Accelerating Subgraph Matching through Fine-grained and
Powerful Equivalences

Yujie Lu
School of Data Science
Fudan University
yjlu2z3@m.fudan.edu.cn

Weiguo Zheng®
School of Data Science
Fudan University
zhengweiguo@fudan.edu.cn

ABSTRACT

Subgraph matching, a cornerstone of graph analytics, critically
suffers from redundant computations during the search process. Ex-
isting methods primarily target identical computations redundant
operations that are localized to individual query vertices but fail to
address similar redundancies that recur across multiple query ver-
tices. In this paper, we present a novel algorithm, called FiPE, that
accelerates subgraph matching through Fine-grained and Powerful
Equivalences. FiPE redefines redundancy elimination by shifting
the optimization granularity from isolated vertices to vertex pairs
and multiple vertex patterns. It introduces vertex-pair equivalence to
cluster candidate pairs with isomorphic neighbor structures, even if
their individual vertices differ, enabling pruning of similar computa-
tions between these vertex pairs. FiPE proposes group equivalence to
defer equivalence checks to later search depths, capturing potential
redundancies incrementally. To fully exploit the advantages of the
equivalence, we introduce two optimization techniques: a matching
order generation method to reduce the overall search space and an
efficient conflict resolution mechanism to avoid two query vertices
being mapped to the same data vertex. Experiments on real-world
graphs highlight the superiority of FiPE. FiPE achieves a speedup
of 2 to 3 orders of magnitude on various graphs under the EPS
(embeddings per second) metric.

PVLDB Reference Format:

Yujie Lu, Zhijie Zhang, Weiguo Zheng, and Lei Zou. Accelerating Subgraph
Matching through Fine-grained and Powerful Equivalences. PVLDB, 18(11):
3896 - 3909, 2025.

doi:10.14778/3749646.3749662

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Lu-Yujie/FiPE.

*Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
do0i:10.14778/3749646.3749662

3896

Zhijie Zhang
School of Data Science
Fudan University
zhangzj22@m.fudan.edu.cn

Lei Zou
Wangxuan Institute of Computer Technology
Peking University
zoulei@pku.edu.cn

Us Uy
G

(a) Query graph Q

(b) Data graph G

Figure 1: A running example of subgraph matching.

1 INTRODUCTION

Subgraph matching has broad applications across domains such as
social network analysis [9, 26, 27, 47], biological data mining [8, 36],
and fraud detection [10, 33]. It enables the discovery of complex
patterns within large-scale graph data by identifying isomorphic
mappings subgraphs to a specified query graph Q. Let us consider
the query graph Q and the data graph G in Figure 1. The subgraph
induced by the blue vertices in G is isomorphic to Q.

1.1 Redundant Computation in the Search Tree

Due to its NP-hard nature [14], subgraph matching poses signifi-
cant computational challenges, especially when the query graph
Q and data graph G are large. Therefore, numerous algorithms [2-
6, 11, 14, 16, 18, 19, 21, 30, 31, 35, 37, 40] have been proposed for
subgraph matching. These algorithms typically follow a filtering-
ordering-enumerating paradigm: (1) The filtering step identifies
initial candidate vertices in the data graph for each query vertex; (2)
The matching order, which specifies the sequence in which query
vertices or edges are compared to the data graph, is established; (3)
The embeddings of the query graph are enumerated by exploring
all possible vertex assignments in a depth-first manner.

The enumeration phase can be represented as a depth-first search
(DFS) tree. Figure 2 illustrates the DFS tree corresponding to the
query graph Q and data graph G depicted in Figure 1, using the
matching order up < uy3 < uz < u3 < uy. A path from root to leaf in
the DFS tree materializes the vertex pairs {ug, v}, {u1,v4}, {ug,01},
{us,v2}, and {ug4, v3}, representing an isomorphic embedding of
Q in G. After finding this embedding, the algorithm backtracks

https://doi.org/10.14778/3749646.3749662
https://github.com/Lu-Yujie/FiPE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749662
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(ul, U4) (ulﬁ U7)

