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ABSTRACT
Graphs are powerful abstractions for modeling relationships and
enabling data science tasks. In causal inference, Directed Acyclic
Graphs (DAGs) serve as a key formalism, but they are typically
handcrafted by experts and rarely treated as first-class data artifacts
in graph data management systems. This paper presents a novel vi-
sion to align causal analysis with property graphs—the foundation
of modern graph databases—by rethinking graph models to incor-
porate hypernodes, structural equations, and causality-aware query
semantics. By unifying graph databases with causal reasoning, our
approach enables the declarative expression of DAG manipulation
operations along with interventions and counterfactuals, combin-
ing expressiveness with computational efficiency. We validate this
vision through a proof-of-concept implementation supporting scal-
able causal queries over DAGs, ultimately aiming to make graph
databases causally aware and support data-driven, personalized
decision-making across several scientific domains.
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1 INTRODUCTION
Causal analysis [44] focuses on identifying, representing, and quan-
tifying cause–effect relationships. Its application is crucial in var-
ious domains [33], as it goes beyond correlation and association
to extract causal relationships between variables. Causal directed
acyclic graphs [22] are a cornerstone of causal analysis, providing a
rigorous framework for representing and analyzing causal relation-
ships. By modeling variables as nodes and causal connections as
directed edges, causal DAGs facilitate the visualization of complex

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749671

systems, the identification of confounders, mediators, and colliders,
and the extraction of causal paths.

However, conducting causal analysis remains a significant chal-
lenge, as it involves a large amount of manual labor [12, 21, 29].
This process is not only time-consuming and costly but also prone
to errors, limiting the applicability of causal analysis, particularly
in complex domains with evolving or heterogeneous data.

We argue that causal analysis, to some extent, shares common-
alities with data management. Defining a causal DAG is akin to
graph data modeling, as both involve identifying relevant entities
and relationships. Additionally, causal analysis can be viewed as
performing queries on graph observational data and causal DAGs.

The data management community already explored how to inte-
grate data management methodologies and causal analysis. Exist-
ing research has focused on relational databases and has explored
how to facilitate causal analysis by treating it as relational queries
[48, 49]. Further extensions have been considered with counter-
factual queries [25, 50], using provenance to determine the effect
of interventions and counterfactuals in SQL queries. Other works
utilize causality to explain the causes of query results [34, 54]. Addi-
tionally, some studies have established a connection between these
explanations and database repairs [14–16], reducing the problem
of causal query explanation to a repair problem. Another work [55]
has considered the problem of data completeness of causal DAGs
while considering information coming from different tuples in a
relational table. To the best of our knowledge, the idea of leveraging
a graph database to carry out causal inference over interlinked data
has not been explored before.

Graph data models and graph query languages are becoming
increasingly widespread across various domains [47]. They serve
as the underlying data models for numerous open-source and com-
mercial database tools (e.g., Neo4j [3], Amazon Neptune [1], Or-
acle PGX [4], SAP Hana Graph [6], RedisGraph [5], Sparksee [7],
Kuzu [2], etc.) and have recently been standardized with the intro-
duction of graph query languages such as GQL and SQL/PGQ.

For this reason, we propose leveraging property graphs (PGs) [8,
17] as a foundational model for causal analysis. The expressive
power and flexibility of PG allow the encoding of multi-valued
nodes and edges, along with edge and node properties represented
as key-value pairs, enabling a natural mapping of causal variables
and relationships to nodes and edges. This representation can be
further utilized to extract causal paths and align disparate data
sources with greater consistency and efficiency. Another advantage
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of property graphs is their compatibility with concrete graph query
languages, such as openCypher [38], GQL, or SQL/PGQ [23]. These
languages enable graph pattern matching operations, retrieving
and outputting results in the form of tuples. Additionally, recent ad-
vancements in high-level abstractions, such as path-based algebraic
foundations for graph query languages, enhance the composition-
ality of graph queries, allowing property graphs to be returned as
results instead of plain relational tuples [11].

In our vision, we leverage the underlying property graph data
models and declarative formalisms to allow the precise extraction
of all causal paths, identification of bias-inducing relationships, and
inference on the extracted graph. By using graph queries, we can
automate the discovery of confounder, mediator, and collider paths,
as well as explore the causal structure across different datasets.

