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ABSTRACT
In this work, we propose, analyze and empirically validate a lazy-

update approach to maintain accurate approximations of the 2-hop

neighborhoods of dynamic graphs resulting from sequences of edge

insertions.

We first show that under random input sequences, our algorithm

exhibits an optimal trade-off between accuracy and insertion cost: it

only performs 𝑂 ( 1𝜀 ) (amortized) updates per edge insertion, while

the estimated size of any vertex’s 2-hop neighborhood is at most

a factor 𝜀 away from its true value in most cases, regardless of the

underlying graph topology and for any 𝜀 > 0.

As a further theoretical contribution, we explore adversarial

scenarios that can force our approach into a worst-case behavior at

any given time 𝑡 of interest. We show that while worst-case input

sequences do exist, a necessary condition for them to occur is that

the girth of the graph released up to time 𝑡 be at most 4.

Finally, we conduct extensive experiments on a collection of real,

incremental social networks of different sizes, which typically have

low girth. Empirical results are consistent with and typically better

than our theoretical analysis anticipates. This further supports the

robustness of our theoretical findings: forcing our algorithm into

a worst-case behavior not only requires topologies characterized

by a low girth, but also carefully crafted input sequences that are

unlikely to occur in practice.

Combined with standard sketching techniques, our lazy ap-

proach proves an effective and efficient tool to support key neighbor-

hood queries on large, incremental graphs, including neighborhood

size, Jaccard similarity between neighborhoods and, in general,

functions of the union and/or intersection of 2-hop neighborhoods.
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1 INTRODUCTION
In this paper, we consider the task of processing a possibly large,

dynamic graph 𝐺 (𝑉 , 𝐸), incrementally provided as a stream of

edge insertions, so that at any point of the stream it is possible

to efficiently evaluate different queries that involve functions of the

ℎ-hop neighborhoods of its vertices. For a vertex 𝑣 ∈ 𝑉 , its ℎ-hop
neighborhood is simply the set of vertices that are within ℎ hops

from 𝑣 . In the remainder, ℎ-hop neighborhoods are called ℎ-balls

for brevity. As concrete examples of query types we consider, one

might want to estimate the size of the 2-ball at any given vertex,

or the Jaccard similarity between the 2-balls centered at any given

two vertices, or other indices of a similar flavor that depend on

the intersection or union between 1-balls and/or 2-balls, just to

mention a few.

Neighborhood-based indices are common in key mining tasks,

such as link prediction in social [40] and biological networks [52]

or to describe statistical properties of large social graphs [6]. For

example, 2-hop neighborhoods are important in social network

analysis and similarity-based link prediction [4, 55, 57], while ac-

curate approximations of ℎ-balls’ sizes are used to estimate key

statistical properties of (very) large social networks [3, 10], or as

link-based features in classifiers forWeb spam detection [7]. Further

tasks that may explicitly involve or benefit from 2-hop neighbor-

hood queries are accurate estimates of centrality measures that

are widely adopted in social network analysis [9, 29, 46] or mining

of (usually large) bipartite networks that are frequent in certain

applications [43, 49]. We investigate the former example in detail

in the full version [8].

When the graph is static, an effective approach to this general

task is to treatℎ-balls as subsets of the vertices of the graph, suitably

represented using approximate summaries or sketches [1]. This

line of attack has proved successful, for example in the efficient and

scalable evaluation of important neighborhood-based queries on

massive graphs that in part or mostly reside on secondary storage

[6, 10, 27, 41].

Nowadays, standard applications in social network analysis often

entail dynamic scenarios in which input graphs evolve over time,
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under a sequence of edge insertions and possibly deletions [2]. In

many cases, such as co-authorship, citation or user-item association

networks, the corresponding dynamic graphs are inherently or

mostly incremental, i.e., either edges and/or vertices are added but

not deleted, or insertions account for the vast majority of updates

[12, 38].
1

With respect to a static scenario, the dynamic case poses new

and significant challenges even in the incremental setting, as soon

as ℎ > 1.
2
To see this, it may be useful to briefly sketch the cost

of maintaining 1- and 2-balls exactly under a sequence of edge

insertions, as we discuss in more detail in Section 2. When ℎ = 2,

each Insert(𝑢, 𝑣) operation entails (see Algorithm 1 and Figure

1): i) updating the 2-ball of 𝑢 to its union with the 1-ball of 𝑣 and

viceversa (what we call a heavy update); ii) adding 𝑣 to the 2-ball

of each neighbor of 𝑢 and viceversa (what we call a light update).

Both heavy and light updates can result in high computational

costs per edge insertion: a heavy update can be expensive if at

least one of the neighborhoods to merge is large; on the other

hand, light updates are relatively inexpensive, but they can be

numerous when large neighborhoods are involved, again resulting

in a high overall cost per edge insertion. Unfortunately, ℎ-balls

can grow extremely fast with ℎ in many social networks, already

as one switches from ℎ = 1 to ℎ = 2 [3, 7]. For the same reason,

maintaining lossless representations of 2-balls for each vertex of

such networks might require considerable memory resources and

might negatively impact the cost of serving neighborhood-based

queries that involve moderately or highly central vertices.

To address the aforementioned issues for graphs that reside in

main memory, one might want to trade some degree of accuracy for

the following broad goals: 1) designing algorithms with low update

costs, possibly 𝑂 (1) amortized per edge insertion; 2) minimizing

memory footprint beyond what is needed to store the graph; 3)

maintaining 1- and 2-balls using data structures that afford efficient,

real-time computation of queries as the ones mentioned earlier

with minimal memory footprint.

Heavy updates are natural and well-known candidates for effi-

cient (albeit approximate) implementation using compact, sketch-

based data structures [1, 5, 14, 15, 30]. However, sketches alone are

of no avail in handling light updates, whose sheer potential number

requires a novel approach. The literature on efficient data structures

that handle insertions and often deletions over dynamic graphs

is rich. However, efficient solutions to implement neighborhood-

based queries on dynamic edge streams are only known for 1-balls

[17, 20, 33, 53], nor do approaches devised for other dynamic prob-

lems adapt to our setting in any obvious way, something we elabo-

rate more upon in Section 1.2.

1.1 Our Contribution
In this paper, we propose an approach that trades some degree of

accuracy for a substantial improvement in the average number of

1
Of course, notable examples exist in which deletions are as important, such as some

affiliation networks, or networks that describe on-line messaging behavior, where

edges representing message exchanges become less and less important as they age.

2
The case ℎ = 1 is considerably simpler and it barely relates to graphs: adding or

removing one edge (𝑢, 𝑣) simply requires updating the 1-balls of 𝑢 and 𝑣 accordingly,

i.e., updating two corresponding set sketches by adding or removing one item. This

has been the focus of extensive work in the recent past that we discuss in Section 1.2.

light updates. In a nutshell, upon an edge insertion, our algorithm

performs the (two) corresponding heavy updates, but in general

only a subset of the required light updates, according to a scheme

that combines a threshold-based mechanism and a randomized,

batch-update policy. Hence, for every vertex 𝑢, we only keep an

approximation (a subset to be specific) of 𝑢’s 2-ball. If 1- and 2-balls

are represented with suitable data sketches, our approach affords

constant average update cost per edge insertion.
3
While the behav-

ior and accuracy guarantees of most sketching techniques are well

understood, the estimation error induced by lazy updates can be

arbitrarily high in some cases. The main focus of this paper is on

the latter aspect, which is absent in the static case but critical in the

dynamic setting. Accordingly, we assume lossless representations

of 1-balls and approximate 2-balls in our theoretical analyses in

Sections 2 to 4, while we use standard sketching techniques to repre-

sent 1- and 2-balls in the actual implementations of the algorithms

and baselines we consider in the experimental analysis discussed

in Section 5.

Almost-optimal performance on random sequences. We prove in

Section 3 that even a simplified, deterministic variant of our lazy-

update Algorithm 3 achieves asymptotically optimal expected per-

formance when the sequence of edge insertions is a random, uni-

form permutation over an arbitrary set of edges. In other words, our

lazy approach is robust to adversarial topologies as long as the edge

sequence follows a random order. Formally, we prove that, for any

desired 0 < 𝜀 < 1, our algorithm only performs 𝑂 ( 1𝜀 ) (amortized)

updates per edge insertion, while at any time 𝑡 and for every vertex

𝑣 , the estimated size of 𝑣 ’s 2-ball is, in expectation, at most a factor 𝜀

away from its true value. We further prove that this approximation

result holds with a probability that exponentially increases with

the true size of the 2-ball itself (Theorem 1). Thanks to this analysis

in concentration, our results can be extended to other functions

of 2-balls, including union, intersection and Jaccard similarity (see

Corollary 2 for this less obvious case).

As positive as this result may sound, it begs the following ques-

tions from a careful reader: 1) Are the results above robust to ad-

versarial sequences? 2) Is a performance analysis under random

sequences representative of practical scenarios? 3) More generally,

does our lazy scheme offer significant practical advantages?

Performance analysis on adversarial inputs. While our results for

random sequences are optimal regardless of the underlying graph’s

topology, one might wonder about the ability of an adversary to

design worst-case, adaptive sequences that force our approach to

behave poorly and, in this case, whether any conditions on the

graph topology are necessary for this to happen. We investigate this

issues in Section 4, where we first show that it is possible to design

worst-case sequences of edge insertions that force our algorithm

to perform arbitrarily worse than the random setting (Theorem 3).

