
Cracking Vector Search Indexes
Vasilis Mageirakos

Systems Group, ETH Zurich,
Switzerland

vmageirakos@inf.ethz.ch

Bowen Wu
Systems Group, ETH Zurich,

Switzerland
bowen.wu@inf.ethz.ch

Gustavo Alonso
Systems Group, ETH Zurich,

Switzerland
alonso@inf.ethz.ch

ABSTRACT
Retrieval Augmented Generation (RAG) uses vector databases to
expand the expertise of an LLM model without having to retrain
it. The idea can be applied over data lakes, leading to the notion of
embedding data lakes, i.e., a pool of vector databases ready to be
used by RAGs. The key component in these systems is the indexes
enabling Approximated Nearest Neighbor Search (ANNS). However,
in data lakes, one cannot realistically expect to build indexes for
every dataset. Thus, we propose an adaptive, partition-based index,
CrackIVF, that performs much better than up-front index building.
CrackIVF starts answering as a small index, and only expands
to improve performance as it sees enough queries. It does so by
progressively adapting the index to the query workload. That way,
queries can be answered right away without having to build a full
index !rst. After seeing enough queries, CrackIVF will produce
an index comparable to those built with conventional techniques.
CrackIVF can often answer more than 1 million queries before other
approaches have even built the index, achieving 10-1000x faster
initialization times. This makes it ideal for cold or infrequently used
data and as a way to bootstrap access to unseen datasets.

PVLDB Reference Format:
Vasilis Mageirakos, Bowen Wu, and Gustavo Alonso. Cracking Vector
Search Indexes. PVLDB, 18(11): 3951 - 3964, 2025.
doi:10.14778/3749646.3749666

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/mageirakos/crack-ivf-vldb.

1 INTRODUCTION
Large language models (LLMs) [12] can be complemented with
retrieval-augmented generation (RAG) [46]. In RAG, external data
is represented as vector embeddings (i.e., learned representations
of data that results in a multidimensional vector). It is indexed
and accessed through approximate nearest neighbor (ANN) search
so that LLMs can answer queries on information they were not
trained on. The e"ectiveness of RAG is tied to that of the ANN
index structures, making them a critical component.

In practice, the vast majority of private, unstructured data re-
mains untapped. It is estimated to be up to 80-90% of all data [53, 56],
and is often stored in data lakes on open data formats [54]. As
much as 70% of it remains unused [19], classi!ed as “dark” data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749666

Optimal

Figure 1: Total time to answer the queries submitted for dif-
ferent indexing strategies vs the number of queries submitted

[33, 93]. While the datasets can be made discoverable [14], the ac-
tual underlying data in them often remains unindexed. As of March
2020, Google Research’s Dataset Search [11] had indexed around
28 million structured and unstructured datasets [8] based on their
metadata. Embedding-based vector search and RAG techniques
could however help us go a step further by enabling direct retrieval
and question answering on the underlying data itself. This requires
embedding the data, as well as the creation of approximate nearest
neighbor indexes so as to expose the data to RAG systems. We
refer to such an approach as embedding data lakes (EDL), where
unstructured data is stored alongside its vector representations and
is queried by a pool of vector databases. E"orts in this direction
are already ongoing. Databricks uses vector search [20] over their
Lakehouse [3], and new custom storage formats [45] are being used
to store embeddings on data lakes. Researchers are also exploring
RAG-based techniques to query multi-modal data lakes [17, 79], as
well as answering queries over unstructured data [1, 49].

The issue we address in this paper is index selection at scale.
Embedding data lakes, in principle, would require building millions
of indexes across diverse datasets, modalities, workloads, and em-
bedding models, which is neither feasible nor cost e#cient. Some
datasets may receive the majority of queries while others are rarely
accessed. When selecting an index for embedding lakes, there is a
trade-o". On the one hand, building an index requires signi!cant
upfront costs that might not pay o" if the data is rarely queried.
On the other hand, skipping the indexing process and relying on
a brute-force search is not scalable. Hence, data must be indexed,
which raises two questions: when and how to index the data.

An optimal ANN index depends on the workload patterns and
future usage, which are often unknown. As shown in Figure 1,
the index that minimizes total cumulative time spent on building
and searching varies with the query volume. Larger indexes take
longer to build and require many queries to justify their upfront

3951

https://doi.org/10.14778/3749646.3749666
https://github.com/mageirakos/crack-ivf-vldb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749666
https://www.acm.org/publications/policies/artifact-review-and-badging-current

cost (e.g., the large IVFlat con!gurations (5000, 16000 clusters) in
the !gure). Brute-force search, and smaller indexes (IVFlat 1000
clusters), minimize time-to-query for fast discovery but struggle at
scale due to their higher query response times.

To tackle index selection at scale, we adopt a well-established
strategy: carefully avoiding the need to build the full index upfront.
We draw inspiration from deferred data structuring [41] and data-
base cracking [32, 35, 73]. Similar approaches have been extended to
multidimensional data [34, 62, 65, 92]. However, prior work does not
scale to the embedding dimensionalities nor supports the k-Nearest
Neighbour (k-NN) queries typical in RAG deployments. Recently,
the AV-Tree was the !rst adaptive index for high-dimensional k-NN
search [44]. AV-Tree targets short-lived data, with workloads of up
to one thousand queries, and is a tree-based Exact Nearest Neigh-
bor (ENN) adaptive index. This makes it impractical for RAG-scale
workloads, which rely on Approximate Nearest Neighbor index
structures to trade o" a bit of accuracy for lower query response
time and higher scalability. Nonetheless, the idea of dynamically
building an index tailored to the workload is compelling. In this
paper, we demonstrate how to do this e#ciently in the context of
RAGs by employing the same data structures [77] and systems [24]
used for ANN search workloads [5, 76].

We introduce CrackIVF, an incrementally built, partition-based
ANN index that dynamically improves itself to adapt to increasing
workload demands, minimizing both time-to-query and cumulative
cost associated with suboptimal static index selection. CrackIVF
evolves as a side e"ect of query execution. Each query is a candidate
around which we can add a new partition, or crack. Likewise, its
local region visited during search is a candidate for local re!nement,
allowing the index to grow and improve as more queries arrive.
E#ciency is maintained through two control mechanisms: one
deciding where to apply cracking and re!nement in the search
space, and another controlling when, balancing indexing and search
times. In this work we focus on the static setting (i.e., no data
or query distribution shifts) and evaluate CrackIVF on multiple
standard open source datasets for ANN search [6, 10, 39, 66].

For partition-based indices, index selection means deciding up-
front how many partitions the index will use, which has an impact
on the ANN search performance. More partitions increase the up-
front construction cost but improve query performance. This deci-
sion has to be made without knowing the future query workload.
On the other hand, CrackIVF waits to build the index as it sees
enough queries and decides on the clusters based on the query dis-
tribution over the search space. As more queries arrive, the clusters
are rede!ned, and their number is increased to adapt to the increas-
ing query workload. CrackIVF is an incrementally built index that
asymptotically matches or surpasses the performance of pre-built
indexes, while it has been able to answer queries along the way.

Across benchmarks, CrackIVF consistently outperforms pre-
built partition-based indexes. It converges to near-optimal query re-
sponse time, yet achieves several orders of magnitude lower startup
time than other indexes. It e#ciently scales to large workloads and,
in some cases, can process 1 million queries before the baseline
indexes have !nished building. It is the only index that consis-
tently remains near the Pareto frontier of minimum cumulative
time across the number of queries posed to the system.

2 BACKGROUND
Nearest Neighbor Search In the k-nearest neighbor (k-NN) search
problem, we are given a set of points 𝐿 → R |𝐿 |↑𝑀 and a query
𝑀 → R𝑀 . The aim is to !nd the𝑁 points in 𝐿 that are closest to𝑀 under
some notion of distance or similarity (e.g., minimize the Euclidean
distance (L2) or maximize the inner product (IP)). A straightforward
Exact Nearest Neighbor approach is a linear scan of every point,
a.k.a brute-force search, incurring𝑂 (|𝐿 | · 𝑃) complexity. There exist
more sophisticated exact indexing structures (e.g., KD-trees [9],
R-trees [30]). However, due to the curse of dimensionality [89],
performance degrades to near-linear-scan in higher dimensions,
making them impractical when |𝐿 | or 𝑃 are large. With embeddings
of hundreds to thousands of dimensions [63] and real-world datasets
at the scale of billions of data points [76], RAG systems turn to
Approximate Nearest Neighbor search techniques. They allow a
small retrieval error 𝑄 in exchange for better runtime or memory
usage. The approximation quality can be evaluated by the fraction
of exact top-𝑁 vectors recovered.

Partition based IVF methods One of the most common ANN
search structures is partition-based IVF indexes [16, 77, 78]. Instead
of scanning all points in 𝐿 ↓ R𝑀 , they divide the vector space
into 𝑅list disjoint groups, or partitions. At query time, the search
process !rst identi!es the 𝑅probe ↔ 𝑅list nearest partitions to 𝑀,
whose representative vectors are closest (or most similar) to the
query. Once these partitions are selected, the points within them are
exhaustively scanned. Since the remaining partitions are skipped,
some nearest neighbors may be missed, which is why the result is
an approximate solution. A partition-based index is built by !rst
selecting 𝑅list representative vectors for each partition, typically
using 𝑁-means on a training subset 𝐿train ↓ 𝐿 . Each data point is
then assigned to the nearest representative. These assignments are
typically stored in an inverted !le (IVF) structure [77]. A widely
adopted implementation of IVF indexes is the FAISS library from
Meta [24], which we built CrackIVF on and use as a baseline. See
Section 6 for other ANN index types.

3 SOLUTION OVERVIEW
Embedding lake deployments involve constructing ANNS indexes
for each data set of interest. The goal is to minimize index construc-
tion and memory overhead while also ensuring high queries per
second (QPS). Although other index types excel in speci!c areas,
IVF performs well in all three. For example, HNSW [52], a graph-
based index, can achieve higher QPS, but at the cost of much higher
memory. For both IVF and HSNW, the memory-QPS trade-o"s,
Figure 5 in [5], “perform nearly indistinguishably” and better than
alternatives, but as mentioned IVF is a much smaller index. The
build times of IVF indexes have been shown to be 100↑ lower than
any other index and 8000↑ lower than HNSW (Figure 10 in [5]).
Thus, looking at indexing speed versus QPS trade-o"s [70], graph-
based methods struggle, where IVFs are the best (faiss-ivfpqfs[24],
and ScaNN[29]). Focusing on a single index type doesn’t solve the
index selection problem. While IVF indexes reduce compute and
storage costs, they are still paid upfront before the query work-
load is known. We show how to extend IVF to enable incremental
construction, scaling performance based on the query volume, and
amortizing build and storage costs across time.

3952

(a) Response Time with increasing
partitions and training K-Means.

(b) Queries exhibit a skewed access pattern over the
search space that is often far from uniform.

(c) Finer partitioning of the Vector
Space based on queries received.

