
How to Optimize SQL Queries?
A Comparison Between Split, Holistic, and Hybrid Approaches

Luca Gretscher
Saarland University, Saarland Informatics Campus

Saarbrücken, Germany
luca.gretscher@bigdata.uni-saarland.de

Jens Dittrich
Saarland University, Saarland Informatics Campus

Saarbrücken, Germany
jens.dittrich@bigdata.uni-saarland.de

ABSTRACT

Relational database systems internally construct a physical query
execution plan (QEP) that specifies exactly how to compute a de-
sired result. However, choosing a QEP involves determining a spe-
cific join order, deciding how to access base relations, specifying
concrete physical implementations to compute the algebraic opera-
tions defined by the given SQL query, and much more. In general,
choosing the optimal QEP w.r.t. a predefined cost model is a hard
optimization task, referred to as query optimization problem (QOP),
that requires super-exponential time in the worst-case.

Even though query optimization is a fundamental problem that
has been studied for decades now, related work often focuses only
on a specific subtask like join ordering. Furthermore, by inspecting
open-source database systems, fundamentally different query opti-
mization strategies can be observed. These strategies exhibit vastly
different optimization times while having a major impact on the
resulting QEP qualities. In this work, we revisit two conceptually
different approaches to solve query optimization, namely split
and holistic. We discuss their advantages and disadvantages and
present a detailed experimental evaluation in our research database
system mutable. Additionally, we propose a hybrid strategy called
top-k that is able to rediscover the holistically optimal QEPs while
being significantly closer to the optimization time of split.

PVLDB Reference Format:

Luca Gretscher and Jens Dittrich. How to Optimize SQL Queries?
A Comparison Between Split, Holistic, and Hybrid Approaches. PVLDB,
18(11): 3910 - 3922, 2025.
doi:10.14778/3749646.3749663

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/BigDataAnalyticsGroup/mutable-QO-approaches/tree/
submission.

1 INTRODUCTION

Conceptually, the QOP can be described as two-phase optimiza-
tion problem [18]. Firstly, a given query graph1 is transformed
into a tree-structured algebraic plan inducing a partial order on

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749663

1We define a query graph as an undirected join graph with vertices for each relation
and edges according to the join predicates, extended by non-join operators like filter,
grouping, and projection. It purely represents the semantics of an SQL query.

Optimization Time

Global Optimum

Local Optimum

Es
tim

at
ed

Ph
ys

ic
al

Co
st split

holistic
Pareto
Optimum

top-k
(ours)

Overhead compared
to holistic

(a) Solution space w.r.t. QOP.

split

Algebraic
Optimization

Physical
Optimization

Query
Graph QEP

Single
Algebraic Plan

top-k (ours)

Top-k
Algebraic

Optimization
Physical

Optimization
Choose Best

Query
Graph QEP

Top k
Algebraic Plans QEPs

holistic

Algebraic + Physical
Optimization

Query
Graph QEP

(b) Conceptual description.

Figure 1: Overview of the different approaches to solve QOP.

the joins. Therefore, this step is referred to as join ordering or
algebraic optimization. Secondly, a physical operator tree is con-
structed implementing the given algebraic plan but determining
concrete physical implementations and specifying a total order on
all operands2. This step is called physical optimization.

However, related work as well as concrete database systems may
implement query optimization independent from this conceptual
description. While DuckDB has an internal interface that clearly
separates algebraic from physical optimization [6], other open-
source database systems like PostgreSQL, MySQL, or SQLite unify
both optimizations steps to a certain degree by applying the idea of
interesting properties [24, 25, 32, 34] pioneered by System R [30].
Therefore, we classify implementations to solve the whole query
optimization problem into two categories.
(1) split: Solve algebraic and physical optimization indepen-

dently one after another.
(2) holistic: Incorporate both algebraic and physical optimiza-

tion into a single optimization task.

2Total order refers to a determined sibling order. Determining the execution order of
independent pipelines is out of the scope of this paper and subject of related work [14].

3910

https://doi.org/10.14778/3749646.3749663
https://github.com/BigDataAnalyticsGroup/mutable-QO-approaches/tree/submission
https://github.com/BigDataAnalyticsGroup/mutable-QO-approaches/tree/submission
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749663
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1 SELECT *

2 FROM R, S, T

3 WHERE S.val < 42 AND R.id = S.rid AND S.id = T.sid;

(a) SQL query inducing multiple join orders.

1

T1

𝜎

S

100

R

150 80

80 100

SHJ

Scan(T)SHJ

Scan(R)BF

Scan(S)

100

80 150

80 100

algebraic plan

cost
alg

=80

QEP

cost
phys

=940

(b) Applying split.

SHJ

Scan(R)MJ

ISAM(T,sid)BF

Scan(S)

100

80 100

90 150

QEP

cost
alg

=90, cost
phys

=925

(c) Applying holistic.

Figure 2: Running example. Edges of the plans are annotated

with the respective cardinalities.

Figure 1a gives an overview of the advantages and disadvan-
tages of choosing the problem granularity to be either split or
holistic. Clearly, there is a trade-off between spending more time
for optimization to reduce the estimated physical cost and thus
hopefully also the running time for the resulting globally optimal
QEP and executing a faster optimized but potentially less efficient
locally optimal QEP. Therefore, we also propose a hybrid strategy
top-k trying to reach the Pareto optimum by not only consider-
ing a single algebraic plan for physical optimization but the top k
algebraic plans. However, as top-k involves configuring the hyper-
parameter k, it spans an entire space between split and holistic
depicted in turquoise. Furthermore, misconfiguration of k may lead
to an overhead in the optimization time while not improving the
QEP quality compared to holistic. All approaches are depicted
conceptually in Figure 1b.

1.1 Running Example

Consider the example SQL query in Figure 2a inducing two join
orders, i.e., (R 1 𝜎(S)) 1 T and R 1 (𝜎(S) 1 T). We assume that the
base relation S is already sorted on its primary key S.id and that an
index on the attribute T.sid is available.

split. The approach split first determines a specific join or-
der under a given algebraic cost model. We apply the commonly
used algebraic cost model 𝐶out [8, 18] that computes the sum of
all intermediate result cardinalities. In our example, the resulting
algebraic plan is depicted on the left in Figure 2b. Afterward, the
separate physical optimization step receives this single algebraic
plan as input and determines physical operators for both the ac-
cesses to base relations as well as the algebraic operators, i.e., the
filter and the two joins in our example. Furthermore, a total order
for sibling nodes, which were not yet ordered in the algebraic plan,
is introduced. We assume two physical operators implementing
the access to base relations — the scan and the indexed sequential
access method (ISAM) — and four physical operators implementing
the algebraic filter and join operator — the branching filter (BF), the
simple hash join (SHJ), the merge join (MJ), and the nested-loops

join (NLJ) — with the following physical cost models3.

𝐶Scan (𝑥) ≔ |𝑥 | (1)
𝐶ISAM (𝑥, attr) ≔ 1.1 ∗ |𝑥 | (2)

𝐶BF (𝑥) ≔ |𝑥 | (3)
𝐶SHJ (𝑥,𝑦) ≔ 1.5 ∗ |𝑥 | + |𝑦 | (4)
𝐶MJ (𝑥,𝑦) ≔ |𝑥 | + |𝑦 | (5)
𝐶NLJ (𝑥,𝑦) ≔ |𝑥 | ∗ |𝑦 | (6)

The ISAM provides the accessed data sorted on the specified at-
tribute, while the MJ needs its input relations to be sorted on the
join attributes. However, as the join attribute S.rid neither is as-
sumed to be sorted nor an index exists, only the SHJ or the NLJ can
be used for the join between R and the filtered S, whereby the SHJ
always dominates the NLJ due to its additive cost function. As the
SHJ only propagates existing sortedness of its probe input but does
not introduce any particular sortedness for its output, the top-level
join also has to be computed utilizing a SHJ. Due to Definition (4),
the smaller input to a SHJ is ordered to be the left child, which
results in the final QEP shown on the right in Figure 2b.

holistic. In contrast, holistic incorporates both the algebraic
and the physical optimization steps into a single optimization task
that directly determines a total operator order. Therefore, all pos-
sible join orders including concrete physical operators have to be
enumerated. While doing so, it is essential to not only memorize a
single QEP per subproblem of the query but rather the locally best
QEP per distinct output property similar to interesting properties
in prior work [30]. Thus, the globally optimal QEP can be found
in the entire search space. The resulting final QEP is depicted in
Figure 2c. By comparing this QEP to split, we observe that another
—more costly w.r.t.𝐶out — join order is applied, however, the overall
physical costs are estimated to be lower.

top-k. Our proposed approach top-k works similar to split
but considers the top k algebraic plans for physical optimization.
In our example, the holistically optimal join order is the second
cheapest w.r.t. algebraic costs. Therefore, top-k with k=2 would
exactly produce the QEP depicted in Figure 2c.

This example showcases that holistic is able to find a globally
optimal QEP w.r.t. QOP whereas the greedy splitmay be restricted
by the predetermined join order. The same restriction holds for
top-k if the hyperparameter k is set s.t. it does not include the join
order chosen by holistic. Therefore, optimizing according to split
or top-kmay only yield a locally optimal QEP even if both involved
optimization steps are globally optimal by themselves.

1.2 Contributions

In this paper, we make the following contributions.
(1) We revisit split and holistic in detail and present pseudocode

for both. Furthermore, we show how to extend our physical op-
timization implementation to support fused physical operators.
(Section 2.1 to Section 2.5)

(2) We propose top-k, a hybrid approach between the two extrema
split and holistic. (Section 2.4)

3The magic constants 1.1 and 1.5 represent a per-tuple overhead induced by accessing
the index structure or rather hash table. The values are experimentally validated to be
order preserving.