However, as a further contribution, we also prove that worst-case

3
The particular sketch used depends on the neighborhood queries we want to be able

to serve. When sketches are used, the cost of merging two neighborhoods corresponds

to the cost of combining the corresponding sketches, which is typically a constant that

depends on the desired approximation guarantees. For example, if we are interested in

the Jaccard similarity between pairs of 1- and/or 2-balls, this cost will be proportional

to the (constant) number of minhash values we use to represent each neighborhood.
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input sequences exist only if the girth [22] of the final graph is at

most 4. More precisely, we show that a randomized, special case

of Algorithm 3 achieves asymptotically optimal performance on a

class of graphs that contains all graphs with girth at least 5,
4
even

when the input sequence is chosen by an adaptive adversary.

Experimental analysis. An analysis under random permutation

sequences is relatively common in the literature on dynamic edge

streams and data streams [16, 32, 34, 44]. Yet, one might reasonably

wonder about its practical significance for the task considered in

this paper. We address these issues in Section 5, where we conduct

experiments on small, medium and large-sized, incremental graphs

(whose main properties are summarized in Table 1). At least on the

diverse sample of real networks we consider, experimental results

on the estimation of key queries such as size and Jaccard similarity

are consistent with the theoretical findings from Section 3, while

results on running times highlight the significance of our approach

in practice: i) light updates crucially affect computational costs in

practical scenarios; ii) when combined with sketches, our approach

strikes an excellent balance between loss in accuracy and computa-

tional efficiency. In particular, its accuracy is comparable or only

slightly worse than the baseline that performs all necessary light

updates, while it achieves speed-ups that increase with network

size and can be orders of magnitude with respect to the baseline on

large or very large social networks (Tables 4 and 5). We finally note

that our datasets are samples of real social networks. As such, they

have relatively large local and global clustering coefficients
5
and

thus low girth. Hence, our experimental analysis further supports

the robustness of our theoretical findings: forcing our algorithm(s)

into a worst-case behavior not only requires topologies character-

ized by a low girth, but also carefully crafted input sequences that

are unlikely to occur in practice.

Use cases from real networks. While neighborhood-based queries

are extremely important in social network analysis, the main focus

of this paper is on crucial, new challenges that arise in dynamic

settings and on possible strategies to address them. For this reason,

we investigate basic neighborhood queries without specific applica-

tions in mind. As simple as it may appear however, the incremental

setting we consider provides a feasible framework to tackle impor-

tant mining tasks over large, dynamic networks. As an example, we

consider the problem of maintaining the harmonic centrality-based

ranking of the vertices of an incremental graph [11, 46], a key min-

ing task in social network analysis [11, 29]. Exact solutions for this

problem necessarily incur high computational costs in some cases,
6

while the study of dynamic strategies with update costs of practical

interest is still an open area of research [31]. In the full version of

this paper [8], we experimentally show that our approach is a very

good fit for this task, affording continuous, accurate tracking of

top-𝑘 ranking vertices, thus highlighting its effectiveness for a key

downstream task that would otherwise be hardly feasible on large,

incremental graphs.

Many real networks are inherently bipartite, describing inter-

actions between entities of two different types. Examples include

4
The class is in fact more general since it also includes graphs with a “bounded” number

of cycles of length at most 4. See Definition 4.1, for a formal definition of this class.

5
At least the undirected ones.

6
Even in the static setting [9].

many biological networks [43], social networks [35], user-URL or

user-item interactions [37] to name a few. Moreover, many of them

are also inherently or mostly incremental in nature.
7
In such net-

works, the prediction of future interactions is a key mining task,

for which (Jaccard) similarity between 2-hop neighborhoods can

prove a valuable index for prediction purposes. For example, in

author-paper networks, the set 𝐿2 (𝑣) of vertices at distance exactly
2 from an author 𝑣 is the set of 𝑣 ’s co-authors. Hence, for any two

authors 𝑢 and 𝑣 with no currently co-authored paper, the Jaccard

similarity between 𝐿2 (𝑢) and 𝐿2 (𝑣) can be used to estimate the

probability of 𝑢 and 𝑣 co-authoring a paper in the next future.
8

Final remarks. We stress that although we present them for the

undirected case for ease of presentation and for the sake of brevity,

our algorithms apply to directed graphs in general,
9
while our

analysis extends to the directed case with minor modifications.

Moreover, our algorithms seamlessly address incremental settings

in which new vertices may connect to the current graph, the latter

being for example the typical scenario in co-authorship networks

[12].

1.2 Further related work
Efficient data structures for queries that involveℎ-balls of a dynamic

graph turn out to be useful in different network applications, as we

mentioned earlier [4, 7, 55].

Efficient solutions for Jaccard similarity queries on 1-balls have

been proposed for different dynamic graph models: all of them

share the use of suitable data sketches to manage insertion and

deletion of elements from sets. In particular, [17, 33, 53] proposes

and compares different approaches that work in the fully-dynamic

streaming model, while an efficient solution, based on a buffered

version of the 𝑘-min-hashing scheme is proposed in [20]. A fur-

ther algorithm is presented in [56], where bottom-𝑘 sketches [21]

are used to perform dynamic graph clustering based on Jaccard

similarity among vertices’ neighborhoods. We remark that none

of these previous approaches include ideas or tools that can be

adapted to efficiently manage the 2-ball update-operations we need

to implement in this work.

As for other queries that might be "related" or "useful" in our

setting, a considerable amount of work on data structures that

support edge insertions and deletions exists for several queries, such

as connectivity or reachability, (exact or approximate) distances,

minimum spanning tree, (approximate) betweenness centrality, and

so on. We refer the reader to [31] for a nice survey on experimental

and theoretical results on the topic. To the best of our knowledge

however, none of these approaches can be obviously adapted to

handle the types of queries we consider in this work. For example,

a natural idea would be using an incremental data structure to

dynamically maintain the first ℎ levels of a BFS tree, such as [26,

47], that achieve 𝑂 (ℎ) amortized update time. However, let alone

effectiveness in efficiently serving queries as the ones we consider

here, the data structure uses Ω(𝑛) space per BFS. This is prohibitive
7
Edge/vertex deletions are rare or absent.

8
Our approach also allows estimation of the Jaccard similarity between 𝐿2 (𝑢 ) and
𝐿2 (𝑣) .
9
Of course, in this case we have directed ℎ-balls, i.e., sets of a vertices that can be

reached in at most ℎ hops from a given vertex, or from which it is possible to reach

the vertex under consideration in at most ℎ hops.
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in our setting, where we would need to instantiate one such data

structure for each vertex, with total space Ω(𝑛2). Moreover, since

in a degree-Δ graph Θ(Δ) BFS trees can change following a single

edge insertion, the corresponding amortized time per edge insertion

could be as high as Θ(Δ), which is basically the same cost of the

baseline solution we discuss at the beginning of Section 2.

2 LAZY-UPDATE ALGORITHMS
Preliminaries and notations. The dynamic (incremental) graphmodel

we study can be defined as a sequence G = {𝐺 (0) (𝑉 , 𝐸 (0) ), . . . ,
𝐺 (𝑡 ) (𝑉 , 𝐸 (𝑡 ) ), . . . 𝐺 (𝑇 ) (𝑉 , 𝐸 (𝑇 ) )}, where: (i) the set of vertices 𝑉 =

{1, . . . , 𝑛} is fixed, (ii)𝑇 ≤
(︁𝑛
2

)︁
is the final graph, while (iii) 𝐸 (𝑡 ) is the

subset of edges at time 𝑡 . Note that this changes in every time step

𝑡 ≥ 1, as a new edge 𝑒 (𝑡 ) is inserted, so that 𝐸 (𝑡+1) = 𝐸 (𝑡 ) ∪ {𝑒 (𝑡 ) }.
We remark that our analysis and all our results can be easily adapted

to a more general model that includes any combination of the fol-

lowing variants: (i) growing vertex sets, (ii) multiple insertions

of the same edge, and (iii) directed edges (thus yielding directed

graphs). However, the corresponding adaptations of our analysis

would require significantly heavier notation and some technicalities

that we decided to avoid for the sake of clarity and space.

Our goal is to design algorithms that, at every time step 𝑡 ≥ 1,

are able to efficiently compute queries over the current 2-balls of

𝐺 (𝑡 ) . As mentioned in the introduction, our focus is on queries that

are typical in graph mining such as: (i) given a vertex 𝑢, estimate

the size of 𝐵2 (𝑢), and (ii) given two vertices 𝑢, 𝑣 ∈ 𝑉 , estimate the

Jaccard similarity of the corresponding 2-balls:

J(𝐵2 (𝑢), 𝐵2 (𝑣)) =
|𝐵2 (𝑢) ∩ 𝐵2 (𝑢) |
|𝐵2 (𝑢) ∪ 𝐵2 (𝑢) |

.

Both the theoretical and experimental analysis of our lazy-update

algorithms consider the following key performance measures: the

amortized update time per edge insertion and the approximation

ratio of our algorithms on the quantities |𝐵2 (𝑢) | and J(𝐵2 (𝑢), 𝐵2 (𝑣)),
for any choice of the input vertices. Intuitively, the amortized update

time is the average time it takes to process a new edge, amore formal

definition is deferred to Section 2, after a detailed description of the

algorithms we consider.

We next summarize notation that is used in the remainder of the

paper. For a vertex 𝑣 ∈ 𝑉 of a graph 𝐺 (𝑉 , 𝐸), we define:
N(𝑣): the set of neighborhoods of the vertex 𝑣 .

deg𝑣 : the degree of 𝑣 . Notice that deg𝑣 = |N (𝑣) |;
𝐿ℎ (𝑣): set of vertices at distance exactly ℎ from 𝑣 ;

𝐵ℎ (𝑣): set of vertices at distance at most ℎ from 𝑣 .

