-means++ (available in our code repository [7]). It then computes

the four terms in (29) by calling Initialization (Lines 3–4 in

Algorithm 3; Line 2 in Algorithm 4). It then instructs clients

to compute clustering loss using local data and return the results

(Line 10 of Algorithm 3; Lines 4–5 of Algorithm 4). The central

server aggregates the results and updates G by calling Update_G

(Line 11 of Algorithm 3; Line 7 of Algorithm 4). This iterative process

continues until convergence, yielding G.

5 COMPLEXITY ANALYSIS OF TEB-MEANS
This section demonstrates that Teb-means is efficient in terms of

both communication rounds and time complexity. Specifically, un-

der the mild condition that the number of iterations 𝑇 is fixed

and the partition of G is divided into a fixed number of blocks 𝑐 ,

the communication rounds remain constant. Meanwhile, the time

complexity of each client is linear, making the method efficient.

Theorem 1. Let 𝑐 be the number of blocks and 𝑇 the number of

iterations. The communication round is O(𝑐2𝑇 ).

Proof. As shown in Algorithm 4, each iteration of Teb-means
requires 𝑐2 communication rounds between the central server and

clients to solve G. This is because traditional block coordinate de-

scent dividesG into 𝑐 blocks, with each block containing 𝑛
𝑐 columns,

and each communication round solves one block of columns. No-

tably, our method requires selecting the best block, which, in the

worst case, involves 𝑐 communication rounds to identify the optimal

block. Hence, the total communication rounds per iteration amount

to 𝑐2. If 𝑇 denotes the total number of iterations of Teb-means, the
overall communication round is 𝑂 (𝑐2𝑇 ). □

Table 4: An overview of datasets (M for millions).
Dataset MTG Census Game NYC Crime Retail Amazon MovieLens

Ref. [5] [9] [2] [6] [8] [3] [1] [4]

𝑑 53 69 79 100 127 600 2400 5000

Scale 5.98M 2.46M 3M 0.1M 0.01M 1.64M 21M 5.3M

Theorem 2. The time complexity on each client is O(𝑛𝑑𝑚𝑘𝑇 ).

Proof. For stored variables, under the condition ℎ, 𝑗 =

1, 2, . . . , 𝑘 , computing gℎX𝑚 and gℎg⊤ℎ requires 𝑛𝑑𝑚 and 𝑛 addi-

tions, respectively, while computing 𝑥 𝑗𝑥
⊤
𝑗
requires 𝑛𝑑𝑚 multipli-

cations, and computing gℎX𝑚X⊤𝑚g⊤
ℎ
requires 𝑑𝑚𝑘 multiplications.

For computing 𝜓 (ℎ, 𝑗) (ℎ = 1, 2, . . . , 𝑘) using Equation (20), i.e.,

calculating x𝑚
𝑗
X⊤𝑚g⊤

ℎ
requires 𝑑𝑚𝑘 multiplications, and calculating

𝑘bℎ requires 1 multiplication. The time complexity of updating the

𝑗-th column of G using Equation (21) can be ignored, as it involves

only constant multiplications. Updating gℎX𝑚 and gℎg⊤ℎ based on

(22) requires 2𝑑𝑚 + 2 additions. Specifically, since 𝑥𝑚
𝑗
∈ R1×𝑑𝑚

,

the first formula requires 𝑑𝑚 additions, as does the second. The

third formula involves a scalar and needs 1 addition, and the fourth

formula also requires 1 addition. For (23), since the required values

have already been computed in advance, there is no need to com-

pute them again. Therefore, the overall computational complexity

is 𝑛𝑑𝑚𝑘𝑇 + 𝑛𝑑𝑚 + 𝑑𝑚𝑘 and time complexity is O(𝑛𝑑𝑚𝑘𝑇 ). □

Remark. GBCO maintains communication efficiency under mild

conditions. Specifically, instead of updating one row at a time, our al-

gorithm updates
𝑛
𝑐 rows of the indicatormatrix simultaneously. As a

result, Teb-means requires fewer communication rounds than other

balanced 𝑘-means algorithms [31, 32] adapted for VFL. Moreover,

Teb-means achieves lower time complexity compared to other bal-

anced 𝑘-means algorithms, including [11, 31, 35]. While F3KM [51]

and FCFC [32] offer constant communication rounds in each itera-

tion (notably, F3KM [51] depends only on constants 𝑏 ∈ Z+) and lin-

ear per-client time complexity, Teb-means achieves better balance

performance compared with them (see Section 6.3). A summary is

provided in Table 3.