3911

(3) We analyze the time complexity and the optimality w.r.t. find-
ing a QEP under a given cost model of split and holistic.
(Section 3 and Section 4)

(4) We evaluate the optimization time needed by the three ap-
proaches for different query shapes and sizes. (Section 5.2)

(5) We showcase three scenarios where holistic outperforms
split w.r.t. end-to-end performance. (Section 5.3)

(6) We investigate whether these or similar scenarios occur in
benchmarks like TPC-H, JOB, or CEB. Our results show that
holistic is able to outperform split for a few relatively small
queries, however, split is often superior due to its significantly
lower optimization time and some limitations of our imple-
mentation. In some cases, top-k achieves the best end-to-end
performance. (Section 5.4)

(7) We propose a simple guideline to decide which optimization
approach to apply in certain scenarios. (Section 5.5)

2 ALGORITHMS

In this section, we revisit and contrast split and holistic based
on detailed pseudocode. Algorithm 1 and Algorithm 2 depict this
pseudocode as side-by-side comparison and highlight lines that
perform physical optimization in brown. Additionally, a helper
function to choose physical operators for a given algebraic plan is
defined in Algorithm 3. To explain the pseudocode, we revisit the
running example in Figure 2 and optimize it step by step.

Afterward, we explain how to extend our physical optimization
implementation to support fused physical operators, i.e., physical
operators that implement the logic of multiple algebraic operators,
like the hash-based group-join. Additionally, we propose a hybrid
approach called top-k.

2.1 split

The core idea of split is to first transform a given query graph into
an algebraic plan before physically optimizing this single algebraic
plan afterwards. In Algorithm 1, these individual steps are clearly
separated in the main function split (lines 42–44). To accelerate
the optimization time, we apply dynamic programming and store
already solved intermediate results in a plan table.

Algebraic Optimization. In line 4, the algebraic optimization
step allocates a fresh plan table. This plan table maps a subproblem,
i.e., a subset of all base relations determining which base relations
are already joined, to an algebraic plan for that subproblem together
with its estimated algebraic cost. Note that the cost column rep-
resents a cumulative cost consisting of the recursive costs of the
children and the cost of the subproblem itself.

Firstly, lines 6–16 initialize the plan table by inserting entries
for all (possibly filtered) sources of the query graph. Note that a
nested query graph, e.g., due to a nested SQL query, is recursively
optimized and the received algebraic plan is inserted into the plan
table for the singleton subproblem of the nested source (line 12).
The costs for all these entries are set to 0 according to𝐶out (line 16).
For our running example, three entries are inserted during this
initialization and are depicted in the first three rows of Table 1a.

Secondly, the plan table is filled with entries for every possible
join order. Any plan enumerator that is applicable for dynamic pro-
gramming, i.e., for any enumerated join both children subproblems

are already solved, can be utilized in line 18. For the scope of our ex-
ample, we assume that all join orders including Cartesian products
are enumerated by a plan enumerator called PEall. Join enumeration
returns the left and right subproblems to join together with the
respective join condition. As defined in lines 19–25, each enumer-
ated join is then constructed, its algebraic cost is estimated, and
the plan table is updated if the cost is lower than beforehand. Note
that if a subproblem was not yet inserted into the plan table, its for-
mer cost is implicitly assumed to be infinity. As shown in Table 1a,
the subproblems {R, S} and {S, T} of our example can be computed
using a join, whereas no join predicate for the subproblem {R, T}
exist resulting in a comparatively large intermediate result and
thus algebraic cost w.r.t. 𝐶out. For the subproblem {R, S, T} multiple
subproblem splits, i.e., join orders, are enumerated. However, since
{R, S} was estimated to be the cheapest of the subproblems contain-
ing two base relations, the join order (R 1 𝜎(S)) 1 T is chosen. For
simplicity, we omit the cardinality of the final join result in the cost
column as it is added for every possible join order.

Finally, lines 27–32 update the final algebraic plan by adding
all operations that are present after all sources have been joined,
i.e., grouping, aggregation, sorting, limit, and projection. However,
the actual join order remains unchanged. As the running example
does not include such post-join operations, the plan table depicted
in Table 1a is already complete and the final algebraic plan in the
last row is returned (line 33).

Physical Optimization. The subsequent physical optimization
step utilizes a slightly adapted plan table structure. Besides storing
QEPs and physical costs instead of algebraic plans and algebraic
costs, the mapping key is no longer only a subproblem. Instead, a
combination of a subproblem and an output property is used as
compound key. We refer to this output property as post-condition
from this point on. Line 37 first allocates such an empty plan table
before lines 38–39 call the helper function optimize_physically
for each algebraic subplan in a bottom-up manner.

Algorithm 3 defines this helper function that iterates over all
available physical operators (line 3), all children permutations to
determine a total order (line 9), and the Cartesian product of the
current children permutation (line 11). During iteration, lines 4–
5 skip physical operators which do not cover, i.e., implement, the
given algebraic operator. For the time being, covering is only defined
on singleton physical operators, however, we extend this to fused
physical operators, i.e., a single physical operator which unites the
logic of multiple algebraic operators, in Section 2.5. Additionally,
pre-conditions of physical operators, e.g., the condition that a MJ
needs its input relations to be sorted on the join attributes, are tested
against the post-conditions provided by the children permutation. If
not fulfilled, the respective children permutation is skipped as well
(lines 12–13). For each of the qualifying combinations, lines 14–
21 construct the respective QEP, estimate its physical cost, and
update the plan table. This part is very similar to the algebraic step
(see lines 19–25 of Algorithm 1). To finally determine the optimal
QEP, the entry of the final subproblem with the lowest cost while
ignoring the post-conditions is chosen (line 41 of Algorithm 1).

Table 1b depicts the enumeration for our running example given
the algebraic plan constructed beforehand. Note that we need to
distinguish between subproblems with and without filter and de-
note the filtered base relation S by S’. We can observe that two QEPs

3912

Algorithm 1: Pseudocode for split.
1: ⊲ Optimizes the query graph G by applying the algebraic step of split.
2: function split_algebraic_step(G)
3: ⊲ maps subproblems to the locally optimal algebraic plan/cost
4: PT = new AlgebraicPlanTable()
5: ⊲ optimize sources and optional filters
6: for src ∈ G.sources() do
7: s = Subproblem(src)
8: if src.is_base_relation() then
9: alg_plan = new ScanOp(src)
10: PT[s].plan = alg_plan
11: else ⊲ optimize nested query graph recursively
12: PT[s].plan = split_algebraic_step(src)
13: if src.has_filter() then
14: alg_plan = new FilterOp(s, src.filter())
15: PT[s].plan = alg_plan
16: PT[s].cost = 0 ⊲ initialize sources without cost
17: ⊲ optimize join order by enumerating subproblem splits
18: for l, r, cond ∈ PE.enumerate(G) do
19: alg_plan = new JoinOp(l, r, cond)
20: ⊲ estimate cost according to algebraic cost model and add subcosts
21: cost = AC.estimate(alg_plan) + PT[l].cost + PT[r].cost
22: s = alg_plan.get_subproblem() ⊲ unifies left and right subproblems
23: if not PT.has(s) or cost < PT[s].cost then
24: PT[s].plan = alg_plan ⊲ update plan
25: PT[s].cost = cost ⊲ update cost
26: ⊲ optimize post-join operations, e.g., grouping
27: s = Subproblem(G.joins()) ⊲ subproblem with all sources joined
28: if G.has_grouping() then
29: alg_plan = new GroupingOp(s, G.grouping())
30: PT[s].plan = alg_plan ⊲ update plan
31:
32: ... ⊲ similar if’s for aggregation, sorting, limit, and projection
33: return PT[s].plan ⊲ return final algebraic plan

34: ⊲ Optimizes the algebraic plan by applying the physical step of split.
35: function split_physical_step(alg_plan)
36: ⊲ maps subproblems to the locally optimal QEP per distinct post-condition
37: PT = new PhysicalPlanTable()
38: for all alg_op ∈ alg_plan do ⊲ in bottom-up manner
39: optimize_physically(PT, alg_op)
40: s = alg_plan.get_subproblem() ⊲ subproblem representing entire algebraic plan
41: return plan where cost is minimal in PT[s] ⊲ return final QEP

42: function split(G)
43: alg_plan = split_algebraic_step(G)
44: return split_physical_step(alg_plan)

for the subproblem {T} are memorized since they result in different
post-conditions. Also sortedness on the join attribute S.id for the
subproblem {R, S’} can be provided, however, is quite costly due to
building the hash table on the relatively large input 𝑅. Therefore,
applying a MJ as top-level join (last row) is more costly than the
final QEP that makes use of a SHJ on SHJ(𝑆 , 𝑅) and 𝑇1.

Pruning. There are multiple ways to exploit pruning. For ex-
ample, we can utilize pruning in the physical optimization step,
i.e., in optimize_physically. In line 19, our pseudocode is simpli-
fied to only check the plan table entry for the given post-condition.
However, pruning can be added by discarding entries which are
dominated by others, i.e., in terms of cost and post-condition. For
example, the SHJ-entry for the subproblem {S’, T} in Table 2 can
be pruned since the MJ-entry for this subproblem dominates it.
Vice versa, instead of always inserting new entries, old entries are
updated if they are subsumed by the new one. This avoids unnec-
essary – in the sense of implied – entries in the plan table and is
applied for all approaches.