(uz,v1) (uz, vg) (uz,v1) (uz, v11)

/N /AN

(u3, v2)(us, va) (w3, v2)(uz,va) (U3, v2)(uz,v3) (U3, v2)(uz, v3)

(g, v3)(Uas V2) (g, V3)(Uas V2) (UayV3)(Ua,V2) (U, V3)(Us, V2)

Figure 2: DFS backtracking tree.

to vertex up and then attempts to match us with v3. This process
continues recursively until the entire search tree is traversed.
Identical Computation between Subtrees. Identical computa-
tions may occur frequently during the matching process. This hap-
pens when a query vertex u matches different data vertices, but
the candidates for u’s neighboring vertices remain unchanged. This
may arise due to the absence of edge connections or because the
candidates share the same connections to the data vertices. As a
result, the subsequent search process becomes identical, leading
to redundant computations. Given two subtrees whose roots are
siblings in the DFS tree, we say these two subtrees are “identical
subtrees” if they share the same structure except the roots.

Example 1.1. The search tree depicted in Figure 2 illustrates an
example in which duplicate computations occur for the query ver-
tices uz and u4. As shown by the dark shaded areas in Figure 2, the
subtrees rooted at (u2,v1) and (ug, vg) within the subtree rooted at
(u1, v4) exhibit identical search structures. Similarly, the subtrees
rooted at (ug,v1) and (u2, v11) within the subtree rooted at (u1,v7)
also have identical structures. Such identical computations are con-
sidered common in the backtracking process. In particular, the edge
(v2,v3) is repeatedly visited unnecessarily. [

We quantify redundant computations during the search tree
using the concept of the identical ratio at depth k. The identical
ratio, shorted by IR, is defined as:

#different subtrees@k

IR@k=1- ,
@ #subtrees@k

1

where “#different subtrees@k” and “#subtrees@k” represent the
number of different subtrees and the number of total subtrees at
depth k, respectively. For example, in Figure 2 there are 16 subtrees
at depth 4, of which only two are distinctrooted at (u4,v3) and
(u4,02). Therefore, IR@4 =1 — % = 87.5%, indicating a high level
of identical computation at this level of the search.

Table 1 (first row) presents the average identical ratios for 100
query graphs, each with of 8 vertices, on the YeastS graph [12].
The results reveal that identical search subtrees constitute a sig-
nificant portion of the search space. Thus, minimizing redundant
computations can lead to substantial query speedups [44].
Similar Computation in the Search Tree. Beyond identical com-
putations within subtrees, the subgraph matching process also

3897

Table 1: The average overlap ratios on Yeast at different
depths in the backtracking process (%).

depth(k) 1 2 3 4 5 6 7
IR@k 9847 31.92 3453 3879 31.66 3452 41.17
SR@k 9847 97.63 9419 90.18 8235 8336 8476

involves numerous similar computations that exhibit substantial
overlap in their corresponding search subtrees.

Example 1.2. As shown by the shaded gray areas in Figure 2,
the subtrees rooted at (u1,v4) and (ug,v7) are not identical due to
differing internal vertices (uz, vg) and (u2, v11). However, they share
a significant portion of their structure, resulting in backtracking
processes that are highly similar. Identifying and leveraging the
redundant computations within these similar subtrees could greatly
improve the efficiency of subgraph matching. []

To measure the similarity between subtrees, we use the Jaccard
similarity of their search spaces. Subtrees with a similarity score
exceeding 0.9 are grouped into the same bucket. For the depth k of
the search tree, we count the number of buckets and compute the
similarity ratio (shorted by SR) as:

#buckets@k @
#subtrees@k’

where “#buckets@k” and “#subtrees@k” represent the number of
buckets and the number of subtrees at depth k, respectively.