Figure 2: Observations behind the design: (a) separating the number and re!nement of partitions; (b) access to the index is
generally skewed towards certain regions; (c) regions queried often can be clustered and re!ned at a much lower granularity

3.1 Cracking in high dimensions
An approach to avoid the upfront cost for indexing is cracking. In
the original database cracking [35], the !nal state is where a single
column is sorted. Over time, fewer points are physically reorganized
reducing the overhead. In high-dimensional spaces, the having a
!nal sorted state no longer holds, and space !lling curves, like
Z-order [72], do not scale past a few dimensions. Additionally, in a
naive implementation, the physical reorganization happens with ev-
ery incoming query. In high-dimensions, this becomes increasingly
di#cult. High-dimensional vectors require moving multiple bytes
per dimension, increasing data movement costs. In IVF, moving
points between inverted lists incurs random access overhead, with
no eventual locality bene!ts. Furthermore, inverted lists are often
implemented as memory-aligned contiguous arrays to allow for
e#cient SIMD-based operations, and they may require linear-time
compaction even for a single vector to move. These factors con-
tribute to the latency overhead, making physical reorganization
after every query di#cult. The challenge is as follows: A cracking-
based IVF index must e#ciently manage the signi!cantly higher
overhead of physical reorganization in high dimensions, while
minimizing time-to-query, continuously improving the index, and
ensuring minimum cumulative time across all scales.

3.2 Outline of the approach
Index construction can be divided into two operations that inde-
pendently improve index performance, i) increasing the number
of partitions and ii) re!ning partitions by using K-means, which
helps to distribute points more evenly (Figure 2a). The best results
consistently come after reaching a maximum index size, even with
randomly chosen representatives, followed by K-means training
to optimize their placement. Thus, the optimal approach is to !rst
increase the number of partitions up to a limit and then also re!ne
their locations using K-means.

Observation 1: Index construction can be decoupled into two
distinct build operations, which can improve the index independently
and be separated in time.

Existing partition-based IVF vector search indexes apply build
operations evenly across the vector space, with partitions sampled

uniformly and K-means re!nements performed globally. While sim-
ple and intuitive, this approach assumes equal importance across
the space, leading to larger than necessary index build times. How-
ever, vector search workloads can exhibit highly skewed access
patterns, where certain regions are signi!cantly more important
than others. For instance, in an industrial workload [58, 59], up to
85% of partitions are never accessed during search, which would
make partitioning or training e"orts in those regions unnecessary.
As we show in Figure 2b, skewed query distributions also appear
in well known open-source vector search datasets [6, 10, 39, 66].
Even on open source datasets showcasing moderate amounts of
skew, where 80% of the total queries access 60% of the partitions,
the disparity between the most frequently and least frequently ac-
cessed partitions is upwards of 50 times. There is a fundamental
ine#ciency in current uniform indexing approaches. A large por-
tion of the vector space may rarely accessed, yet the indexing e"ort
is evenly distributed across the space, and always paid upfront.

Observation 2: Just as index construction can be separated in
time, it can also be separated in space. Index build operations do not
have to be applied uniformly across the vector space. Instead, they can
be local to regions that are accessed. Adaptive index construction that
follows the query distribution is one strategy to optimize for e"ciency.

In partition-based IVF indexes, operations performed during
search and those performed during index construction are very
similar. During search the distances of the query to centroids and
nearby points are computed, and during index construction the
distances of points to centroids are computed. This means that by
treating the query as a potential new partition representative “cen-
troid”, we can both identify good locations to add new cracks, and
reuse the intermediate computations of search to perform incre-
mental index construction. This naturally leads to a cracking-based
approach for IVF, where index construction can occur as a side
e"ect of query execution.

Observation 3: We can further amortize the cost of speci!c build
operations, such as assigning vectors to partitions and identifying the
local regions to crack and re!ne, Figure 2c. We can reuse computa-
tions from search operations to perform index construction as a
side e#ect of query execution.

3953

3.3 Outline of the solution
We propose a partition-based crackable IVF index for ANN search.
It is designed to remain near the minimum cumulative time across
the number of queries submitted, be constructed as the query load
increases, and avoid indexing unused parts of the vector space.

At initialization, CrackIVF starts as a small IVF index, with coarse
partitioning of the entire dataset. As queries come in, more par-
titions are added in the accessed regions related to the queries
(Figure 2c). The index employs two localized and independent build
operations: CRACK and REFINE. The former introduces new parti-
tions, while the latter applies a localized K-means to re!ne them.
These operations run independently across both time and region
of the vector space. Queries and their local visited regions act as
CRACK and REFINE candidates, determining where new partitions
should be introduced. Using the queries to create partitions, rather
than selecting random ones, allows the distances computed during
search to be used for stealing points from the local region, that are
closer to the query than their current assignment. Thus, intermedi-
ate results from search operations are reused to amortize the cost
of construction. Additionally, using the queries as candidates for
CRACK and REFINE enables CrackIVF to follow the query distri-
bution in terms of when and where to execute build operations.
Partitions that receive a larger number of queries will be propor-
tionally more likely to be selected for cracking and re!nement.

Finally, tomitigate the high overhead of storage reorganization in
high-dimensional IVF indexes, we do not perform build operations
after every query. Instead, CRACK operations are bu"ered and
committed only when it is bene!cial, while REFINE operations
are executed eagerly, but infrequently, to improve local regions
that queries are visiting. We introduce two control mechanisms
to make these decisions. The !rst is a set of heuristic rules that
determine the decision boundaries for where in the vector space
cracks should be bu"ered or re!nements executed. The second is a
cost-based approach that estimates the latency overhead of a build
operation and constrains it relative to the cumulative runtime of
the index since initialization. As more queries arrive and the index
is used more frequently, the budget for build operations increases
proportionally, allowing the index to improve as the queryworkload
demands increase.

4 CRACK-IVF
CrackIVF, is implemented in FAISS [24]. We describe the core logic
of the algorithm and operations in Section 4.1 and Algorithm 1;
the control mechanisms, including heuristic rules and cost models,
in Sections 4.2 and 4.3. These aid in making accurate decisions
about where and when to perform the build operations, CRACK
and REFINE (Algorithms 2 and 3). The notation used is in Table 1.

4.1 Algorithm and Operations
CrackIVF performs index construction and storage reorganization
operations as a side-e"ect of query execution to incrementally
improve the index. It has three core operations, 𝑆𝑇𝑈𝑉𝑊𝑋 !nds
the k-NN results to return to the user, while 𝑊𝑉𝑈𝑊𝑌 and 𝑉𝑇𝑍𝑎𝑏𝑇
operations reorganize the IVF structure and change the index state.

SEARCH : During the search procedure of IVF, the local region
to the query is identi!ed by !nding the 𝑅𝑐𝑑𝑒𝑓𝑔 nearest partitions

Table 1: Notation used in algorithms and cost model.

Symbol Description
|𝑁 | Cardinality, e.g., |𝑁 | = 𝑂 if 𝑁 → R𝐿 ↑𝑀

𝑃𝑄𝑅𝑆𝑇𝑈 (𝑉,𝑊) Similarity metric, where in our work
𝑃𝑄𝑅𝑆𝑇𝑈 → {Eucl. Distance (L2), Inner Product (IP)}

𝐿 → R|𝑁 |↑𝑀 Data points, 𝑀-dimensional
𝑋 → R|𝑂 |↑𝑀 Committed cracks
𝑋local → Z𝑃𝑄𝑅𝑆𝑇𝑈 Local region crack IDs
𝐿local Local region points
𝐿train K-means training points, where |𝐿train | =

min(|𝐿local |, |𝑋local | ↑ maxpoints)
𝑌iter K-means iterations
maxpoints K-means max training sample per crack
𝑌𝑍𝑇𝑎𝑅 Total inverted lists storing𝐿 , where𝑌𝑍𝑇𝑎𝑅 = |𝑋 |
𝑏 → R𝑇𝑉 ↑𝑀 Query set per search
𝑐 → R𝑇𝑉 ↑ |𝑅 |, 𝑑 → Z𝑇𝑉 ↑ |𝑅 | kNN distances and point indices from SEARCH,

where |𝑆 | → [𝑒, |𝐿visited |]
𝑊𝑎 Total queries batched in single SEARCH
𝑌𝑓𝑆𝑔𝑊𝑄 Number of partitions scanned per SEARCH
𝑒 Number of nearest neighbors to return
𝑕 Ratio of total build time to total time
𝑖↗
𝑁 → Z|𝑁 | Point assignments to crack IDs

𝑐↗
𝑁 → R|𝑁 | Point distances to crack representative

𝑗 ↗
𝑂 → N|𝑂 | Histogram of points per crack

Note: ↗ → {dyn, true}, where dyn refers to the dynamic state (includes bu"ered
cracks) and true refers to the true index state.

to the query. Subsequently, the point assignments to these local
partitions are scanned to !nd the 𝑁 nearest neighbors. The result
includes the nearest point ids 𝑎 , their distances 𝑕 to the query, and
the 𝑊𝑘𝑇𝑎𝑇𝑅𝑄𝑀 ids of the local region cracks that the query visited.

CRACK : Physical reorganization of points between inverted
lists, and the mutation of the index does not happen after each
query. Each incoming query represents a crack candidate, which
is evaluated by rules that de!ne the decision boundaries which
classify it as good or bad (Section 4.2) (Line 9 Algorithm 1). Only
good cracks are further bu"ered and potentially committed at a
later time. Each crack is essentially a new partition, where the
points assigned to the partition have been “stolen” based on their
proximity to the query. We reuse the results of the SEARCH oper-
ations to compare if the distance of a point to the query is closer
than the distance of the point to its current assignment. If it is,
then it’s bene!cial to reassign the point to the new crack, and this
assignment is bu"ered, to be committed when 𝑊𝑉𝑈𝑊𝑌 is executed,
as explained in Section 4.3. 𝑊𝑉𝑈𝑊𝑌 is the procedure that performs
the physical reorganization, synchronizing the bu"ered state of
the index with the currently working state. The core individual
kernels of the procedure are shown in Algorithm 2. It adds a new
inverted list for each bu"ered crack, moves stolen points to their
new assignments, and updates the partition representatives to be
the centroid of the points based on their new assignments. This
procedure is only executed when enough budget for build oper-
ations has been accumulated throughout the usage of the index
(Line 18 Algorithm 1). This budget control mechanism ensures that
CrackIVF does not spend a disproportionate amount of time on
CRACK operations. The parameter 𝑖 , the ratio of total build opera-
tions time to the total time, is what controls the available budget.
Since 𝑊𝑉𝑈𝑊𝑌 is applied lazily, the heuristics governing where a
crack is added and the cost-based control mechanism for when it is
added are independent.