Algorithm 2: Pseudocode for holistic.
1: ⊲ Optimizes the query graph G by applying holistic.
2: function holistic_helper(G)
3: ⊲ maps subproblems to the locally optimal QEP/cost per distinct post-condition
4: PT = new PhysicalPlanTable()
5: ⊲ optimize sources and optional filters
6: for src ∈ G.sources() do
7: s = Subproblem(src)
8: if src.is_base_relation() then
9: alg_plan = new ScanOp(src)
10: optimize_physically(PT, alg_plan)[]
11: else ⊲ optimize nested query graph recursively
12: PT[s] = holistic_helper(src)
13: if src.has_filter() then
14: alg_plan = new FilterOp(s, src.filter())
15: optimize_physically(PT, alg_plan)[]
16:
17: ⊲ optimize join order by enumerating subproblem splits
18: for l, r, cond ∈ PE.enumerate(G) do
19: alg_plan = new JoinOp(l, r, cond)
20: optimize_physically(PT, alg_plan)
21:
22:
23:
24:
25:
26: ⊲ optimize post-join operations, e.g., grouping
27: s = Subproblem(G.joins()) ⊲ subproblem with all sources joined
28: if G.has_grouping() then
29: alg_plan = new GroupingOp(s, G.grouping())
30: optimize_physically(PT, alg_plan)[]
31: s = alg_plan.get_subproblem() ⊲ update current subproblem
32: ... ⊲ similar if’s for aggregation, sorting, limit, and projection
33: return PT[s] ⊲ return post-cond. to QEP/cost mapping

34:
35:
36:
37:
38:
39:
40:
41:

42: function holistic(G)
43: map = holistic_helper(G)
44: return plan where cost is minimal in map.values() ⊲ return final QEP

Algorithm 3: Pseudocode for the physical optimization.
1: ⊲ Physically optimizes the algebraic operator. Inserts found QEPs into the plan table.
2: function optimize_physically(PT, alg_op)
3: for all registered physical operators phys_op do

4: if not phys_op covers alg_op then

5: continue

6: pre_conds = phys_op.get_pre_conds()
7: s_children = phys_op.get_children_subproblems(alg_op)
8: ⊲ iterate over permutations of already solved children subproblems
9: for p ∈ permute(s_children) do
10: ⊲ iterate over Cartesian product of current permutation
11: for post_conds, entries ∈ PT[p[0]] × . . .× PT[p[n]] do
12: if not pre_conds.implied_by(post_conds) then
13: continue

14: qep = new phys_op(entries[0].plan, . . . , entries[n].plan)
15: post_cond = phys_op.get_post_cond(post_conds)
16: ⊲ estimate cost according to physical cost model and add subcosts
17: cost = PC.estimate(qep) + entries[0].cost + . . . + entries[n].cost
18: s = qep.get_subproblem() ⊲ unifies and adapts children subproblems
19: if not PT.has(s, post_cond) or cost < PT[s][post_cond].cost then
20: PT[s][post_cond].plan = qep ⊲ update plan
21: PT[s][post_cond].cost = cost ⊲ update cost

3913

Table 1: Enumeration of split.

(a) Algebraic optimization step.

Subproblem Algebraic Plan Cost

{R} R 0
{S} 𝜎(S) 0
{T} T 0
{R, S} R 1 𝜎(S) 80
{S, T} 𝜎(S) 1 T 90
{R, T} R × T 15,000
{R, S, T} (R 1 𝜎(S)) 1 T 80 + |R, S,T |

(b) Physical optimization step.

Subproblem Post-Condition QEP Cost

{R} — Scan(R) ≕ 𝑅 150
{S} sorted on S.id Scan(S) 100
{S’} sorted on S.id BF(Scan(S)) ≕ 𝑆 200

{T} — Scan(T) ≕ 𝑇1 100
sorted on T.sid ISAM(T,sid) ≕ 𝑇2 110

{R, S’} — SHJ(𝑆 , 𝑅) 620
sorted on S.id SHJ(𝑅, 𝑆) 655

{R, S’, T} — SHJ(SHJ(𝑆 , 𝑅),𝑇1) 940
sorted on S.id/T.sid MJ(SHJ(𝑅, 𝑆),𝑇2) 945

2.2 holistic

In general, split and holistic have much in common. Both op-
timize their data sources potentially recursively, enumerate join
orderings, add post-join operations, and can be implemented us-
ing dynamic programming. The main difference between both ap-
proaches is the point in time at which the physical optimization step
is performed, as highlighted in brown. Instead of first construct-
ing the entire algebraic plan before applying physical optimization
only once thereafter like in Algorithm 1, holistic determines the
physical operators directly at construction of algebraic operators.
Therefore, the helper function optimize_physically is called mul-
tiple times — particularly for every enumerated join order — as
described in Algorithm 2.

Table 2 depicts the enumeration of holistic for the running ex-
ample. We observe that the plan table mostly represents a superset
of the one in Table 1b. The first five rows for singleton subproblems
remain unchanged, however, subproblems representing another
join order than utilized in split, e.g., {S’, T} and {R, T}, are included.
This observation is the key for finding a globally optimal QEP.
Due to the additionally included subproblems, the full subprob-
lem {R, S’, T} is able to also apply the join order R 1 (𝜎(S) 1 T) and
utilize a MJ between 𝑆 and 𝑇2. To finally determine the globally op-
timal QEP, again the entry with the lowest cost while ignoring the
post-conditions is chosen (line 44 of Algorithm 2). As already stated
in Section 1.1, this join order is more costly w.r.t.𝐶out, however, the
resulting QEP has lower estimated physical cost compared to the
QEP computed by split due to the freedom of applying any possible
join order while already considering the physical cost model.

Lastly, we want to mention two caveats of Algorithm 2. (1) In
line 31, we keep track of the current subproblem and elevate sub-
problems to the operations occurring after the final join, e.g., dis-
tinguish between joining all sources and applying an additional

Table 2: Enumeration of holistic.

Subproblem Post-Condition QEP Cost

{R} — Scan(R) ≕ 𝑅 150
{S} sorted on S.id Scan(S) 100
{S’} sorted on S.id BF(Scan(S)) ≕ 𝑆 200

{T} — Scan(T)≕ 𝑇1 100
sorted on T.sid ISAM(T,sid) ≕ 𝑇2 110

{R, S’} — SHJ(𝑆 , 𝑅) 620
sorted on S.id SHJ(𝑅, 𝑆) 655

{S’, T} — SHJ(𝑆 ,𝑇1) 520
sorted on S.id/T.sid MJ(𝑆 ,𝑇2) 490

{R, T} — NLJ(𝑅,𝑇1) 15,250
sorted on T.sid NLJ(𝑅,𝑇2) 15,260

{R, S’, T} — SHJ(MJ(𝑆 ,𝑇2), 𝑅) 925
sorted on S.id/T.sid SHJ(𝑅, MJ(𝑆 ,𝑇2)) 955

grouping afterward. This change is necessary since physical opti-
mization is not only performed during join ordering but also for all
other operations. (2) Strictly speaking, the recursion for a nested
query graphs in line 12 yields a greedy local optimization. How-
ever, under certain assumptions, which are fulfilled in practice as
discussed in the next section, the resulting local optimum coincides
with the global optimum.

2.3 Pruning Variant: holisticopt

Besides pruning in the physical optimization step, we can utilize
known pruning techniques for top-down and bottom-up plan enu-
merators to restrict the search space during holistic optimization.
For top-down like TDbasic [4, 5], DeHaan and Tompa [2] propose
the application of branch-and-bound pruning using accumulated-
cost bounding to prune, for example, the right subproblem of a join
if the left subproblem was already more costly than the remaining
budget to the cost of the currently best found plan. For bottom-
up like DPccp [19] or PEall, Haffner and Dittrich [8] propose the
application of initialized cost-based pruning using GOO [3] to get
an upper bound for the physical costs early, i.e., before the actual
optimization, and to prune subplans that are more costly than this
upper bound. We implemented both techniques for holistic and
refer to the pruning variant as holisticopt from now on.

2.4 Hybrid Approach: top-k

When comparing split and holistic one can make an interesting
observation. holistic can be rephrased as two-step optimization
problem as follows. Firstly, solve algebraic optimization by com-
puting not only the best algebraic plan but all possible join orders.
Afterward, perform the physical optimization step for all algebraic
plans received. In practice, this strategy would surely increase the
optimization time as both steps are no longer interleaved, however,
it hints at the application of a hybrid approach, namely top-k.

top-k computes the k algebraic plans with minimal algebraic
cost before resuming with the physical optimization of all those
algebraic plans. Afterward, the QEP with the lowest physical cost
is selected. Note that to compute the k optimal algebraic plans
w.r.t. the algebraic cost model, the k cheapest partial algebraic
plans have to be stored for each enumerated subproblem during
the algebraic optimization step.

3914

The hyperparameter k can be chosen freely, e.g., k=1 decays to
be split, whereas k=∞ decays to be holistic. If k is chosen large
enough, i.e., the join order of the globally optimal QEP is contained
in the k cheapest algebraic plans, the QEP determined by top-k
coincides with the QEP determined by holistic. Therefore, we
will mostly focus on the two extrema split and holistic in the
following but also include top-k in our evaluation. Future work
could replace the static number k with a dynamic value, i.e., start
with a small k and then incrementally increase k as long as a certain
budget, e.g., the ratio of estimated physical cost versus invested
optimization time, has not been exhausted.