The second row of Table 1 reports the average similarity ratio
for the same set of query graphs on the YeastS graph. The overlap
ratios consistently exceed 80%, compared to the 30-40% observed
for identical ratios. These findings reveal substantial redundancy
within the search space, highlighting significant opportunities for
optimization through the reduction of duplicate computations.
Limitations of Existing Methods. Most existing subgraph match-
ing algorithms primarily focus on addressing redundant computa-
tions of identical search subtrees. These methods can be broadly
categorized into three approaches: (1) Pruning based on repeated
failures [2, 6, 13, 21]: This approach identifies and records the query
vertices that cause failures and skips those that are not responsible
for failures. (2) Pruning based on repeated successes [21]: This method
detects equivalent candidates for each query vertex. Once one can-
didate is matched, the results for other equivalent candidates can be
inferred directly. (3) Pruning based on postponed extension [4, 18, 40]:
This technique analyzes the query graph to identify vertices lead-
ing to identical subtrees and moves these vertices to the end of the
matching order.

While these approaches can reduce some redundant computa-
tions, they are limited to pruning identical computations for individ-
ual query vertices or their candidates. As shown in Figure 2, beyond
identical subtrees, we observe that the subtrees rooted at (u1,v4),
..., (u1,v7) share substantial similarity as they have identical partial
structures. However, existing methods are not able to capture such
redundant computations between these similar subtrees. To over-
come this limitation and further reduce computational overhead,
it is crucial to identify and leverage redundancies among similar
subtrees throughout the search tree.

SR@k =1-—

1.2 Our Approach and Contributions

As mentioned earlier, overlaps between subtrees frequently occur
during the backtracking process. Effectively detecting and reducing
this redundancy can greatly enhance the performance of subgraph
matching. However, identifying these overlaps is highly challenging,
as the structure of the DFS search tree is not known in advance,
and overlaps may arise at any depth within the tree.

In this paper, we propose a novel backtracking search method
FiPE, which leverages Fine-grained and Powerful Equivalences.
FiPE could address the challenge of efficiently handling the numer-
ous similar regions of the search space, rather than focusing solely
on the relatively infrequent identical parts. FiPE utilizes vertex-pair
equivalence and group equivalence to effectively capture overlaps
between similar subtrees, enabling a finer-grained detection of re-
dundancies. Compared with existing methods, FiPE can identify and
exploit not only identical computations but also structural similari-
ties across subtrees, significantly reducing redundant computations
and improving the overall efficiency. Furthermore, we introduce an
optimized ordering and conflict resolution mechanism to enhance
the efficiency and scalability of the FiPE search process.

To reduce the duplicate computations in both identical and sim-
ilar subtrees, we adopt a finer-grained equivalence, vertex-pair
equivalence, by using a pair of vertices as the basic unit to iden-
tify overlaps. Unlike vertex-based equivalence, vertex-pair equiva-
lence extends the equivalence scope to pairs of vertices. Vertex-pair
equivalence focuses on the relationships between vertices and their
neighbors, allowing it to capture redundancies caused by overlap-
ping neighbor sets that vertex-based equivalence would miss. Thus,
the vertex-pair equivalence is theoretically proved to dominate the
existing vertex-based equivalence (Theorem 4.1).

Vertex equivalence focuses only on the currently matched ver-
tex, limiting its ability to detect redundancies to sibling vertices.
To address this limitation, we propose group equivalence, which
considers all previously matched query vertices as a whole. This
broader perspective allows for the detection of overlaps between
more distant parts of the search tree. With group equivalence, we
can identify overlaps between different paths in the DFS search tree.
As long as these distinct paths result in similar search subtrees, we
can further explore shared portions of the search subtrees and elim-
inate redundant computations. By capturing these overlaps, group
equivalence addresses redundancies that vertex-based equivalence
fails to detect, significantly enhancing the efficiency.

To fully exploit the advantages of the methods proposed above,
we introduce two optimization techniques. The first is a matching
order generation method designed to minimize the number of can-
didates and effectively reduce the overall search space. The second
is an efficient conflict resolution mechanism, which addresses a
critical challenge in subgraph isomorphism matching by ensuring
that no two query vertices are mapped to the same data vertex.

In summary, we make the following contributions:

(1) We propose a finer-grained vertex-pair equivalence by using a
pair of vertices as the basic unit, effectively reducing overlaps
caused by repeated traversals in DFS search trees.