Furthermore, using PGs allows us to embed the causal DAG
directly within the data, whereas, in a relational model, it must
reside outside the data model itself. This enables us to leverage
the expressive power of graph data models and query languages to
manipulate the observational data and the causal DAG seamlessly.

However, the property graph model and query languages are
currently not expressive enough for causal analysis, particularly
when entire paths and subgraphs need to be inspected as a whole.
For example, as we show in Section 4, simple analyses, such as iden-
tifying mediators or confounders, can be performed using existing
Cypher/GQL constructs. However, more complex causal tasks that
require navigating between the causal DAG and the observational
data necessitate additional constructs that are not present in current
languages—for instance, incorporating path algebra [11].

In summary, the research vision that we investigate with this
line of work centers around the following fundamental question:
How can we empower graph databases, property graph models and
queries with causal analysis capabilities?

To address the above question, in this paper we make the follow-
ing contributions:

• We propose and formalize a causal property graph model aug-
mented with hypernodes representing possibly related causes
and with meta-properties encoding conditional and interven-
tional probabilities along with structural equations.

• We study the extensions needed in current graph query lan-
guages to support path-based semantics [11] and do-calculus con-
structs. The former are meant to extract from property graph
observational data different variants of causal paths, namely
confounding paths, bias paths, mediator paths and collider paths.

• In a proof-of-concept implementation, we show the performances
of causal path queries on causal DAGs of various sizes, showing
that queries are executed efficiently on the causal DAGs and
guarantee constant time access to the property graph data.

The above vision will make graph databases aware of causal
knowledge and pave the way to data-driven personalized decision-
making in several scientific fields. By embedding causal constructs
into the graph data model and query language, graph databases
gain expressive power to support interventions, counterfactuals,
and structural reasoning that are fundamental for causal analysis.
In addition, graph databases can benefit from explainable query
results, by supporting queries that return not only their results but
also the corresponding causes for these results.

This extension will make graph databases more interoperable
withmachine learningmodels, as they could be employed in various
stages of the ML pipeline, querying causal effects post hoc, or
integrating causal graphs into model interpretation workflows.

The paper is organized as follows: Section 2 covers causal model
preliminaries. Section 3 introduces our property graph extension,
including DAG extraction and causal views. Section 4 details causal
analysis in GQL/Cypher with necessary language extensions. Sec-
tion 6 presents a proof-of-concept implementation. Section 7 con-
cludes with limitations and future directions.

2 CAUSAL MODELS
One of the most established theory of causality is represented by
structural causal models (SCMs). SCMs consist of a causal graph
and structural equations. Formally, a causal graph G = (V, E) is
a directed graph where V is the node set and E is the edge set.
Each node inV represents a random variable while an edge 𝑥 → 𝑦

represents a causal effect between two variables 𝑥,𝑦 ∈ V . Given
an edge 𝑥 → 𝑦 we call 𝑥 the exposure and 𝑦 the outcome. The node
setV contains also all the observed and unobserved variables. In
particular, we consider causal directed acyclic graphs [22].

Figure 2(b) shows an example of a DAG, including the key el-
ements of causal analysis: i) (INCOME LEVEL)-->(STRESS)--> (SMOKING)

is a causal path representing an indirect effect of INCOME LEVEL

on SMOKING through STRESS as mediator variable. ii) The path
(SMOKING) <--(AGE)-->(COPD) is a confounding path with AGE as a con-
founder (e.g. having effect on both SMOKING and COPD). iii) The path
(STRESS)-->(COPD) <--(SMOKING) is a collider path with COPD as collider.

The conditional independence is guaranteed in causal graphs
through d-separation [43]. Two variables are d-separated if there is
a blocked node in every path between them where blocking means
conditioning a variable on a suitable set of other variables. In the
chain (INCOME LEVEL)-->(STRESS) -->(SMOKING), blocking the variable
STRESS(P(SMOKING|STRESS)) d-separates the variables INCOME LEVEL and
SMOKING. Intuitively, once the stress is known, the income level has
no more influence on the smoking habit. The same applies to the
confounding path (SMOKING)<--(AGE)-->(COPD): conditioning on AGE al-
lows us to study the causal relationships between the COPD and the
smoking habit excluding the confounding bias. On the contrary,
if two variables are connected through a collider path, they are
already d-separated (and thus causally independent). Conditioning
the collider though, opens the path between the two variables. Con-
ditioning on the node COPD in the path (STRESS)-->(COPD)<--(SMOKING)

allows us to study the association between the stress and the smok-
ing habit of an individual induced by the selection bias.