3954

Algorithm 1 S!"#$%A&’C#"$(
Require: 𝑒,𝑏,𝑕,𝑙𝑅𝑉𝑅𝑄𝑀𝑊𝑃,𝑙𝑅𝑉𝑅𝑄𝑋𝑅𝑌𝑈 ,𝑚𝑇𝑌𝑍𝑀 ,𝑚𝑉𝑈𝑎𝑅𝑏𝑐
1: \\ Step 1: SEARCH
2: 𝑚start_search ↘ C)##!&*T+,!()
3: (𝑐, 𝑑 ,𝑋𝑑𝑒𝑉𝑒𝑋𝑈𝑀) ↘ SEARCH (Q,𝑒)
4: 𝑚search ↘ 𝑚search + (C)##!&*T+,!() ≃ 𝑚start_search)
5: \\ Step 2: CRACK Decision (Where to crack, see §4.2)
6: for each query 𝑛 → Q do
7: (𝑐local, 𝑑local,𝑋local) ↘ (𝑐 [𝑛], 𝑑 [𝑛],𝑋𝑑𝑒𝑉𝑒𝑋𝑈𝑀 [𝑛])
8: 𝑑steal ↘ {𝑓 → 𝑑local | 𝑐local (𝑓) op 𝑐dyn

𝑁 (𝑓) } {op = < for L2, > for IP}
9: 𝑜𝑔𝑔𝑀_𝑈𝑆𝑉𝑈𝑒_𝑈𝑉𝑌𝑀𝑇𝑀𝑉𝑅𝑄 = CrackHeuristic(𝑑𝑉𝑋𝑈𝑎𝑍 , Statedyn)
10: if 𝑜𝑔𝑔𝑀_𝑈𝑆𝑉𝑈𝑒_𝑈𝑉𝑌𝑀𝑇𝑀𝑉𝑅𝑄 then
11: 𝑋bu"ered ↘ 𝑋bu"ered ⇐ {𝑛}
12: 𝑑bu"ered ↘ 𝑑bu"ered ⇐ 𝑑steal
13: \\ update dynamic state
14: end if
15: end for
16: \\ Step 3: CRACK Decision (When to Commit, see §4.3)
17: 𝑚CRACK ↘ E-*+,"*!C#"$(C.-*()
18: 𝑈𝑉𝑌_𝑉𝑝 𝑝 𝑔𝑆𝑀_𝑈𝑆𝑉𝑈𝑒 ↘ (𝑚build +𝑚CRACK ↔ 𝑕 · (𝑚build +𝑚search +𝑚CRACK))
19: 𝑄𝑌𝑔𝑞𝑜𝑟_𝑊𝑞𝑝 𝑝 𝑄𝑆𝑄𝑀 ↘ (|𝑋bu"ered | > 𝑋min)
20: if 𝑈𝑉𝑌_𝑉𝑝 𝑝 𝑔𝑆𝑀_𝑈𝑆𝑉𝑈𝑒 and 𝑄𝑌𝑔𝑞𝑜𝑟_𝑊𝑞𝑝 𝑝 𝑄𝑆𝑄𝑀 then
21: \\ UNDO if REFINE invalidated previously good cracks
22: 𝑋bu"ered ↘ {𝑈 → 𝑋bu"ered | C#"$(H!)#+-*+$(𝑈) }
23: ⇒𝑓 where𝑖dyn

𝑁 (𝑓) ω 𝑋bu"ered,𝑖
dyn
𝑁 (𝑓) ↘ 𝑖true

𝑁 (𝑓)
24: 𝑑bu"ered ↘ {𝑓 | 𝑖dyn

𝑁 (𝑓) ε 𝑖true
𝑁 (𝑓) }

25: 𝑚start_crack ↘ C)##!&*T+,!()
26: CRACK(𝑋bu"ered, 𝑑bu"ered) {Algorithm 2}
27: 𝑚build ↘ 𝑚build + (C)##!&*T+,!() ≃ 𝑚start_crack)
28: \\ dynamic index state now matches true state
29: else
30: \\ Step 4: REFINE Decision (Where & When, see §4.2 and §4.3)
31: for each query 𝑛 → Q do
32: 𝑚REFINE ↘ E-*+,"*!R!/+&!C.-*()
33: 𝑈𝑉𝑌_𝑉𝑝 𝑝 𝑔𝑆𝑀_𝑆𝑄 𝑝 𝑇𝑌𝑄 ↘ (𝑚build+𝑚REFINE ↔ 𝑕 · (𝑚build+𝑚search+𝑚REFINE))
34: if 𝑈𝑉𝑌_𝑉𝑝 𝑝 𝑔𝑆𝑀_𝑆𝑄 𝑝 𝑇𝑌𝑄 then
35: 𝑜𝑔𝑔𝑀_𝑆𝑄 𝑝 𝑇𝑌𝑄_𝑈𝑉𝑌𝑀𝑇𝑀𝑉𝑅𝑄 ↘ R!/+&!H!)#+-*+$(𝑋local, Statetrue)
36: if 𝑜𝑔𝑔𝑀_𝑆𝑄 𝑝 𝑇𝑌𝑄_𝑈𝑉𝑌𝑀𝑇𝑀𝑉𝑅𝑄 then
37: 𝑚start_re!ne ↘ C)##!&*T+,!() {Start timing REFINE}
38: REFINE(. . .)
39: 𝑚build ↘ 𝑚build + (C)##!&*T+,!() ≃ 𝑚start_re!ne)
40: \\ update dynamic state and true state
41: end if
42: end if
43: end for
44: end if
45: return 𝑐 [:, : 𝑒], 𝑑 [:, : 𝑒]

Algorithm 2 CRACK
Require: 𝑋bu"ered, 𝑑bu"ered,𝑙𝑅𝑉𝑅𝑄𝑀𝑊𝑃,𝑙𝑅𝑉𝑅𝑄𝑋𝑅𝑌𝑈
Ensure: New cracks committed; points reassigned; index state updated.
1: Get Local Region: Retrieve all points indexed by 𝑑bu"ered, i.e., all data points that

cracks in𝑋bu"ered visited.
2: Commit Reorg (w/ Adyn

P) : Reorganize storage. Commit𝑋bu"ered to the index.
Reassign points to inverted lists using tracked assignments𝑖dyn

𝑁
3: Update Centroids: Recompute each crack’s representative to be the centroid of

the points assigned to it.
4: Update Index State: Synchronize𝑙𝑅𝑉𝑅𝑄𝑀𝑊𝑃 and𝑙𝑅𝑉𝑅𝑄𝑋𝑅𝑌𝑈 to re$ect the changes.

REFINE: Re!nement is the second operation that improves the
index. It is performed eagerly, focusing on the local region visited by
the query. A local region is de!ned by the 𝑅𝑐𝑑𝑒𝑓𝑔 nearest partitions
that the query visits during search. Algorithm 1 Line 7, is where the
local region𝑊𝑍𝑔𝑈𝑉𝑍 for a query is extracted from the SEARCH result
𝑊𝑘𝑇𝑎𝑇𝑅𝑄𝑀 of a query batch. The goal of REFINE is to immediately
correct suboptimal assignments in the regions of the current index.
Thus, any bu"ered cracks and assignments within the local region

Algorithm 3 REFINE
Require: 𝑋𝑍𝑆𝑏𝑎𝑍 ,𝑙𝑅𝑉𝑅𝑄𝑀𝑊𝑃,𝑙𝑅𝑉𝑅𝑄𝑋𝑅𝑌𝑈
Ensure: Re!nement local region; points reassigned; index state updated.
1: Get Local Region: Retrieve all points 𝐿𝑍𝑆𝑏𝑎𝑍 in local region.
2: Local K-Means: Re!ne region of𝑋local, producing𝑋⇑

local.

3: Commit Reorg (w/o Adyn
P): Replacing𝑋local with re!ned𝑋⇑

local. Compute new
local point assignments. Reorganize storage, with local reassignment of 𝐿𝑍𝑆𝑏𝑎𝑍 to
inverted lists.

4: Update Index State: Synchronize𝑙𝑅𝑉𝑅𝑄𝑀𝑊𝑃 and𝑙𝑅𝑉𝑅𝑄𝑋𝑅𝑌𝑈 to re$ect the changes.

are not considered, as they are not part of the current index state.
The decision to re!ne a region is based on heuristics evaluating
the imbalance of point assignments in local cracks. Executing a
re!nement operation depends on an estimate of the runtime cost,
determined using a cost model speci!c to 𝑉𝑇𝑍𝑎𝑏𝑇 (Line 33, Algo-
rithm 1). Unlike cracking, the opportunity to re!ne a local region
takes place when both the currently visited local region is a good
candidate for re!nement and there is su#cient computational bud-
get to execute the operation. If the “where” and “when” heuristics
for 𝑉𝑇𝑍𝑎𝑏𝑇 do not simultaneously agree, the next opportunity is
when another query accesses the same region. 𝑉𝑇𝑍𝑎𝑏𝑇 is shown
in Algorithm 3). It executes a sequence of kernels implementing a
local K-means variation and performs physical reorganization. This
process improves the placement of crack representatives within
the local region and reassigns points to their nearest representative.
𝑉𝑇𝑍𝑎𝑏𝑇 has higher computational costs as it does not rely on pre-
computed bu"ered assignments, and assignments are determined
dynamically upon completion of the local K-means process.𝑊𝑉𝑈𝑊𝑌
has a higher data-movement cost, since typically a larger region of
the vector space is a"ected when cracks are added throughout.

Index State: Since CRACK is a lazy operation, the index has two
concurrent states, the true current state and a dynamic bu"ered
state. The true state re$ects the current structure of the index,
while the dynamic one tracks its expected future structure for when
𝑊𝑉𝑈𝑊𝑌 is executed, which synchronizes the two states. 𝑉𝑇𝑍𝑎𝑏𝑇
operations directly alter the current index state, while cracking
decisions are made based on the dynamic state. This can lead to
scenarios that require us to undo bu"ering decisions. This is done
to avoid bad cracks from being committed and having a situation
where we commit decisions to the index that we know to be subop-
timal (Line 21, Algorithm 1). To track the index state, we de!ne:

State↗ = (𝑈↗
𝐿 ,𝑕

↗
𝐿 ,𝑋

↗
𝑋) (1)

where ↗ → {dyn, true} denotes either the dynamic uncommitted
or true committed state. The dynamic state consists of dynamic
assignments 𝑈dyn

𝐿 , dynamic point distances 𝑕dyn
𝐿 , and a histogram

𝑋dyn
𝑋 of both the true and bu"ered crack sizes. Similarly, the true

state represents the true, committed state of assignments, distances,
and crack sizes in the index. We extend the FAISS-IVF “.add()”
operation to return the assignments and distances computed, which
are an intermediate result, in order to initialize the state tracking.
The state held in𝑈dyn

𝐿 ,𝑕dyn
𝐿 and𝑋dyn

𝑋 , is only consistent with the ac-
tual state of the index after𝑊𝑉𝑈𝑊𝑌 operations and before bu"ering
any cracks. If no cracks are bu"ered and only 𝑉𝑇𝑍𝑎𝑏𝑇 operations
are executed, the dynamic and true state are always consistent. All
of the above state metadata is used after the SEARCH operation,

3955

along with the search results 𝑎 ,𝑕,𝑊𝑘𝑇𝑎𝑇𝑅𝑄𝑀 to classify each query as
a good or bad crack candidate (Section 4.2).