The reader may have noticed that, in our notation above, the

term 𝑡 does not appear: this is due to the fact that our analysis

holds at any (arbitrarily fixed) time step, which is always clear from

context.

2.1 Algorithm description
Consider the addition of a new edge (𝑢, 𝑣) to 𝐺 . Clearly, the only
2-balls that are affected are those centered at 𝑢, 𝑣 , and at every

vertex𝑤 ∈ N (𝑢) ∪N (𝑣). A baseline strategy, given as Algorithm 1

for the sake of reference, tracks changes exactly and thus updates

all 2-balls that are affected by an edge insertion.

Algorithm 1: Baseline algorithm.

1 Function Insert(𝑢, 𝑣):
2 𝐵2 (𝑢) ← 𝐵2 (𝑢) ∪ 𝐵1 (𝑣)
3 foreach𝑤 ∈ N (𝑢) \ {𝑣} do
4 𝐵2 (𝑤) ← 𝐵2 (𝑤) ∪ {𝑣}
5 end
6 𝐵2 (𝑣) ← 𝐵2 (𝑣) ∪ 𝐵1 (𝑢)
7 foreach𝑤 ∈ N (𝑣) \ {𝑢} do
8 𝐵2 (𝑤) ← 𝐵2 (𝑤) ∪ {𝑢}
9 end

10 end

The magnitude of the changes (and the associated computational

costs) induced by Insert(𝑢, 𝑣) vary. In particular, 𝐵2 (𝑢) can change
significantly, as all vertices in 𝐵1 (𝑣) will be included in 𝐵2 (𝑢) (we
refer to this as a heavy update, see Algorithm 1 at Line 2). Instead, for

any vertex𝑤 ∈ N (𝑢)\{𝑣}, 𝐵2 (𝑤) will grow by at most one element,

namely 𝑣 (this is referred to as a light update, see Algorithm 1 at

Line 4). Symmetrically, the same holds for 𝑣 and for every 𝑤 ∈
N (𝑣) \ {𝑢} (Lines 6 and 8).

A key observation at this point is that, while heavy updates can

be addressed using (possibly approximate) data structures that allow

efficient merging of 1- and 2-balls, this line of attack fails with light

updates, whose cost derives from their potential number, which

can be large in many real cases, as we noted in the introduction.

A first idea to reduce the average number of updates per edge

insertion is to perform heavy updates immediately, instead process-

ing light updates in batches that are performed occasionally. More

precisely, when a new edge (𝑢, 𝑣) arrives, it is initially marked as a

red edge. Whenever the number of red edges incident to a vertex

𝑢 exceeds a certain threshold, all the corresponding light updates

are processed, and the state of red edges is updated to black. See

Figure 1 for an example.

w

w0

u v

Figure 1: Example of insertion of a new edge (𝑢, 𝑣). The al-
gorithm merges the 1-ball of 𝑣 with the 2-ball of 𝑢 (heavy
update), while it does not immediately add vertex 𝑣 to the
2-ball of vertex𝑤 or any other of 𝑢’s neighbors.

The idea behind the threshold-based approach is to maintain a

balance between the number of black and red edges for every vertex.

While useful when edge insertions appear in a random order, this

approach may fail when red edges considerably expand the original

size of the 2-ball of some vertex 𝑢. In order to mitigate this problem,

our algorithm uses a second ingredient: upon each edge insertion

(𝑢, 𝑣), the algorithm selects 𝑘 vertices fromN(𝑢) and 𝑘 fromN(𝑣)
uniformly at random and performs a batch of light updates for the

selected vertices, even if the threshold has not been reached yet.
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These ideas are formalized in Algorithm 3. For each vertex 𝑣 ,

our algorithm maintains two sets 𝐵̂1 (𝑣) and 𝐵̂2 (𝑣), as well as the
black degree Δ𝑣 and red degree 𝛿𝑣 of 𝑣 . Our algorithm guarantees

that 𝐵̂1 (𝑣) is exactly 𝐵1 (𝑣), while 𝐵̂2 (𝑣) is in general a subset of

𝐵2 (𝑣). The algorithm uses two global parameters, namely a thresh-

old 𝜑 ∈ [0, 1], and an integer 𝑘 . The role of the parameter 𝜑 can be

understood as follows: when 𝜑 is set to 0, the algorithm performs

all heavy and light updates for every edge insertion, ensuring that

𝐵̂2 (𝑣) always matches 𝐵2 (𝑣). As 𝜑 increases, the update function

becomes lazier: light updates are not always executed, and 𝐵̂2 (𝑣)
is typically a proper subset of 𝐵2 (𝑣). For instance, when 𝜑 = 1,

light updates are performed in batches every time the degree of a

vertex doubles. Parameter 𝑘 specifies the number of neighbors of 𝑣

that are randomly selected for update of their 2-balls whenever an

edge insertion involving 𝑣 occurs. This mechanism corresponds to

Lines 14 to 16 of Algorithm 3.

We call Lazy-Alg(𝜑, 𝑘) the algorithm that runs Algorithm 2

on an initial graph 𝐺 (0) and then processes a sequence 𝑆 of edge

insertions by running Algorithm 3 on each edge of 𝑆 .

Algorithm 2: Init operation
Data: An undirected graph 𝐺 = (𝑉 , 𝐸), a threshold

parameter 0 ≤ 𝜑 ≤ 1, and an integer 𝑘 ≥ 0.

1 set 𝜑 and 𝑘 as global parameters

2 foreach vertex 𝑢 ∈ 𝑉 do
3 𝛿𝑢 ← 0

4 Δ𝑢 ← deg𝑢

5 𝐵̂1 (𝑢) ← 𝐵1 (𝑢)
6 𝐵̂2 (𝑢) ← 𝐵2 (𝑢)
7 end

A note on neighborhood representation. As we mentioned in the

introduction, we treat 𝐵̂1 (𝑣) and 𝐵̂2 (𝑣) as sets of vertices in this

section and in Section 4. We remark that this only serves the pur-

pose of analyzing the error introduced by our lazy update policies:

lossless representations of 1- and 2-balls may be unfeasible for

medium or large graphs and compact data sketches are typically

used to represent them in such cases. The choice of the actual sketch

strongly depends on the type of query (or queries) one wants to

support, such as 1- or 2-ball sizes [10, 28] or Jaccard similarity be-

tween 2-balls [6, 14, 21]. All sketches used for typical neighborhood

queries are well-understood and come with strong accuracy guar-

antees. Moreover, they allow to perform the union of 1- and 2-balls

we are interested in time proportional to the sketch size, which is

independent of the sizes of the balls to merge [1].

2.2 Cost analysis for arbitrary sequences
Consistently to what we remarked above, our cost analysis focuses

on the number of set-union operations: This performance measure

in fact dominates the computational cost of Algorithm 3. More in

detail, given any sequence 𝑆 of edge insertions, starting from an

initial graph 𝐺 (0) , we denote by 𝑇 (𝑆) the overall number of union

operations performed in Lines 4, 5, 11 and 16 of Algorithm 3 on the

input sequence 𝑆 .

Algorithm 3: Insert

1 Function Insert((𝑢, 𝑣)):
2 for 𝑥 ∈ {𝑢, 𝑣} do
3 let 𝑦 ∈ {𝑢, 𝑣} \ {𝑥}
4 𝐵̂1 (𝑥) ← 𝐵̂1 (𝑥) ∪ {𝑦}

// heavy update

5 𝐵̂2 (𝑥) ← 𝐵̂2 (𝑥) ∪ 𝐵̂1 (𝑦)
6 𝛿𝑥 ← 𝛿𝑥 + 1
7 if 𝛿𝑥 ≥ 𝜑 · Δ𝑥 then
8 Δ𝑥 ← Δ𝑥 + 𝛿𝑥
9 𝛿𝑥 ← 0

10 foreach 𝑧 ∈ N (𝑥) do
// batch of light updates

11 𝐵̂2 (𝑧) ← 𝐵̂2 (𝑧) ∪ 𝐵̂1 (𝑥)
12 end
13 else
14 select 𝑘 vertices𝑤1, . . . ,𝑤𝑘 ∈ N (𝑥) u.a.r.
15 for 𝑖 = 1, . . . , 𝑘 do

// batch of light updates

16 𝐵̂2 (𝑤𝑖 ) ← 𝐵̂2 (𝑤𝑖 ) ∪ 𝐵̂1 (𝑥)
17 end
18 end
19 end
20 end

We observe that a trivial upper bound to 𝑇 (𝑆) is 𝑂 (Δ|𝑆 |), since
each insertion can cost𝑂 (Δ) union operations where Δ is the max-

imum degree of the current graph. However, this trivial argument

turns out to be too pessimistic: in what follows, we provide a more

refined analysis of the amortized costper edge insertion. We say

that an algorithm has amortized cost 𝑐 per edge insertion if, for any

sequence 𝑆 of edge insertions, we have 𝑇 (𝑆) ≤ 𝑐 |𝑆 |.

Lemma 1. Given any initial graph 𝐺 (0) and any sequence 𝑆 of

edge insertions, the amortized update cost of Algorithm 3 is𝑂 ( 1𝜑 +𝑘)
per edge insertion.

Proof. Let us first consider the case 𝑘 = 0, i.e., when the random

selection and the consequent instructions in Lines 14 to 16 are never

performed. Our amortized analysis makes use of the accounting

method [50]. The idea is paying the cost of any batch of light updates

by charging it to previous edge insertions. More precisely, we assign

credits to each edge insertion that we will use to pay the cost of

subsequent batches of light updates. Formally, the amortized cost of

an edge insertion is defined as the actual cost of the operation, plus

the credits we assign to it, minus the credits (accumulated from

previous operations) we spend for it. We need to carefully define

such credits in order to guarantee that the sum of the amortized

costs is an upper bound to the sum of the actual costs, i.e. we always

have enough credits to pay for costly batch light updates.

