CoLA: Model Collaboration for Log-based Anomaly Detection

Xuhang Zhu Xiu Tang’
Zhejiang University, Zhejiang University,
Hangzhou High-Tech Hangzhou High-Tech
Zone (Binjiang) Institute of Zone (Binjiang) Institute of
Blockchain and Data Blockchain and Data
Security Security
zhuxuhang@zju.edu.cn tangxiu@zju.edu.cn
Haobo Wang Chang Yao
Zhejiang University, Zhejiang University,
Hangzhou High-Tech Hangzhou High-Tech
Zone (Binjiang) Institute of Zone (Binjiang) Institute of
Blockchain and Data Blockchain and Data
Security Security
wanghaobo@zju.edu.cn changy@zju.edu.cn
ABSTRACT

Log-based anomaly detection plays a crucial role in ensuring the
reliability of systems. While deep learning-based small detection
models (SDMs) are efficient, the large language models (LLMs) are
accurate and capable of providing explanations. Intuitively, a com-
pelling question arises: Can we seamlessly combine the advantages
of both approaches? In this work, we delve into this underexplored
research direction and propose CoLA, a novel collaborative log
anomaly detection framework. During collaborative inference, an
SDM serves as a filter to select potentially anomalous instances,
while a downstream LLM acts as an expert to detect anomalies,
offer explanations, and refine the SDM. Extensive experiments on
three large real-world datasets demonstrate that CoLA significantly
outperforms state-of-the-art methods in terms of effectiveness, effi-
ciency, and explainability, while also greatly reducing labor costs.

PVLDB Reference Format:

Xuhang Zhu, Xiu Tang, Sai Wu, Jichen Li, Haobo Wang, Chang Yao,
Quangqing Xu, and Gang Chen. CoLA: Model Collaboration for Log-based
Anomaly Detection. PVLDB, 18(11): 3979 - 3987, 2025.
doi:10.14778/3749646.3749668

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/skydancer-z/CoLA.

1 INTRODUCTION

With the ever-increasing scale and complexity of systems such
as data centers and cloud services, bugs and vulnerabilities have
become more prevalent [33, 40], making anomaly detection crucial

“Xiu Tang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749668

Sai Wu Jichen Li
Zhejiang University, Zhejiang University,
Hangzhou High-Tech Hangzhou High-Tech

Zone (Binjiang) Institute of Zone (Binjiang) Institute of
Blockchain and Data Blockchain and Data
Security Security
wusai@zju.edu.cn jichen_li@zju.edu.cn

Quanging Xu Gang Chen
OceanBase, Ant Group Zhejiang University,
xuquanging.xqq@antgroup.com Hangzhou High-Tech
Zone (Binjiang) Institute of
Blockchain and Data
Security
cg@zju.edu.cn

: potential pseudo-label
explanation & anomaly @ ot

@O0 = @O incorrec

(a) Evolving Log Stream

historical data incoming data

o<\ e0——
=
cloud service

(b) Log Anomaly Detection Methods

= é inaccurate & @
Q .
< SDM Q 0 e lack explanation
E EOS @ @ @ time-consuming @
— LLM

5 e—<0—~0——
é - ° Q fil é @ effective & @
Q Iﬁo ilter | - % refine T o

deactivated collect 8

LLM

Figure 1: (a) The illustration of evolving log stream in real-
world log-based anomaly detection (LAD). (b) Three cate-
gories of methods for LAD.

for system availability and reliability. Logs record system events
and states of interest during runtime [2, 8, 17], offering valuable
information for engineers to perform troubleshooting. Therefore,
log-based anomaly detection (LAD) is promising for system main-
tenance and has been widely adopted by enterprises [18, 22].
Recently, many deep learning-based small detection models
(SDMs) [4, 16, 21, 39] have been proposed to automatically detect
system anomalies, obviating the need for manual expert inspec-
tion. For instance, DeepLog [4] and LogAnomaly [21] adopt Long
Short-Term Memory (LSTM) to learn sequential patterns from nor-
mal logs, and LogRobust [39] utilizes semantic vectors to obtain
fine-grained log representations. During deployment, SDMs are
initially trained on historical data and subsequently employed to
perform anomaly detection on incoming data streams. Engineers

3979

https://doi.org/10.14778/3749646.3749668
https://github.com/skydancer-z/CoLA
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749668
https://www.acm.org/publications/policies/artifact-review-and-badging-current

place their hope in statistical coherence, assuming models will keep
functioning once deployed, while overlooking the evolving nature
of real-world environments. As illustrated in Figure 1(a), the log
distribution continuously changes with the system’s runtime state,
making it challenging for the trained models to remain effective.
Moreover, SDMs can only output the probability values of anom-
alies, without providing corresponding explanations. Consequently,
engineers are frequently required to dedicate substantial time to
both annotating data for model updates and diagnosing specific
underlying issues.

Large language models (LLMs) have demonstrated remarkable ca-
pabilities across various tasks [5, 30, 43], with strong generalization
abilities and text-based interactions that are easily understandable
by users. The success of LLMs brings promising opportunities to
log-based anomaly detection, which may enable engineers to obtain
accurate and explainable detection results. However, as shown in
Figure 1(b), despite their considerable capabilities, the inference
of LLMs is costly in terms of time and computational resources.
Therefore, given the real-time and large-volume nature of log data,
relying entirely on LLMs for timely detection is impractical. To
date, it remains questionable how to simultaneously integrate the
advantages of LLMs and SDMs for more accurate, explainable, and
labor-efficient anomaly detection.

In this work, we propose CoLA, a novel collaborative log anomaly
detection framework that harmonizes SDMs and LLMs in a comple-
mentary manner. Our intuition is that, while LLMs are inefficient
for real-time detection, they are effective detectors and can concur-
rently offer explanations. On the other hand, SDMs are capable of
efficiently providing potentially anomalous instances for further
investigation. Additionally, given that the proportion of anomaly
instances is notably low [14], it indicates that the majority of in-
stances do not require LLMs for precise detection. As shown in
Figure 1(b), to integrate SDMs and LLMs synergistically, we present
a collaborative detection paradigm in which the SDM functions as a
filter to select potential anomaly instances for further analysis, and
the LLM acts as an expert to infer anomalies and refine the SDM.
CoLA enables us to achieve an extraordinary trade-off between
effectiveness and efficiency, delivering competitive results compa-
rable to those of LLMs, while significantly reducing their inference
costs. Moreover, the generated explanations and the automatic
updates to the SDM considerably reduce the labor costs.