The second component of a Structural Causal Model consists
of structural equations. Structural equations are non-parametric
equations that quantify the causal effects between variables. For
instance, the structural equations for the SCM in Figure 1(a) are:

Age = 𝑓Age (𝜖𝑎𝑔𝑒 )
Income Level = 𝑓Income Level (Age, 𝜖Income Level)
Smoking = 𝑓Smoking (Age, Income Level, 𝜖Smoking)

where 𝜖𝑥 denotes the noise of the observed variable 𝑥 . The functions
𝑓𝑥 () quantify the causal relationships between the LHS variable and
the RHS ones. Structural equations provide a quantitative way to
represent intervention on a variable in a DAG. The do-calculus [44]
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utilizes the 𝑑𝑜 (𝑥 ′ ) operator, which denotes the intervention of set-
ting the value of a variable 𝑥 to 𝑥

′
. In general, intervening on a

variable 𝑥 by setting its value to 𝑥
′
affects the probability distribu-

tion of all variables𝑦 for which 𝑥 is a direct or an indirect cause. The
distribution 𝑃 (𝑦 |𝑑𝑜 (𝑥 ′

)) is called interventional distribution [43].

Age

SmokingIncome Level

Age

Smokingdo(100K)

(a) (b)

Figure 1: SCM without (a) and with (b) intervention.

Figure 1(b) shows an example of intervention, where 𝑑𝑜 (100𝐾)
sets the value for the variable Income Level to 100K. The structural
equation for Income Level becomes 𝐼𝑛𝑐𝑜𝑚𝑒 𝐿𝑒𝑣𝑒𝑙 = 100𝐾 and the
interventional distribution of Smoking is 𝑃 (𝑆𝑚𝑜𝑘𝑖𝑛𝑔|𝑑𝑜 (100𝐾)). It
is important to note that the interventional distribution 𝑃 (𝑦 |𝑑𝑜 (𝑥))
and the conditional probability distribution 𝑃 (𝑦 |𝑥) are not the
same. This difference introduces a confounding bias. In practice,
verifying the absence of the bias translates into verifying that
𝑃 (𝑦 |𝑑𝑜 (𝑥)) = 𝑃 (𝑦 |𝑥). In Figure 1(a), with Age being a confounder,
the probability distribution 𝑃 (𝑆𝑚𝑜𝑘𝑖𝑛𝑔|𝐼𝑛𝑐𝑜𝑚𝑒 𝐿𝑒𝑣𝑒𝑙) results from
combining the causal effect 𝑃 (𝑆𝑚𝑜𝑘𝑖𝑛𝑔|𝑑𝑜 (𝐼𝑛𝑐𝑜𝑚𝑒 𝐿𝑒𝑣𝑒𝑙)) and the
statistical association of the confounding path. To obtain an unbi-
ased estimate, one needs to remove the confounding bias. This can
be done via causal identification, that is, blocking the confounding
path. This operation requires to estimate the causal influence of
the cause variable 𝑥 on 𝑦 within subpopulations in which the con-
founding variables do not vary, ensuring that they do not distort
the causal relationship (i.e. adjustment).

3 GRAPH MODEL
Our vision leverages the expressiveness and flexibility of property
graphs to streamline the extraction of SCMs, facilitate their main-
tenance, and enhance their interpretability. By embedding causal
semantics directly into the graph structure, property graphs enable
causal analysis through queries using (or extending) existing graph
data management methods, bridging the gap between raw data and
actionable causal insights. Ideally, this approach makes the causal
analysis process less tedious, as many of the tasks now requiring
ad-hoc scripting, can be executed in a declarative fashion. Property
graphs are multi-label directed graphs characterized by node and
edge properties (i.e. metadata stored as key-value pairs) [17]. Unlike
conventional DAGs, property graphs naturally capture the rich con-
text of causal systems, accommodating multi-faceted dependencies,
metadata about variables and relationships, and evolving structures
over time. These attributes make PGs uniquely suited for extracting
and maintaining causal DAGs from complex and evolving data.

Figure 2(a) shows an example of a property graph. It models a
person named Ali who smokes and drinks some alcohol and has
two diseases (COPD and Stress), and a person named Kate suffering
from the same COPD condition, but having also a job as an engineer.