Rollback of bu"ered state: Consider the following scenario.
A 𝑊𝑉𝑈𝑊𝑌 operation was just executed at time 𝑗0, so 𝑆𝑗𝑘𝑗𝑔𝑅𝑆𝑞𝑄 =
𝑆𝑗𝑘𝑗𝑔𝑀𝑠𝑌 . After a few queries, at 𝑗1, assume that 2 good crack can-
didates have been bu"ered, both in the same 𝑊𝑍𝑔𝑈𝑉𝑍 region of the
vector space and thus now 𝑆𝑗𝑘𝑗𝑔𝑅𝑆𝑞𝑄 ε 𝑆𝑗𝑘𝑗𝑔𝑀𝑠𝑌 . At a later point,
𝑗2, a 𝑉𝑇𝑍𝑎𝑏𝑇 is executed, also in 𝑊𝑍𝑔𝑈𝑉𝑍 changing the assignments
to𝑊⇑

𝑍𝑔𝑈𝑉𝑍 , a"ecting 𝑆𝑅𝑆𝑞𝑄 . Since 𝑉𝑇𝑍𝑎𝑏𝑇 improves the current state
eagerly, the decision that the bu"ered cracks are good was taken at
a prior time 𝑗1, on a prior state 𝑊𝑍𝑔𝑈𝑉𝑍 . Thus, at 𝑗2, during 𝑉𝑇𝑍𝑎𝑏𝑇
the bu"ered cracks may now have had their points stolen back,
and assigned to other re!ned cracks in 𝑊⇑

𝑍𝑔𝑈𝑉𝑍 . Now, while still
|𝑊𝑊𝑞𝑝 𝑝 𝑄𝑆𝑄𝑀 | = 2, it may now contain bad cracks. Finally, when at 𝑗3,
it is a good time to execute a 𝑊𝑉𝑈𝑊𝑌 operation again, all bu"ered
cracks are re-evaluated, as shown in lines 22-24 Algorithm 1, and
only the good cracks that remain are committed.

Memory Overhead and Optimizations: The additional mem-
ory cost of maintaining 𝑆𝑗𝑘𝑗𝑔dyn and 𝑆𝑗𝑘𝑗𝑔true is 𝑂 (4|𝐿 | + 2|𝑊 |).
It is negligible since 𝑃 ⇓ 4 and the in-memory data alone are
𝑂 (|𝐿 | ↑ 𝑃). Additionally, these array structures are freed once the
index converges or incoming queries stop. In our case, it enables
an e#cient compute-storage trade-o", deferring cracking costs in-
stead of paying them per query. There are many optimizations that
a full-$edged implementation could utilize. For embedding lakes,
where vectors are stored on disk, state tracking arrays can be stored
alongside data points instead of in the index (irrelevant for our
in-memory FAISS implementation). Since queries for an individ-
ual index are typically infrequent, 𝑆𝑗𝑘𝑗𝑔dyn can be committed or
$ushed between queries, while 𝑆𝑗𝑘𝑗𝑔true recomputed as needed.
Full memory overhead is only necessary during bursty query loads
with limited hardware resources, where cracking must be bu"ered
to reduce cumulative overhead and prevent long tail response times.
Finally, the cracking overhead can be hidden from query response
times since results are available before any cracking operations
begin. A separate thread pool can handle cracking operations while
queries use the current index state, provided 𝑊𝑉𝑈𝑊𝑌 and 𝑉𝑇𝑍𝑎𝑏𝑇
remain atomic to prevent inconsistencies. Prior work on the related
problem of index maintenance [91] demonstrated how to concur-
rently execute queries by dispatching such tasks to background
threads. In our work, the entire thread pool is dedicated either to
search or cracking operations. We also assume a continuous query
load at system capacity. As a result, the memory overhead for index
state tracking is unavoidable. We further cover index maintenance
prior work in Section 6.

4.2 Where to apply build operations?
Each arriving query is a crack candidate, and the visited region
during index traversal is a candidate for re!nement. This results in
a continuous stream of candidates of varying quality. As discussed,
not all vector space regions are equally important, and not all
operations lead to performance gains. The goal is to maintain a
stream of high-quality candidates, classi!ed from incoming queries,
enabling the index to grow by adding cracks in frequently accessed
regions that need further partitioning, and re!ning poorly clustered
regions with K-means. CrackIVF employs two heuristics, acting

as a binary classi!cation model for candidates. Each uses a set of
decision rules that are distilled from our empirical observations of
IVF index behavior. We do not claim to have de!ned an exhaustive
list of decision rules for the model. Changing or learning the model
and the parameters while still achieving the stated goal above,
would not change the overall design of the index (Algorithm 1).

Where to CRACK (CrackHeuristic): We observe that the
optimal performance is achieved at some maximum number of
partitions (Figure 2a). Thus, for it to grow, we treat each incoming
query as a good crack candidate by default and de!ne a set of decision
rules to classify when a query is a bad candidate. Query candidates
classi!ed as good, are bu"ered until a future 𝑊𝑉𝑈𝑊𝑌 operation. A
bad candidate (returning False) is if any of the following hold:

Don’t Crack: Rule 1 rejects queries that steal too few points:

|𝑎steal | < min_pts (2)

Don’t Crack: Rule 2 prevents excessive partitioning, constraining
local partition count based on the local number of points:

total points in local region
total cracks in local region

> pts_crack_thr (3)

We set min_pts = 2 in order to avoid adding empty cracks, and
pts_crack_thr = 64 to ensure an average of at least 64 points per
crack locally. Rule 2 is especially important in high skew datasets,
where most crack candidates are for the same region.

Where to REFINE (Re!neHeuristic): We observe that re!n-
ing an index improves performance at each index size (Figure 2a),
by better distributing points across partitions and repositioning
centroids to better !t the data. Optimal performance is reached at
the maximum index size, so we want to avoid getting stuck re!ning
a small index. Unlike𝑊𝑉𝑈𝑊𝑌 , where latency is amortized by bu"er-
ing, 𝑉𝑇𝑍𝑎𝑏𝑇 is eagerly applied to immediately improve the current
index, but it is also a costly operation. Thus, we treat each incoming
re!ne candidate as bad, leaving more of the cost budget for cracks
so that the index can grow. A re!ne candidate is the local visited
region of the query, visited during search. It is a good candidate for
re!nement (returning True) if any of the following hold:

Re!ne: Rule 1 captures local imbalance:

CVlocal =
𝑙local
𝑚local

> cv_max (4)

where 𝑙local and 𝑚local are the standard deviation and mean of
cluster sizes in the local region. A high coe#cient of variation
indicates substantial local imbalance, warranting re!nement.

Re!ne: Rule 2 captures imbalance using the global distribution:

⇔𝑛1, 𝑛2 s.t. 𝑆 (𝑛1) ↔ cuto"low,
𝑆 (𝑛2) ↖ cuto"high

(5)

where 𝑛1, 𝑛2 are cracks in the local region, and 𝑆 (𝑛) = 𝑋 true
𝑋 [𝑛]

represents the size (i.e., number of assignments) of crack 𝑛 . The
cuto"low and cuto"high correspond to cluster sizes at the 𝑜𝑝𝑞𝑔_𝑐𝑑𝑛𝑗𝑟
and 100 ≃ 𝑜𝑝𝑞𝑔_𝑐𝑑𝑛𝑗𝑟 percentiles of the global partition sizes. This
rule captures the unlikely scenario that a large and small crack
globally are next to each other locally, indicating points can be
better distributed.

3956

We set cv_max = 2, meaning re!nement is triggered if cluster
sizes vary by at least twice the local mean, and size_prctl = 10, de!n-
ing small and large cracks based on the 10th and 90th percentiles
of global cluster sizes.

4.3 When to apply build operations?
To mitigate the overhead of constant physical reorganization, we
use a build budget to restrict the fraction of time dedicated to
𝑊𝑉𝑈𝑊𝑌 and 𝑉𝑇𝑍𝑎𝑏𝑇 operations. We de!ne 𝑠build as the total mea-
sured time spent on previous build operations. Similarly, 𝑠search
represents the cumulative time spent on all past search operations.
When considering a potential build operation, we estimate its ex-
ecution cost using 𝑠𝑝 , which captures the expected time required
to perform a 𝑊𝑉𝑈𝑊𝑌 operation in the current dynamic state or a
𝑉𝑇𝑍𝑎𝑏𝑇 operation in the true state. The build operation consid-
ered is speci!ed by 𝑡 → {CRACK, REFINE}. To enforce the budget
constraint, the total time spent on past build operations in addition
to the estimated time if the current one is executed must remain
within a fraction 𝑖 of the system’s total runtime:

𝑠build +𝑠𝑝 ↔ 𝑖 · (𝑠build +𝑠search +𝑠𝑝). (6)
𝑠build and 𝑠search are directly measured from the execution time,

while𝑠𝑝 is estimated using a predictive cost model. The parameter𝑖
de!nes the proportion of total execution time that can be allocated
to indexing operations.We set𝑖 = 0.5, which ensures amaximumof
50% of the total time at any given point is spent on build operations.
As more queries arrive, CrackIVF will progressively have a larger
budget to apply for physical reorganization operations. In this
way, we can remain near the optimal minimum of cumulative time
across all query scales. Finally, there is a minimum size constraint
on the number of bu"ered cracks before a𝑊𝑉𝑈𝑊𝑌 is executed. The
idea comes from Figure 2a, where if a REFINE can achieve similar
performance improvement at the current index size, it is better to
wait until more cracks have been bu"ered, so that the performance
improvement from index growth is substantial. Speci!cally, in our
implementation, we set that minimum to 20% of the current index
size, 𝑊𝑃𝑇𝑌 = 0.2 ↑ |𝑊 | (Line 19 Algorithm 1).

Predictive Cost Model: Estimating the execution time of the
CRACK and REFINE operations happens after every incoming query.
Thus, we must maintain low latency when making a prediction,
while have accurate enough cost estimates to correctly use the
budget constraint Eq. 6. For this, we use a simple !rst-order linear
model !tted using multivariate regression [38]. Each build function
𝑡 comprises a sequence of procedures, or kernels, indexed by 𝑝 and
executed sequentially, as shown in Algorithm 2 and Algorithm 3.
The execution time is dominated by the following kernels:

CRACK: (i) Get Local Region, (ii) Commit Reorg (w/ 𝑈dyn
𝐿), (iii)

Update Centroids.
REFINE: (i) Get Local Region, (ii) Local k-Means, (iii) Commit

Reorg (w/o 𝑈dyn
𝐿).