Specifically, CoLA consists of several key components that sup-
port the systematic collaboration mechanism. First, we design
an SDM called LogMoE, which incorporates a mixture-of-experts
(MoE) approach to learn different aspects of log knowledge, thereby
enhancing the model’s generalization ability. Second, we adopt a
two-stage hybrid training strategy to develop an LLM with do-
main expertise, termed LAD-LLM. Third, a collaborative inference
mechanism is employed, where LogMOoE filters suspicious instances,
and LAD-LLM provides the judgments along with corresponding
explanations. Fourth, by utilizing noisy label learning techniques,
LAD-LLM refines LogMoE in a human-free manner.

Overall, our contributions can be summarized as follows:

e We concentrate on a promising yet underexplored research di-
rection, specifically how to effectively combine the strengths of

SDM and LLM in practical applications.

3980

(a) Offline Training

Collaborate. data preparation
E\. train H hybrid Ve
l “ : i COL | tram SFT |construct
historical data LogMoE LAD-L ki
(b) Online Detection Deployment

pseudo-labeled
dataset explanation

preprocessing

Input

|:> oedite Collaborative Output
logs @ Anomaly Detection results

~

automatic n01sy sot noisy label
Updated| ,gaptation sample learning
<:| —~ -— .
LogMoE selection e o*

'Ffj

Figure 2: Overview of the CoLA system, consisting of two
working stages: offline training and online detection.

clean set

e We propose CoLA, a novel collaborative log anomaly detection
framework for evolving log streams. It establishes a new para-
digm that effectively and efficiently detects anomalies, provides
explanations, and alleviates the burden on engineers.

Extensive experiments on real-world datasets demonstrate the
superiority of CoLA in terms of effectiveness, efficiency, output

explainability, and labor costs.

2 OVERVIEW

In this section, we first define our problem and then give an overview
of our approach.

2.1 Problem Formulation

During system runtime, a log [is generated by the code as a for-
matted string, recording important information such as timestamps
and events. Engineers collect and analyze logs for troubleshooting
to ensure system availability.

PrROBLEM 1. Log-based Anomaly Detection (LAD). Given a se-
quence of system logs S = [, o, ..., In], where the logs are arranged in
chronological order (i.e., each log I; is generated before l;;1), log-based
anomaly detection aims to determine whether the given sequence
exhibits anomalous behavior.

2.2 System Architecture

To achieve an effective and automated log anomaly detection system
with output explanations, CoLA is meticulously designed into two
working stages: Offline Training, and Online Detection. Figure 2
provides an architectural overview of CoLA.

Offline Training. The objective of the offline training phase is
to obtain an SDM capable of performing initial filtering efficiently
and reliably, along with an LLM equipped with domain-specific
expertise. For SDM, we propose LogMoE, which incorporates the
mixture-of-experts (MoE) framework to utilize specialized experts
that capture diverse aspects of the data, thereby enhancing gener-
alization capability to unseen distributions. Additionally, we intro-
duce two regularization strategies: one to ensure balanced expert
usage, and the other to encourage diversity in expert capabilities.

For LLM, we introduce LAD-LLM, which excels in log-based
anomaly detection while providing user-friendly explanations. Spe-

cifically, the development of LAD-LLM involves two phases: data
preparation and hybrid training. Through human-machine collab-
oration, both real and synthetic data are refined, creating a high-
quality and diverse dataset required for model training. Next, we
design a two-stage hybrid training strategy to enhance domain-
specific capabilities while maintaining the general capabilities.

Online Detection. In this stage, we present how to implement
online anomaly detection through data preprocessing, model col-
laboration and automatic adaptation. When new logs arrive, they
are first parsed into event templates and then partitioned into fi-
nite sequences. Finally, these sequences are converted into feature
vectors for subsequent anomaly detection.

Following log preprocessing, the system conducts anomaly de-
tection via model collaboration. LogMoE efficiently performs initial
filtering, classifying logs into potential anomalies and normal in-
stances. Potential anomalies, accounting for a small portion of the
data, are sent to the LAD-LLM, where rigorous reasoning is applied
to conduct further precise diagnostics and generate explanations
in textual form, enabling engineers to swiftly identify underlying
errors. To further improve efficiency and reduce generation time,
a knowledge reuse strategy is adopted, utilizing a hash table to
rapidly index and reuse previously generated results.

During runtime, model adaptation for LogMoE is performed
automatically. Specifically, LAD-LLM can be regarded as a special-
ized annotator for the results produced by LogMoE, enabling the
collection of extensive pseudo-labeled data without human labor.
Despite the high accuracy of LAD-LLM, a small number of errors
still persist. Therefore, we incorporate noisy label learning into the
training process to ensure its effectiveness. We employ a parallel
training strategy that conducts inference with the latest fine-tuned
LogMoE, while automating its offline updates.

3 OFFLINE TRAINING

In this section, we present the design and construction of the effi-
cient filter SDM (LogMoE) and the expert LLM (LAD-LLM), which
are key components for the subsequent online detection stage.

3.1 LogMoE: An Efficient and Reliable SDM

As previously discussed, the SDM functions as a filter, enabling
rapid and relatively accurate initial detection. Next, we present
LogMoE, an SDM meticulously designed for this purpose, trained on
historical data, and demonstrates strong generalization capabilities.

3.1.1 Model Architecture Design. The overall design and architec-
ture of LogMoE are shown in Figure 3. Drawing inspiration from
the mixture-of-experts (MoE) [27], we leverage multiple experts to
capture different aspects of the data’s features, thereby improving
the model’s generalization capability to evolving streams.

First, the preprocessed input log sequence X = {x1, X, ...,Xp} is
encoded using a Bi-LSTM, which effectively processes the sequence
bidirectionally to produce hidden states H € R"*1

H = Bi-LSTM(X), (1)
where H = {hy, hy, ..., h,}, n and d; are respectively the length of
log sequence and the dimension of the hidden state.

Next, a MoE layer is employed, consisting of a gating network
and a set of experts. For each encoded log representation hj, the
gating network generates a probability distribution g(hj) over the

3981

MLP

A\

1 1 1
P

MoE Layer

A\

i i i
P

Encoder

TX = {x1, %z, ., 2}
Figure 3: An overview of the LogMoE architecture, where the

MOoE layer contains m experts and dynamically utilizes the
top-k experts for each input.

experts, then routes the representation to the top-k experts.

g(h;j) = Softmax(Wyh;), @

where W, € R™%d1 are trainable gating parameters, m is the num-
ber of experts. For the i-th expert, E;(h;) consists of a two-layer
multilayer perceptron followed by a ReLU activation function,
which transforms the input into the output feature space. The
MokE-enhanced representation h;. is computed as the weighted sum
of the selected experts’ outputs, based on the gate value g(hj).

Ei(hj) = W, - ReLU(W/ h;),
b = > g(h))iEi(hy),

€T

®)

where W/, € R%:%d1 and Wi, e R41%d2 gre trainable parameters of
the i-th expert, d3 is the hidden layer dimension, and 7~ denotes
the set of selected experts. By applying mean pooling to H' =
{h/ b, ...h},} and a multilayer perceptron (MLP) classifier, the
prediction § and cross-entropy loss L, are obtained for training:

i} = Softmax(MLP(MeanPooling(H"))),
Lee = —[ylog(g) + (1 —y) log(1-7)],

where y represents the ground truth label for anomaly status.