To perform causal analysis, we need to extract causal variables
from the PG and the relationships between them. Moreover, in
order to apply interventions and perform causal analysis, we need

to maintain a mapping between the PG instances and the causal
variables in the causal DAG. It is seldom the case that one variable
in a causal DAG is mapped to a single vertex in a property graph.
In several cases, this mapping is not only one-to-many but also
compositional. For this reason, we introduce a novel extension of
the PG datamodel to cover hypergraphs. In particular, a hypervertex
is a subgraph containing nodes and edges in the original property
graph but can be considered a new node and can be linked to other
existing vertices and new hypervertices. Increasingly expressive
property graph models have already been discussed in the past [17,
46], motivating their need in several application domains.

Causal Directed Acyclic Hypergraph (cDAH): Given a property
graph𝐺 = (𝑉 , 𝐸), a cDAH is a structure (𝐻, 𝐹, 𝑋, 𝑆, 𝑃, 𝐼 , 𝛾, 𝜆, 𝜂, 𝜇, 𝜈),
where 𝐻 is a finite set of hypervertices, 𝐹 is a set of edges disjoint
from 𝐸,𝑋 is a set of causal variables, 𝑆 is a set of structural equations,
and 𝑃 and 𝐼 are sets of conditional and interventional probability
distributions, respectively. The function 𝛾 : 𝐻 → P (𝑉 ) × P (𝐸)
assigns to each hypervertex a subset of nodes and edges from 𝐺 .
An injective function 𝜆 : 𝐻 → 𝑋 maps each hypervertex to a
causal variable, and 𝜂 : 𝑆 → 𝐻 assigns structural equations to
hypervertices. The bijections 𝜇 : 𝐹 → 𝑃 and 𝜈 : 𝐹 → 𝐼 assign
conditional and interventional distributions to edges in 𝐹 .

Representing causal DAGs as property graphs offers several key
advantages. First, it enables the causal DAG and the associated
observational data to coexist within a unified data artifact, allowing
them to be queried and analyzed jointly. Second, this representa-
tion makes it possible to leverage well-established techniques from
graph data management—such as PG-Schema [9], PG-keys [10],
and graph views [18, 27]—as well as powerful declarative query
languages like Cypher, GQL, or SQL/PGQ for expressive and ef-
ficient analysis. We argue that causal analysis is fundamentally
navigational, as causal relationships are naturally encoded as edges
in a graph. The property graph model is therefore particularly
well-suited since graph query languages are designed precisely to
support such navigational reasoning. From the above definition, it
is clear that hypernodes need to be extracted from the underlying
property graphs. A solution would be to adopt tuple generating
dependencies [27] or graph transformations [18]. An example of
graph transformation merging Smoking and COPD in a causal DAG
is the following Cypher query, where a new relationship is gener-
ated when a condition is met (the matched pattern):
MATCH (p:Person)-[:HAS_HABIT]->(h:Habit),
(p)-[:HAS_CONDITION]->(c:Condition)
WHERE c.name = "COPD" AND h.type="Cigarettes" WITH h,c
MERGE (h)-[:BELONGS]->(x:SMOKING)-->(y:COPD)<-[:BELONGS]-(c)

However, this query produces a node (variable) for each matched
path. In Figure 2(b), for example, a variable (SMOKING) is extracted
twice from the property graph instance. To deal with duplicates, we
should merge the generated nodes that have the same label. This is
possible in concrete graph query languages but requires multiple
complex queries. The first step of our vision consists of extending
the GQL syntax with a new operator EXTRACT, that allows us to
easily express the causal variable extraction by abstracting out the
details of hypernodes and graph transformations:
MATCH (p:Person)-[:HAS_HABIT]->(h:Habit),
(p)-[:HAS_CONDITION]->(c:Condition)
WHERE c.name = "COPD" AND h.type="Cigarettes"
EXTRACT (x:SMOKING)-->(y:COPD)
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STRESS

INCOME
LEVEL

AGE

COPD

MEDIATORS?

CONFOUNDERS?