𝑠𝑝 =
∑
𝑇

𝑠𝑝 ,𝑇 , ⇒𝑡 → {CRACK, REFINE}. (7)

These kernels are executed sequentially so the total execution
time 𝑠𝑝 is simply the sum of kernel execution times. Each kernel 𝑝
contributes a latency 𝑠𝑝 ,𝑇 , which we model as a linear function of

Table 2: Features used for each kernel. † For REFINE,𝑋bu"ered = 1

Kernel Compute Data Movement

Get Local Region† |𝑊bu"ered | ↑ |𝑊 | |𝐿local | ↑ 𝑃

Commit Reorg (w/o 𝑈dyn
𝐿) |𝐿local | ↑ |𝑊local | ↑ 𝑃 + |𝑊 | |𝐿local | ↑ 𝑃

Commit Reorg (w/ 𝑈𝑀𝑠𝑌
𝐿) |𝑊 | |𝐿local | ↑ 𝑃

Update Centroids |𝐿 | ↑ 𝑃 (|𝐿 | + |𝑊 |) ↑ 𝑃
Local K-Means 𝑅iter ↑ |𝐿𝑅𝑆𝑉𝑇𝑌 | ↑ |𝑊local | ↑ 𝑃 |𝑊 | ↑ 𝑃

its two dominant cost factors: computational complexity and data
movement. For each, we learn the following predictive model:

𝑠𝑝 ,𝑇 = 𝑢 (1)
𝑝 ,𝑇

·𝑊𝑝 ,𝑇 +𝑢 (2)
𝑝 ,𝑇

· 𝑕 𝑝 ,𝑇 + 𝑓 𝑝 ,𝑇 , (8)

where 𝑊𝑝 ,𝑇 represents the dominant computational complexity
of kernel 𝑝 , and𝑕 𝑝 ,𝑇 denotes the dominant data movement cost. The
terms𝑢 (1)

𝑝 ,𝑇
and𝑢 (2)

𝑝 ,𝑇
are learned coe#cients for computation and

data movement and 𝑓 𝑝 ,𝑇 is a learned parameter that accounts for
!xed overheads. We gather measurement with micro-benchmarks
for each kernel, by varying input parameters and measurig execu-
tion latency to !t a regression model, learning𝑢 (1)

𝑝 ,𝑇
,𝑢 (2)

𝑝 ,𝑇
,𝑓 𝑝 ,𝑇 .

Our approach removes the need for exact analytical models
coupled to speci!c implementations and hardware. Switching hard-
ware requires re-running micro-benchmarks and re!tting the linear
model. The main limitation is that execution time is modeled as a
linear function.While this captures dominant compute andmemory
trends, it overlooks system-level nonlinearities such as caching ef-
fects, NUMA constraints, and SIMD optimizations. Despite this, our
empirical results show that the cost model performs well across all
benchmarks. Importantly, we always use the true measured times
𝑠build and 𝑠search in the budget constraint (Equation 6), which help
correct over and under estimations. In our tests, the model achieved
moderate to high 𝑉2 scores, explaining 40–95% of the total variance,
with RMSE ranging from milliseconds to a few seconds.

5 EXPERIMENTS
We run on a dual-socket AMD EPYC 7V13 system (128 cores, 3.7
GHz, 512GB RAM). All experiments, except for Table 3, use 16
cores and a batch size of 16, the point at which memory bandwidth
saturates. IVF and CrackIVF share the same SEARCH operation in
FAISS and bene!t equally from inter-query parallelism.

We evaluate on standard ANN search benchmarks, GloVe[66],
SIFT[39], DEEP[6], and Last.fm[10]. SIFT1M and SIFT10M con-
tain 128-dimensional SIFT descriptors; DEEP10M consists of 96-
dimensional embeddings, with 1M and 10M being the number of
data points in each slice. Both use L2 distance as a metric. GloVe
contains 1.18M varying dimensional embeddings and uses cosine
similarity, which we implement by l2-normalizing and computing
the inner product (IP). Last.fm, contains 64-dimensional vectors
and IP metric. The Last.fm query set is highly skewed, allowing us
to test CrackIVF in such cases. Last.fm provides 50k unique queries,
while the other datasets provide 10K unique queries. We replicate
them until we match our target scales (up to 1M).

For ENN, we compare against Brute Force, and AV-Tree [44],
which is a cracking baseline. For ANN search, we compare against
FAISS IVFFlat indexes with the number of partitions chosen shown

3957

(a) SIFT1M: QPS vs. Recall (b) SIFT1M: Time per Query (c) SIFT10M: QPS vs. Recall (d) SIFT10M: Time per Query

(e) Last.fm: QPS vs. Recall (f) Last.fm: Time per Query (g) Glove50: QPS vs. Recall (h) Glove50: Time per Query

(i) Glove100: QPS vs. Recall (j) Glove100: Time per Query (k) Deep10M: QPS vs. Recall (l) Deep10M: Time per Query

Figure 3: Queries Per Second (QPS) vs. Recall and Time per each Query batch for the entire trace across di"erent datasets.

in parentheses, e.g., IVFFlat (1000).We vary the number of partitions
following FAISS guidelines [25], for our dataset scales. For CrackIVF,
we use !xed parameters values for the control mechanisms, set as
explained in (Sections 4.2, 4.3). We consider the index converged
when the crack decision rules stop triggering and re!nes keep
targeting the same region without e"ect, thus the index can no
longer grow in size, nor improve at the current size. For CrackIVF
and IVFFlat, 𝑅𝑐𝑑𝑒𝑓𝑔 is set to always achieve 90–95% Recall@10 in
ANN. CrackIVF is initialized with 100 partitions on all experiments.
We set this parameter by choosing the largest possible starting
partitions that still give minimal startup cost. Because of FAISS
parallelism, at 16 threads, the startup time for 100 partitions is
identical or faster than starting with 1 partition. On a single thread
for Table 3, the di"erence between them is only ↙120 ms.

5.1 Comparison with AV-Tree:
To the best of our knowledge, AV-tree [44] is the only similarity
search index, whose underlying idea is based on cracking. It is a
tree-based ENN cracking index targeting short-lived data up to one
thousand queries. Unlike AV-Tree, CrackIVF is an IVF-based ANN
cracking index, implemented around FAISS, o"ering parallelism,
and targeting high dimensional RAG applications which could reach
much larger query volumes. As AV-Tree is single-threaded and

an ENN index, to compare fairly, we set CrackIVF and the IVF
baselines to run with a single thread and make sure we probe
enough partitions to get an average of more than 99% recall across
all query scales. We set the cracking threshold of AV-Tree to 128,
which we !nd gives the best total runtime. We show the cumulative
time for a trace of 1Mqueries over the SIFT 1M dataset in Table 3. At
the start, the 100-th query time includes the index construction costs
of CrackIVF and IVF baselines. CrackIVF is initialized as a small
100 partition index which grows as more queries arrive, whereas
AV-Tree does not pre-build any index. In this experiment, AV-Tree
has an advantage over CrackIVF for the !rst 10 queries, as it can
start answering immediately. However, CrackIVF processes each
query faster and outperforms AV-Tree by a large margin after the

Table 3: AV-Tree vs. CrackIVF. † Cracking-based baselines.

Cumulative Time at i-th Query (seconds)

100 101 102 103 104 105 106

IVF-1K 12.57 12.59 12.76 14.48 32.10 205.40 1938.60
IVF-5K 178.17 178.18 178.35 179.93 195.94 354.63 1943.02
AV-Tree† 0.08 0.75 7.48 75.43 830.0 1274.85 5721.29
CrackIVF† 1.10 1.16 1.73 13.18 55.33 233.11 1531.40

3958

!rst few queries. The cumulative time of AV-Tree increases at a
slower rate with more queries, showing AV-Tree is improving over
time. Our CrackIVF is 3.7x faster than AV-Tree in the end of the
trace. As cracking baselines, both CrackIVF and AV-Tree, vastly
outperform IVF indexes on the low query scale. AV-Tree continues
to outperform up to 1000 queries, matching original claims [44].
CrackIVF performance bene!ts continue even at 1 million queries.
In the following experiments we focus on ANN.

5.2 Does CrackIVF improve over time?
We measure how CrackIVF improves over time in Figure 3. QPS vs.
Recall plots show the search performance trade-o" in which ANN
search operates under. In our experiments, by the end of the query
trace, CrackIVF-END is consistently at or near the Pareto frontier
across all tested datasets. On SIFT10M and Last.fm, CrackIVF is by
far the best-performing index. Speci!cally on Last.fm, CrackIVF
with 1264 !nal partitions, achieves ↙50% higher QPS for Recall@10
= 0.9, than any other index. We attribute this to CrackIVF’s ap-
proach of allocating new cracks following the query distribution.
Since Last.fm is the dataset with the highest skew (Figure 2b), we
can fully partition the accessed space with a small number of cracks,
achieving the best performance. In Figure 3, we also plot the re-
sponse time per query batch across the entire query trace. CrackIVF
search performance improves over time after incremental reorga-
nization operations. The vast majority of outliers are due to the
individual 𝑊𝑉𝑈𝑊𝑌 and 𝑉𝑇𝑍𝑎𝑏𝑇 reorganization operations. In our
experiments, 𝑊𝑉𝑈𝑊𝑌 operations are less than 0.03% and 𝑉𝑇𝑍𝑎𝑏𝑇
less than 0.6% of the query trace.

5.3 Does CrackIVF Minimize Cumulative Time?
We run a trace of 1 million queries for each dataset and include the
upfront build cost for all baselines as the time before they answer
the !rst query (Figure 4). The smaller 1000 partition IVF indexes
have relatively low startup costs but do not scale well past ↙10k
queries. Larger indexes have a huge upfront build cost, which only
pays o" if a dataset receives >1 million queries. Brute-force has
the minimum initialization time, making it the better choice when
the number of queries is low (<100). In our experiments, CrackIVF
achieves near-minimum cumulative time across all query scales. It
achieves almost 1000x lower initialization time than larger indexes
(Figure 4d) and can answer 100K to 1M queries before comparable
indexes !nish building. For example on SIFT10M (Figure 4b), the
initialization time cost is ↙100x lower than IndexFlat(5000) and
almost 1000x lower than IndexFlat(16000), yet CrackIVF answers
100k and 1M queries respectively, before the indexes !nish building.

5.4 Does CrackIVF Reduce Total Distance
Computations for Build Operations?

IVF indexes incur full indexing cost upfront over the entire vector
space. Indexing large datasets (100M–1B+) in reasonable time re-
quires GPUs, but even then, K-means training can take hours due
to the increasing number of training points and partitions, which
have a multiplicative e"ect in the number of pairwise distance com-
putations (see Table 2 K-means Compute). CrackIVF amortizes this
cost over time using 𝑉𝑇𝑍𝑎𝑏𝑇 operations, which apply K-means
locally on small subsets of points and partitions. As a result, total

(a) SIFT1M (b) SIFT10M

(c) Last.fm (d) Glove50

(e) Glove100 (f) Deep10M

Figure 4: Cumulative time plots across datasets.

distance computations are spread across time and space and can
potentially be handled on cheaper hardware (e.g., CPUs).