©

3.1.2 Auxiliary Losses. To further equip LogMoE, we introduce
two auxiliary losses, which are used to ensure balanced expert
utilization and enhance the diversity of expert capabilities.

Load Balancing Loss. LogMoE tends to suffer from load imbal-
ance, where the vanilla gating network disproportionately favors
a few experts, leaving others underutilized. Such imbalance is re-
inforced over time [32], as favored experts receive more training,
increasing their chance of future selection. To ensure balanced
expert utilization, we design a load-balancing loss that penalizes
over-reliance on individual experts. Each expert’s importance is
derived by averaging its gating probabilities across a batch. Given
m experts indexed by i = 1 to m and a batch 8 with T logs, we
formulate the load balancing loss £p,; as follows:

m
=m ZfiGi,
i=1

% Z gi(x),

xeB

Lpai

Gi= 6)

fi Z 1(log x selects expert i),

1
kT xeB

where G; represents the averaged gating probability for expert i,
f; indicates the proportion of logs assigned to expert i, and 1(-)
denotes the indicator function.

Expert Diversity Loss. Experts tend to produce similar represen-
tations, limiting the diversity of acquired knowledge and resulting
in redundant parameters. To address this redundancy, we introduce
an expert diversity loss that maximizes differences among expert
representations, thereby promoting richer knowledge acquisition.
Specifically, minimum hyperspherical separation (MHS) [19] is em-
ployed to maximize the distance among expert weight vectors, and
the expert diversity loss Ly;, is formulated as follows:

(6)

max
{O1,0dm €St 1}

where W = {&1, -+, dm € S'~1} denotes the set of expert weight

¢ A ._ _vec(W;)
vectors, @; = [T
i-th expert weight matrix W; and projecting it onto the unit hy-
persphere S:=! = {& € R? | ||&]| = 1}, and p(-,-) denotes the
Euclidean distance between any two vectors on Sf~1.

The overall loss function of LogMoE can be formulated as:

{Laio(W) = min p(svi,)},

represents the process of vectorizing the

-LLogMoE = Lee + Lpar + Laio- (7)
With the above design, LogMoE trained on static data can effi-
ciently detect potential anomalies and generalize well.

3.2 LAD-LLM: A Powerful LLM with Domain
Expertise

We now elaborate on the development process of LAD-LLM, a
specialized LLM tailored specifically for log anomaly detection
(LAD). The process comprises two key steps: data preparation and
hybrid training, as illustrated in Figure 4.

3.2.1 Data Preparation. We construct training data using both real-
world and synthetic data to infuse domain-specific knowledge into
the LLM, as shown in Figure 4(a). First, real log sequences are sam-
pled from public LAD training sets (e.g., HDFS), which are labeled
by experts. Second, considering that the evolution of logs is driven
by system maintenance and running environment [13, 39], we sim-
ulate this process using synthetic data to increase the data diversity.
Specifically, based on the real-world data, we leverage LLMs and
rules to synthesize data (rewrite, duplicate, remove, shuffle), with
a volume equal to one-tenth that of the original data. To rewrite
the log, LLMs are prompted to make slight modifications to certain
expressions in the original log. On the other hand, according to
predefined rules, logs in the log sequence are randomly duplicated,
removed, or shuffled. These operations do not significantly alter
the original semantics, leaving labels unaffected.

After obtaining the initial real and synthetic data, we proceed to
investigate explanation generation. Powerful LLMs (such as GPT-
40), are employed to reason and generate preliminary explanations.
Next, human experts revise the generated analyses to form accu-
rate explanations. Ultimately, we obtain Dj,q = {(Qi, Ai) | i
1,2,...,Ny} for LAD-LLM training, where Q; and A; denote the
question and its corresponding answer, and Ny is the total sample
count. To enable LAD-LLM to generate outputs readily callable
through interfaces during deployment, we structure A; as JSON.

3.22 Hybrid Training Strategy. After data preparation, we explore
how to effectively inject domain knowledge into the LLM. Previous

3982

(a) Data

LLM @ ;
: synthetic annotate
Preparatlon&y) >
— § A 1L
il LLM & human [% J
D real real
; LAD dataset
(b) LAD-Mix { 3 Question:
9-q 0 Analyze the following log
Training | [— D, sequence ...
\ Answer:
”””””””””””” {“status”: “Abnormal”,
¢ zndl stage “explanation”: The kernel
15 ‘®° Do might have crashed due to
D lo; - exceeding memory
8 | stage Jimits...")
Llama LAD-LLM ™%

Figure 4: Illustration of LAD-LLM development, consisting of
two steps: data preparation and hybrid training (LAD-Mix).

studies [35, 44] indicate that widely used techniques like full fine-
tuning and LoRA [12], while improving model performance in new
domains, can lead to a degradation of general capabilities, and may
even prevent the generation of meaningful text. To address this, we
propose a hybrid training strategy, LAD-Mix, which balances log
anomaly detection performance with general capabilities.

As shown in Figure 4(b), LAD-Mix consists of two stages. The
first stage involves training with the curated data, which contains
log domain expertise, while the second stage refines the model us-
ing a mixture of domain-specific and general data (i.e., Alpaca [31]
and LIMA [45]). Extensive experiments validate the effectiveness
and ease of use of the LAD-Mix training strategy, which achieves
the best balance between detection performance and general capa-
bilities among all methods. The detailed experimental results and
analysis will be provided in Section 5.2.3.

After training, LAD-LLM can accurately detect potential anoma-
lous instances in the subsequent online stage, provide explanations,
and assist in the automatic updating of LogMoE.

4 ONLINE DETECTION

In the online detection stage, the offline-trained LogMoE and LAD-
LLM models are deployed to run collaboratively. Specifically, this
involves three phases: data preprocessing, collaborative anomaly
detection, and automatic adaptation.

4.1 Preprocessing Module

The preprocessing module consists of three steps: (1) log parsing,
(2) log partitioning, and (3) log representation. When new logs ar-
rive, we employ a widely used log parser (i.e., Drain [9]) to convert
each log into a specific log template. Next, the logs are partitioned
into log sequences for pattern learning, as anomaly detection on a
sequence of logs is more effective than on individual logs. In the
final step, we convert the logs into semantic feature vectors for
subsequent detection models. Specifically, we use pre-trained GloVe
embeddings [25] to represent each word in the logs and apply the
TF-IDF strategy to weigh their importance. The representation of a
log I is computed as x = 25\21(61‘ X a;), where Nj is the number of
words in [, and e; and «a; respectively represent the word embed-
ding and TF-IDF weight of the i-th word in I. By applying these
operations to each log in the log sequence, the preprocessed log
sequence X = {X1,X2,...,Xp} is obtained.