We proceed as follows. When we insert the edge (𝑢, 𝑣), we put
2/𝜑 credits on 𝑢 and 2/𝜑 credits on 𝑣 . Now we bound the actual

and amortized cost of each insertion.
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First, consider an edge insertion (𝑢, 𝑣) that does not trigger a
batch of light updates. Its actual cost is 4 union operations (those

in Lines 4 and 5, 2 for each endpoint of (𝑢, 𝑣)). Then its amortized

cost is upper-bounded by 4 + 4/𝜑 = 𝑂 (1/𝜑). Now consider the

case in which the insertion causes a batch of light updates for 𝑢,

or 𝑣 , or both. We show that the credits accumulated by previous

insertions are sufficient to pay for its cost. To see this, consider

a batch of light updates involving vertex 𝑥 ∈ {𝑢, 𝑣}. And let Δ𝑥
and 𝛿𝑥 be the current black and red degrees of 𝑥 at that time (just

before Line 7 is evaluated). It is clear that for vertex 𝑥 we have

accumulated 𝛿𝑥 · 2/𝜑 credits that now we use to pay for the cost of

Lines 10 and 11. This cost equals to deg𝑥 union operations, where

deg𝑥 is the current degree of vertex 𝑥 . Since the batch of light

updates has just been triggered, we have that 𝛿𝑥 ≥ 𝜑Δ𝑥 , and hence
we have at least 𝛿𝑥 · 2/𝜑 ≥ 𝜑Δ𝑥 · 2/𝜑 = 2Δ𝑥 credits to pay for

the deg𝑥 = Δ𝑥 + 𝛿𝑥 = Δ𝑥 + 𝜑Δ𝑥 ≤ 2Δ𝑥 union operations. This

concludes the proof.

Finally, to obtain the claim when 𝑘 > 0, we notice that, in this

case, every edge insertion causes𝑂 (𝑘) additional union operations.

□

3 RANDOM EDGE SEQUENCES
In this section, we analyze the accuracy of our lazy-update algo-

rithm(s) over an arbitrary dynamic graph, whose edges are given in

input as a uniformly sampled, random permutation over its edge set.

Dynamic graphs resulting from random sequences of edge inser-

tions have been an effective tool to provide theoretical insights that

have often proved robust to empirical validation in various dynamic

scenarios [18, 34, 41, 42, 44]. In more detail, assume𝐺 = (𝑉 , 𝐸), with
|𝐸 | = 𝑡 , is the graph observed up to some time 𝑡 of interest. Fol-

lowing [42, 44], we assume that the sequence of edges up to time

𝑡 is chosen uniformly at random from the set of all permutations

over 𝐸.10 The following fact is an immediate consequence of well-

known and intuitive properties of random permutations. We state

it informally for the sake of completeness, avoiding any further,

unnecessary notation.

Fact 1. Consider a dynamic graph 𝐺 = (𝑉 , 𝐸), whose edges are
observed sequentially according to a permutation over 𝐸 chosen uni-

formly at random. Then, for every 𝐸′ ⊆ 𝐸, the sequence in which edges

in 𝐸′ are observed is itself a uniformly chosen, random permutation

over 𝐸′.

In the remainder, for an arbitrary vertex 𝑣 , we analyze how well

the output 𝐵̂2 (𝑣) of Algorithm 3 approximates 𝐵2 (𝑣) at any round

𝑡 in terms of its coverage:

Definition 3.1. We say that the output 𝐵̂2 (𝑣) of Lazy-Alg(𝜑, 𝑘)
is a (1− 𝜀)-covering of 𝐵2 (𝑣) if the following holds: i) 𝐵̂2 (𝑣) ⊆ 𝐵2 (𝑣);
ii) E

[︁
|𝐵̂2 (𝑣) |

]︁
≥ (1 − 𝜀) |𝐵2 (𝑣) |, where expectation is taken over the

randomness of the algorithm and/or the input sequence. When the

algorithm produces a (1 − 𝜀)-covering 𝐵̂2 (𝑣) of 𝐵2 (𝑣) for every 𝑣 , we
say it has approximation ratio

1

(1−𝜀 ) .

Our main result in this section is formalized in the following

10
It should be noted that this includes the general case in which 𝑡 is any intermediate

point of a longer stream that possibly extends well beyond 𝑡 . In this case, it is well-

known and easy to see that, conditioned on the subset 𝐸 of the edges released up to

time 𝑡 , their sequence is just a permutation of 𝐸.

Theorem 1. Let 𝜀 ∈ (0, 1), and fix parameters 𝑘 = 0 and 𝜑 =
𝜀

1−𝜀 . Consider any graph 𝐺 (𝑉 , 𝐸) submitted as a uniform random

permutation of its edge set 𝐸 to Lazy-Alg(𝜑, 𝑘). Then, at every time

step 𝑡 ≤ |𝐸 |, the algorithm has approximation ratio
1

1−𝜀 . Moreover,

for every 𝛼 > 0 and every vertex 𝑣 ∈ 𝑉 , we have:

P
(︃
|𝐵̂2 (𝑣) | <

1 − 𝛼
1 + 𝜑 |𝐿2 (𝑣) |

)︃
≤ 𝑒
− 2𝛼2 |𝐿

2
(𝑣) |

(1+𝜑 )2 . (1)

Proof. Fix a vertex 𝑣 ∈ 𝑉 and a round 𝑡 ≥ 1. In the remainder

of this proof, all quantities are taken at time 𝑡 . We are interested in

how close |𝐵̂2 (𝑣) | is to |𝐵2 (𝑣) |. To begin, we note that the following
relationship holds deterministically:

|𝐵̂2 (𝑣) | = 1 + |𝐿1 (𝑣) | + |𝐵̂2 (𝑣) ∩ 𝐿2 (𝑣) |, (2)

where the only random variable on the right hand side is the last

term. We next define a partition C = {𝐶𝑢 : 𝑢 ∈ 𝐿1 (𝑣)} of 𝐿2 (𝑣) as

v

L2(v)

L1(v)

C1 C2 C3

Figure 2: Example of a partition of 𝐿2 (𝑣) into three sets
𝐶1,𝐶2,𝐶3. Edges connecting vertices 𝑤 ∈ 𝐿2 (𝑣) to their re-
spective partitions are thicker.

follows: for each𝑤 ∈ 𝐿2 (𝑣), we choose a vertex 𝑢 ∈ 𝐿1 (𝑣) ∩ N (𝑤)
and assign𝑤 to𝐶𝑢 . This way, each vertex𝑤 ∈ 𝐿2 (𝑣) is associated to
exactly one edge connecting one vertex in 𝐿1 (𝑣) to𝑤 (see Figure 2,

where the edges in question are thick in the picture). Let 𝐸𝑣 denote

the set of such edges and note that i) 𝐸𝑣 is a subset of the edges

connecting vertices in 𝐿1 (𝑣) to those in 𝐿2 (𝑣), ii) |𝐸𝑣 | = |𝐿2 (𝑣) | by
definition and iii) |𝐶𝑢 | ≤ deg𝑢 −1 for every 𝑢 ∈ 𝐿1 (𝑣), given that

𝐶𝑢 contains a subset of 𝑢’s neighbors and (𝑣,𝑢) is always present.
Moreover, Algorithm 3 guarantees that |𝐵̂2 (𝑣)∩𝐿2 (𝑣) | is at least the
number of edges in 𝐸𝑣 that are black. These considerations allow

us to conclude that

|𝐵̂2 (𝑣) ∩ 𝐿2 (𝑣) | ≥ |{𝑒 ∈ 𝐸𝑣 : 𝑒 is black}|.
A key observation at this point is that Algorithm 3 implies that

for every 𝑥 ∈ 𝑉 , 𝛿𝑥 ≤
⌊︂

𝜑
1+𝜑 deg𝑥

⌋︂
. As a consequence, if some

𝑒 = (𝑢,𝑤) ∈ 𝐸𝑣 was not among the last

⌊︂
𝜑
1+𝜑 deg𝑢

⌋︂
edges incident

in 𝑢 that were released within time 𝑡 , it is necessarily black. For

𝑒 = (𝑢,𝑤) ∈ 𝐸𝑣 , with 𝑢 ∈ 𝐿1 (𝑣) and 𝑤 ∈ 𝐿2 (𝑣), let 𝑋𝑒 = 1 if 𝑒

was among the first deg𝑢 −
⌊︂

𝜑
1+𝜑 deg𝑢

⌋︂
edges incident in 𝑢 that

were released up to time 𝑡 and let 𝑋𝑒 = 0 otherwise. Following the

argument above, the event (𝑋𝑒 = 1) implies the event "𝑒 is black",

whence:

|𝐵̂2 (𝑣) ∩ 𝐿2 (𝑣) | ≥ |{𝑒 ∈ 𝐸𝑣 : 𝑒 is black}| ≥
∑︂
𝑒∈𝐸𝑣

𝑋𝑒 . (3)

Next, we are interested in bounds on P (𝑋𝑒 = 1). Assume 𝑒 is in-

cident in 𝑢 and let 𝑆 be the set of edges incident in 𝑢 observed up
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to time 𝑡 . Then, from Fact 1, the sequence in which these edges

are observed is just a random permutation of 𝑆 . This immediately

implies that, if 𝑒 is incident to a vertex 𝑢 ∈ 𝐿1 (𝑣), then

P (𝑋𝑒 = 1) =
deg𝑢 −

⌊︂
𝜑
1+𝜑 deg𝑢

⌋︂
deg𝑢

≥ 1

1 + 𝜑 .