INTERVENTION do(stress=10)

COUNTERFACTUAL do(cigarettes=0)

HAS_CONDITION

HAS_CONDITION

VISITS

Habit

Condition

HAS_HABIT

Condition

Hospital

HAS_CONDITION

HAS_JOB

VISITS

Person

Habit

Job

HAS_HABIT

name:Ali
age: 55
sex: M

name: Kate
age: 31
sex: F

name:COPDname:NY Presbyterian

type: Cigarettes
frequency: 15/day

type: Cigarettes
frequency: 10/day

name:Stress
severity:high

type:Engineer
salary:100k

SMOKING

Person

Person

STRESS

SMOKING

AGE

STRESS

(a) (b) (c)

Figure 2: Example of a Causal Directed Acyclic Hypergraph model including the observational data (a), their mapping to the
causal variables in the causal DAG (b), and the results of different causal queries (c).

After extracting the variables from the property graph instance, the
causal DAG is not yet complete as it needs to be enriched with the
probability distributions to the edges as properties.

Figure 2(b) shows an example of causal DAG extracted from
a property graph (the colors indicate the mapping between the
observational data in the property graph and the causal variables).
We can see how different paths in the property graph are mapped
to the causal DAG, specifically the query listed above created the
path (SMOKING)-->(COPD) from the path including Person and Habit.

4 CAUSAL PG QUERIES
Causal investigation consists of a three-level hierarchy of analysis.
First, association, which serves as the starting point, identifies rela-
tionships between variables. While this alone cannot answer causal
queries, it might guide hypothesis generation. It consists of posing
questions like “What if I see..?” or “Is the value of 𝑋 relevant for
estimating the value of 𝑌 ?”. Second, intervention, which is used for
interventional queries, addresses questions like “What happens if we
do X? Why?”. Finally, counterfactual, which is essential for provid-
ing insights into hypothetical alternate realities, handles questions
like “What if I had done...? Why?”. These investigations need to be
paired with the structural analysis of causal models, which plays a
crucial role in the broader process of causal discovery and causal in-
ference. During the causal discovery phase, identifying confounder
paths (and blocking them) prevents a biased interventional analysis
because confounders can create spurious associations or hide true
causal effects. The same occurs with colliders path because they
can create spurious associations if incorrectly conditioned on.

In this section, we propose our vision about conducting causal
analysis using a declarative approach relying on graphqueries
and their path semantics, highlighting the advantages of rely-
ing on property graph models. In particular, we identified a list
of queries that correspond to a specific type of analysis and we
show how to write them in a standard graph query language. In
our examples, we use bold for the part of the queries that refer to
hypernodes (the causal variables in Figure 2(b)) and the green color
to indicate our proposed extensions to the query language. All the

following graph queries are expressed in GQL [31], but they can be
similarly encoded in Cypher or SQL/PGQ [30].

4.1 Causal Path Queries
Causal mediation analysis examines how an exposure influences an
outcome through intermediary variables, known as mediators. This
approach decomposes the total effect of an exposure into a direct
effect, the impact of the exposure on the outcome not mediated by
the intermediary, and an indirect effect, the portion of the effect
that operates through the mediator [42]. Correct mediation analysis
has to be conducted after checking for existing confounding paths
between the investigated variables.

Identifying the mediator nodes can be done using graph queries
supported by the current standards. For instance, identifying the
mediators between two variables 𝑋 and 𝑌 checking the absence of
confounding paths, can be achieved via this simple query:

MATCH (a:X)-->(m)-->(b:Y)
WHERE NOT EXISTS { MATCH (a)<--(c)-->(b) }
AND NOT EXISTS { MATCH (a)<--(c)-->(m) }
AND NOT EXISTS { MATCH (m)<--(c)-->(b) }
RETURN a as Exposure, m as Mediator, b as Outcome

Current graph query languages (GQL and SQL/PGQ 1.0) can-
not retrieve all relevant paths needed for statistical adjustment.
To address this, path operators must be added, as in [11]. This be-
comes especially important for multiple mediators, e.g., matching
(a:X)-->(m)-->(b:Y) where ∗ denotes the Kleene star for paths with
zero or more intermediates [36].