6 EXPERIMENTS
In this section, we conduct experiments on 8 real-world datasets

to validate the superiority of Teb-means. We begin by describing

the experimental setup (see Section 6.1), followed by an analysis of

key parameters (see Section 6.2). Next, we evaluate the clustering

performance of Teb-means, showing that it is more balanced, pre-

serves cluster quality better, and faster compared to other balanced

clustering algorithms adapted for VFL (see Section 6.3).

6.1 Experimental Setup
Dataset. We use eight real-world datasets: MTG, Census, Game,
NYC, Crime, Retail, Amazon, and MovieLens. MTG, Amazon, and
MovieLens each contain over 5 million data points. Additionally,

Amazon and MovieLens have more than a thousand dimensions.

Notably, each dataset can simulate scenarios suitable for VFL, and

our method can extract useful information as described in Section
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Figure 6: Clustering loss vs. balance loss for different values of 𝜂.
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Figure 7: Impact of 𝜂 on iterations.

1. Due to page limitations, detailed discussions of datasets are pro-

vided in our code repository [7]. The dimensions and scales of the

datasets are provided in Table 4.

Implementations. We implemented Teb-means and conducted

comparisons using MATLAB R2022a. All performance tests were

performed on a server with an i9-14900KF CPU and 128GB of RAM.

Unless otherwise noted, the setup consists of one central server and

two clients, with feature dimensions evenly split between the clients.

For example, in the case of Amazon, which has 2,400 dimensions

(𝑑 = 2400), each client holds 1,200 dimensions (𝑑 = 1200). The

code for the federated simulation and the proposed methodology is

available in [7]. All algorithms run for a maximum of 100 iterations,

with 𝑘 = 10, 𝜂 = 0.8, and 𝑛𝑐 = 8 (see Section 6.2)

Comparisons. Teb-means againsts five methods that can be

adapted for VFL: Lloyd’s algorithm [34] (Lloyd), BCLS [31], FCFC
[32], CDKM [38], and F3KM [51], all discussed in Section 2. Lloyd and
CDKM are clustering methods that do not consider balance, provid-

ing a baseline for clustering loss (as balancing inherently sacrifices

clustering loss). BCLS, FCFC, and F3KM represent state-of-the-art

(SOTA) balanced 𝑘-means algorithms that can be adapted for VFL.

6.2 Parameter Studies
Impact of 𝜂 on Clustering Performance. Theoretically, clus-
tering loss and balance loss exhibit a roughly inverse relationship.

When 𝜂 is large, clustering loss is given more emphasis, while

smaller values of 𝜂 prioritize balance loss. We conduct 100 random

𝑘-means tasks, where 𝜂 is randomly selected from the range (0.7, 1).
Notably, the range of 𝜂 is determined based on the observation

that when 𝜂 < 0.7, the balance loss approaches zero. This occurs

because, with a small 𝜂, optimizing balance loss is more effective

than clustering loss, causing it to diminish first.

Observations: As shown in Figure 6, there exists a trade-off between

clustering loss and balance loss as 𝜂 varies, which generally exhibits

an inverse relationship. We find that when 𝜂 is around 0.8, both

losses are relatively small, avoiding cases where either becomes

large. Therefore, 𝜂 = 0.8 is adopted as a suitable choice.

Impact of 𝜂 on Iterations. We investigate the Impact of 𝜂 on

Iterations. To account for variations in 𝜂, we adjust the loss and

define F𝑎𝑑 𝑗 as the sum of clustering loss and balance loss. This

removes the direct influence of 𝜂 on loss function (13), ensuring a

fair comparison across different 𝜂 values. We set 𝜂 ∈ [0.76, 0.90], as
values of 𝜂 that are too small (e.g., 𝜂 < 0.76) cause the optimization

process to overemphasize balance loss, leading to high clustering

loss and a poor cluster structure. Conversely, when 𝜂 is too large,

clustering loss dominates, which compromises balance.