Together with (3) this yields:

E
[︁
|𝐵̂2 (𝑣) |

]︁
≥ 1 + |𝐿1 (𝑣) | +

1

1 + 𝜑 |𝐿2 (𝑣) | ≥
1

1 + 𝜑 |𝐵2 (𝑣) |.

We next show that

∑︁
𝑒∈𝐸𝑣

𝑋𝑒 is concentrated around its expecta-

tion when |𝐿2 (𝑣) | is large enough, which implies that |𝐵̂2 (𝑣) | is
concentrated around a value close to |𝐵2 (𝑣) | in this case. The main

technical hurdle here is that the𝑋𝑒 ’s are correlated (albeit mildly, as

we shall see). To prove concentration, we resort to Martingale prop-

erties of random edge sequences to apply the method of (Average)

Bounded Differences [23]. In order to do this, we need bounds on

P
(︂
𝑋𝑒 = 1|𝑋𝑓 = 1

)︂
and P

(︂
𝑋𝑒 = 1|𝑋𝑓 = 0

)︂
, for 𝑒, 𝑓 ∈ 𝐸𝑣 . Assume

again that 𝑒 is incident in 𝑢 ∈ 𝐿1 (𝑣) and that 𝑆 is the set of edges

incident in 𝑢 observed up to time 𝑡 . Assume first that 𝑓 is also

incident in 𝑢 and that, without loss of generality, 𝑓 is the 𝑖-th edge

to appear among those in 𝑆 . 𝑋𝑓 = 1 implies 𝑖 ≤ deg𝑢 −
⌊︂

𝜑
1+𝜑 deg𝑢

⌋︂
.

On the other hand, for any such choice for 𝑓 ’s position in the se-

quence, Fact 1 implies that 𝑒 will appear in a position 𝑗 that is

sampled uniformly at random from the remaining ones, so that

P
(︂
𝑋𝑒 = 1|𝑋𝑓 = 1

)︂
=

deg𝑢 −
⌊︂

𝜑

1+𝜑 deg𝑢

⌋︂
−1

deg𝑢 −1
in this case. With a similar

argument, it can be seen that P
(︂
𝑋𝑒 = 1|𝑋𝑓 = 0

)︂
=

deg𝑢 −
⌊︂

𝜑

1+𝜑 deg𝑢

⌋︂
deg𝑢 −1

.

Intuitively and unsurprisingly, the events (𝑋𝑒 = 1) and (𝑋𝑓 = 1) are
negatively correlated, while (𝑋𝑒 = 1) and (𝑋𝑓 = 0) are positively
correlated. This allows us to conclude that P

(︂
𝑋𝑒 = 1|𝑋𝑓 = 1

)︂
≤

P
(︂
𝑋𝑒 = 1|𝑋𝑓 = 0

)︂
and

P
(︂
𝑋𝑒 = 1|𝑋𝑓 = 0

)︂
− P

(︂
𝑋𝑒 = 1|𝑋𝑓 = 1

)︂
≤ 1

deg𝑢 −1
.

Assume next that 𝑓 is not incident in 𝑢. Again from Fact 1, in this

case 𝑓 has no bearing on the relative order in which edges inci-

dent in 𝑢 appear, so that P
(︂
𝑋𝑒 = 1|𝑋𝑓 = 0

)︂
= P

(︂
𝑋𝑒 = 1|𝑋𝑓 = 1

)︂
=

P (𝑋𝑒 = 1). Now, without loss of generality, suppose that 𝑓 = (𝑧,𝑤),
with 𝑧 ∈ 𝐿1 (𝑣), so that𝑤 ∈ 𝐶𝑧 . Denote by 𝐸𝑣 (𝑧) the subset of edges
in 𝐸𝑣 with one end point in𝐶𝑧 . Moving to conditional expectations

we have

E

⎡⎢⎢⎢⎢⎣
∑︂
𝑒∈𝐸𝑣

𝑋𝑒 |𝑋𝑓 = 0

⎤⎥⎥⎥⎥⎦ − E
⎡⎢⎢⎢⎢⎣
∑︂
𝑒∈𝐸𝑣

𝑋𝑒 |𝑋𝑓 = 1

⎤⎥⎥⎥⎥⎦
=

∑︂
𝑒∈𝐸𝑣

(︂
P
(︂
𝑋𝑒 = 1 |𝑋𝑓 = 0

)︂
− P

(︂
𝑋𝑒 = 1 |𝑋𝑓 = 1

)︂)︂
=

∑︂
𝑒∈𝐸𝑣\𝐸𝑣 (𝑧 )

(︂
P
(︂
𝑋𝑒 = 1 |𝑋𝑓 = 0

)︂
− P

(︂
𝑋𝑒 = 1 |𝑋𝑓 = 1

)︂)︂
+

∑︂
𝑒∈𝐸𝑣 (𝑧 )

(︂
P
(︂
𝑋𝑒 = 1 |𝑋𝑓 = 0

)︂
− P

(︂
𝑋𝑒 = 1 |𝑋𝑓 = 1

)︂)︂
≤ |𝐶𝑧 |

deg𝑧 −1
≤ 1,

where the third inequality follows from the definition of 𝐶𝑧 , since

𝑓 is incident in 𝑧, while the last inequality follows since |𝐶𝑧 | ≤
deg𝑧 −1 for every 𝑧 ∈ 𝐿1 (𝑣), because one of the edges incident in 𝑧
is by definition the one shared with 𝑣 .

We can therefore apply [23, Definition 5.5 and Corollary 5.1],

with 𝑐 ≤ |𝐿2 (𝑣) | to obtain, for every 𝛼 > 0:

P ⎛⎜⎝E
⎡⎢⎢⎢⎢⎣
∑︂
𝑒∈𝐸𝑣

𝑋𝑒

⎤⎥⎥⎥⎥⎦ −
∑︂
𝑒∈𝐸𝑣

𝑋𝑒 > 𝛼E

⎡⎢⎢⎢⎢⎣
∑︂
𝑒∈𝐸𝑣

𝑋𝑒

⎤⎥⎥⎥⎥⎦⎞⎟⎠ ≤ 𝑒
− 2𝛼2 |𝐿

2
(𝑣) |

(1+𝜑 )2 ,

where in the right hand sidewe also used the boundE
[︁∑︁

𝑒∈𝐸𝑣
𝑋𝑒

]︁
≥

1

1+𝜑 |𝐿2 (𝑣) | we showed earlier. Finally, we recall (2) and (3) to con-

clude that |𝐵̂2 (𝑣) | ≥ 1−𝛼
1+𝜑 |𝐿2 (𝑣) | with (at least) the same probabil-

ity. □

Theorem 1 easily implies approximation bounds on indices that

depend on the union and/or intersection of 2-balls. For example,

we immediately have the following approximation bound on the

Jaccard similarity between any pair of 2-balls.

Corollary 2. Under the same assumptions as Theorem 1, at any

time step 𝑡 ≥ 1 and for any pair of vertices 𝑢, 𝑣 ∈ 𝑉 , Lazy-Alg(𝜑, 𝑘)
guarantees the following approximation of the Jaccard similarity

between 𝐵2 (𝑢) and 𝐵2 (𝑣) with probability at least 1 − 𝑒−
2𝛼2 |𝐿

2
(𝑢) |

(1+𝜑 )2 −

𝑒
− 2𝛼2 |𝐿

2
(𝑣) |

(1+𝜑 )2
:

J(𝐵2 (𝑢), 𝐵2 (𝑣))
1 − 2𝜀′ ≥ J(𝐵̂2 (𝑢), 𝐵̂2 (𝑣)) ≥ (1 − 𝜀′)J(𝐵2 (𝑢), 𝐵2 (𝑣)) − 𝜀′,

(4)

where 𝜀′ = 𝜑+𝛼
1+𝜑 .

Proof. It is easy to see that |𝐵̂2 (𝑢) | ≥ (1 − 𝜀′) |𝐵2 (𝑢) | and
|𝐵̂2 (𝑣) | ≥ (1 − 𝜀′) |𝐵2 (𝑣) | together imply (4) deterministically. The

result then immediately follows from Theorem 1 and a union

bound on the events ( |𝐵̂2 (𝑢) | < (1 − 𝜀′) |𝐿2 (𝑢) |) and ( |𝐵̂2 (𝑣) | <
(1 − 𝜀′) |𝐿2 (𝑣) |). □

4 ADVERSARIAL EDGE SEQUENCES
We next study our lazy-update algorithm in an adversarial frame-

work. We show in Section 4.1 that if the adversary can both: i)

choose a worst-case graph 𝐺 and ii) submit 𝐺 according to an

adaptive sequence of edge insertions, then it is possible to prove a
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strong lower bound on the achievable update-time/approximation

trade-off of the whole parameterized scheme Lazy-Alg(𝜑, 𝑘).
On the other hand, in Section 4.2 we provide a necessary con-

dition for the adversarial, worst-case framework above: the girth

[22] of 𝐺 must be smaller than 5. More precisely, 𝐺 must contain

an unbounded number of triangles or cycles of length 4. We do

this by showing that for a suitable parameter setting, algorithm

Lazy-Alg(𝜑, 𝑘) achieves almost-optimal trade-offs even on adver-

sarial edge insertion sequences, for every graph that has a bounded

number of such small cycles (see Definition 4.1 for a formal defini-

tion of this class of graphs).