2.5 Extension to Fused Physical Operators

So far, we restricted ourselves to singleton physical operators that
only implement a single algebraic operator. However, there are
also fused physical operators that directly implement the logic of
multiple algebraic operators. The most prominent example of a
fused physical operator is the hash-based group-join (HBGJ) [11,
18, 20] uniting the join and the grouping logic by reusing a single
hash table. We say that the HBGJ covers the pattern of an algebraic
join operator followed by an algebraic grouping operator. The core
idea of physical optimization is to cover a given algebraic plan
with patterns of available physical operators while fulfilling the
pre-conditions mentioned in the former sections.

As stated in Section 2.2, we only locally optimize nested query
graphs due to the recursion. However, as long as there are no fused
physical operators breaking this “barrier”, e.g., a fused operator
covering first a grouping and afterward a join, the local optimum
coincides with the global optimum as we still return the entire
post-condition to QEP and cost mapping in the recursion step
(line 33 in Algorithm 2). To the best of our knowledge, no current
database system implements such a fused physical operator as a
grouping will never appear before a join without nesting the query
graph. Additionally, future work could try to resolve this issue
by extending the post-conditions. For example, we could add an
available hash table to the post-condition and reuse it in a later join
which basically simulates the aforementioned fused operator.

3 TIME COMPLEXITY

In this section, we analyze the algorithms’ time complexity.
split. Conceptually, split only performs both optimization

steps exactly once. The worst-case complexity of algebraic opti-
mization is covered by a large body of related work and determined
to be exponential in the number of base relations 𝑛 [13, 27], even
using state-of-the-art enumeration algorithms like DPccp. This can
be highlighted by the fact that one needs to enumerate all subprob-
lems, i.e., elements of the powerset of all base relations. Furthermore,
there are

(𝑛
𝑚

)
subproblems of size𝑚 and for each of them all possi-

ble splits have to be enumerated. This can be simplified by choosing
all subsets of size 1 up to size𝑚 − 1, i.e.,

∑𝑚−1
𝑖=1

(𝑚
𝑖

)
= 2𝑚 − 2. In

total, we need to enumerate
∑𝑛
𝑚=1

(𝑛
𝑚

)
∗ (2𝑚 − 2) = −2𝑛+1 + 3𝑛 + 1

possible join orders, which resides in O(3𝑛).
The following physical optimization step involves testing a finite

number of physical operators for each algebraic operator contained
in the received algebraic plan. Moreover, a total order has to be
determined using non-commutative cost models. In the worst case,

different sibling orderings result in different post-conditions that
propagate throughout the entire optimization process. For example,
a physical join operator, receiving three or rather four QEPs with
different post-conditions for its left and right subproblems, may
yield up to 12 QEPs with different post-conditions. However, the
number of enumerated QEPs is still exponentially bounded by the
number of joins as they are the only non-unary operator. The num-
ber of joins is bounded by the number of base relations 𝑛 minus 1.
Note that such an exponential propagation highly depends on the
actual physical implementation, e.g., a SHJ yields the post-condition
of its probe child and thus stops the exponential propagation locally.
As both the algebraic and the physical optimization step require
exponential time, split’s overall time complexity resides in O(3𝑛).

holistic. On the other hand, holistic has to perform one con-
ceptual physical optimization step per found algebraic plan, i.e., the
exponential effort for physical optimization has to be spent mul-
tiple times instead of just once. Even if implemented efficiently
using dynamic programming, still all algebraic plan structures de-
termining the join order together with all possible base relation
permutations to achieve the total order, have to be enumerated. The
number of plan structures is asymptotically bounded by the Catalan
number [18], i.e., exponentially, whereas the number of permuta-
tions is computed in O(𝑛!) for worst-case query graph shapes. This
faculty renders holistic to reside in the super-exponential time
class and to grow much faster than split w.r.t. optimization time.
Our experimental evaluation in Section 5.2 confirms our findings.

4 OPTIMALITY

In this section, we analyze the algorithms’ optimality.
split. The algorithm split might get stuck in a local optimum

due to its greediness of determining an algebraic plan without
considering physical operators. This greediness issue is already
showcased by our running example in Section 1.1. The algebraic
optimization step decides to perform the join between R and S first
because it results in the smaller intermediate result (see algebraic
plan of Figure 2b). The succeeding physical optimization step cannot
change the join order anymore and is only able to choose concrete
physical operators (see QEP of Figure 2b). However, including the
assumption from our running example regarding sortedness of S.id
and index on T.sid, we have already shown that utilizing a MJ and
a different join order yields a cheaper QEP w.r.t. the physical cost
model (see Figure 2c) that holistic is able to find.

holistic. In contrast, holistic enumerates all algebraic plan
structures while testing all possible physical operators for each
structure. For our running example, this enumeration is depicted
in Table 2 and represents a superset of the enumeration of split
in Table 1b. Therefore, holistic is guaranteed to find the globally
optimal QEP. Even the recursion for nested query graphs does not
prevent holistic from being globally optimal under the practical
assumptions made at the end of Section 2.5.

5 EVALUATION

In this section, we want to experimentally evaluate and compare
the four approaches split, holistic, holisticopt, and top-k. In
general, we try to answer the following research questions (RQs).

3915

101

103

105

Chain Cycle

2 4 6 8 10

101

103

105

Star

2 4 6 8 10

Clique

#Relations

�
er

y
O

pt
im

iz
at

io
n

Ti
m

e
[m

s]
(lo

g-
sc

al
e)

split (DPccp)
split (TDbasic)
split (PEall)

top-5 (DPccp)
top-5 (TDbasic)
top-5 (PEall)

top-10 (DPccp)
top-10 (TDbasic)
top-10 (PEall)

holisticopt (DPccp)
holisticopt (TDbasic)
holisticopt (PEall)

holistic (DPccp)
holistic (TDbasic)
holistic (PEall)

Figure 3: Optimization times for the different approaches when varying the query graph shape, the number of base relations,

and the applied join enumeration algorithm.

(RQ 1) How much overhead does holistic, holisticopt, or top-k
induce compared to split? How does the query shape and
size influence the optimization time? (Section 5.2)

(RQ 2) Are there scenarios where holistic or rather top-k find
better QEPs than split w.r.t. the given cost model? When
does these approaches outperform split w.r.t. end-to-end
performance? (Section 5.3)

(RQ 3) Do these scenarios occur in common benchmarks and data-
sets? How do the four approaches perform? (Section 5.4)

(RQ 4) How can the aforementioned scenarios be detected? (Sec-
tion 5.5)

Therefore, we begin by investigating the optimization time of all
approaches under varying query graph structures and join enumer-
ation algorithms. Afterward, we provide three microbenchmarks
showcasing that holistic is able to yield better QEPs than split and
that top-k is able to recover these QEPs if the hyperparameter k is
chosen large enough. Additionally, we also survey the TPC-H, JOB,
and CEB benchmarks to verify our results. Lastly, we derive a sim-
ple guideline describing when to use which optimization approach
for a given query graph to achieve best overall performance.

5.1 Experimental Setup

We implemented all four optimization approaches inmutable [9, 10],
a main-memory database system currently developed in our group.
All experiments are conducted using a columnar data layout and
our just-in-time compiling push-based execution backend [23].

We run all our experiments on a Linux machine with an Intel®
Xeon® CPU E5-2620 v4 (2.10 GHz, 20 MiB L3) and 4x8 GiB DDR4
RAM. Sincemutable does not yet supportmulti-threading, all queries
run on a single core. All data accessed in the experiments is mem-
ory resident. To remove the influence of cardinality estimation, we

inject the true cardinalities for each executed query into mutable’s
cardinality estimator. We repeat each experiment five times and
report the median. In the following, with optimization time we ex-
clusively refer to the time required by the optimization process as
described in Section 2, and with query execution time we refer to
the sum of optimization and running time.

The algorithms split and top-k always assume 𝐶out [8, 18] as
algebraic cost model. The physical cost model is given by Defini-
tions (1)–(6) and extended as follows.

𝐶HBG (𝑥) ≔ 1.5 ∗ |𝑥 | (7)
𝐶HBGJ (𝑥,𝑦) ≔ 1.5 ∗ |𝑥 | + |𝑦 | + |𝑥,𝑦 | (8)

Note that |𝑥,𝑦 | denotes the cardinality of the subproblem {𝑥,𝑦}. In
both cases, we omit the costs for base relations and their respective
scans as they occur in every possible QEP.

5.2 Optimization Time

In this section, we try to answer RQ 1 by investigating the opti-
mization time required by split, holistic, holisticopt, and top-k.
We conduct one experiment per query graph shape, i.e., chain, cy-
cle, star, and clique, in which we vary the size of the query graph,
i.e., the number of base relations, and measure the optimization
time needed to find its optimal QEP using either split, top-k with
k=5, top-k with k=10, holisticopt, or holistic. We also vary the
join enumeration algorithm since DPccp is the state-of-the-art algo-
rithm, TDbasic enables branch-and-bound pruning, and PEall makes
holistic truly holistic by also considering Cartesian products. Note
that we denote for example top-k with k set to 5 as top-5.