The advantages of relying on PGs come from the possibility
of accessing directly the observational data for further analysis
since the DAG and the instances belong to the same data model.
For example, to know which graph instance corresponds to the
mediator between the variable INCOME LEVEL and COPD in the case of
Kate in the graph in Figure 2, we can use the following query:

MATCH (p)--(j:Job)-[:BELONGS]->(a:INCOME LEVEL)-->(m)-->(c:COPD)
WHERE p.name="Kate" WITH m
MATCH ALL instance=(m)<-[:BELONGS]-(n1)
-[]-{*}(n2)-[:BELONGS]->(m)
RETURN instance
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Where MATCH ALL is the path operator that lists all the path that
matches the given pattern. This query first reaches the causal vari-
able INCOME LEVEL from the node Person. Then it identifies themediator
via pattern matching. Finally, it leverages the path algebra to re-
turn the subgraph that corresponds to the mediator (e.g. the path
expressing that Kate is smoking 15 cigarettes a day).

The same type of query applies to retrieve collider paths. Collid-
ers block the path between two variables. By conditioning on the
collider, we can open the path and study the association between
the variables induced by the selection bias. Retrieving the colliders
can be easily done by matching the path (a:X)-->(c)<--(b:Y) where
𝑐 is the collider. Regular path queries [17] allow us to list the de-
scendants of the collider, since conditioning on one of them also
opens the path [43]. Moreover, conditioning on a variable means
identifying it with a value. Similarly to what we discussed with
confounder path queries, we can leverage path algebra to directly
access the instances of a collider path and select accordingly the
right value to identify the collider random variable.

4.2 Interventional Query
Interventional queries focus on predicting the effects of specific
interventions or manipulations by involving do-calculus [41] to
simulate interventions. An example consists of investigating what
will be the risk of contracting the COPD from smoking 10 cigarettes
a day. In our model, this can be answered by traversing the path
between the variables (SMOKING and COPD in Figure 2(b)) to obtain the
structural equations from the node properties:
MATCH SHORTEST 1 (a:SMOKING)-->{*}(m)-->(b:COPD)
RETURN a.s_eq as s_s, m.s_eq as s_m, b.s_eq as s_l

where SHORTEST 1 is the path algebra operator that matches the
shortest path between two nodes [11]. Then, we need to apply the
do-operator 𝑑𝑜 (𝑐𝑖𝑔𝑎𝑟𝑒𝑡𝑡𝑒𝑠 = 10) to the variable SMOKING and to eval-
uate the impact of this intervention on the variable COPD. To obtain
the values for the other variables in the equations we can lever-
age the path operators to access the data instances in the property
graph as described in Section 4.1. Linear equations can be solved in
GQL since they do not require Turing completeness. However, GQL
does not have built-in matrix operations, so solving systems with
multiple variables is inefficient or impractical. Current solutions
consist of relying on procedural languages (such as custom APOC
procedure [35]). However, this obliges to go beyond the declarative-
ness of the query language. We propose to extend the GQL standard
with an operator DO-CALCULUS([values],[equations]) that evaluates the
structural equations for an identified value.

Table 1: Comparison of tools on causal inference tasks.

Task PyWhy CausalAI Graph DBMS WhatIf

Causal Discovery ✓ ✓ ✗ ✓
Causal DAG Mining ✗ ✗ ✗ ✓
Causal Path Finding ∼ ∼ ✓ ✓

Causal DAG Manipulation ✗ ✗ ✗ ✓
Causal DAG Maintenance ✗ ✗ ✗ ✓
Causal DAG Transportability ✗ ✗ ✗ ✓

Intervention ✓ ✓ ∼ ✓
Counterfactual ✓ ✓ ∼ ✓

Table 2: Runtimes (s) by query type and DAG size; bracketed
values show runtimes without the causal model, and best
runtimes are in bold.

#Nodes
(#C.Var.) Extract Mediators Confound. Colliders Interv. Counterf.

5k (5) 0.780 0.003 (0.648) 0.004 (0.656) 0.003 (2.218) 0.194 (0.113) 0.016 (0.017)
25k (25) 1.236 0.005 (3.660) 0.004 (8.246) 0.012 (24.003) 0.801 (0.104) 0.055 (0.020)
50k (50) 4.074 0.009 (25.855) 0.013 (14.095) 0.004 (39.596) 10.01 (2.954) 0.926 (0.289)

50k (5) 1.032 0.010 (2.917) 0.008 (4.891) 0.004 (11.358) 0.109 (0.757) 0.023 (0.048)
250k (25) 1.277 0.009 (37.431) 0.009 (82.466) 0.012 (230.949) 0.838 (1.161) 0.056 (0.044)
500k (50) 3.974 0.011 (367.681) 0.011 (771.086) 0.004 (2274.338) 9.951 (3.262) 0.935 (0.293)