Observations: As shown in Figure 7, F𝑎𝑑 𝑗 decreases as iterations
increase, regardless of 𝜂. In most cases, increasing 𝜂 reduces F𝑎𝑑 𝑗 .
This is because the loss function is defined as 𝜂 × clustering loss +
(1 − 𝜂) × balance loss. A larger 𝜂 makes optimizing clustering loss

more effective. Additionally, in real-world datasets, clustering loss
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Table 5: Clustering loss and balance loss of Teb-means with different block sizes.

Dataset Clustering Loss Balance Loss

𝑛𝑐 = 2 𝑛𝑐 = 8 𝑛𝑐 = 32 𝑛𝑐 = 128 𝑛𝑐 = 512 𝑛𝑐 = 2 𝑛𝑐 = 8 𝑛𝑐 = 32 𝑛𝑐 = 128 𝑛𝑐 = 512

MTG 2.43E+07 2.52E+07 8.08E+07 8.04E+07 8.03E+07 6.46E+06 5.08E+06 1.69E+08 4.77E+09 3.05E+11

Census 2.02E+07 2.14E+07 5.40E+07 5.35E+07 5.42E+07 2.08E+07 2.14E+07 1.12E+09 4.44E+10 3.13E+12

Game 1.89E+07 3.14E+07 3.24E+07 3.20E+07 3.24E+07 1.18E+05 3.10E+06 4.88E+07 1.39E+09 1.03E+11

NYC 2.54E+06 2.55E+06 2.62E+06 4.34E+06 4.89E+06 6.74E+06 8.27E+06 7.66E+06 3.21E+08 3.01E+10

Crime 2.09E+04 2.09E+04 3.87E+04 3.83E+04 3.88E+04 1.71E+02 1.98E+02 1.00E+04 2.22E+05 1.82E+07

Retail 6.00E+06 6.08E+06 6.08E+06 6.82E+06 6.84E+06 9.16E+06 9.16E+06 9.25E+06 1.04E+07 9.94E+07

Amazon 7.45E+07 8.27E+07 8.88E+07 1.12E+08 1.01E+08 6.02E+06 6.39E+06 1.88E+07 1.62E+08 2.47E+10
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Figure 8: Clustering loss of Teb-means and other algorithms for different values of 𝑘 .
Table 6: Communication rounds for different block sizes.

Dataset 𝑛𝑐 = 2 𝑛𝑐 = 8 𝑛𝑐 = 32 𝑛𝑐 = 128 𝑛𝑐 = 512

MTG 4.47E+08 2.79E+07 1.75E+06 1.09E+05 6.82E+03

Census 8.71E+07 5.45E+06 3.40E+05 2.13E+04 1.33E+03

Game 1.13E+08 7.03E+06 4.39E+06 2.75E+04 1.72E+03

NYC 1.25E+05 7.81E+04 4.88E+03 3.05E+02 1.91E+01

Crime 2.22E+00 3.56E+01 5.69E+05 9.10E+06 1.46E+08

Retail 3.36E+07 2.10E+06 1.31E+05 8.21E+03 5.13E+02

Amazon 5.51E+09 3.44E+08 2.15E+07 1.35E+06 8.41E+04

MovieLens 3.51E+08 2.19E+07 1.37E+06 8.57E+04 5.36E+03

is typically the dominant term. These two factors lead to a more

significant reduction in clustering loss compared to balance loss.

Impact of Block Size. The block size affects both clustering loss,

balance loss, and communication round. In general, as the block

size increases, both clustering and balance losses tend to rise, while

communication rounds decrease, and vice versa. We consider the

following block sizes: 𝑛𝑐 ∈ {2, 8, 32, 128, 512}.
Observations: As shown in Table 5, the block size has limited impact

on the clustering loss, which remains within the same order of mag-

nitude. In contrast, the balance loss becomes increasingly sensitive

as the block size grows. For instance, when 𝑛𝑐 = 32, the balance

loss is more than ten times higher than that at 𝑛𝑐 = 8. Moreover, as

shown in Table 6, although 𝑛𝑐 = 32 or larger values would result in

fewer communication rounds, the significant increase in balance

loss leads to poorer balance performance. Hence, 𝑛𝑐 = 8 is the

optimal choice, as it achieves low clustering and balance loss, while

also improving the efficiency of sequentially scanning.