Figure 3 shows the results of this experiment. The key observa-
tion is that the optimization time of all approaches grows at least
exponentially with the number of base relations due to the linear

3916

grow on a logarithmic scale, as stated in Section 3. We are also able
to observe the significant overhead induced by computing the base
relation permutations during holistic. For example, holistically
optimizing a query graph containing 10 base relations requires up
to 1000s whereas split always finds its local optimum in under
10ms. The top-k configurations form a middle ground between the
two extrema split and holistic and its optimization time increases
the larger k is chosen. For large queries, top-k performs signifi-
cantly better than holistic, especially when applying PEall. For
small queries, top-k enumerates all possible join orders similar to
holistic, however, without incorporating both optimization steps
into a single one. Thus, we observe an overhead of top-k compared
to holistic (see Figure 1a). The potential gain4 of applying prun-
ing is clearly visible when comparing holisticopt with holistic,
especially for PEall where many Cartesian products can be directly
pruned. Interestingly, there is no improvement for star queries
when applying DPccp or TDbasic since joining dimension tables in a
suboptimal order with the fact table is not costly enough to prune
due to the output cardinality of each subproblem being bounded
by the size of the fact table. Furthermore, our results confirm the
efficiency of DPccp and TDbasic compared to PEall, especially for
holistic as significantly less physical plans have to be enumerated
without Cartesian products. This effect is most visible for sparse
query graph shapes like chain or cycle and decreases with more
dense query graph shapes like star until there is no difference visible
for a fully connected query graph, i.e., a clique. Actually, for cliques,
DPccp and TDbasic perform slightly worse since they enumerate the
same join orders as PEall but with a more complex computation.

5.3 End-To-End Microbenchmarks

With three end-to-end microbenchmarks, we showcase that holis-
tic is able to find a QEP that is superior w.r.t. estimated cost to
the QEP found by applying split. However, as shown in the last
section, holistic is computationally more expensive and thus takes
more time to find the QEP. Therefore, there is a trade-off between
optimization time and running time.

We also optimize our microbenchmarks utilizing top-2 and
holisticopt, which find the same QEPs as holistic. As the op-
timization times are mostly negligible in these experiments, i.e., be-
low 3ms, there is no real difference between top-2, holisticopt,
and holistic. Moreover, as the choice of plan enumerator does not
influence the resutling QEP, we only state the mean of utilizing
DPccp, TDbasic, and PEall in the remainder of this section.

All microbenchmarks run on a synthetic dataset. Primary keys as
well as foreign keys in the base relations are represented as 4-byte
integer values. The data is drawn uniformly at random s.t. it fulfills
the desired cardinalities specified in each microbenchmark.

Exploiting Sortedness. In the first microbenchmark, we aim at
reusing existing sortings. We consider a simple select-project-join
query shown in Figure 4a. The query consists of a total of two ex-
plicit joins forming a query graph commonly known as chain shape.
In this microbenchmark, base relation R represents, e.g., students, S
a subclass of R, e.g., PhD students, and T some relationship with R,
e.g., attending courses. We may assume R and S to be presorted on

4We defined the cardinalities s.t. they favor pruning to the maximum, but do not influ-
ence the enumeration of join orders and QEPs for approaches other than holisticopt .

1 SELECT *

2 FROM R, S, T

3 WHERE R.id = S.rid AND S.rid = T.rid;

(a) SQL query inducing sortedness exploitation.

SHJ

Scan(R)SHJ

Scan(T)Scan(S)
1.1 ∗ 106 107

106 108

cost
alg

=106, cost
phys

=1.1315 ∗ 108

(b) Applying split.

SHJ

Scan(T)MJ

Scan(S)Scan(R)
108 1.1 ∗ 106

1.1 ∗ 106 107

cost
alg

=1.1 ∗ 106, cost
phys

=1.1275 ∗ 108

(c) Applying holistic.

Figure 4: Microbenchmark exploiting sortedness. QEP edges

are annotated with the respective cardinalities for sf=1.0.

0.0625 0.125 0.25 0.5 1.0
Scale Factor (log-scale)

0

1000

2000

�
er

y
Ex

ec
ut

io
n

Ti
m

e
[m

s] Exploiting Sortedness
split
top-2
holisticopt
holistic

Figure 5: Query execution times for the final QEPs shown in

Figure 4 when varying the scale factor and the approach.

their primary keys R.id and S.rid, respectively. Moreover, the join
between S and T as well as its specified cardinality may occur in
practice as not all PhD students have to attend courses anymore.

On the one hand, holistic tries to exploit existing sortings by
executing a MJ similar to our running example in Figure 2. On
the other hand, split does not consider physical output properties
during the algebraic optimization step and chooses another join
order disabling the application of a MJ in the subsequent physical
optimization step. Both found QEPs are depicted in Figure 4.

Figure 5 shows the query execution times for the final QEPs for
varying scale factors (sf) and approaches utilized. We observe that
the holistically optimized QEP dominates the one chosen by split
for all scale factors with an increasing speedup from 3.2x to 11.1x.

Exploiting Group-Join. The second microbenchmark investi-
gates the exploitation of fused physical operators by utilizing the
query defined in Figure 6a. The query induces two possible join
orders and a subsequent grouping on one of the join keys.5

holistic enables the use of a HBGJ by performing the join that
does not contain the grouping key at first. Again, split is more
restricted in the sense that the algebraic optimization step deter-
mines the other possible join order ruling out the application of
a fused group-join in the subsequent physical optimization step.
Therefore, the grouping has to be executed using a separate physi-
cal operator, i.e., the hash-based grouping (HBG). Figure 6 shows
both resulting QEPs. Note that even if no intermediate algebraic
5Note that the stated query could be rewritten to a single-relation-query on the base
relation S and grouping directly on S.rid as the joins with R and T do not add any
information here. However, filters on the other base relations would require the joins
again. For simplicilty, we omit these filters in this microbenchmark.

3917

1 SELECT R.id , COUNT (*)

2 FROM R, S, T

3 WHERE R.id = S.rid AND S.tid = T.id

4 GROUP BY R.id;

(a) SQL query inducing group-join exploitation.

HBG

SHJ

SHJ

Scan(S)Scan(R)
105 107

Scan(T)
105 107

107

cost
alg

=2 ∗ 107, cost
phys

=4.025 ∗ 107

(b) Applying split.

HBGJ

SHJ

Scan(S)Scan(T)
105 107

Scan(R)
105 107

cost
alg

=2 ∗ 107, cost
phys

=3.03 ∗ 107

(c) Applying holistic.

Figure 6: Microbenchmark exploiting group-join. QEP edges

are annotated with the respective cardinalities for sf=1.0.

0.0625 0.125 0.25 0.5 1.0
Scale Factor (log-scale)

0

500

1000

�
er

y
Ex

ec
ut

io
n

Ti
m

e
[m

s] Exploiting Group-Join
split
top-2
holisticopt
holistic

Figure 7: Query execution times for the final QEPs shown in

Figure 6 when varying the scale factor and the approach.

plan is constructed by holistic, the algebraical cost would still
be 2 ∗ 107 for the determined join order and thus the same as for
split. So in theory, split could have chosen this join order as well
resulting in the same QEP as holistic (we circumvented that by
slighlty adapting the cardinalities). However, holistic will always
force the favorable join order enabling the HBGJ.

We perform an experimentwith the same configurations, i.e., vary-
ing scale factor and approaches, as for the first microbenchmark.
Figure 7 depicts the results. This time, split is on par with holistic
for small scale factors as the optimization overhead of holistic is
too high for comparatively low running times of 30ms. However,
with larger datasets, the query running time increases while the
optimization time remains constant. From scale factor 0.25 onwards,
holistic becomes increasingly superior to split. This indicates
that the holistic QEP is again more beneficial in practice than the
QEP computed by split, however, with a smaller absolute differ-
ence than in the first microbenchmark. However, we would always
be able to find a threshold at which holistic outperforms split
w.r.t. query execution time by upscaling the dataset even if the
holistic QEP is only slighlty more beneficial in practice.

RemovingAlgebraicCostAbstraction. In the lastmicrobench-
mark, we examine the impact of purely applying a physical cost
model in holistic in contrast to applying two different cost mod-
els, i.e., first algebraic then physical, in split. Therefore, we again
consider a simple select-project-join query shown in Figure 8a, now
consisting of three relations and a total of three joins including one

1 SELECT *

2 FROM R, S, T

3 WHERE R.sid = S.id AND S.id = T.sid;

(a) SQL query inducing multiple join orders.

SHJ

Scan(R)SHJ

Scan(S)Scan(T)
107 108

104 105

cost
alg

=104, cost
phys

=1.15115 ∗ 108

(b) Applying split.

SHJ

Scan(T)SHJ

Scan(S)Scan(R)
105 108

105 107

cost
alg

=105, cost
phys

=1.103 ∗ 108

(c) Applying holistic.

Figure 8: Microbenchmark removing algebraic cost abstrac-

tion. QEP edges are annotated with the respective cardinali-

ties for sf=1.0.

0.0625 0.125 0.25 0.5 1.0
Scale Factor (log-scale)

0

2000

4000

�
er

y
Ex

ec
ut

io
n

Ti
m

e
[m

s] Removing Algebraic Cost Abstraction
split
top-2
holisticopt
holistic

Figure 9: Query execution times for the final QEPs shown in

Figure 8 when varying the scale factor and the approach.

transitively derived join between R.sid and T.sid. Thus, multiple
join orders are possible. We do not assume any existing sorting but
assume the cardinalities as given in Figure 8.6

As mentioned in Section 5.1, split applies 𝐶out as algebraic cost
model. 𝐶out can be seen as a simplified version of the physical cost
model given by Definitions (1)–(8). While this abstraction accumu-
lates the cost computation during join ordering, it also causes inac-
curacy, e.g., by removing the factor estimating the cost of creating
a hash table. Therefore, there are cases where split “oversimpli-
fies” which results in finding only a local optimum instead of the
global optimum guaranteed to be found by holistic. This third
microbenchmark triggers exactly such a scenario as the QEPs and
costs depicted in Figure 8 confirm. Even if the algebraic cost are
lower for the QEP found by split, it is forced to build the hash table
for the lower SHJ on one huge input (either T or S). In contrast,
holistic “divides” these two huge inputs across two different joins
making it possible to build both required hash tables on smaller
inputs each (on R and the join result of R and S).