500k (5) 1.028 0.008 (20.081) 0.007 (33.072) 0.004 (64.904) 0.106 (4.233) 0.020 (0.472)
2500k (25) 1.207 0.006 (93.703) 0.006 (537.99) 0.003 (961.93) 0.834 (0.314) 0.053 (0.042)
5000k (50) 3.989 0.007 (162.502) 0.005 (1242.618) 0.004 (1842.14) 9.831 (0.653) 0.892 (0.104)

4.3 Counterfactual Query
Counterfactual queries focus on exploring “what if” scenarios, both
on individual-level, for example asking “If patient A had not smoked,
would they still have COPD?”, or on a population-level, for example
asking “If smoking rates had been reduced by 20%, how much would
lung-related mortality have decreased?” [52].

Answering counterfactual queries implies forcing a variable to
take a specific value regardless of its natural causes. Interventional
queries involve directly manipulating a variable (𝑑𝑜 (𝑋 = 𝑥)) to ob-
serve its effect on an outcome, while counterfactual queries extend
this by conditioning on observed data to hypothesize alternate sce-
narios. The process of solving counterfactual queries simulates the
intervention within a causal model, integrated with additional steps
to account for observed evidence. This translates into computing
the noise for the specific instance using the observed evidence.

For example, if we want to find out what the COPD severity of
Ali would have been if he had not smoked, we can proceed by
computing the noise of the variable COPD from the observed data.
This means that knowing that he smokes 10 cigarettes a day and
the severity level of COPD is moderate, we can use the structural
equations to derive the noise in his case. Then we apply the do-
operator 𝑑𝑜 (𝑐𝑖𝑔𝑎𝑟𝑒𝑡𝑡𝑒𝑠 = 0) to obtain the result. With our model,
this translates into:
MATCH (h:Habit)<-[HAS_HABIT]-(p:Person)-[HAS_CONDITION]->(c:Condition)
WHERE p.name="Ali" AND h.type="Cigarettes" AND c.name="COPD"
RETURN h.frequency as f, c.severity as s
WITH f,s
MATCH SHORTEST 1 path=(a:SMOKING)-->(b:COPD)
RETURN DO-CALCULUS([SMOKING=f,COPD=s],[𝑏.𝑠𝑒𝑞]) as noise
WITH noise
MATCH SHORTEST 1 path=(a:SMOKING)-->(b:COPD)
RETURN DO-CALCULUS([SMOKING=0,𝜖𝐶𝑂𝑃𝐷 =noise],[𝑏.𝑠𝑒𝑞])

4.4 Causal DAG Maintenance
Maintaining the causal DAG according to the changes in the under-
lying data is a very tedious process that entails manually rerunning
all causal analysis on the new and updated data, since existing meth-
ods disregard the case where the underlying data change [44, 51, 53].
This is important because it avoids recomputing the causal DAG
from scratch each time the underlying data change. Our model
allows us to use established data management techniques such as
incremental view maintenance [18, 26–28, 56] and reactive graph
data management [19, 20]. We envision utilizing triggers [20] to
maintain the causal DAG by reacting to changes on edge patterns
corresponding to causal variables, and running queries to compute
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the new probability and interventional distributions Another option
is to adapt works on view maintenance [18, 27, 28, 56]. In this case,
the causal DAG will be implemented as one or more graph views
and the incremental maintenance can be done by either extending
recent proposals on graph views and transformations [18, 28], or by
adapting the well-known DRed algorithm [26] for the graph case.

5 RELATED APPROACHES
In this section, we discuss the features of our approach compared
with causal analysis frameworks - such as PyWhy [39] and Sales-
force CausalAI [13] - and graphDBMSs.We distinguish tasks related
to causal path finding and causal DAG management tasks, as well
as causal graph discovery, and interventional and counterfactual
analysis as foundations of causal analysis [43].

Causal analysis frameworks are empowered with imperative
programming interfaces, requiring familiarity with both causal
analysis and the APIs of the respective libraries. Whereas they sup-
port causality-oriented operations, such as causal discovery leading
to learn a causal DAG from the data, along with API methods for
interventions and counterfactuals, they are not able to natively sup-
port graph-oriented operations, such as causal pathfinding, leading
to retrieve all collider, mediator, and confounder paths between
two variables (as shown by the first two columns of Table 1).