6.3 Superiority of Teb-means
Quality of Cluster Structure.We evaluate clustering loss to assess

the quality of the resulting cluster structure compared to other

methods. We also examine its variation across different 𝑘 , where

𝑘 ∈ {10, 11, . . . , 20}, to test the sensitivity of Teb-means to 𝑘 .

Observations: As shown in Figure 8, Teb-means achieves lower clus-

tering loss compared to the balance algorithms, including F3KM and
BCLS. While Teb-means has a higher clustering loss than FCFC, the
balance loss of FCFC is significantly higher than that of Teb-means,
indicating its inferior ability to ensure balance. Most of the methods

demonstrate a decrease in clustering loss as 𝑘 increases. This is

because data points are more likely to be assigned to closer cluster

centers, reducing intra-cluster errors. Notably, BCLS does not exhibit
a decrease in clustering loss as 𝑘 increases, because it transforms

the discrete indicator matrices into continuous matrix variables and

optimizes a relaxed objective function that is relatively insensitive

to 𝑘 . Moreover, Teb-means has a slightly higher clustering loss than
CDKM and Lloyd as it optimizes both clustering and balance loss,

reflecting the inherent trade-off between them.

Balance Performance. We use several metrics to evaluate the

balance performance of Teb-means. In addition to balance loss, we

also include the coefficient of variation (CV) and 𝑁entro [38]. The
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Figure 9: Balance loss of Teb-means and other algorithms for different values of 𝑘 .
Table 7: Balance performance and runtime efficiency.

Dataset Method CV 𝑁𝑒𝑛𝑡𝑟𝑜 Runtime (s)

MTG

FCFC 13.19 0.90 2.22E+02

BCLS 1.28 0.99 2.59E+03

F3KM 1.87 0.99 3.22E+02

Teb-means 0.49 1.72 2.60E+02

Census

FCFC 15.40 0.81 2.79E+02

BCLS 1.28 0.99 2.86E+03

F3KM 1.14 1.00 3.51E+02

Teb-means 0.80 1.00 2.97E+02

Game

FCFC 26.64 0.56 4.52E+02

BCLS 1.28 0.99 4.17E+03

F3KM 6.00 0.95 5.22E+02

Teb-means 0.24 1.00 1.02E+02

NYC

FCFC 13.69 0.88 2.58E+01

BCLS 1.28 0.99 4.87E+03

F3KM 13.62 0.81 6.11E+02

Teb-means 8.86 0.93 2.04E+03

Crime

FCFC 7.96 0.96 6.05E-02

BCLS 1.60 0.99 9.04E-01

F3KM 0.25 1.00 5.75E-01

Teb-means 0.21 1.00 1.95E-01

Retail

FCFC 30.24 0.36 8.02E+00

BCLS 1.09 1.00 2.51E+01

F3KM 15.12 0.84 1.59E+01

Teb-means 7.52 0.94 2.73E+01

Amazon

FCFC 96.99 0.09 7.99E+03

BCLS 94.44 0.11 3.76E+03

F3KM 94.44 0.11 2.12E+03

Teb-means 94.44 0.11 6.49E+02

MovieLens

FCFC 23.72 0.62 3.23E+02

BCLS 1.67 1.00 5.86E+02

F3KM 18.06 0.78 7.60E+02

Teb-means 18.62 0.81 1.33E+02

formulas for these two metrics are as follows:

CV =
𝑘

𝑛

√√√
𝑘∑︁
𝑖=1

(
z𝑖 −

𝑛

𝑘

)
2

, 𝑁entro = − 1

log𝑘

𝑘∑︁
𝑖=1

z𝑖
𝑛

log

( z𝑖
𝑛

)
, (30)

where z ∈ Z+ is a vector containing each cluster size, with z𝑖
representing the size of the 𝑖-th cluster. In this context, a smaller

coefficient of variation (CV) indicates better balance performance,

while 𝑁entro closer to 1 indicates better balance performance.