Again, we measured the query execution time for different scale
factors and approaches. The results shown in Figure 9 have similar
characteristics as the first microbenchmark. holistic dominates
split for all scale factors with an increasing speedup up to 2.5x.

In conclusion, RQ 2 can be confirmed since we found three
independent scenarios where holistic, and thus also top-2 and
holisticopt, are superior to split, especially for larger datasets.

6Note that there must be some filter on S to achieve the cardinality of the subproblem
{S, T} (due to the foreign key property), however, we omit these filters for simplicity.

3918

Table 3: Performance of split compared to top-k, holisticopt, and holistic for varying join enumeration algorithms on

TPC-H and JOB. For top-k, holisticopt, and holistic, we also specify the speedup over split in parantheses, i.e., 𝑡split/𝑡top-k,
𝑡split/𝑡holisticopt , or 𝑡split/𝑡holistic, respectively. All measurements are rounded to one decimal place.

Query TPC-H q3

Join Enumeration DPccp TDbasic PEall
Approach split top-2 holisticopt holistic split top-2 holisticopt holistic split top-2 holisticopt holistic

Optimization Time [ms] 1.3 1.9 (0.66) 3.0 (0.42) 3.5 (0.36) 1.3 1.9 (0.65) 3.0 (0.42) 3.4 (0.37) 1.3 1.9 (0.66) 3.1 (0.41) 4.2 (0.30)
Running Time [ms] 222.1 157.1 (1.41) 221.3 158.0 (1.40) 217.7 156.7 (1.39)∑

[ms] 223.4 159.0 (1.40) 160.1 (1.40) 160.6 (1.39) 222.6 159.9 (1.39) 161.0 (1.38) 161.4 (1.38) 219.0 158.6 (1.38) 159.8 (1.37) 160.9 (1.36)

Query JOB q5c

Join Enumeration DPccp TDbasic PEall
Approach split top-3 holisticopt holistic split top-3 holisticopt holistic split top-3 holisticopt holistic

Optimization Time [ms] 6.7 13.0 (0.52) 61.8 (0.11) 293.1 (0.02) 7.0 13.4 (0.52) 59.9 (0.12) 251.0 (0.03) 8.0 14.5 (0.55) 78.5 (0.10) 667.4 (0.01)
Running Time [ms] 1953.9 5055.6 (0.39) 1963.8 5039.6 (0.39) 2026.7 5099.8 (0.40)∑

[ms] 1960.7 5068.6 (0.39) 5117.3 (0.38) 5348.7 (0.37) 1970.8 5053.1 (0.39) 5099.6 (0.39) 5290.6 (0.37) 2034.7 5114.3 (0.40) 5178.3 (0.39) 5767.2 (0.35)

Query JOB q8c

Join Enumeration DPccp TDbasic PEall
Approach split top-2 holisticopt holistic split top-2 holisticopt holistic split top-2 holisticopt holistic

Optimization Time [ms] 3.2 4.2 (0.75) 35.1 (0.09) 315.1 (0.01) 3.2 4.3 (0.74) 32.3 (0.10) 320.5 (0.01) 2.3 3.5 (0.66) 48.3 (0.05) 1956.2 (0.00)
Running Time [ms] 2070.0 2079.7 (1.00) 2514.8 2503.9 (1.00) 3157.4 2516.9 (1.25)∑

[ms] 2073.2 2083.9 (0.99) 2114.8 (0.98) 2394.8 (0.87) 2517.9 2508.2 (1.00) 2536.2 (0.99) 2824.4 (0.89) 3159.7 2520.4 (1.25) 2565.2 (1.23) 4473.1 (0.71)

Query JOB q11a

Join Enumeration DPccp TDbasic PEall
Approach split top-35 holisticopt holistic split top-35 holisticopt holistic split top-2 holisticopt holistic

Optimization Time [ms] 24.7 367.4 (0.07) 2562.8 (0.01) 13410.8 (0.00) 24.9 372.2 (0.07) 2423.8 (0.01) 13721.4 (0.00) 12.3 15.2 (0.81) 8430.6 (0.00) 376719.0 (0.00)
Running Time [ms] 388.7 340.9 (1.14) 345.4 297.2 (1.16) 442.9 436.2 (1.02)∑

[ms] 413.4 708.3 (0.58) 2903.7 (0.14) 13751.7 (0.03) 370.3 669.4 (0.55) 2721.0 (0.14) 14018.6 (0.03) 455.2 451.5 (1.01) 8866.8 (0.05) 377155.2 (0.00)

5.4 TPC-H, JOB, and CEB Benchmarks

To investigate whether cases as described by the three microbench-
marks also occur in practice and to answer RQ 3, we survey the
TPC-H [1], JOB [15, 29], and CEB [21, 22] benchmarks. Therefore,
we compare the resulting QEPs of the different optimization ap-
proaches and measure again both the optimization time and the
running time. JOB and CEB can be considered real-world as they
query the IMDb dataset7, whereas TPC-H queries synthetic data on
scale factor 1.0 but is considered here due to containing post-join
operations like grouping. For TPC-H, we tested every query with
its substitution parameters set as specified for query validation. For
CEB, we restrict ourselves to one query per query template.

Overall, out of the 19 TPC-H8, 113 JOB, and 16 CEB queries
we considered, holistic returns a different QEP than split for 51
queries, but only yields a significant speedup for very few queries.
Therefore, we will examine those queries as well as additional
scenarios explaining why no speedup is achieved by holistic. Ad-
ditionally, we apply holisticopt, as well as top-k for the presented
scenarios with the hyperparameter k set s.t. the same QEP is found
as by holistic. Thus, we only show one running time for these
approaches but state the optimization times individually.

Sample Queries. With our conducted evaluation, we detect
four scenarios where split and holistic produce different QEPs.
For each scenario, we investigate one representative sample query
w.r.t. its performance. Our findings are summarized in Table 3.

In TPC-H q3,holistic is able to exploit a group-join independent
of the utilized join enumeration whereas split is forced to execute
singleton join and grouping operators due to unfavorable join order.
Note that we adapted the date parameters for the filters slightly
to achieve the desired cardinalities. Our experiment confirms that

7Note that we cut strings to 100 characters to meet mutable’s memory limit of 16GiB.
8TPC-H q13, q15, and q20 are omitted due to lack of support of outer joins and views
in mutable.

the QEP chosen by holistic indeed yields a superior running time
in practice. Due to the comparatively low optimization effort for
a query with only three base relations, the query execution time
when applying holistic, as well as top-2 and holisticopt, reaches
a speedup of approximately 1.4x compared to split.

In JOB q5c, holistic is able to exploit sortedness by utilizingmul-
tiple indexes to enable two MJs. In contrast, the join order chosen
by split prevents the use of MJs. However, our measurements show
that the QEP chosen by holistic actually yields a deteriorated run-
ning time in practice. This deterioration is caused by an additional
materialization before the MJ necessary to execute the pull-based
MJ logic9 in an otherwise push-based execution engine [31]. Our
cost model according to Defintion 5, however, does not incorporate
this materialization. Also the optimization effort for this query with
five base relations is relatively high when optimizing holistically
s.t. split overall is superior by a factor of more than 2x. Although
top-3 and holisticopt significantly lower this optimization effort,
they also fall short at end-to-end performance compared to split.

JOB q8c is an instance of our third microbenchmark that speci-
fies a different join order due to the removal of the algebraic cost
abstraction. Only splitwith PEall results in a substantially different
join order than the other 11 configurations due to a chosen Carte-
sian product which, however, only produces an intermediate of size
1. Interestingly, this join order induces a smaller search space for
the subsequent physical optimization step which explains the faster
optimization time of this configuration compared to split utilizing
DPccp or TDbasic. As the QEPs match when applying DPccp or rather
TDbasic, the running time alsomatches between all approaches. Note
that the running time when applying DPccp differs from the others

9A pull-based execution has control from which child the next tuple is requested. This
is necessary in the MJ logic to switch between inputs multiple times in constrast to, for
example, SHJ logic that only needs all tuples from its build input and then all tuples
from its probe input.

3919

due to a different children order of a NLJ which is not recognized by
the symmetric cost function stated in Definition 6. Therefore, only
the increased optimization time influences the query execution
time. This optimization overhead renders holistic to be worse by
a factor of 0.87x. top-2 as well as holisticopt significantly reduce
the optimization time and thus are on par with split. For PEall, the
aforementioned different join order when applying split performs
worse in practice. Again, top-2 and holisticopt find the holistic
QEP in a time comparable to split. Therefore, compared to split,
top-2 and holisticopt are superior with a speedup of more than
1.2x. Furthermore, holistic might become superior for PEall and
larger datasets as the running time becomes the bottleneck.

Lastly, optimizing JOB q11a yields completely different QEPs
with different join orders. Again, the physical optimization step in
split is faster due to a smaller search space when resolving the join
order determined by PEall. To discover the globally optimal QEP
found by holistic for DPccp or rather TDbasic, we need to apply
top-35, i.e., the chosen join order is only the 35th cheapest w.r.t. the
algebraic cost model. This explains the relatively large optimization
time in these configuration. The running times are similar for all
configurations and negligible when comparing them with the opti-
mization effort needed by holistic, even if pruning significantly
lowers the optimization time. In conclusion, this experiment high-
lights the overhead of holistically optimizing large queries, e.g., 8
base relations in q11a, and the potential of fast hybrid strategies to
take advantage of even small speedups in the running times, e.g., in
this experiment a speedup of approximately 1.15x for top-k and
holistic compared to split for DPccp or TDbasic.