Algorithm 1: Collaborative Anomaly Detection

Input: Preprocessed log data X

Output: Anomaly status of X, labeled dataset D
1 D« {},Tj « {} // Initialization
2 for X € X do
3 LogMOoE computes the anomaly status s and confidence

c for the normal class, with X as input.
if s = abnormal or ¢ < 7 then
explanation e, status s = Retrieve(T}, h(X))
if e is NULL then
LAD-LLM generates the anomaly status s and
corresponding explanation e, with X as input.

Dy — Dy U{(X, s)}, Insert(T}, h(X), (s, €))

9 return anomaly status s and explanation e

else
L return anomaly status s

10
11

12 return 9

4.2 Collaborative Anomaly Detection

To achieve accurate and efficient anomaly detection, we propose a
collaborative detection mechanism combining the strengths of Log-
MoE and LAD-LLM. LogMoE efficiently filters out a large volume
of normal instances, passing the low-proportion potential anomaly
instances to LAD-LLM for accurate inference. Since log sequences
occasionally exhibit identical patterns, CoLA adopts a knowledge
reuse strategy that leverages historical generation results (anom-
aly status, explanations), thereby further enhancing efficiency and
reducing the generation time of LAD-LLM. Given an input log se-
quence X, hashed by function A, the retrieval of matching results
from hash table T; determines if a match exists. If a match is found,
the result is returned directly; otherwise, CoLA defaults to standard
LAD-LLM reasoning. A comprehensive description of our collabo-
rative anomaly detection approach is provided in Algorithm 1.
The procedure starts by initializing an empty set 9; and an
empty hash table Tj to store pseudo-labeled data and historical gen-
eration results, respectively (line 1). Next, it traverses all the prepro-
cessed log sequences and performs anomaly detection (line 2-11).
For each log sequence X, it first utilizes LogMOoE for initial detection,
obtaining the anomaly status s and the confidence c for the normal
class (line 3). If the status is abnormal or the confidence is below a
predefined threshold 7, the log sequence is sent to LAD-LLM for
precise detection (line 4); otherwise, the log sequence is marked
normal (line 10-11). Before LAD-LLM inference, the input is hashed
to quickly check for reusable results in T; (line 5). If a match is
found, it is returned directly (line 9); otherwise, standard LAD-LLM
detection is applied (line 6). In the LAD-LLM detection step, more
accurate anomaly status s and the corresponding explanation e are
generated through reasoning and returned as the final result (line 7-
9). Each log sequence processed by LAD-LLM is added as a sample
to Dy, with its anomaly status s annotated as a pseudo-label. Simul-
taneously, s and the corresponding explanation e are inserted into
T; (line 8). Ultimately, we obtain anomaly statuses for all log data,
with anomalous log sequences accompanied by explanations, along
with the dataset O; for the automatic adaptation phase (line 12).

3983

4.3 Automatic Adaptation

Model adaptation can effectively mitigate performance degrada-
tion caused by changing data distributions. Unlike previous ap-
proaches [4, 21, 39] that require time-consuming and expert-involved
labeling, our automatic adaptation module updates LogMoE au-
tonomously with LAD-LLM assistance. In the process of anomaly
detection with LAD-LLM, a portion of the LogMoE results has been
pseudo-labeled, forming a dataset 9;. We then adopt noisy label
learning techniques to distill knowledge for model adaptation.
The memorization effect of deep neural networks [29] reveals
that models initially fit easy patterns in the early stages of training,
whereas noisy samples typically lead to larger loss values. Therefore,
after a few warm-up epochs of standard training on noisy labels,
we apply the Expectation-Maximization algorithm to fit a two-
component Gaussian Mixture Model (GMM) [26] to the loss ¢ of
each sample, identifying the clean samples. For each sample, the
clean probability is represented by w; = p(g|f;), where g is the
Gaussian component with a smaller mean (indicating lower loss).
Then, we divide D into a clean subset D, and a noisy subset Dy:

D = {(Xi,s1) | Xi € Dy, wi 2 7c},
Dy ={(Xi) | Xi € Dy, wi < 1},

where 7. is a preset threshold. Once the time since the last update
exceeds the predefined maximum interval, or D, reaches a certain
size, the model is automatically updated and used for the online de-
tection module. This automated update strategy is not only efficient
but also reduces a significant amount of expert labor costs.

Discussion. In future deployments, the system will continuously
perform anomaly detection on real-time log streams through model
collaboration. Upon identifying an anomaly, it will parse the LLM-
generated JSON outputs to extract anomaly information and cor-
relate it with system logs and metadata to generate alerts. These
alerts will be dispatched through enterprise incident management
platforms (e.g., PagerDuty) to on-call engineers, supporting timely
diagnosis and resolution via the operations console.

®)

5 EVALUATION
5.1 Experimental Setup

5.1.1 Datasets. We conduct comprehensive experiments on three
real-world public datasets to evaluate the performance of CoLA and
baseline methods. (1) HDFS [36] was collected during the execution
of Hadoop-based MapReduce jobs on the Amazon EC2 platform
for 38.7 hours. It consists of 11,175,629 log messages, organized
into 575,061 log sequences based on the block_id of each log, with
16,838 identified as anomalous. (2) BGL [23] was collected from
BlueGene/L supercomputer system at Lawrence Livermore National
Labs (LLNL) over a period of 214 days. It comprises 4,747,963 log
messages, of which 348,460 are anomalous. (3) Spirit [23] was
collected from the Spirit supercomputer system at LLNL over a
2.5-year period, totaling 272,298,969 logs. Given its large size and
the computational cost of training and inference, we adopt the first
10 million messages as the studied dataset, among which 289,905
are anomalous.

5.1.2 Baseline Approaches. In this work, we implement eight base-
line methods, divided into two categories: SDM and LLM. (1) SDM:
DeepLog [4] and LogAnomaly [21] are unsupervised approaches

Table 1: Overall anomaly detection performance.

Table 2: Ablation study results for LogMoE.