4.1 A lower bound for adversarial sequences
The lower bound for the adversarial framework described above is

formalized in the following result on the approximation ratio (see

Def. 3.1)

Theorem 3. For every 𝜑 ∈ [0, 1], and integer 𝑘 ≥ 0, if Lazy-

Alg(𝜑, 𝑘) has approximation ratio 𝜌 ≥ 1, then it must have an

amortized update cost of Ω(Δ/𝜌3), where Δ is the maximum degree

of the graph.

u01 u02 u0∆

u11 u12 u1∆

ρ2 ρ2 ρ2{ { {
. . .

. . .

S1

S0

S2

Figure 3: Black edges are present at 𝑡 = 0, while red ones are
inserted in the interval {1, 2, . . . ,Δ𝜌2}. At time 𝑡 > 0, an edge
with one endpoint in 𝑢

1𝑡 mod Δ and the other in a distinct
0-degree vertex in 𝑆2 is added.

Proof. Fix 𝜌 ≥ 1, and assume that Lazy-Alg(𝜑, 𝑘) has an ap-

proximation ratio of at most 𝜌 . We will show that there exist an

initial graph 𝐺 (0) with degree Δ and a sequence of edge insertions

against which Lazy-Alg(𝜑, 𝑘) must incur an amortized update time

of Ω(Δ/𝜌3).
Note that for 𝑘 > 0, the algorithm is randomized. In order to

address this, we prove our lower bound for every possible real-

ization of the randomness used by the algorithm. Therefore, we

assume the values of the random bits used by Lazy-Alg(𝜑, 𝑘) are
fixed arbitrarily (and optimally) and we assume henceforth that the

behavior of the algorithm is completely deterministic.

The initial graph 𝐺 (0) consists on 2Δ vertices forming a com-

plete bipartite graph with sides 𝑆0 = {𝑢01, . . . , 𝑢0Δ} and 𝑆1 =

{𝑢11, . . . , 𝑢1Δ}, along with an additional set 𝑆2 of Δ𝜌
2
isolated ver-

tices (see Figure 3). The sequence of edge insertions is defined as

follows: for each vertex in 𝑆1, we insert 𝜌
2
new edges. Each of these

Δ𝜌2 edges connects a vertex in 𝑆1 to a previously isolated vertex in

𝑆2.

Consider the time instant right after all edge insertions. Since

we assumed that the algorithm guarantees an approximation ratio

of 𝜌 , it holds that for every vertex 𝑢 ∈ 𝑆0, |𝐵̂2 (𝑢) | ≥ 1

𝜌 |𝐵2 (𝑢) | =
1

𝜌 (2Δ+Δ𝜌
2) = Δ𝜌+2Δ/𝜌 . This implies that after all edge insertions,

𝑢 must be aware of at least Δ𝜌 + 2Δ/𝜌 − 2Δ = Δ𝜌 − 2Δ(1 − 1/𝜌)
vertices from 𝑆2.

We say that there is a message from 𝑣 to 𝑢 if vertex 𝑣 performs a

union operation of the form 𝐵̂2 (𝑢) ← 𝐵̂2 (𝑢) ∪ 𝐵̂1 (𝑣).
Since, at any time, every vertex 𝑣 ∈ 𝑆1 is adjacent to at most 𝜌2

vertices in 𝑆2, it must be that each 𝑢 ∈ 𝑆0 must have received at

least
Δ𝜌−2Δ(1−1/𝜌 )

𝜌2
= Ω(Δ/𝜌) messages from vertices in 𝑆1. As a

consequence, the total number of messages are at least Ω(Δ2/𝜌).
As the number of insertions is Δ𝜌2, the amortized update cost per

insertion is at least
Ω (Δ2/𝜌 )

Δ𝜌2
= Ω(Δ/𝜌3). □

We have special cases as corollaries. We need amortized update

cost Ω(Δ) if we want 𝜌 = 𝑂 (1), Ω( 4
√
Δ) if we want 𝜌 = 𝑂 ( 4

√
Δ) and

so on.

Remark 1. The lower bound in Section 4.1 in fact holds for a wider

class of algorithms. Informally speaking, this class includes any local

algorithm that limits its online updates to the 2-hop neighbors of 𝑢

and 𝑣 only. Making this claim more formal requires addressing several

technical issues that are outside the scope of the present work.

4.2 Locally 𝛾-sparse graphs
In this section, we provide the characterization of a class of graphs

for which our lazy-update approach always guarantees good amor-

tized cost/approximation trade-offs, even under the assumption of

adversarial edge insertion sequences. Given a graph 𝐺 (𝑉 , 𝐸) and a

subset 𝑉 ′ ⊆ 𝑉 , we denote by 𝐺 [𝑉 ′] the subgraph induced by 𝑉 ′.
Informally, a graph is locally 𝛾-sparse if every node in 𝐵2 (𝑢) \ {𝑢}
has roughly at most 𝛾 neighbors in 𝐿1 (𝑢).

Definition 4.1 (locally𝛾-sparse graphs). Let𝛾 ∈ {0, 1, . . . , 𝑛−
2}. A graph 𝐺 (𝑉 , 𝐸) is said locally 𝛾-sparse if for each vertex 𝑢 ∈ 𝑉 :

(i) ∀𝑣 ∈ 𝐿1 (𝑢) the degree of 𝑣 in 𝐺 [𝐿1 (𝑢)] is at most 𝛾 , and (ii)

∀𝑤 ∈ 𝐿2 (𝑢) the degree of𝑤 in 𝐺 [𝐿1 (𝑣) ∪ {𝑤}] is at most 𝛾 + 1.
Observe that the class of locally 𝛾-sparse graphs grows mono-

tonically with 𝛾 , including all possible graphs for 𝛾 = 𝑛 − 2, while
the most restricted class is obtained for 𝛾 = 0. It is interesting to

note that locally 𝛾-sparse graphs are not necessarily sparse in ab-

solute terms. For example, for 𝛾 = 0, the class coincides with the

well-known class of graphs with girth at least 5: these graphs can

have up to Θ(𝑛
3

2 ) edges assuming Erdös’ Girth Conjecture [25] (the

proof of such equivalence is given in the full version [8]).

A first, preliminary analysis of our lazy-update approach con-

siders the deterministic version of Algorithm 3, i.e., when 𝑘 = 0. It

turns out that this version achieves an approximation ratio of
𝛾+1
1−𝜀

and amortized cost 𝑂 (1/𝜀) (see full version [8]). So, the approxima-

tion accuracy decreases linearly in the parameter 𝛾 . Interestingly

enough, we instead show that a suitable number of random light

updates allows Algorithm 3 to perform much better than its de-

terministic version. This is the main result of this section and it is

formalized in the next theorem, whose proof is available in the full

version of this paper [8].

Theorem 4. Let 𝜀 ∈ (0, 1), and let 𝐺 (0) be an initial graph. Con-

sider any sequence of edge insertions that yields a final graph 𝐺 . If 𝐺
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is locally 𝛾-sparse Lazy-Alg

(︂
𝜑 = 1, 𝑛𝑘 =

4(𝛾+1)
𝜀

)︂
has approximation

ratio of
1

1−𝜀 and amortized cost 𝑂

(︂
𝛾+1
𝜀

)︂
.

5 EXPERIMENTAL ANALYSIS
The purpose of this experimental analysis, is the validation of our

lazy approach along three main axes: i) the consistency between the

theoretical findings from Sections 2 to 4 and the actual behavior of

our lazy approach on real datasets; ii) the accuracy of our approach

on two key neighborhood-based queries, namely, size and Jaccard

similarity; iii) its computational savings with respect to non-lazy

baselines on medium and large incremental graphs. For the sake of

space, the complete set of results appears in the full version [8].

5.1 Experimental setup
Platform. Our experiments were performed on a machine with

2.3 GHz Intel Xeon Gold 5118 CPU with 24 cores, 192 GB of RAM,

cache L1 32KB, shared L3 of 16MB and UMA architecture. The

whole code is written in C++, compiled with GCC 10 and with the

following compilation flags: -DARCH_X86_64 -Wall -Wextra -g
-pg -O3 -lm.11

Algorithms. We compared Lazy-Alg(𝜑, 𝑘) with various combi-

nations (𝜑, 𝑘) with the following baselines:

i) the exact algorithm 1, which is not scalable and is only used in the

first round of experiments on smaller datasets, in order to isolate

the error introduced by lazy updates;

ii) the naive sketch-based baseline, which adopts sketch-based rep-

resentations of 1- and 2-balls, but performs all necessary updates.

It corresponds to Algorithm 3 with 𝜑 = 0 and 𝑘 = 0, but where

1- and/or 2-ball unions correspond to merging the corresponding

sketches.
12

With the exception of the first set of experiments (i.e. item (i)

above), we compared our algorithm to the sketch-based baseline. For

some results, we needed to compute the true value of the parameter

of interest for 2-balls (e.g., size) by executing a suitably optimized

BFS. For our Lazy-Alg, we used combinations of the following

values: 𝜑 = 0.1, 0.25, 0.5, 0.75, 1 and 𝑘 = 0, 2, 4, 8.

Implementation details. To best assess the performance of algo-

rithms, it would be ideal to minimize the overhead deriving from

the management of edge insertions in the graph. We observe that

this overhead is the same for all algorithms we tested. Hence, we

represented graphs using the compressed sparse row format [24]

and, since we knew the edge insertion sequence in advance, we

pre-allocated the memory needed to accommodate them, so as to

minimize overhead. For experiments that required hash functions,

we used tabulation hashing [45].