Limitations. In the considered benchmarks, holistic was only
superior in one case, top-k and holisticopt in two cases. On the
one hand, this can be explained by the relatively low running times
of the majority of queries that favors fast optimization like split,
on the other hand, the benchmarks themselves impose certain
limitations. JOB and CEB only contain select-project-join queries
for which a group-join can not be exploited due to the missing
grouping. Furthermore, sortedness can not be exploited using the
TPC-H schema as join keys are only used for a specific join. Also
in the CEB and JOB queries sortedness is difficult to exploit due to
missing filters on join keys which disables the application of index
scans fusing an algebraic scan and filter operator.

Additionally, our implementation has some limitations. The op-
erators ISAM and index scan are limited to a sorted array index
and their cost models are difficult to estimate. Additionally, they
are currently parameterized with templates for the accessed at-
tribute which artificially blows up the search space. Moreover, the
MJ implementation is limited to 1:N joins and introduces additional
materialization as explained for JOB q5c.

Discussion. Supporting additional physical operators, e.g., worst-
case optimal joins [26] as fused operator, would increase the search
space and the potential gain of holistically enumerating all QEPs.
Additionally, we have seen for JOB q5c that an imprecise cost model
may cause deteriorated running times in practice. Similarly, the
same holds for imprecise cardinality estimates as they serve as input
for the cost model. However, we expect all optimization approaches
to suffer similarly from such inaccuracies as they rely on the same
cost estimates. For the scope of this paper, we focus on the defined
cost model and injecting the true cardinalities.

#reusable join attributes

grouping key
also join attribute?

grouping key
also join attribute?

#relations #relationssplit

top-5 top-10 holisticopt holistic

[0;24] [25;∞)

no yes no yes

[2;7] [8;∞) [8;∞) [4;7] [2;3]

Figure 10: Decision graph as optimization guideline.

5.5 Optimization Guideline

In this section, we address RQ 4 by proposing a decision graph,
depicted in Figure 10, for choosing a suitable optimization approach
for a given query.

Since exploiting sortedness is only applicable iff join attributes
are reused and exploiting a fused group-join is only applicable iff
the grouping key is also a join attribute, we add those two condi-
tions as nodes in the decision tree. We experimentally determined a
value of 24 to be a good threshold for the number of reusable join at-
tributes. If no condition is fulfilled, there is almost no potential gain
for holistic optimization, thus we apply split. If only one condition
is fulfilled, we apply top-k which also includes the algebraic cost
abstraction scenario in our guideline by trying out multiple join
orders that are more or less equally costly. Depending on the query
size, we either use top-5 or top-10. If both conditions are fulfilled,
we want to optimize holistically. We apply holisticopt, except
for very small queries for which the initialized cost-based pruning
would only induce an optimization overhead and thus applying
holistic instead is beneficial. However, due to the computational
effort to optimize large queries holistically, we define a threshold
fromwhich we fall back to top-10. Setting k to such a comparatively
small number is often sufficient in practice as our microbenchmarks
and the experiments in the previous section confirm.

We evaluate our proposed guideline along with split, top-5,
top-10, and holisticopt on all 51 aforementioned queries where
holistic finds a different QEP than split. Note that we focus on
DPccp for join enumeration and omit holistic as the majority of
queries benefit from pruning. Figure 11 depicts the distribution
of slowdown factors compared to the theoretical optimum across
all queries. Each violin plot includes a box plot indicating the me-
dian, first and third quartiles, and whiskers extending 1.5 times
the interquartile range. split and top-5 show similar performance,
with almost all queries having a slowdown factor below 2x, in-
dicating that both approaches typically achieve the optimal or a
near-optimal query execution time. However, there are a few no-
table outliers, e.g., JOB q15a, where both miss the optimal QEP,
leading to a slowdown of nearly 6x. top-10 shows greater vari-
ance and a higher median slowdown. While it finds the optimal
QEP for JOB q15a, other queries, such as JOB q5c, q20c, and q33b,
suffer from increased optimization overhead and become outliers.
holisticopt confirms earlier observations: despite being optimal
for four queries, its significant optimization overhead makes it un-
suitable as a default choice. Lastly, applying our guideline results
in slowdown factors similar to top-5, with 75% of queries below

3920

100

101

102

Sl
ow

do
w

n
Fa

ct
or

(lo
g-

sc
al

e)

split top-5 top-10 holisticopt Guideline

Figure 11: Robustness of different approaches compared to the theoretical optimum that chooses the optimization approach

yielding the lowest execution time per query. The slowdown factor is computed by 𝑡approach/𝑡optimum per query, where 𝑡approach is

the query execution time applying the respective approach and 𝑡optimum is the minimal execution time over all optimization

approaches. Each plot shows the distribution of slowdown factors across all considered queries.

1.5x. Unlike fixed strategies, our guideline avoids outliers entirely,
making it a more robust choice across all queries.

6 RELATED WORK

We investigate related publications in the fields of query optimiza-
tion as well as concrete implementations of other database systems.

Related Publications. The conceptual separation of the QOP
into algebraic and physical optimization steps is covered by a large
body of work, especially in textbooks and teaching materials. Mo-
erkotte [18] provides an extensive description of this separation.
In that work, algebraic optimization is referred to as logical opti-
mization that additionally includes rule-based optimizations like
projection and selection push-down. The physical optimization
step defined by Moerkotte is responsible for choosing physical op-
erators while considering different output properties. Note that
these properties are equivalent to our post-conditions, however,
are only used in the physical optimization step in contrast to holis-
tic. The seminal paper of Selinger et al. [30] lays the foundation
for holistic as they incorporate the aforementioned properties
into join ordering. They focus on different access paths, i.e., dif-
ferent physical implementations, but are limited to segment scans
versus index scans and NLJs versus MJs. Moreover, the term in-
teresting orders as first output property is coined. Other papers
often restrict themselves to subproblems of the QOP like join order-
ing [8, 19, 33] by assuming split as optimization approach. To the
best of our knowledge, holistic is never mentioned and evaluated
explicitly even if, for example, Marcus et al. [17] apply a holistic
yet machine-learned optimization in their query optimizer Neo
and extend this idea by providing per-query optimization hints in
Bao [16]. DeHaan and Tompa [2] introduce the idea of pruning in
top-down join ordering. Besides accumulated-cost bounding, they
also propose predicated-cost bounding as instantiation of branch-
and-bound pruning, which may be implemented into holistic as
well. Moerkotte and Neumann [20] make the case for fused oper-
ators by proposing group-joins. Simple implied equivalences are
described that enable the application of a HBGJ in queries like TPC-
H Q3. Our framework builds upon their ideas and is thus able to
reproduce and extend this scenario in our evaluation. The concept
of interesting orders, introduced by System R, is deepened and for-
mally defined by Simmen et al. [32]. Later,Wang and Cherniack [34]
extend these output properties to interesting groupings. They ob-
serve that sort-based physical implementations, e.g., a sort-based
grouping, often only require their input to be grouped instead of

fully sorted. Therefore, keeping track of existing groupings intro-
duced by, for example, MJs enables the optimizer to utilize these
physical operators.

Related Database Systems.DuckDB has a clear interface for its
query optimizer that points out the application of split [6]. More-
over, DuckDB utilizesDPccp in combinationwith the costmodel𝐶out
and implements many rule-based optimization rules on the inter-
mediate algebraic plan, however, to the best of our knowledge lacks
the use of a physical group-join operator. PostgreSQL optimizes the
join order before optimizing the post-join operators, however in
contrast to DuckDB, it seems to apply holistic similar to System R
since the join order optimizer returns multiple access paths from
which the post-join optimizer can freely choose [7]. These access
paths represent basically the mapping from post-conditions to local
QEPs with its costs. Furthermore, PostgreSQL also does not support
a group-join operator. Similarly, MySQL — and most likely its evo-
lution MariaDB — implements holistic using interesting orders
as post-condition [28]. In general, MySQL follows former research
in this area, e.g., incorporating interesting groupings as well. In
contrast, SQLite did not evolve from database research. Therefore,
quite uncommon terms are used for some features, however, SQLite
still utilizes holistic similar to System R by distinguishing be-
tween different access methods during join ordering [12], however,
it ignores bushy plan structures.

7 CONCLUSION

In this work, we revisited and analyzed two existing query optimiza-
tion strategies. With our experimental evaluation, we confirm the
theoretical findings that holistic induces a significant optimization
overhead, especially for larger queries, even when applying prun-
ing. Nevertheless, we showcase scenarios where this overhead is
justified for accelerating query execution and present an optimiza-
tion guideline to detect such scenarios. In three microbenchmarks,
holistic outperforms split by up to one order of magnitude. Fur-
thermore, we propose a hybrid top-k optimization strategy and
demonstrate that it is able to recover the holistic QEPs while im-
proving the optimization time by multiple orders of magnitude
compared to holistic. Additionally, we survey the TPC-H, JOB,
and CEB benchmarks, where split is superior for the majority of
the queries. However, we identify some queries for which holistic
and especially top-k are able to outperform split by approximately
1.4x. Lastly, we propose a simple guideline that robustly determines
a suitable optimization approach to apply for a given query.