Figure 5 shows the cumulative distance computations during
index build, excluding search operations. CrackIVF pays this cost
gradually, and after the index converges, the !nal distance compu-
tations can be orders of magnitude lower than larger IVF indexes
(Figure 5a, 5f). Despite having comparable or better performance
(Figure 3a, 3k). Convergence occurs when the arrival of new crack
candidates stops and re!nes do not trigger on new regions, example
is shown in ablation. On Glove, distance computations increase
faster due to 𝑉𝑇𝑍𝑎𝑏𝑇 regions containing more points and more
cracks. Themedian𝑉𝑇𝑍𝑎𝑏𝑇 in Glove100 covers 4.78% of the dataset
with 512 cracks, while the median 𝑉𝑇𝑍𝑎𝑏𝑇 in SIFT1M is only 0.63%
of the total points across 64 cracks. Nonetheless, the total cost re-
mains amortized over time and is still almost an order of magnitude
lower than that of the largest IVF index, while achieving similar
!nal QPS-Recall performance. Finally, CRACK is dominated by data
movement, while REFINE is mostly compute (Table 2). Even though
CRACK is infrequent (< 0.03% of trace Figure 3), its overhead is
not fully captured by distance computations alone. This is why we
use !xed hardware and cumulative time plots, to compare the total
time across all operations, including search, in Figure 4.

3959

(a) SIFT1M (b) SIFT10M

(c) Last.fm (d) Glove50

(e) Glove100 (f) Deep10M

Figure 5: Cumulative distance computations for index build.

(a) WHERE=OFF (b) WHERE=ON

Figure 6: E"ect of removing the “where” control mechanism

5.5 Control Mechanisms Ablation Study
This section is an ablation study exploring the control mechanisms
“where” and “when” to apply 𝑊𝑉𝑈𝑊𝑌 and 𝑉𝑇𝑍𝑎𝑏𝑇.

Turning o" the control mechanism for “where”: To illus-
trate the importance and accuracy of the heuristic rules for where
to CRACK and REFINE, we switch them OFF and see the e"ect
(Figure 6). Speci!cally, when “WHERE=OFF”, and no heuristic rule
is used to decide where a crack or re!ne should happen, the in-
dex defaults to trying to apply these operations whenever there

(a) Cumulative Time (OFF) (b) Time Breakdown (OFF)

(c) Cumulative Time (ON) (d) Time Breakdown (ON)

Figure 7: E"ect of removing the “when” control mechanism

is enough budget for them, since the “when” mechanism is still
ON. This seemingly random addition of new cracks leads to a !nal
performance that is only slightly better than the initial state of
CrackIVF, before any query has been received (Figure 6a). On the
other hand, when “WHERE=ON”, and our heuristic rules are ap-
plied to make decisions, CrackIVF converges to the Pareto optimal
QPS-Recall trade-o" performance (Figure 6b). In both examples, we
test an equal number of queries and in the same order.

Turning o" the control mechanism for “when”: The bud-
geting mechanism, controlling when build operations are executed,
helps balance the time spent on build vs search operations. By de-
fault, we use the parameter 𝑖 = 0.5, i.e., at most 50% of the total
time may be spent on 𝑊𝑉𝑈𝑊𝑌 or 𝑉𝑇𝑍𝑎𝑏𝑇. The e"ect of turning
this mechanism “WHEN=OFF” is shown in Figure 7a and Figure 7b.
CrackIVF with the mechanism o" defaults to cracking and re!ning
after almost every query, and it only stops when the maximum
number of partitions is reached (16,000). So even though the cracks
and re!nes happen in regions that require them, they happen dis-
proportionally often compared to the search overhead, leading to
a !nal time spent on build operations that completely dominates
the total time. On the other hand, when the mechanism is enabled,
“WHEN=ON”, CrackIVF is able to e#ciently balance the search and
build costs (Figure 7c and Figure 7d). These runs are for the same
100k query trace. The parameter controlling the “when” mecha-
nism is 𝑖 . The e"ect of varying 𝑖 is shown in Figures 8a and 8b.
If build is 25% of the total time then it is too restrictive. On the
other hand, if 75% of the total time can go to build operations, a
very large number of re!nes keep triggering. Figure 8b illustrates
the importance of monitoring the new bu"ered cracks rate and the
re!ne regions in order to converge the index. After ↙50k queries,
no new cracks occur, preventing further index growth. Re!nes also
repeatedly trigger in the same regions, as shown by the striated

3960

Table 4: Parameters de!ning the Decision Rule Boundaries.

Parameter Restrict “good candidates” Tested Values

𝑣𝑝𝑅_𝑐𝑗𝑜 ↑ 1, 2, 32
𝑐𝑗𝑜_𝑛𝑑𝑘𝑛𝑁_𝑗𝑤𝑑 ↑ 16, 64, 128
𝑛𝑥_𝑣𝑘𝑦 ↑ 1, 2, 8
𝑜𝑝𝑞𝑔_𝑐𝑑𝑛𝑗𝑟 ↓ 1, 10, 25

pattern, o"ering no additional bene!t, since the median response
time does not improve after the re!nes. This indicates the index
has converged. We monitor when this state is achieved and then
converge the index, avoiding further build operations.

Ablation on decision boundary parameters: Each parameter
de!nes a decision boundary (Section 4.2). Changing it in one direc-
tion, makes the model more restrictive, classifying fewer candidates
as good, while in the opposite direction it is more permissive. Table 4
indicates the restrictive direction and tested values (default in bold).
We did multiple runs for each dataset and parameter combination.
For each parameter we pick the most interesting results, showcased
in Figure 8. We only vary one parameter at a time, the others are
!xed to their default value. We found the model to be robust to
changing a single parameter. Out of the 48 edge-case parameter-
dataset combinations, 15 had a noticeable e"ect on the !nal index.
We attribute the robustness to each heuristic involving two decision
rules (Section 4.2), thus two parameters. When one is changed, the
other still provides a reasonable boundary. Setting both parameters
to restrictive extremes prevents any cracking, while setting both
to relaxed extremes is equivalent to WHERE=OFF (Figure 6a), where
every query is classi!ed as good and the operations occur when
the cost budget allows.

For𝑣𝑝𝑅_𝑐𝑗𝑜 , we have the most consistent e"ect across all our
observations. When we set it to a very restrictive value (32), the
number of good cracks drops signi!cantly, and thus the index con-
verges to a smaller size, leading to lower performance (Figure 8d).
This negatively a"ected all 6 datasets.

The 𝑐𝑗𝑜_𝑛𝑑𝑘𝑛𝑁_𝑗𝑤𝑑 , mostly a"ects the highest skew datasets. For
example, on Last.fm performance worsens when the parameter is
set to a permissive value, as this leads to over-partitioning of the
region, as more cracks are allowed in a region (Figure 8e). But, the
above value did not a"ect any other dataset. On the other hand,
restricting it negatively a"ected 2 out of 6 datasets (Figure 8f).
This was the same e"ect as that of𝑣𝑝𝑅_𝑐𝑗𝑜 . When the rule is too
restrictive, not enough cracks pass it so index can not fully grow.

Restricting 𝑛𝑥_𝑣𝑘𝑦 can have a positive e"ect, e.g. on SIFT10M
(Figure 8h) and on DEEP10M (Figure 8g). This leads us to believe
that in some datasets allowing a higher local imbalance, could
have bene!cial over!tting e"ects to the query distribution. The
optimal value for 𝑛𝑥_𝑣𝑘𝑦 is not consistent across datasets, two
other datasets had worse results at a high value, and our default
values provide the most robust results.

All the values tested for 𝑜𝑝𝑞𝑔_𝑐𝑑𝑛𝑗𝑟 had a negligible e"ect. Thus,
to show the bene!t of including the decision rule which 𝑜𝑝𝑞𝑔_𝑐𝑑𝑛𝑗𝑟
controls, we switch it o" entirely in Figures 8i and 8j. Disabling it
greatly a"ects !nal index. While the index grows, and it does not
converge to the optimal state, as fewer re!nes occur.

(a) SIFT1M 𝑕 = 0.25 (b) SIFT1M 𝑕 = 0.75

(c) Deep10M𝑃𝑇𝑌_𝑓𝑅𝑎 = 32 (d) SIFT1M𝑃𝑇𝑌_𝑓𝑅𝑎 = 32

(e) lastfm 𝑓𝑅𝑎_𝑈𝑆𝑉𝑈𝑒_𝑅𝑟𝑆 = 16 (f) Glove50 𝑓𝑅𝑎_𝑈𝑆𝑉𝑈𝑒_𝑅𝑟𝑆 = 128

(g) Deep10M 𝑈𝑘_𝑃𝑉𝑡 = 8 (h) SIFT10M 𝑈𝑘_𝑃𝑉𝑡 = 8

(i) SIFT1M 𝑎𝑇𝑢𝑄_𝑓𝑆𝑈𝑅𝑍 OFF (j) Glove100 𝑎𝑇𝑢𝑄_𝑓𝑆𝑈𝑅𝑍 OFF

Figure 8: Ablation study of parameters.

Overall, we clearly see dataset-dependent e"ects which can
change the optimal value of each parameter per dataset. This leaves
room for further tuning and “learned” decision boundaries instead

3961

of setting them manually. Tuning of parameters exists in any index-
ing technique, the more you know about your dataset the better
you can tune the index for it. We did not pursue tuning in this work,
as the default values empirically provide very robust performance.

From our experiments, we make the following suggestion:
BruteForce should be used as the default method up until a dataset
surpasses 10–100 queries, at which point CrackIVF becomes the
optimal choice. Even though CrackIVF can start with minimal ini-
tialization cost, it is more complex and has a slight memory and
runtime overhead compared to BruteForce due to the setup time
and storage of internal object structures and keeping track of the
!rst few partition representatives. At scale, in embedding lakes even
a small overhead can accumulate. We recommend using CrackIVF
once a dataset exceeds 100 queries and is likely to receive more.

6 RELATEDWORK
Vector Databases: Vector Data Management Systems (VDBMS)
[13, 15, 22, 28, 43, 68, 84, 88, 90, 94] support e#cient ANN search,
and have gained signi!cant popularity. This coincides with the
increase in use of Retrieval-Augmented Generation (RAG) [4, 46],
to extend the capabilities of LLMs beyond what they have been
trained on. VDBMS applications also include semantic search [57,
71], recommendation systems [47] and product search [80]. Many
relational engines are incorporating vector search [18, 67]. Many
of these systems support extensions to dense vector ANN search,
allowing for speci!c query types such as !ltered search [27], sparse
vector search [26], and hybrid search [81]. A recent survey covering
vector database management systems can be found in [64].