Datasets. We considered real incremental graphs of different

sizes, both directed and undirected, available from NetworkReposi-

tory [48]. In our time analysis, we also extracted a large incremental

dataset from a large static graph, namely soc-friendster [54],

available from SNAP [39]. Following previous work on dynamic

graphs [19, 32], we generated an incremental graph by adding edges

11
Code available at https://github.com/Gnumlab/graph_ball.

12
Again, the specific sketch (or sketches) used depends on the neighborhood queries

one wants to support.

sequentially and in random order, starting from an empty graph.

The main features of these datasets are summarized in Table 1.

5.2 Results
We focused on the case of undirected graphs, but our approach

extends seamlessly to directed graphs, such as some of the real

examples we consider in this section. In such cases, the only caveat

to keep in mind is that we define the ℎ-ball of a vertex 𝑢 as the

subset of vertices that are reachable from 𝑢 over a directed path

traversing at most ℎ edges.

Impact of lazy updates. The goal of our first experiment is twofold:

i) assessing the impact of lazy updates on the estimation of 2-balls;

ii) assessing the degree of consistency between the theoretical find-

ings of Sections 3 and 4 and the actual behavior of our algorithms

on real datasets. In order to isolate the specific contribution of

lazy updates in the estimation error, we implemented (true and

approximate) 1-balls and 2-balls losslessly, as dictionaries. This

way, the error in 2-ball size estimation is only determined by our

lazy update policy. Since, as we argued elsewhere in the paper,

lossless representations of 2-balls quickly becomes unfeasible for

larger datasets, this first experiment was run on 3 small-medium

datasets, namely, comm-linux-kernel-reply, fb-wosn-friends
and ia-enron-email-all (results for comm-linux-kernel-reply
are reported in the full version [8]).

For each of the above graphs, we selected as a sample 5000

vertices whose 2-balls are the largest at the end of the edge in-

sertion sequence. For every pair (𝜑, 𝑘) of parameter values for

Lazy-Alg(𝜑, 𝑘), we performed 10 independent runs. Each run is or-

ganized into the following steps: 1) the initial graph 𝐺 (0) (𝑉 , 𝐸 (0) )
corresponds to the first 20% edge insertions; 2) we measure the

coverage (see Definition 3.1) of each of the 5000 2-balls above by

Lazy-Alg(𝜑, 𝑘) at each of the 100 equally spaced timestamps, the

same in each run. For the generic timestamp 𝑡 , we measure the

average coverage

𝐶𝑡 =
1

5000

5000∑︂
𝑖=1

𝐵̂𝑖

𝐵𝑖
,

where 𝐵𝑖 and 𝐵̂𝑖 respectively denote the true and estimated sizes of

the 𝑖-th 2-ball from the sample. Finally, for each timestamp 𝑡 , we plot

the average of the 10 values of𝐶𝑡 computed in every run. The results,

summarized in Figure 4, are fully consistent with our theoretical

findings from Section 3. At least for the diverse dataset sample

considered here, uniform random permutations are a reasonable

theoretical proxy of real sequences. More in general, real sequences

seem to be rather far from the pathological worst-cases analyzed

in Section 4.1, so that the actual behavior of our algorithm is not

only in line, but better than our analysis predicts. We also have an

initial insight into the effects of the parameters 𝜑 and 𝑘 , which will

be examined more thoroughly in the subsequent subsections.

Ball size estimation via sketches. The goal of the next round of ex-

perimentswas assessing the accuracy of our algorithms in 2-ball size

estimation, in the realistic setting in which approximate 1- and 2-

balls are represented via state-of-art sketches that are based on prob-

abilistic counters [5]. In this case, we have a compound estimation
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Table 1: Summary table of real networks used in the experiments.

Dataset |𝑉 | |𝐸 | Directed Dynamic

comm-linux-kernel-reply 27,927 242,976 ✔ ✔

fb-wosn-friends [51] 63,731 817,090 ✘ ✔

ia-enron-email-all 87,273 321,918 ✔ ✔

soc-flickr-growth 2,302,925 33,140,017 ✔ ✔

soc-youtube-growth 3,223,589 9,376,594 ✔ ✔

soc-friendster [54] 65,608,366 1,806,067,135 ✘ ✘
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Figure 4: Average coverage 𝐶𝑡 from a network with 20% of its
edges to the end of the insertion sequence. Dashed lines show
the theoretical expected coverage for random sequences (see
Theorem 1).

error, arising from both our lazy update policy and the use of prob-

abilistic counters. We ran experiments on the three small-medium

sized datasets considered previously, plus two large ones, namely,

soc-youtube-growth and soc-flickr-growth. Again, we consid-
ered the top-5000 largest 2-balls as sample. The experiments were

executed as in the previous case, with the following differences: i)

we considered 3 timestamps, respectively corresponding to 50%,

75% and 100% of all edge insertions of each dataset; ii) in this case,

1- and 2-balls are not explicitly represented as sets (not even by

the baseline). As a result, ball sizes might be overestimated and

coverage has no clear meaning. We therefore use Mean Absolute

Percentage Error (MAPE) to measure accuracy, defined as follows:

MAPE =
1

5000

5000∑︂
𝑖=1

|𝐵𝑖 − 𝐵̂𝑖 |
𝐵𝑖

,

where 𝑖 refers to the 2-ball size of the 𝑖-th sampled vertex. For each

dataset, this index is computed for each of 10 independent runs at

each of the 3 timestamps we consider. Results are summarized for all

datasets and combinations (𝜑, 𝑘) we consider in Table 2 for the last

timestamp (100% of edge insertions). Results for other timestamps

(50% and 75%) are similar and are omitted for the sake of space

(see full version [8] for complete results). The main takeaways here

are that i) the additional error introduced by the use of sketches

(which can be controlled by varying the size of the sketch) is rel-

atively modest; ii) even relatively large values of 𝜑 and/or small

values of 𝑘 result in performances that are close to those of the

baseline that uses sketches to represent balls, but naively performs

all light updates. The effect of 𝑘 is more pronounced when𝜑 is large,

contributing to a reduction in both error and, to a lesser extent,

variance. Finally, we note that although the effect of increasing 𝑘

can be achieved by decreasing 𝜑 , our analysis in Section 4 suggests

that the parameter 𝑘 provides robustness against worst-case scenar-

ios. Even though the analysis of the impact of sketches on error is

out of the scope of this paper, the results in the previous paragraph

and the small difference with the baseline (Table 2) when using

the sketches further suggest that the analysis of random sequences

may also apply to real sequences.

Accuracy in Jaccard similarity estimation. With the same goal

as in the previous experiment, we now evaluate the quality of

our lazy approach policy combined with the use of sketches in

another graph mining task: the Jaccard similarity estimation for 2-

hop neighborhoods. The sketch used to represent the 1- and 2- balls

is the well-known ℎ-minhash [13], with ℎ = 100 hash functions.

As before, 10 independent runs were performed for each combi-

nation of parameters𝜑, 𝑘 , and the baseline, on each of the previously

used datasets. Errors were measured at 3 different timestamps, cor-

responding to 50%, 75%, and 100% of the edge insertion sequence.

Considering all vertex pairs in the entire graph would be com-

putationally prohibitive, as their number is too large. Moreover,

many of these pairs would have an extremely low Jaccard similarity,

making it difficult to estimate them with a reasonably small error

[14, 15]. Therefore, to better evaluate our algorithm’s and baseline’s

quality, we need vertex pairs with a sufficiently high similarity in
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Table 2: Mean and standard deviation of absolute percentage
errors for 2-hop neighborhood size estimation. Size estimates
were made using the KMV probabilistic counter [5], with size
32. Queries were made at the end of the insertion sequence.

𝑘 𝜑 = 0.1 𝜑 = 0.5 𝜑 = 1 baseline

li
nu

x

0 0.14 ± 0.12 0.19 ± 0.14 0.17 ± 0.11

0.12 ± 0.102 0.13 ± 0.11 0.14 ± 0.10 0.16 ± 0.11
4 0.14 ± 0.09 0.17 ± 0.12 0.14 ± 0.10
8 0.14 ± 0.11 0.14 ± 0.09 0.13 ± 0.10

fb
-w

os
n 0 0.16 ± 0.12 0.15 ± 0.11 0.21 ± 0.12

0.14 ± 0.112 0.13 ± 0.09 0.15 ± 0.10 0.17 ± 0.11
4 0.14 ± 0.11 0.15 ± 0.10 0.16 ± 0.11
8 0.16 ± 0.13 0.14 ± 0.10 0.15 ± 0.11

en
ro

n

0 0.13 ± 0.10 0.16 ± 0.11 0.20 ± 0.14

0.13 ± 0.112 0.14 ± 0.11 0.16 ± 0.12 0.16 ± 0.12
4 0.13 ± 0.12 0.15 ± 0.12 0.15 ± 0.12
8 0.13 ± 0.11 0.14 ± 0.10 0.16 ± 0.13

fl
ic

kr

0 0.17 ± 0.14 0.18 ± 0.12 0.17 ± 0.11

0.17 ± 0.142 0.16 ± 0.12 0.12 ± 0.09 0.14 ± 0.10
4 0.14 ± 0.09 0.13 ± 0.10 0.16 ± 0.10
8 0.14 ± 0.11 0.13 ± 0.10 0.14 ± 0.09

yo
ut

ub
e 0 0.15 ± 0.11 0.15 ± 0.10 0.24 ± 0.11

0.14 ± 0.112 0.16 ± 0.13 0.14 ± 0.10 0.19 ± 0.11
4 0.13 ± 0.11 0.13 ± 0.10 0.15 ± 0.11
8 0.13 ± 0.10 0.12 ± 0.09 0.15 ± 0.11

their 2-hop neighborhoods. To address this, we adopted a similar

sampling process as before: we selected the 5000 vertices with the

largest 2-hop neighborhoods at the end of the edge insertion se-

quence and randomly chose 1000 pairs whose similarity is at least

0.2. On that sample, we evaluated the MAPE of the Jaccard simi-

larity estimate computed using the ℎ-minhash signatures. Table 3

reports the results at the end of the insertion sequence, while results

for the other timestamps (50% and 75%) are similar and are omitted

for the sake of space (see full version [8] for complete results).