3921

REFERENCES

[1] Transaction Processing Performance Council. 2022. TPC-H Specification. Re-
trieved January 9, 2025 from https://www.tpc.org/TPC_Documents_Current_
Versions/pdf/TPC-H_v3.0.1.pdf

[2] David DeHaan and FrankWm. Tompa. 2007. Optimal top-down join enumeration.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Beijing, China, June 12-14, 2007, Chee Yong Chan, Beng Chin Ooi, and
Aoying Zhou (Eds.). ACM, 785–796. https://doi.org/10.1145/1247480.1247567

[3] Leonidas Fegaras. 1998. A New Heuristic for Optimizing Large Queries. In
Database and Expert Systems Applications, 9th International Conference, DEXA
’98, Vienna, Austria, August 24-28, 1998, Proceedings (Lecture Notes in Computer
Science), Gerald Quirchmayr, Erich Schweighofer, and Trevor J. M. Bench-Capon
(Eds.), Vol. 1460. Springer, 726–735. https://doi.org/10.1007/BFB0054528

[4] Pit Fender. 2014. Algorithms for Efficient Top-Down Join Enumeration. Ph.D.
Dissertation. University of Mannheim. https://ub-madoc.bib.uni-mannheim.de/
36655

[5] Pit Fender and Guido Moerkotte. 2011. A new, highly efficient, and easy to imple-
ment top-down join enumeration algorithm. In Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Ger-
many, Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.).
IEEE Computer Society, 864–875. https://doi.org/10.1109/ICDE.2011.5767901

[6] DuckDB Foundation. 2025. DuckDB GitHub. Retrieved December 5,
2024 from https://github.com/duckdb/duckdb/blob/main/src/include/duckdb/
execution/physical_plan_generator.hpp#L41

[7] The PostgreSQL Global Development Group. 2025. PostgreSQL GitHub.
Retrieved December 5, 2024 from https://github.com/postgres/postgres/blob/
master/src/backend/optimizer/plan/planmain.c#L38

[8] Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Orders
with Heuristic Search. Proc. ACM Manag. Data 1, 1 (2023), 73:1–73:26. https:
//doi.org/10.1145/3588927

[9] Immanuel Haffner and Jens Dittrich. 2023. mutable: A Modern DBMS for
Research and Fast Prototyping. In 13th Conference on Innovative Data Sys-
tems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023.
www.cidrdb.org. https://www.cidrdb.org/cidr2023/papers/p41-haffner.pdf

[10] Immanuel Haffner, Marcel Maltry, Joris Nix, Jens Dittrich, and Luca Gretscher.
2023. mutable. https://mutable.uni-saarland.de

[11] Waqar Hasan. 1996. Optimization of SQL queries for parallel machines. Ph.D.
Dissertation. Stanford University, USA. https://searchworks.stanford.edu/view/
3131424

[12] Richard Hipp. 2024. SQLite: How It Works. Retrieved October 24, 2024 from
https://sqlite.org/talks/howitworks-20240624.pdf#page=100

[13] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for
Computing N-Relational Joins. ACM Trans. Database Syst. 9, 3 (1984), 482–502.
https://doi.org/10.1145/1270.1498

[14] Lukas Landgraf, Wolfgang Lehner, Florian Wolf, and Alexander Boehm. 2022.
Memory Efficient Scheduling of Query Pipeline Execution. In 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA, USA, January 9-12,
2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/papers/p82-landgraf.
pdf

[15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[16] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2020. Bao: Learning to Steer Query Optimizers. CoRR
abs/2004.03814 (2020). arXiv:2004.03814 https://arxiv.org/abs/2004.03814

[17] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718. https://doi.org/
10.14778/3342263.3342644

[18] Guido Moerkotte. 2023. Building Query Compilers. https://pi3.informatik.uni-
mannheim.de/~moer/querycompiler.pdf

[19] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One
NewDynamic Programming Algorithm for the Generation of Optimal Bushy Join
Trees without Cross Products. In Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal,
Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L.
Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, 930–941. http:
//dl.acm.org/citation.cfm?id=1164207

[20] Guido Moerkotte and Thomas Neumann. 2011. Accelerating queries with group-
by and join by groupjoin. Proc. VLDB Endow. 4, 11 (Aug. 2011), 843–851. https:
//doi.org/10.14778/3402707.3402723

[21] Parimarjan Negi. 2023. CEB GitHub. Retrieved January 9, 2025 from https:
//github.com/learnedsystems/CEB

[22] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardi-
nality Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032.
https://doi.org/10.14778/3476249.3476259

[23] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[24] Thomas Neumann and Guido Moerkotte. 2004. A combined framework for
grouping and order optimization. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30 (Toronto, Canada) (VLDB ’04).
VLDB Endowment, 960–971.

[25] Thomas Neumann and Guido Moerkotte. 2004. An Efficient Framework for
Order Optimization. In Proceedings of the 20th International Conference on Data
Engineering (ICDE ’04). IEEE Computer Society, USA, 461.

[26] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case
Optimal Join Algorithms. CoRR abs/1203.1952 (2012). arXiv:1203.1952 http:
//arxiv.org/abs/1203.1952

[27] Kiyoshi Ono and Guy M. Lohman. 1990. Measuring the Complexity of Join
Enumeration in Query Optimization. In 16th International Conference on Very
Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceed-
ings, Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek (Eds.). Morgan
Kaufmann, 314–325. http://www.vldb.org/conf/1990/P314.PDF

[28] Oracle. 2025. MySQL GitHub. Retrieved December 5, 2024 from
https://github.com/mysql/mysql-server/blob/trunk/sql/join_optimizer/
interesting_orders.h#L33

[29] Greg Rahn and Max Halford. 2025. JOB GitHub. Retrieved January 9, 2025 from
https://github.com/gregrahn/join-order-benchmark

[30] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1,
Philip A. Bernstein (Ed.). ACM, 23–34. https://doi.org/10.1145/582095.582099

[31] Amir Shaikhha, Mohammad Dashti, and Christoph Koch. 2016. Push vs.
Pull-Based Loop Fusion in Query Engines. CoRR abs/1610.09166 (2016).
arXiv:1610.09166 http://arxiv.org/abs/1610.09166

[32] David Simmen, Eugene Shekita, and Timothy Malkemus. 1996. Fundamental
techniques for order optimization. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (Montreal, Quebec, Canada)
(SIGMOD ’96). Association for Computing Machinery, New York, NY, USA, 57–67.
https://doi.org/10.1145/233269.233320

[33] Bennet Vance and David Maier. 1996. Rapid Bushy Join-order Optimization
with Cartesian Products. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996,
H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press, 35–46. https:
//doi.org/10.1145/233269.233317

[34] Xiaoyu Wang and Mitch Cherniack. 2003. Avoiding sorting and grouping in
processing queries. In Proceedings of the 29th International Conference on Very
Large Data Bases - Volume 29 (Berlin, Germany) (VLDB ’03). VLDB Endowment,
826–837.

3922

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1007/BFB0054528
https://ub-madoc.bib.uni-mannheim.de/36655
https://ub-madoc.bib.uni-mannheim.de/36655
https://doi.org/10.1109/ICDE.2011.5767901
https://github.com/duckdb/duckdb/blob/main/src/include/duckdb/execution/physical_plan_generator.hpp#L41
https://github.com/duckdb/duckdb/blob/main/src/include/duckdb/execution/physical_plan_generator.hpp#L41
https://github.com/postgres/postgres/blob/master/src/backend/optimizer/plan/planmain.c#L38
https://github.com/postgres/postgres/blob/master/src/backend/optimizer/plan/planmain.c#L38
https://doi.org/10.1145/3588927
https://doi.org/10.1145/3588927
https://www.cidrdb.org/cidr2023/papers/p41-haffner.pdf
https://mutable.uni-saarland.de
https://searchworks.stanford.edu/view/3131424
https://searchworks.stanford.edu/view/3131424
https://sqlite.org/talks/howitworks-20240624.pdf#page=100
https://doi.org/10.1145/1270.1498
https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf
https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf
https://doi.org/10.14778/2850583.2850594
https://arxiv.org/abs/2004.03814
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://dl.acm.org/citation.cfm?id=1164207
http://dl.acm.org/citation.cfm?id=1164207
https://doi.org/10.14778/3402707.3402723
https://doi.org/10.14778/3402707.3402723
https://github.com/learnedsystems/CEB
https://github.com/learnedsystems/CEB
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://arxiv.org/abs/1203.1952
http://arxiv.org/abs/1203.1952
http://www.vldb.org/conf/1990/P314.PDF
https://github.com/mysql/mysql-server/blob/trunk/sql/join_optimizer/interesting_orders.h#L33
https://github.com/mysql/mysql-server/blob/trunk/sql/join_optimizer/interesting_orders.h#L33
https://github.com/gregrahn/join-order-benchmark
https://doi.org/10.1145/582095.582099
http://arxiv.org/abs/1610.09166
https://doi.org/10.1145/233269.233320
https://doi.org/10.1145/233269.233317
https://doi.org/10.1145/233269.233317

	Abstract
	1 Introduction
	1.1 Running Example
	1.2 Contributions

	2 Algorithms
	2.1 split
	2.2 holistic
	2.3 Pruning Variant: holisticopt
	2.4 Hybrid Approach: top-k
	2.5 Extension to Fused Physical Operators

	3 Time Complexity
	4 Optimality
	5 Evaluation
	5.1 Experimental Setup
	5.2 Optimization Time
	5.3 End-To-End Microbenchmarks
	5.4 TPC-H, JOB, and CEB Benchmarks
	5.5 Optimization Guideline

	6 Related Work
	7 Conclusion
	References