HDFS BGL Spirit HDFS BGL Spirit

Method P R FB|P R F|P R T e T S
DeepLog | 78.60 93.15 85.26|21.71 77.86 33.95|34.79 98.02 51.35 LogMOoE [85.60 99.99 92.24(87.09 97.78 92.12(77.03 97.89 86.22
LogAnomaly| 65.39 93.50 76.96|23.65 80.41 36.55|46.57 98.38 63.22 w/0 Lpg |83.96 99.24 90.96|87.28 89.09 88.18(77.14 87.81 82.13
PLELog 76.81 90.85 83.2466.02 83.98 73.92139.73 96.94 56.36 w/0 Lg;, |84.67 97.38 90.58|86.89 95.32 90.91|73.38 92.03 81.65
NeuralLog |74.34 93.57 82.85|84.89 76.35 80.39|53.60 89.98 67.18 W/0 Lposn, | 80.94 98.95 89.04|85.71 88.44 87.05|70.76 91.77 79.91
LogRobust |80.91 92.77 86.44|85.74 81.15 83.38|41.94 99.20 58.96 w/o MoE [77.29 94.55 85.05|80.14 88.07 83.92|58.31 91.14 71.12
Llama3-8b | 547 83.19 10.27|41.34 94.83 57.58]20.77 99.22 34.35

Llama3-70b | 7.51 99.67 13.97 |42.80 96.08 59.22|21.41 99.95 35.27 Regarding SDMs, we observe a tiered performance pattern across
GPT-40 9.83 91.28 17.75|49.11 95.82 64.93|24.39 100 39.22 learning paradigms: supervised approaches (i.e., LogRobust, Neural-
LogMoE 85.60 99.99 92.24|87.09 97.78 92.12|77.03 97.89 86.22 Log) demonstrate the strongest performance, followed by the semi-
LAD-LLM |91.69 100 95.66|96.66 98.68 97.66|88.73 99.97 94.02 supervised PLELog, while unsupervised approaches (i.e., DeepLog,
CoLA (off) |{91.90 99.99 95.7797.08 97.59 97.33|89.02 97.88 93.24 LogAnomaly) trail behind. This aligns with expectations, as super-
ColA 92.85 99.75 96.18|97.04 98.53 97.78|90.37 98.33 94.18 vised methods utilize semantic log representations and incorporate

that predict and detect anomalies using the autoregressive para-
digm. PLELog [37] is a semi-supervised method that uses proba-
bilistic label estimation to incorporate historical knowledge. Neu-
ralLog [15] and LogRobust [39] are supervised approaches that
incorporate semantic-aware embeddings for anomaly detection. (2)
LLM: Llama-3.1-8b and Llama-3.1-70b are open-source models that
can be deployed locally, while GPT-40 requires API-based access.

5.1.3 Evaluation Metrics. Following prior research [4, 21, 39], we
adopt Precision (P), Recall (R), and F1-score (F1) as the metrics to
evaluate the effectiveness of each method.

5.1.4 Implementation Details. For LogMoE, we train the model
for 20 epochs with a batch size of 256, a learning rate of 2e-3, and
the Adam optimizer. The total number of experts m is set to 8,
and the number of selected experts k is set to 2. Following prior
work [13, 16], we use 20% of the data for training and set the sliding
window size to 100. For LAD-LLM, we adopt Llama3-8b as the base
LLM and apply the LAD-Mix strategy, first training for 1 epoch
with domain-specific samples, followed by 2 epochs with mixed
samples (1:1 ratio of domain-specific to general data). Training is
performed with a batch size of 16, a learning rate of le-5, and the
Adam optimizer. GPT-4o is accessed via API (gpt-40-2024-11-20).
The experiments are conducted on an Ubuntu Linux 20.04 system
equipped with four A800 GPUs.

5.2 Experimental Results

5.2.1 Effectiveness. We conduct a comparative analysis of CoLA’s
anomaly detection performance against various baseline methods,
as shown in Table 1. The methods are grouped into three categories:
SDM, LLM, and our proposed models (CoLA, LogMoE, LAD-LLM).
Among these, CoLA employs an automatic adaptation strategy at
runtime, while CoLA (off) does not utilize such a strategy.

The results show that CoLA achieves the best anomaly detection
performance across all datasets, with F1-score improvements of
11.27%, 17.27%, and 40.19%, respectively. This verifies the effective-
ness of the collaborative detection framework, where the filtering
process not only alleviates the workload of LAD-LLM but also
improves precision, thereby further enhancing detection capabili-
ties. CoLA (off) exhibits a slight performance decrease compared
to CoLA, as the performance of the filter (LogMoE) is affected by
changing data distribution. In contrast, automatic adaptation helps
maintain superior performance.

3984

additional information through labeled training. However, these
SDMs show limited generalization and struggle with evolving data
distributions. For instance, LogRobust achieves only a 58.96% F1-
score on Spirit. By incorporating the mixture-of-experts mechanism
to learn different aspects of the data and fuse expert knowledge dur-
ing inference, LogMoE demonstrates strong generalization capabil-
ity. Compared to other SDMs, it achieves an F1-score improvement
of 6.71%, 10.48%, and 28.34% on HDFS, BGL, and Spirit, respectively.
Regarding LLMs, the performance generally improves with in-
creasing model size and the amount of pretraining data. Neverthe-
less, even the powerful GPT-40 achieves at most 64.93% F1-score on
BGL and performs significantly worse on HDFS, with only 17.75%.
This may stem from the specialized nature of log data analysis,
which contrasts with the general-purpose knowledge encoded in
LLMs, limiting their ability to effectively model domain-specific
patterns. For LAD-LLM, we observe that after being trained on
curated domain-specific data, it acquires domain expertise and
achieves superior performance across all datasets, with F1-scores
of 95.66%, 97.66%, and 94.02%, surpassing all baseline methods. It
can be deployed locally for inference, mitigating the risk of data
leakage. However, its low efficiency prevents it from processing
the vast volumes of real-time log data in practical scenarios. Our
framework CoLA effectively addresses this critical challenge, with
experimental results and analysis detailed in Section 5.2.5.

5.2.2 Ablation Studies. We evaluate the components of both CoLA
and LogMOoE to understand their contributions.

Ablation Study on CoLA. We investigate the effectiveness of
the model collaboration mechanism and the automatic adaptation
module. As shown in Table 1, the collaboration mechanism of CoLA
effectively improves the precision and F1-score of the original LAD-
LLM. By comparing the results of CoLA and CoLA (off), we find
that CoLA’s performance is further enhanced by the automatic
updating of LogMoE.

Ablation Study on LogMoE. We conducted experiments to
assess the effectiveness of each LogMoE module: (1) LogMoE w/o
Lpq; denotes the removal of the load balancing loss. (2) LogMoE
w/o Lg;, represents the removal of the expert diversity loss. (3)
LogMoE w/o Ly,;j, indicates the removal of both the load balancing
loss and the expert diversity loss, using only the cross-entropy loss
function. (4) LogMoE w/o MoE refers to the removal of MoE layer.