This experiment further confirms the observations from the pre-

vious one: when using sketches to represent the 2-balls, the errors

obtained with our lazy update policy (with appropriate choices of

parameters 𝜑, 𝑘) are similar and fully comparable to those of the

baseline, which performs all necessary updates.

Run time analysis. Finally, we measured the running times of

our algorithm and the corresponding speed-up with respect to the

baseline. In the following, we report and discuss the results for the

task of size estimation, using probabilistic counters. The perfor-

mances for the task of Jaccard similarity estimation are analogous,

and thus reported in the full version [8].

Table 4 reports the average speed-up of our algorithm with re-

spect to the naive baseline for the same combinations (𝜑, 𝑘) consid-
ered previously, for all datasets except com-friendster. Speed-ups
are computed in terms of total update time, i.e., the total time it

takes to process the whole insertion sequence. Table 5 reports the

overall processing times on com-friendster, for a subset of the

Table 3: Mean and standard deviation of absolute percent-
age errors for Jaccard similarity estimation, with 100 hash
functions. Queries were made at the end of the insertion se-
quence.

𝑘 𝜑 = 0.1 𝜑 = 0.5 𝜑 = 1 baseline

li
nu

x

0 0.11 ± 0.09 0.13 ± 0.09 0.11 ± 0.09

0.10 ± 0.082 0.09 ± 0.07 0.12 ± 0.09 0.11 ± 0.09
4 0.10 ± 0.08 0.12 ± 0.09 0.10 ± 0.08
8 0.09 ± 0.07 0.12 ± 0.09 0.10 ± 0.08

fb
-w

os
n 0 0.70 ± 0.25 0.72 ± 0.24 0.74 ± 0.23

0.70 ± 0.242 0.70 ± 0.24 0.70 ± 0.25 0.72 ± 0.24
4 0.70 ± 0.24 0.70 ± 0.24 0.72 ± 0.24
8 0.70 ± 0.24 0.70 ± 0.24 0.71 ± 0.25

en
ro

n

0 0.09 ± 0.09 0.14 ± 0.12 0.15 ± 0.12

0.09 ± 0.092 0.10 ± 0.09 0.12 ± 0.10 0.14 ± 0.12
4 0.09 ± 0.09 0.11 ± 0.10 0.13 ± 0.11
8 0.10 ± 0.09 0.10 ± 0.09 0.11 ± 0.10

fl
ic

kr

0 0.12 ± 0.09 0.11 ± 0.09 0.11 ± 0.09

0.11 ± 0.092 0.11 ± 0.08 0.10 ± 0.08 0.11 ± 0.09
4 0.11 ± 0.08 0.10 ± 0.08 0.10 ± 0.08
8 0.11 ± 0.08 0.10 ± 0.08 0.11 ± 0.08

yo
ut

ub
e 0 0.12 ± 0.09 0.11 ± 0.09 0.17 ± 0.13

0.11 ± 0.092 0.11 ± 0.09 0.11 ± 0.09 0.15 ± 0.11
4 0.11 ± 0.09 0.13 ± 0.10 0.16 ± 0.11
8 0.11 ± 0.09 0.12 ± 0.09 0.14 ± 0.10

combinations of 𝜑 and 𝑘 . It should be noted that the baseline did not

complete within a reasonable amount of time in this case. Finally,

Figure 5 illustrates the average time cost per operation for the base-

line, as well as the slowest and fastest parameter settings of 𝜑 and

𝑘 in our algorithm. These experiments clearly highlight that the

number of lazy updates is the crucial factor affecting performance

and that our approach is very effective at addressing this problem,

resulting in considerable speed-ups that grow with the size of the

graph. These results regarding processing times, in conjunction

with previous findings, underscore the significant advantage in

terms of speed at the expense of a modest and acceptable reduction

in query quality which, due to the necessary use of sketches, is

never totally accurate.

A quick reference for parameter setting. The trade-off between

accuracy, parameter setting and update costs can be summarized as

follows: decreasing𝜑 increases the frequency of heavy updates (and

thus accuracy), while increasing 𝑘 increases the number of light

updates upon a single edge insertion, again improving accuracy.

As our experimental results show, real edge sequences exhibit a

behavior that is largely consistent with the random permutation

model adopted in the analysis proposed in Section 3 and far from the

adversarial sequences analyzed in Section 4. In this perspective, the

choice of the parameters can be derived by our theoretical results

(see Theorem 1 and Lemma 1). However, in practice, by running

our algorithms on a diverse set of real networks for a multiplicity of

parameter settings, we identified two robust settings, corresponding
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Figure 5: Average time per insertion operation (in seconds)
in log-scale. The datasets are arranged on the x-axis in in-
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Table 4: Speed up with respect to the baseline, using KMV
probabilistic counters [5], with size 32.

𝑘
𝜑

0.1 0.25 0.5 0.75 1

li
nu

x

0 14.39x 22.73x 30.27x 32.36x 35.65x

2 12.00x 18.22x 22.03x 21.49x 23.18x

4 11.52x 15.34x 17.63x 16.93x 17.54x

8 9.57x 11.86x 12.80x 12.03x 12.22x

fb
-w

os
n 0 5.48x 9.40x 11.15x 15.23x 16.22x

2 5.22x 7.35x 7.16x 9.21x 9.67x

4 4.32x 6.14x 6.05x 7.18x 7.23x

8 3.79x 4.38x 4.91x 5.31x 5.22x

en
ro

n

0 4.17x 5.38x 6.64x 7.12x 7.70x

2 3.61x 4.11x 4.68x 4.82x 5.27x

4 3.05x 3.42x 3.78x 3.96x 4.21x

8 2.51x 2.73x 2.85x 3.01x 3.12x

fl
ic

kr

0 13.52x 19.97x 26.54x 31.51x 34.20x

2 12.16x 16.41x 19.52x 21.93x 22.61x

4 10.76x 13.96x 16.35x 17.17x 17.79x

8 9.10x 11.19x 12.36x 12.99x 13.28x

yo
ut

ub
e 0 41.61x 61.80x 77.08x 86.50x 93.73x

2 38.16x 51.64x 60.39x 64.93x 65.51x

4 36.08x 47.43x 52.26x 55.06x 55.90x

8 33.33x 39.60x 42.73x 43.61x 43.82x

to different choices for the trade-off between accuracy and efficiency.

The first setting is 𝜑 = 0.5 and 𝑘 = 0, which yields a very fast

solution with a reasonable accuracy. Instead, when the accuracy

requirement is more stringent, we suggest setting 𝜑 = 0.25 and

𝑘 = 2, which usually provides a negligible error with a reasonable

speed-up.

Finally, the setting of the parameters for the sketches we used

(in particular, their sizes) was simply driven by i) the trade-off es-

tablished by the theoretical analyses in [5] and [13, 14, 20] between

Table 5: Total running time for ball size estimation using
probabilistic counters, for com-friendster dataset. The time
for the baseline algorithm is not reported since it exceeded a
time limit of 36 hrs.

𝑘
𝜑

0.1 0.25 0.5 0.75 1

0 5ℎ 2
′

2ℎ 55
′

1ℎ 53
′

1ℎ 27
′

1ℎ 18
′

2 6ℎ 3
′

3ℎ 48
′

2ℎ 59
′

2ℎ 42
′

2ℎ 34
′

4 6ℎ 50
′

4ℎ 42
′

3ℎ 56
′

3ℎ 39
′

3ℎ 32
′

8 8ℎ 23
′

6ℎ 53
′

5ℎ 54
′

5ℎ 30
′

5ℎ 19
′

accuracy and sketch sizes and ii) the amount of memory we could

afford. Ultimately, this resulted in the choices described in Section

5.1, where we used 32-bit integers.

6 OUTLOOK
This work leaves a number of open questions that might deserve

further investigation. A first, obvious direction is extending our

approach to handle edge deletions. Actually, a simple strategy to

manage a deletion of an edge (𝑢, 𝑣) is to recompute the 2-balls of

the𝑂 (deg𝑢 + deg𝑣) affected vertices via 2-layer BFS visits. The cost
of this straightforward approach can be amortized on the entire

sequence of edge updates whenever deletions are rare. However,

the general case is much more challenging: while our approach

is potentially useful, one of the main problems here is handling

deletions when compact, sketch-based data structures are used to

represent 1- and 2-balls. Some recent contributions address similar

issues in dynamic data streams [17, 20], but extending our analy-

ses to this general case does not seem straightforward. Another

interesting direction is investigating strategies to handle queries

over ℎ-balls when ℎ > 2, for example maintaining their sizes under

dynamic updates. In this case, each edge addition/deletion poten-

tially has cascading effects over ℎ-hops. Optimizing (amortized)

update costs in this general setting does not seem trivial and we

conjecture that a dependence on ℎ might be necessary. Finally, we

remark that our algorithms are inherently local, i.e., whether or not

to perform updates involving any vertex 𝑣 only depends on 𝑣 ’s im-

mediate neighborhood. As a consequence, a potentially interesting

avenue for further research is to investigate distributed variants of

our approach, possibly with massive parallel architectures in mind

[36].
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