Vector Search Indexes: Approximate Nearest Neighbor (ANN)
search has been well-studied. The two dominant categories of ANN
indexes are partition-based and graph-based indices. Inverted !le
index (IVF) is a partition-based index and includes many di"erent
implementations. ScaNN [29] and SOAR [78] identify key mathe-
matical properties of ANNS and use them to improve index e#-
ciency. SPANN [16] uses disk-based storage to search over billion-
scale datasets and supports updates [91]. FAISS-IVF [24] provides
an in-memory implementation IVF which can utilize GPUs [40]. In
this work we show how IVF indexes can be extended with cracking,
and our approach is directly applicable to the above. We focus on
IVF indexes as they o"er the best trade-o" between index build
time, search performance, and memory overhead, which is critical
to minimize overhead in large scale deployments on embedding
data lakes, as covered in Section 3. The cracking paradigm can be
generalized to other ANN indexes as well. With AV-tree[44] the
authors show how to extend a tree-based index with cracking to
supports k-NN queries targeting ENN search. Hash-based methods
[2, 21, 36, 37, 85] and tree-based methods [50, 61, 83] also broadly
fall in the partition-based category. Each index has a unique con-
struction method and data structures. Adopting cracking ideas for
them would require solving unique challenges. Finally, graph-based
methods [23, 31, 51, 52, 82, 83] currently deliver the state-of-the-art
performance in terms of the Queries Per Second vs. Recall trade-o",
but this comes at high memory and index construction cost. Thus,
graph-based indexes are ill-suited when the goal is minimizing the
index construction cost and memory overhead. Cracking is appli-
cable here and could push search performance even further. For

example, future research can show how to dynamically change the
connections in the graphs based on the arriving query distribution.

Adaptive indexes for specialized data types: Adaptive index-
ing techniques, such as Dumpy [86, 87] and ADS [95] are e"ective
in data series similarity search. They are speci!cally designed for
time-series data and include methods like Symbolic Aggregate Ap-
proximation (SAX) [48] and indexable SAX (iSAX) [75]. We focus
on ANN indexing methods that are the standard used by RAG
systems, and due to their broad applicability across various data
modalities which lack sequential relationships. Specialized, adap-
tive and incrementally constructed indexes are relevant candidates
for embedding lake deployments, particularly for the subset of the
datasets with inherent sequential dependencies such as energy,
weather, !nancial data, audio, and video [42, 55, 69, 74].

ANN indexmaintenance:Work on index maintenance focuses
on mitigating performance degradation caused by data distribution
shifts due to data updates (insertions and deletions). DeDrift [7]
handles data or query distribution shifts keeping the total number
of partitions !xed. LIRE [91] performs localized split and merge
operations when partitions change after insertions/deletions. Ada-
IVF [58] monitors partition size changes from updates and the
partition access distribution from the queries. It combines this in-
formation to prioritize the maintenance operations. Finally, Quake
[60] is an adaptive index for dynamic workloads with changing
access patterns and heavy updates. They use a cost model to de-
cide on maintenance operations, and dynamically set the nprobe
parameter. Similar to us, these approaches demonstrate the e"ec-
tiveness of localized operations for IVF indexes and the advantages
of adapting to query distribution. However, they cannot be applied
directly for our setting of incremental index construction to min-
imize cumulative time as the number of queries increases. These
works trigger maintenance operations from incoming updates, or
focus on distribution shits. Our focus is on the static setting, and
we follow the database cracking paradigm: “index maintenance
should be a byproduct of query processing, not of updates” [35].
Thus, CrackIVF operations are triggered solely from the queries.

7 CONCLUSION
We introduced CrackIVF, a cracking-based IVF index for Approx-
imate Nearest Neighbor Search (ANNS), aimed to be used with
RAG systems over embedding data lakes. By dynamically adapting
to increasing query workloads, it eliminates the need for costly
up-front indexing, allowing immediate query processing. Our ex-
perimental results show that CrackIVF can process over 1 million
queries before conventional methods even !nish building an index,
achieving 10-1000x faster initialization times. This makes it partic-
ularly e"ective for cold data, infrequently accessed datasets, and
rapid access to unseen data.

ACKNOWLEDGMENTS
We would like to thank AMD Research for the generous donation
of the equipment in the ETHZ-AMD Heterogeneous Accelerated
Compute Cluster (HACC) (https://systems.ethz.ch/research/data-
processing-on-modern-hardware/hacc.html) that was used to run
the experiments reported in this paper.

3962

https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html

REFERENCES
[1] Eric Anderson, Jonathan Fritz, Austin Lee, Bohou Li, Mark Lindblad, Henry

Lindeman, Alex Meyer, Parth Parmar, Tanvi Ranade, Mehul A Shah, et al. 2024.
The Design of an LLM-powered Unstructured Analytics System. arXiv preprint
arXiv:2409.00847 (2024).

[2] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and optimal LSH for angular distance. In Proceedings of
the 29th International Conference on Neural Information Processing Systems - Vol-
ume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1225–1233.

[3] Michael Armbrust, Reynold S. Xin, Shixiong Lian, Yin Huai, Cheng Li, Tathagata
Mukherjee, Erik Nijkamp, Kay Ousterhout, Ruchi Paranjpye, Kartik Ramasamy,
Dalton Soh, Alexey Tumanov, Burak Yavuz, and Matei Zaharia. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. CIDR (2021). https://www.cidrdb.org/cidr2021/papers/
cidr2021_paper17.pdf

[4] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based
language models and applications. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts).
41–46.

[5] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.is.2019.02.006

[6] Artem Babenko and Victor Lempitsky. 2016. E#cient indexing of billion-scale
datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055–2063.

[7] Dmitry Baranchuk, Matthijs Douze, Yash Upadhyay, and I Zeki Yalniz. 2023.
Dedrift: Robust similarity search under content drift. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 11026–11035.

[8] Omar Benjelloun, Shiyu Chen, and Natasha Noy. 2020. Google dataset search by
the numbers. In International Semantic Web Conference. Springer, 667–682.

[9] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (Sept. 1975), 509–517. https://doi.org/10.1145/
361002.361007

[10] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. TheMillion Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011).

[11] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset Search:
Building a search engine for datasets in an open Web ecosystem. In The world
wide web conference. 1365–1375.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[13] Yuzheng Cai, Jiayang Shi, Yizhuo Chen, and Weiguo Zheng. 2024. Navigat-
ing Labels and Vectors: A Uni!ed Approach to Filtered Approximate Nearest
Neighbor Search. Proc. ACM Manag. Data 2, 6, Article 246 (Dec. 2024), 27 pages.
https://doi.org/10.1145/3698822

[14] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.
The VLDB Journal 29, 1 (2020), 251–272.

[15] Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, Chun Wu, Szu-
Po Wang, Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo Wang. 2024.
SingleStore-V: An Integrated Vector Database System in SingleStore. Proceedings
of the VLDB Endowment 17, 12 (2024), 3772–3785.

[16] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-e#cient billion-scale
approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199–5212.

[17] Zui Chen, Zihui Gu, Lei Cao, Ju Fan, Samuel Madden, and Nan Tang. 2023.
Symphony: Towards Natural Language Query Answering over Multi-modal
Data Lakes.. In CIDR.

[18] Oracle Corporation. 2025. Oracle AI Vector Search. https://www.oracle.com/
database/ai-vector-search/. Accessed: 2025-03-01.

[19] Data Science Association. 2016. Hadoop Vendor Evaluations 2016.
https://www.datascienceassn.org/sites/default/!les/Hadoop%20Vendor%
20Evaluations%202016.pdf Accessed: 2025-02-16.

[20] Databricks. 2024. Vector Search in Databricks. https://docs.databricks.com/en/
generative-ai/vector-search.html?utm_source=chatgpt.com Accessed: 2025-02-
16.

[21] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[22] Yangshen Deng, Zhengxin You, Long Xiang, Qilong Li, Peiqi Yuan, Zhaoyang
Hong, Yitao Zheng, Wanting Li, Runzhong Li, Haotian Liu, Kyriakos Mouratidis,
Man Lung Yiu, Huan Li, Qiaomu Shen, Rui Mao, and Bo Tang. 2025. AlayaDB:
The Data Foundation for E#cient and E"ective Long-context LLM Inference. In
Companion of the 2025 International Conference on Management of Data (Berlin,

Germany) (SIGMOD/PODS ’25). Association for Computing Machinery, New
York, NY, USA, 364–377. https://doi.org/10.1145/3722212.3724428

[23] Wei Dong, Charikar Moses, and Kai Li. 2011. E#cient k-nearest neighbor graph
construction for generic similarity measures. In Proceedings of the 20th interna-
tional conference on World wide web. 577–586.

[24] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Je" Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The faiss library. arXiv preprint arXiv:2401.08281 (2024).

[25] Facebook Research. 2025. Guidelines to Choose an Index. https://github.com/
facebookresearch/faiss/wiki/Guidelines-to-choose-an-index. Accessed: 2025-02-
17.

[26] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse lexical and expansion model for !rst stage ranking. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2288–2292.

[27] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, NeelamMahapatro, Premku-
mar Srinivasan, et al. 2023. Filtered-diskann: Graph algorithms for approximate
nearest neighbor search with !lters. In Proceedings of the ACM Web Conference
2023. 3406–3416.

[28] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, et al. 2022. Manu: a cloud native
vector database management system. arXiv preprint arXiv:2206.13843 (2022).

[29] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on Machine Learning. PMLR,
3887–3896.

[30] Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD International Conference on Manage-
ment of Data (Boston, Massachusetts) (SIGMOD ’84). Association for Computing
Machinery, New York, NY, USA, 47–57. https://doi.org/10.1145/602259.602266

[31] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.
Fast approximate nearest-neighbor search with k-nearest neighbor graph. In
IJCAI Proceedings-International Joint Conference on Arti!cial Intelligence, Vol. 22.
1312.

[32] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland HC Yap. 2012. Sto-
chastic database cracking: Towards robust adaptive indexing in main-memory
column-stores. arXiv preprint arXiv:1203.0055 (2012).

[33] P Bryan Heidorn. 2008. Shedding light on the dark data in the long tail of science.
Library trends 57, 2 (2008), 280–299.

[34] Pedro Holanda, Matheus Nerone, Eduardo C de Almeida, and Stefan Manegold.
2018. Cracking KD-Tree: The First Multidimensional Adaptive Indexing (Position
Paper).. In DATA. 393–399.

[35] Stratos Idreos, Martin L Kersten, StefanManegold, et al. 2007. Database Cracking..
In CIDR, Vol. 7. 68–78.

[36] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[37] Prateek Jain, Brian Kulis, and Kristen Grauman. 2008. Fast image search for
learned metrics. In 2008 IEEE Conference on computer vision and pattern recogni-
tion. IEEE, 1–8.

[38] R. Jain. 1991. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. Wiley New York.

[39] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[40] Je" Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[41] Richard M Karp, Rajeev Motwani, and Prabhakar Raghavan. 1988. Deferred data
structuring. SIAM J. Comput. 17, 5 (1988), 883–902.

[42] Kunio Kashino, Gavin Smith, and Hiroshi Murase. 1999. Time-series active
search for quick retrieval of audio and video. In 1999 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.
99CH36258), Vol. 6. IEEE, 2993–2996.