In contrast, our framework (last column) adopts a different per-
spective grounded in data management, allowing DAG manipula-
tion operations based on declarative update languages, efficient
causal path traversals through graph queries, along with DAG min-
ing utilizing the topology and semantics of the underlying observa-
tional property graph data. A causality-driven approach in a graph
database can also facilitate one of the hardest tasks in the theory of
causality, namely DAG transportability (i.e., applying causal DAGs,
from one context to another [45]). It elevates path-based manage-
ment to a first-class operation where users can express complex
causal queries, directly interacting with causal paths and their prop-
erties to enumerate, filter, transform, and compare causal paths
using a declarative approach without external libraries, as causal
structures are encoded in the graph itself.

The third column of Table 1 finally shows the contrast between
what a current graph DBMS supports and what our approach sup-
ports. As also shown in the experiments, a graph DBMS does not
handle interventions and counterfactuals natively but with the
support of APOC procedures in an external library. We envision
extensions of graph query languages with DSL operators.

Our framework is not meant to replace existing tools but to
complement them. It can, for example, retrieve valid adjustment
sets or causal paths to be used by PyWhy for estimation, with results
then annotated in the graph for further querying and analysis.

6 PROTOTYPE AND EXPERIMENTAL STUDY
To assess the feasibility of our vision, we implemented a proof-of-
concept causal graph database model and conducted preliminary
experiments to evaluate the performance of our proposed queries.
Since hypernodes aren’t currently supported in any graph DBMS,
in our prototype we emulate their behavior by creating new nodes
and linking them to their respective instances. Using DoWhy [24], we
generated synthetic datasets based on causal DAGs that accurately

capture realistic dependencies between variables. We constructed
three DAGs with 5, 25, and 50 causal variables, ensuring a balanced
proportion of mediators, colliders, and confounders. Additionally,
we varied the number of instances per causal variable (1000, 10k,
and 100k), representing each instance as a node in the graph. We
ran experiments on Neo4j 5.12 [37], using a MacBook M3 Pro Max
(128GB RAM, 32GB allocated to Neo4j). Code is available at [40].

We tested different types of queries to evaluate the performance.
The Extract Queries extract causal variables as hypernodes, as de-
scribed in Section 3. The Mediator, Confounder, and Collider Queries
retrieve all mediators, confounders, and colliders from the graph.
The Intervention Queries were implemented by setting the property
of each instance to a specified input value and using Cypher aggre-
gators and mathematical operators to solve linear equations. The
Counterfactual Queries followed the same implementation but were
limited to a single instance at a time.

Table 2 reports the performances of various queries with our
solution integrating property graphs and causal models in the same
artifact with hypernodes and comparing it with the case when
they are kept separate. We can observe that for the majority of the
queries, the comparative solution is significantly less efficient than
our integrated model. Specifically, for interventional and counter-
factual queries our solution is slightly less efficient as the property
graphs grow in size. This can be explained by the fact that, since the
hypernodes are not supported by current graph DBMS, there is no
efficient way to query both the DAG and the data at the same time
while guaranteeing scalability. The results show that runtimes de-
pend on the size of the causal DAGs while the size of observational
property graph data has a negligible impact on the performances.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we discussed a new research direction leading to
integrate causal analysis into property graphs. We also showed that
causal analysis with property graphs is not only feasible but also
scales well with the size of property graphs and causal variables.

Our vision also highlights a number of limitations. The first
limitation is the extraction of the causal DAGs. Traditionally,
they are manually labeled and constructed by domain experts or
learned using causal discovery algorithms [51, 53]; however, we
argue that by leveraging the property graph model, we can employ
methods that use both topological structure of the graph and the
semantics of data values.

Second, the causal DAG maintenance and transportability
are important yet challenging tasks. For both, we envision extend-
ing works on reactive data management and view maintenance,
and developing specific Global-as-View methods, mapping local
causal graphs into a global representation [32].

Third, current graph DBMSs do not support causal queries or the
data structure needed for the model. The integration of our model
should be carefully designed to avoid negative impacts on query
performance. Future work should focus on extending Cypher and
potentially designing a DSL specific for causal graph analytics,
allowing also non-expert users to express causal queries declara-
tively, including constructs for identifying causal paths, defining
interventions, and performing counterfactual reasoning.
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