Observations: As shown in Figure 9, Teb-means achieves the lowest
balance loss in most cases. Moreover, as shown in Table 7, when

using CV as the metric, our method achieves the lowest CV, demon-

strating the best balance performance. When 𝑁entro is used, both

our method and BCLS achieve 𝑁entro = 1 in most cases. However,

BCLS requires significantly more time than Teb-means and results

in much higher clustering loss (see Figure 8).

Runtime Performance. We show that Teb-means is a time-

efficient algorithm compared with SOTAs. Notably, our method is

slower than Lloyd and CDKM, as it explicitly accounts for balance

loss during execution. This introduces additional computations not

reflected in the asymptotic complexity (since it remains propor-

tional to 𝑛𝑑𝑚𝑘𝑇 ). A theoretical summary is provided in Table 3,

and the detailed discussion is presented below.

Observations: As shown in Table 7 shows that Teb-means achieves

a shorter runtime than BCLS and F3KM. It runs longer than FCFC.
Nevertheless, FCFC exhibits the poorest balance, as indicated by its

highest CV and lowest 𝑁entro, making it the least balanced method.

Robustness. Teb-means and other balanced algorithms are heuris-

tic methods, which are non-deterministic concerning a specific

performance criterion and can be highly sensitive to initialization.

Here, we calculate themean, denoted as Obj_Mean, and the standard
deviation, denoted as Obj_Std, of the cluster loss and balance loss

based on 100 random seeds (different initializations) to assess the

robustness of the algorithm. To reduce time cost, we limit clustering

to a sample of 10,000 points from each dataset.

Observations: In Table 8, Teb-means achieves the lowest Obj_Mean
and Obj_Std for clustering loss in most cases. However, in a few

instances, it performs slightly worse than FCFC. Nevertheless, FCFC
has poor balance performance, which is comparable to that of

Lloyd. For balance loss, Teb-means achieves the lowest Obj_Mean
and Obj_Std. The low variance and mean in both clustering and

balance loss indicate that Teb-means is robust to initialization.

Verification for ANN. We demonstrate that Teb-means improves

the ANN efficiency of clustering-based indexes. Following the clus-

tering approach in Section 6.1, data points in the same cluster are

stored as posting lists on disk. Upon receiving a query, the central
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Table 8: Comparison of clustering loss and balance loss under
different initializations.