[43] Leonardo Ku"o, Elena Krippner, and Peter Boncz. 2025. PDX: A Data Layout for
Vector Similarity Search. Proc. ACM Manag. Data 3, 3, Article 196 (June 2025),
26 pages. https://doi.org/10.1145/3725333

[44] Konstantinos Lampropoulos, Fatemeh Zardbani, Nikos Mamoulis, and Panagiotis
Karras. 2023. Adaptive indexing in high-dimensional metric spaces. Proceedings
of the VLDB Endowment 16, 10 (2023), 2525–2537.

[45] LanceDB Developers. 2024. Lance: Modern Columnar Data Format for ML.
https://github.com/lancedb/lance Accessed: February 16, 2025.

[46] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

3963

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/3698822
https://www.oracle.com/database/ai-vector-search/
https://www.oracle.com/database/ai-vector-search/
https://www.datascienceassn.org/sites/default/files/Hadoop%20Vendor%20Evaluations%202016.pdf
https://www.datascienceassn.org/sites/default/files/Hadoop%20Vendor%20Evaluations%202016.pdf
https://docs.databricks.com/en/generative-ai/vector-search.html?utm_source=chatgpt.com
https://docs.databricks.com/en/generative-ai/vector-search.html?utm_source=chatgpt.com
https://doi.org/10.1145/3722212.3724428
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/3725333
https://github.com/lancedb/lance

[47] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. 2017. FEXIPRO: fast
and exact inner product retrieval in recommender systems. In Proceedings of the
2017 ACM International Conference on Management of Data. 835–850.

[48] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic
representation of time series, with implications for streaming algorithms. In
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. 2–11.

[49] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baile Chen,
Zui Chen, Michael Franklin, Tim Kraska, Samuel Madden, Rana Shahout, et al.
2025. Palimpzest: Optimizing AI-Powered Analytics with Declarative Query
Processing. Conference on Innovative Data Systems Research (CIDR) (2025).

[50] Ting Liu, AndrewW.Moore, Alexander Gray, and Ke Yang. 2004. An investigation
of practical approximate nearest neighbor algorithms. In Proceedings of the 18th
International Conference on Neural Information Processing Systems (Vancouver,
British Columbia, Canada) (NIPS’04). MIT Press, Cambridge, MA, USA, 825–832.

[51] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61–68.

[52] Yu A Malkov and Dmitry A Yashunin. 2018. E#cient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[53] Merrill Lynch. 1998. Enterprise Information Portals: Industry Overview. Technical
Report. Merrill Lynch. https://web.archive.org/web/20110724175845/http://ikt.
hia.no/perep/eip_ind.pdf Accessed: 2025-02-16.

[54] Renée J. Miller. 2018. Open data integration. Proc. VLDB Endow. 11, 12 (Aug.
2018), 2130–2139. https://doi.org/10.14778/3229863.3240491

[55] Katsiaryna Mirylenka, Vassilis Christophides, Themis Palpanas, Ioannis Pe-
fkianakis, andMartinMay. 2016. Characterizing home device usage fromwireless
tra#c time series. In 19th International Conference on Extending Database Tech-
nology (EDBT).

[56] MIT Sloan School of Management. 2021. Tapping the Power of Unstruc-
tured Data. https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-
unstructured-data Accessed: 2025-02-16.

[57] Bhaskar Mitra, Nick Craswell, et al. 2018. An introduction to neural information
retrieval. Foundations and Trends® in Information Retrieval 13, 1 (2018), 1–126.

[58] JasonMohoney, Anil Pacaci, Shihabur RahmanChowdhury, Umar FarooqMinhas,
Je"ery Pound, Cedric Renggli, Nima Reyhani, Ihab F Ilyas, Theodoros Rekatsinas,
and Shivaram Venkataraman. 2024. Incremental IVF Index Maintenance for
Streaming Vector Search. arXiv preprint arXiv:2411.00970 (2024).

[59] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F
Ilyas, Umar Farooq Minhas, Je"rey Pound, and Theodoros Rekatsinas. 2023.
High-throughput vector similarity search in knowledge graphs. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–25.

[60] JasonMohoney, Devesh Sarda, Mengze Tang, Shihabur Rahman Chowdhury, Anil
Pacaci, Ihab F Ilyas, Theodoros Rekatsinas, and Shivaram Venkataraman. 2025.
Quake: Adaptive Indexing for Vector Search. arXiv preprint arXiv:2506.03437
(2025).

[61] Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227–2240.

[62] Matheus Agio Nerone, Pedro Holanda, Eduardo C De Almeida, and Stefan Mane-
gold. 2021. Multidimensional adaptive & progressive indexes. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 624–635.

[63] OpenAI. 2025. OpenAI Embeddings. Online. https://platform.openai.com/docs/
guides/embeddings Accessed: 2025-07-01.

[64] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. The VLDB Journal 33, 5 (2024), 1591–1615.

[65] Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki.
2018. QUASII: QUery-Aware Spatial Incremental Index. https://doi.org/10.5441/
002/edbt.2018.29

[66] Je"rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[67] pgvector contributors. 2025. pgvector: Open-Source Vector Similarity Search for
PostgreSQL. https://github.com/pgvector/pgvector. Accessed: 2025-03-01.

[68] Pinecone. 2025. Pinecone - Vector Database. http://pinecone.io Accessed:
2025-03-01.

[69] Usman Raza, Alessandro Camerra, Amy L Murphy, Themis Palpanas, and
Gian Pietro Picco. 2015. Practical data prediction for real-world wireless sensor
networks. IEEE Transactions on Knowledge and Data Engineering 27, 8 (2015),
2231–2244.

[70] Google Research. 2023. SOAR: New Algorithms for Even Faster Vector Search
with ScaNN. Google Research Blog. https://research.google/blog/soar-new-
algorithms-for-even-faster-vector-search-with-scann/ Accessed: February 22,
2025.

[71] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[72] Hanan Samet. 1984. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR) 16, 2 (1984), 187–260.

[73] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2016. An experimental
evaluation and analysis of database cracking. The VLDB Journal 25 (2016), 27–52.

[74] Dennis Shasha. 1999. Tuning time series queries in !nance: Case studies and
recommendations. IEEE Data Eng. Bull. 22, 2 (1999), 40–46.

[75] Jin Shieh and Eamonn Keogh. 2008. i SAX: indexing and mining terabyte sized
time series. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 623–631.

[76] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krish-
naswamny, Gopal Srinivasa, et al. 2022. Results of the NeurIPS’21 challenge on
billion-scale approximate nearest neighbor search. In NeurIPS 2021 Competitions
and Demonstrations Track. PMLR, 177–189.

[77] Sivic and Zisserman. 2003. Video Google: A text retrieval approach to object
matching in videos. In Proceedings ninth IEEE international conference on computer
vision. IEEE, 1470–1477.

[78] Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. 2024.
SOAR: improved indexing for approximate nearest neighbor search. Advances in
Neural Information Processing Systems 36 (2024).

[79] Nan Tang, Chenyu Yang, Zhengxuan Zhang, Yuyu Luo, Ju Fan, Lei Cao, Sam
Madden, and Alon Halevy. 2024. Symphony: Towards trustworthy question
answering and veri!cation using RAG over multimodal data lakes. IEEE Data
Eng. Bull 48, 4 (2024), 135–146.

[80] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learn-
ing latent vector spaces for product search. In Proceedings of the 25th ACM
international on conference on information and knowledge management. 165–174.

[81] Vespa.ai. 2024. Hybrid Search. https://docs.vespa.ai/en/tutorials/hybrid-search.
html Accessed: 2024-03-01.

[82] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng
Li. 2012. Scalable k-nn graph construction for visual descriptors. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 1106–1113.

[83] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and
Xian-ShengHua. 2013. Trinary-projection trees for approximate nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence 36, 2 (2013),
388–403.

[84] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[85] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on
learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2017), 769–790.

[86] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023.
Dumpy: A compact and adaptive index for large data series collections. Proceed-
ings of the ACM on Management of Data 1, 1 (2023), 1–27.

[87] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2024.
DumpyOS: A data-adaptive multi-ary index for scalable data series similarity
search. The VLDB Journal 33, 6 (2024), 1887–1911.

[88] Weaviate. 2025. Weaviate - Vector Database. http://weaviate.io Accessed:
2025-03-01.

[89] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In VLDB’98, Proceedings of 24rd International Conference on Very Large
Data Bases, August 24-27, 1998, New York City, New York, USA.

[90] Qian Xu, Juan Yang, Feng Zhang, Junda Pan, Kang Chen, Youren Shen, Amelie Chi
Zhou, and Xiaoyong Du. 2025. Tribase: A Vector Data Query Engine for Reliable
and Lossless Pruning Compression using Triangle Inequalities. Proc. ACMManag.
Data 3, 1, Article 82 (Feb. 2025), 28 pages. https://doi.org/10.1145/3709743

[91] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li,
Ziyue Yang, Fan Yang, Yuqing Yang, et al. 2023. SPFresh: Incremental In-Place
Update for Billion-Scale Vector Search. In Proceedings of the 29th Symposium on
Operating Systems Principles. 545–561.

[92] Fatemeh Zardbani, Nikos Mamoulis, Stratos Idreos, and Panagiotis Karras. 2023.
Adaptive indexing of objects with spatial extent. Proceedings of the VLDB En-
dowment 16, 9 (2023), 2248–2260.

[93] Ce Zhang, Jaeho Shin, Christopher Ré, Michael Cafarella, and Feng Niu. 2016.
Extracting databases from dark data with deepdive. In Proceedings of the 2016
International Conference on Management of Data. 847–859.

[94] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,
Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023. {VBASE}: Unifying
Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity.
In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 377–395.

[95] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
interactive exploration of big data series. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 1555–1566.

3964

https://web.archive.org/web/20110724175845/http://ikt.hia.no/perep/eip_ind.pdf
https://web.archive.org/web/20110724175845/http://ikt.hia.no/perep/eip_ind.pdf
https://doi.org/10.14778/3229863.3240491
https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://mitsloan.mit.edu/ideas-made-to-matter/tapping-power-unstructured-data
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://doi.org/10.5441/002/edbt.2018.29
https://doi.org/10.5441/002/edbt.2018.29
https://github.com/pgvector/pgvector
http://pinecone.io
https://research.google/blog/soar-new-algorithms-for-even-faster-vector-search-with-scann/
https://research.google/blog/soar-new-algorithms-for-even-faster-vector-search-with-scann/
https://docs.vespa.ai/en/tutorials/hybrid-search.html
https://docs.vespa.ai/en/tutorials/hybrid-search.html
http://weaviate.io
https://doi.org/10.1145/3709743

	Abstract
	1 Introduction
	2 Background
	3 Solution Overview
	3.1 Cracking in high dimensions
	3.2 Outline of the approach
	3.3 Outline of the solution

	4 Crack-IVF
	4.1 Algorithm and Operations
	4.2 Where to apply build operations?
	4.3 When to apply build operations?

	5 Experiments
	5.1 Comparison with AV-Tree:
	5.2 Does CrackIVF improve over time?
	5.3 Does CrackIVF Minimize Cumulative Time?
	5.4 Does CrackIVF Reduce Total Distance Computations for Build Operations?
	5.5 Control Mechanisms Ablation Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