As shown in Table 2, we found that encouraging a more even
distribution of logs across experts, along with regularization to

® LoRA * L1 Norm L2 Norm * LAD-Mix(ours)
WISE-FT(0.4) » WISE-FT(0.6) » WIiSE-FT(0.8) e Full
70 LAD-Mix (ours)70 LAD-Mix (oufs);q [CAD-Mix (outs)
— = * * *
3 > » " [>
65 > 65 65
O 60 60 e 60 ®
I
255 ° 55 55
%50 50 o | 50
4§55 90 o5 1007 85 90 95 100%°8 8 90 95
HDFS F1 (%) BGL F1 (%) Spirit F1 (%)

Figure 5: The anomaly detection and general capabilities of
Llama3-8b after fine-tuning via different approaches.

enhance the diversity of expert capabilities, can effectively improve
the model’s anomaly detection performance. The results of LogMoE
w/0 Lpop are significantly better than those of LogMoE w/o MoE,
indicating that the MoE layer can significantly enhance the model’s
generalization capability in handling evolving data.

5.2.3 Effectiveness of LAD-Mix Training Strategy. As mentioned in
Section 3.2.2, we conduct experiments to compare the performance
of LAD-Mix with other common LLM fine-tuning methods, includ-
ing Full (direct fine-tuning of all parameters), LoRA [12], L1 Norm,
L2 Norm, and WiSE-FT [34]. The F1-score is used to measure the
anomaly detection capability, while the MMLU benchmark [11]
evaluates general capabilities using accuracy.

The experimental results are shown in Figure 5. Since anom-
aly detection is critical for ensuring system reliability, and general
capabilities are essential for generating meaningful explanations,
both factors must be jointly considered. Current methods typically
improve anomaly detection at the expense of general capabilities,
making it challenging to achieve high performance in both simul-
taneously. For instance, Full achieves the best anomaly detection
performance but significantly degrades general capabilities. Lora
reasonably preserves general capabilities but struggles to efficiently
acquire new domain knowledge. In comparison, LAD-Mix achieves
the second-best anomaly detection while best preserving general
capabilities, providing a better balance between the two aspects.
Thus, LAD-Mix ensures the model can accurately detect anomalies
while generating readable and useful explanations for engineers.

5.2.4 Effectiveness of Automatic Adaptation. To assess the effec-
tiveness of our automatic adaptation module, we conducted experi-
ments comparing it with human annotation update method. Here,
“w/ human” refers to training using labels annotated manually,
while “w/ auto” indicates model updates using our LLM-enhanced
automatic adaptation module. We partition the test data into five
segments based on time, updating the model with both methods
after each segment, using 3000 samples for training in each update.

As shown in Table 3, both manual annotation and our automatic
adaptation improve model performance, indicating that updating is
an effective approach to handle continuously changing log distribu-
tions. Across different datasets and models, automatic adaptation
performs comparably to manual annotation, demonstrating the
effectiveness of our design. It not only eliminates the need for time-
consuming human annotations, but also effectively enhances the
detection performance of SDMs.

5.2.5 Efficiency. We assess CoLA’s efficiency against other baseline
approaches. The results are presented in Figure 6, where we report

3985

Table 3: Comparison of automatic adaptation and traditional

human-involved updating.

HDEFS BGL Spirit
Method P R FI|P R F1|P R FI
DeepLog |78.60 93.15 85.26|21.71 77.86 33.95|34.79 98.02 51.35
w/ human |82.94 89.27 85.98|23.64 78.05 36.28|37.55 94.64 53.77
w/ auto 79.15 92.89 85.47(22.32 76.37 34.54|34.97 97.91 51.53
LogRobust [80.91 92.77 86.44(85.74 81.15 83.3841.94 99.20 58.96
w/ human |85.67 93.30 89.32|86.28 91.47 88.80|70.56 86.95 77.90
w/ auto 82.51 93.97 87.87[86.59 85.09 85.83|59.83 88.72 71.47
LogMoE 85.60 99.99 92.24|87.09 97.78 92.12|77.03 97.89 86.22
w/ human | 88.31 99.53 93.59|90.46 98.43 94.28 |86.17 98.83 92.07
w/ auto 87.26 99.68 93.06|89.16 99.07 93.85|83.62 98.34 90.38
Deeplog H Neurallog LAD-LLM(ours)
LogAnomaly LogMoE(ours) Llama3-8b
B PLELog Il ColA(ours) Bl Llama3-70b
Il LogRobust I ColLA-(ours) EE GPT-40
$ 108 10° 105
g
:_: 10* 10* 104:
é 103 103 1034
()]
3 102 102 102
<
F HDFS BGL Spirit

Figure 6: Efficiency comparison among the studied tech-
niques.

the inference throughput, i.e., the number of logs processed per
second. In this context, “CoLA-" refers to the variant that does not
employ the knowledge reuse strategy.

Compared to the Llama3-8b with the same number of parameters,
CoLA achieves a speedup ranging from 6.7X to 115.9X across vari-
ous datasets, and is also significantly faster than other LLM-based
methods. It is because the low throughput of LLMs is the bottle-
neck in the timely processing of the hundreds or thousands of logs
generated in real-time. CoLA’s collaborative detection mechanism
efficiently filters out normal instances using LogMoE, leaving only
a small fraction of potentially anomalous instances to be accurately
classified by LAD-LLM. This approach achieves optimal detection
performance while significantly improving efficiency. Moreover,
the knowledge reuse strategy can avoid redundant reasoning on
identical pattern log sequences, leading to an average throughput
improvement of 61.26%. Although CoLA’s efficiency is marginally
lower than that of certain SDMs, which has significantly fewer
parameters, its throughput remains within an acceptable range.
Furthermore, when log sequences are long and the data volume is
large, such as in the case of Spirit, CoLA even outperforms DeepLog,
LogAnomaly and NeuralLog.

5.2.6 Explainability. To evaluate the quality of explanations, we
randomly selected 150 abnormal log sequences in total from the
test sets of HDFS, BGL, and Spirit, with equal sample sizes across
datasets. Five annotators with operations and maintenance exper-
tise rated the explanations based on Usefulness (Use.) and Read-
ability (Read.). Usefulness measures an explanation’s relevance and
practicality, while readability evaluates its clarity and ease of under-
standing, both scored from 1 to 5. As shown in Table 4, compared to
the original Llama3-8b, CoLA achieves an average improvement of

Table 4: Results of human evaluation.

HDEFS BGL Spirit
Meth
ethod Use. Read. | Use. Read. | Use. Read.
Llama3-8b 1.88 3.96 2.33 4.15 2.09 4.03
Llama3-70b 2.07 4.04 2.41 4.07 2.12 4.11
GPT-40 231 4.17 2.37 4.23 2.16 4.19
CoLA (ours) | 3.83 4.47 | 4.09 4.66 | 3.95 4.60
(" N
Instruction: Analy?e the. follow%ng log @
sequence to determine if it contains any
-771543 d‘?“ble’ anomalies and provide an explanation.
hummer alignment — % Input: {Input logs} user

exceptions
-1072 total interrupts.
0 critical input interr-

{"Status": "Abnormal",

"Explanation": "The high frequency of
double-hummer alignment exceptions and the
repeated failures in packet transmission over
the tree network indicate potential underlying
issues within the system."}

-Error sending packet | cop, A
on tree network

- J

Figure 7: An example of CoLA performing anomaly detection
on input logs and providing explanations.