Dataset Method
Clustering Loss Balance Loss

Obj_Mean Obj_Std Obj_Mean Obj_Std

MTG

FCFC 1.91E+04 6.00E+02 6.00E+06 1.37E+06

BCLS 2.05E+05 2.09E+02 6.72E+04 2.11E+04

F3KM 4.07E+04 1.35E+03 3.10E+05 3.10E+05

Teb-means 4.22E+04 1.20E+03 8.50E+03 2.37E+03

Census

FCFC 5.06E+04 2.34E+03 2.26E+07 1.13E+06

BCLS 2.86E+05 4.11E+01 8.62E+04 2.71E+04

F3KM 7.70E+04 2.83E+03 2.18E+05 3.45E+04

Teb-means 8.70E+04 9.60E+02 8.70E+04 6.91E+02

Game

FCFC 1.90E+04 4.79E+03 1.35E+08 5.03E+07

BCLS 3.49E+04 6.23E+01 2.09E+05 6.56E+04

F3KM 7.97E+04 5.40E+02 5.33E+06 2.07E+06

Teb-means 1.05E+05 2.11E+02 1.03E+04 2.77E+03

NYC

FCFC 2.43E+06 6.26E+04 2.11E+07 7.13E+06

BCLS 6.57E+06 4.97E+03 2.11E+05 6.64E+04

F3KM 3.00E+06 6.93E+05 5.15E+07 7.40E+07

Teb-means 2.55E+06 1.27E+05 8.27E+06 2.59E+06

Crime

FCFC 2.01E+04 1.14E+02 2.29E+05 1.00E+05

BCLS 4.50E+04 2.94E+01 1.11E+04 5.75E+03

F3KM 2.07E+04 5.64E+01 2.14E+02 1.05E+01

Teb-means 2.10E+04 4.45E+01 1.98E+02 5.75E+01

Retail

FCFC 3.00E+04 7.59E+02 2.49E+06 2.44E+04

BCLS 4.85E+04 3.47E+01 1.13E+03 1.58E+02

F3KM 3.59E+04 2.50E+03 2.00E+05 3.88E+04

Teb-means 3.70E+04 3.06E+02 5.59E+04 1.81E+04

Amazon

FCFC 3.33E+04 1.32E+03 4.07E+06 4.88E+05

BCLS 8.33E+04 3.50E+01 5.17E+03 1.12E+03

F3KM 3.90E+04 2.44E+03 2.29E+05 1.14E+05

Teb-means 3.94E+04 3.95E+02 3.04E+03 1.16E+03

MovieLens

FCFC 1.36E+07 5.42E+04 3.58E+06 2.63E+05

BCLS 1.60E+07 4.34E+03 1.14E+04 6.20E+03

F3KM 1.35E+07 8.54E+04 1.44E+06 3.54E+05

Teb-means 1.34E+07 3.58E+04 1.02E+06 6.41E+04
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Figure 10: ANN search accuracy of federated clustering-based
indexes: average over 8 datasets.

server identifies the nearest centroid(s). Each party then retrieves

as much relevant data as possible from the corresponding posting

list of the identified centroid(s) and transmits it back to the server

with distance information. Finally, the central server computes the

Table 9: Clustering accuracy assessment.

Dataset Metrics Lloyd CDKM BCLS FCFC F3KM Teb-means

Game
ARI 0.08 0.09 0.00 0.08 0.04 0.21
AMI 0.06 0.07 0.00 0.06 0.04 0.21

distances and identifies the nearest point. Notably, we generate

1,000 random ANN queries and compute recall@5, @10, and @15

under a 1 ms query latency constraint.

Observations: As shown in Figure 10, the clustering-based index

built by Teb-means achieves higher recall than other balanced clus-

tering algorithms in most cases, indicating superior query perfor-

mance. Among them, FCFC shows the poorest performance, primar-

ily due to its poor clustering balance, which results in significant

variation in cluster sizes. Small clustersmay be fully searchedwithin

the given time, limiting further opportunities to retrieve additional

data points, while large clusters cannot be fully searched in time.

Accuracy Measurement. We also use Adjusted Rand Index (ARI)

[40] and Adjusted Mutual Information (AMI) [39] to measure clus-

tering accuracy; both favor higher values for better performance.

Among our selected datasets, Game includes class labels. To align

with the balanced design of our method, we modify Game to ensure

an equal number of samples for each class label.

Observations: As shown in Table 9, Teb-means achieves highly ARI
and AMI scores, showing superior accuracy. BCLS can result in

a value of zero. This occurs because 𝑘-means is an unsupervised

algorithm that does not utilize label information. Additionally, us-

ing Euclidean distance for clustering may not always effectively

differentiate between labels, as distance alone is not a sufficient

criterion. As a result, even high-quality balanced clustering does

not necessarily yield higher ARI or AMI scores.

7 CONCLUSIONS & FUTUREWORK
In this paper, we proposed Teb-means to efficiently perform bal-

anced clustering in a VFL setting. We first introduced a new loss

function that incorporated balance loss into the 𝑘-means objective

and used CO to iteratively assign data points to clusters. We then

proposed GBCO to improve the efficiency of CO by dividing the

indicator matrix into multiple blocks and selecting the block that

reduced the loss function the most for updating. Next, we designed

a VFL framework for GBCO, where only intermediate results were

exchanged. Teb-means demonstrated that its communication round

was a constant in the mild condition, and the time complexity on

clients was linear lower than most of existing balanced 𝑘-means

algorithms. Our experiments show the superiority of Teb-means
in runtime, cluster balance, and robustness to initialization.

In future work, we will explore extending Teb-means to support
clustering of multimodal data while maintaining soft balance and

preserving the cluster structure. We also plan to investigate adapt-

ing Teb-means for efficient execution on emerging hardware, such

as TPUs, to further accelerate clustering.
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