89% in usefulness and 13% in readability. Although the performance
of the baseline improves slightly with an increase in parameter
size, it still falls significantly short of CoLA. These results sug-
gest that injecting domain knowledge and balancing capabilities
across different aspects can deliver more useful and user-friendly
information for engineers in decision-making processes.

Figure 7 provides an illustrative example of how CoLA offers ex-
planations to users. When LogMOoE detects a potentially anomalous
log sequence, the input prompt for LAD-LLM is automatically con-
structed by concatenating instruction with the input logs. LAD-LLM
then performs inference and returns the results (status, explanation)
in a JSON format suitable for API calls. The capability of LAD-LLM
to generate clear and informative explanations has been acquired
through offline instruction tuning on expert-curated datasets. In
the current case, CoLA detects an anomaly and attributes the issue
to certain exceptions and transmission failures.

5.2.7 Parameter Sensitivity. We evaluate the impacts of two ma-
jor hyperparameters on LogMoE performance: (1) the number of
experts m in the MoE layer and (2) the number of selected experts k.

Figure 8 illustrates the impact of m and k on detection perfor-
mance. A larger m means more experts in the MoE layer, effectively
expanding the model’s parameter capacity. For instance, in BGL,
with k fixed at 2 and m varying from 4 to 16, the F1-score increases
from 91.93% to a peak of 92.12% (at m = 8) and then drops slightly.
Here, k denotes the the number of experts selected by the gating net-
work. As k increases, more experts are involved in decision-making,
the integration of expert knowledge becomes more complex. For
instance, in BGL, with m fixed at 8, increasing k from 1 to 8 raises
the F1-score from 91.66% to 92.12% (at k = 2), then slightly drops to
91.64%. Overall, the anomaly detection performance of LogMOoE is
not sensitive to hyperparameters.

6 RELATED WORK

Log-based Anomaly Detection (LAD). LAD is critical for system
stability and availability. Recent deep learning-based approaches [4,

3986

—— Experts (m = 4) Experts (m = 8) —— Experts (m = 16)

HDFS BGL Spirit
0907 9 86| ==+
3
% es 85 o
o 82
80752 8075 3 g 8073 2

8 8
Selected Experts (k) Selected Experts (k) Selected Experts (k)

Figure 8: The impact of key hyperparameters (m, k) on anom-
aly detection performance.

10, 16, 20, 21] fall into unsupervised, semi-supervised, and super-
vised categories based on anomaly label availability. For unsuper-
vised models, DeepLog [4] and LogAnomaly [21] utilize LSTM to
learn normal log patterns by predicting the next log in a given sub-
sequence. PLELog [37] is a semi-supervised log anomaly detection
model that effectively leverages historical anomaly knowledge via
probabilistic label estimation. As for supervised models, LogRo-
bust [39] trains a Bi-LSTM that incorporates attention mechanism
and semantic embeddings for anomaly detection. NeuralLog [15] ex-
tracts semantic vectors from raw logs without log parsing, enabling
effective anomaly detection. Despite their efficiency, these methods
are either not robust to data evolution, rely on extensive manual
labeling, or lack explainability. Our CoLA framework tackles these
limitations through model collaboration.

Large Language Models (LLMs). LLMs such as GPT-4 [24], with
billions of parameters and pre-trained on vast amounts of data, have
demonstrated remarkable performance across various tasks [1, 6, 28,
41-43]. Recent studies have investigated LLMs for anomaly detec-
tion, such as in time series [46], video [38], and industrial images [7].
In addition, studies [3, 35] show that although LLMs improve in
performance when trained on new domains, their general capabili-
ties decline to the extent that they may fail to generate meaningful
text. In this work, we explore the application of LLMs in log-based
anomaly detection and achieve promising results by employing
a two-stage hybrid training approach to balance domain-specific
capabilities with general capabilities.

7 CONCLUSION

In this paper, we propose CoLA, a novel collaborative framework
integrating the complementary strengths of SDM and LLM for log-
based anomaly detection, in which the SDM serves as an efficient
filter to identify suspicious instances, and the downstream LLM
functions as an expert to detect anomalies, provide explanations,
and refine the SDM. Extensive experiments on three large real-
world datasets demonstrate that CoLA outperforms existing state-
of-the-art approaches in effectiveness, efficiency, and explainability,
simultaneously greatly reducing labor costs.

ACKNOWLEDGMENTS

This paper is supported by the National Regional Innovation and De-
velopment Joint Fund (No. U24A20254) and Zhejiang Provincial Nat-
ural Science Foundation of China under Grant (No.LQN25F020009).
This work was supported by Ant Group through CCF-Ant Re-
search Fund and Hangzhou High-Tech Zone (Binjiang) Institute of
Blockchain and Data Security.

REFERENCES

(1]

A

[12

[13]

[19

[20]

[21

[22]

[23

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable Simple
Systems for Generating Structured Views of Heterogeneous Data Lakes. Proc.
VLDB Endow. 17, 2 (2023), 92-105.

Xiaolei Chen, Peng Wang, Jia Chen, and Wei Wang. 2023. AS-Parser: Log Parsing
Based on Adaptive Segmentation. Proceedings of the ACM on Management of
Data 1, 4 (2023), 1-26.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayi-
heng Liu, Wei Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. 2024. How
Abilities in Large Language Models are Affected by Supervised Fine-tuning Data
Composition. In ACL. Association for Computational Linguistics, 177-198.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In CCS.
ACM, 1285-1298.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and et
al. 2024. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783 (2024).
Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Juliana Freire. 2024.
ArcheType: A Novel Framework for Open-Source Column Type Annotation
using Large Language Models. Proc. VLDB Endow. 17, 9 (2024), 2279-2292.
Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, and Jingiao
Wang. 2024. AnomalyGPT: Detecting Industrial Anomalies Using Large Vision-
Language Models. In AAAL 1932-1940.

Fusheng Han, Hao Liu, Bin Chen, Debin Jia, Jianfeng Zhou, Xuwang Teng,
Chuanhui Yang, Huafeng Xi, Wei Tian, Shuning Tao, Sen Wang, Quanging Xu,
and Zhenkun Yang. 2024. PALF: Replicated Write-ahead Logging for Distributed
Databases. Proc. VLDB Endow. 17, 12 (2024), 3745-3758.

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An Online
Log Parsing Approach with Fixed Depth Tree. In ICWS. IEEE, 33-40.

Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience Report:
System Log Analysis for Anomaly Detection. In ISSRE. IEEE Computer Society,
207-218.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Un-
derstanding. In ICLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In ICLR.

Peng Jia, Shaofeng Cai, Beng Chin Ooi, Pinghui Wang, and Yiyuan Xiong. 2023.
Robust and Transferable Log-based Anomaly Detection. Proceedings of the ACM
on Management of Data 1, 1 (2023), 1-26.

Max Landauer, Florian Skopik, and Markus Wurzenberger. 2024. A Critical Re-
view of Common Log Data Sets Used for Evaluation of Sequence-Based Anomaly
Detection Techniques. Proc. ACM Softw. Eng. 1 (2024), 1354-1375.

Van-Hoang Le and Hongyu Zhang. 2021. Log-based Anomaly Detection Without
Log Parsing. In ASE. IEEE, 492-504.

Van-Hoang Le and Hongyu Zhang. 2022. Log-based Anomaly Detection with
Deep Learning: How Far Are We?. In ICSE. ACM, 1356-1367.

George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy V. Ryaboy. 2012.
The Unified Logging Infrastructure for Data Analytics at Twitter. Proc. VLDB
Endow. 5, 12 (2012), 1771-1780.

Rui Li, Zhinan Cheng, Patrick P. C. Lee, Pinghui Wang, Yi Qiang, Lin Lan, Cheng
He, Jinlong Lu, Mian Wang, and Xinquan Ding. 2021. Automated Intelligent
Healing in Cloud-Scale Data Centers. In SRDS. IEEE, 244-253.

Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schélkopf, and Adrian
Weller. 2021. Learning with Hyperspherical Uniformity. In AISTATS, Vol. 130.
PMLR, 1180-1188.

Lei Ma, Lei Cao, Peter M. VanNostrand, Dennis M. Hofmann, Yao Su, and Elke A.
Rundensteiner. 2024. Pluto: Sample Selection for Robust Anomaly Detection on
Polluted Log Data. Proc. ACM Manag. Data 2, 4 (2024), 203:1-203:25.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuging Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. LogAnomaly:
Unsupervised Detection of Sequential and Quantitative Anomalies in Unstruc-
tured Logs. In [JCAL 4739-4745.

Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu, and Hua
Cai. 2013. Toward Fine-Grained, Unsupervised, Scalable Performance Diagnosis
for Production Cloud Computing Systems. IEEE Trans. Parallel Distributed Syst.
24, 6 (2013), 1245-1255.

Adam J. Oliner and Jon Stearley. 2007. What Supercomputers Say: A Study of
Five System Logs. In DSN. IEEE Computer Society, 575-584.

3987

[24

[26]

[27]

[28

[29]

(31]

[32

(33]

&
=)

[35

(36]

[37

(39]

[40]

[41

=
)

[43]

[44

[45

[46]

OpenAl 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In EMNLP. 1532-1543.

Haim H. Permuter, Joseph M. Francos, and Ian Jermyn. 2006. A study of Gauss-
ian mixture models of color and texture features for image classification and

segmentation. Pattern Recognit. 39, 4 (2006), 695-706.
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,

Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer. In ICLR.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Elnaz
Nouri, Mohammad Raza, and Gust Verbruggen. 2023. FormaT5: Abstention and
Examples for Conditional Table Formatting with Natural Language. Proc. VLDB
Endow. 17, 3 (2023), 497-510.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. 2023.
Learning From Noisy Labels With Deep Neural Networks: A Survey. IEEE Trans.
Neural Networks Learn. Syst. 34, 11 (2023), 8135-8153.

Yushi Sun, Xin Hao, Kai Sun, Yifan Xu, Xiao Yang, Xin Luna Dong, Nan Tang, and
Lei Chen. 2024. Are Large Language Models a Good Replacement of Taxonomies?
Proc. VLDB Endow. 17, 11 (2024), 2919-2932.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xiaofeng
Jia, and Song Gao. 2023. Unicorn: A Unified Multi-tasking Model for Supporting
Matching Tasks in Data Integration. Proceedings of the ACM on Management of
Data 1,1 (2023), 1-26.

Junyu Wei, Guangyan Zhang, Junchao Chen, Yang Wang, Weimin Zheng, Tingtao
Sun, Jiesheng Wu, and Jiangwei Jiang. 2023. LogGrep: Fast and Cheap Cloud
Log Storage by Exploiting both Static and Runtime Patterns. In EuroSys. ACM,
452-468.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Korn-
blith, Rebecca Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. 2022. Robust fine-tuning of zero-
shot models. In CVPR. IEEE, 7949-7961.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gho-
lamreza Haffari. 2024. Continual Learning for Large Language Models: A Survey.
arXiv preprint arXiv:2402.01364 (2024).

Wei Xu, Ling Huang, Armando Fox, David A. Patterson, and Michael I. Jordan.
2009. Detecting large-scale system problems by mining console logs. In SOSP.
ACM, 117-132.

Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised Log-based Anomaly Detection via
Probabilistic Label Estimation. In ICSE. IEEE, 1448-1460.

Yuchen Yang, Kwonjoon Lee, Behzad Dariush, Yinzhi Cao, and Shao-Yuan Lo.
2024. Follow the Rules: Reasoning for Video Anomaly Detection with Large
Language Models. In ECCV, Vol. 15139. Springer, 304-322.

Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He,
Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei
Zhang. 2019. Robust log-based anomaly detection on unstable log data. In FSE.
ACM, 807-817.

Yupu Zhang, Guanglin Cong, Jihan Qu, Ran Xu, Yuan Fu, Weiqi Li, Feiran Hu,
Jing Liu, Wenliang Zhang, and Kai Zheng. 2024. ESTELLE: An Efficient and
Cost-effective Cloud Log Engine. In SIGMOD. ACM, 201-213.

Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Geor-
gia Koutrika, and Kurt Stockinger. 2023. ScienceBenchmark: A Complex Real-
World Benchmark for Evaluating Natural Language to SQL Systems. Proc. VLDB
Endow. 17, 4 (2023), 685-698.

Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas C. Miiller,
Dalitso Banda, Fotis Psallidas, and Jignesh M. Patel. 2023. Schema Matching
using Pre-Trained Language Models. In ICDE. IEEE, 1558-1571.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, and et al. 2023. A Survey of
Large Language Models. arXiv preprint arXiv:2303.18223 (2023).

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. 2025. Towards
Lifelong Learning of Large Language Models: A Survey. ACM Comput. Surv.
(2025).

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,
and et al. 2023. LIMA: Less Is More for Alignment. In NeurIPS.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. 2023. One Fits All:
Power General Time Series Analysis by Pretrained LM. In NeurIPS.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Formulation
	2.2 System Architecture

	3 Offline Training
	3.1 LogMoE: An Efficient and Reliable SDM
	3.2 LAD-LLM: A Powerful LLM with Domain Expertise

	4 Online Detection
	4.1 Preprocessing Module
	4.2 Collaborative Anomaly Detection
	4.3 Automatic Adaptation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