(2) We introduce the concept of group equivalence, which gener-
alizes vertex equivalence to a set of vertices, facilitating the

3898

identification of overlaps between matching paths. Group equiv-
alence enhances the ability to detect overlapping subtrees and
reduces redundant computations more effectively.

(3) We develop a matching order generation method to reduce the
search space and an efficient conflict resolution mechanism to
ensure valid vertex mappings, enhancing the overall efficiency
and robustness of the approach.

(4) We conduct extensive experiments to demonstrate the effective-
ness and efficiency of the proposed methods.

2 PRELIMINARY
2.1 Problem Definition

In this paper, we focus on undirected and vertex-labeled graphs.
For ease of representation, let G = (Vg, Eg, %, L) represent the
data graph, where Vg is a set of vertices and Eg is a set of edges.
The set X represents all possible vertex labels, with label mappings
defined by Lg : Vg — X. Similarly, a query graph is denoted as
Q = (Vp,EQ,%,Lg). We denote a vertex in the query graph Q
as u and a vertex in the data graph G as v. An edge in the query
graph is represented as e(ug,uz) € Eg, and an edge in the data
graph is denoted as e(v1,v2) € Eg. Given u € Vg, N(u) denotes
the neighbors of u, i.e., N(u) = {v|e(u,u") € Eg}.

Definition 2.1 (Subgraph Isomorphism). Given a query graph Q =
(Vo,EQ, %, Lg) and a data graph G = (Vg, Eg, %, Lg), Q is subgraph
isomorphic to G if there exists an injective function f: Vg — Vg
that satisfies the following two conditions:

(1) Yu e Vg, wehave Lg(u) = Lg(f (u)) where f(u) € Vg;
(2) Y e(u1,u2) € Eg, we have e(f(u1), f(u2)) € Eg.

The injective function means that the vertices in Vo must match
different vertices in Vi, and f is also called an isomorphic embedding
of Qin G. Each embedding can be represented by a set of vertex pairs
{(w, f(w)|u € Vo, f(u) € Vg}. A partial embedding M : I — V5
is an embedding of a subgraph of Q that is induced by I, where I
is a subset of V. An extension of partial embedding M is to add a
vertex pair (u,v) into M, denoted by M U (u, v).

Definition 2.2 (Subgraph Matching). Given a query graph Q and
a data graph G, subgraph matching finds all embeddings of Q in G.

The filtering-ordering-enumerating framework outlined in Al-
gorithm 1 is widely adopted in existing subgraph matching algo-
rithms [34, 44]. First, a filtering process is conducted to identify
and retain the initial candidate set C(u) for each query vertex u
(line 1). Subsequently, a matching order ¢ is determined to guide
the enumeration process (line 2). Given the candidate set C and
the matching order ¢, the embeddings of the query graph are then
enumerated through a general backtracking process (lines 4-14).
At each backtracking step, the algorithm selects the next query
vertex u to be mapped (line 7). The valid candidates for u are then
computed based on the previously mapped vertices (line 8). For
each data vertex v in the valid candidate set Cpq(u) and not used
in M (lines 10-11), the algorithm extends the partial mapping and
recursively invokes the next step (lines 12-14).

2.2 Related Work

Subgraph matching encompasses a wide range of problem settings
and algorithms. Regarding label configurations, some approaches

Algorithm 1: General Backtracking Method
Input: query graph Q, data graph G
Output: all the embeddings of Q in G

1 C « build candidate sets;

2 ¢ < generate a matching order;

3 Enumerate(C, ¢, 0, 0);

4 Procedure Enumerate(C, ¢, M, i)

5 if i = |¢| then

6 L output M, return;

7 u « Select-Next-Vertex(C, ¢, M);

8 Cp(u) < Compute-Candidate-Set(C, M, u);
9 foreach v € Cp;(u) do

10 if v is used in M then

11 L continue;

12 M — MU (u,0);

13 Enumerate(C, ¢, M, i+ 1);
14 Remove (u,v) from M;

focus on edge-labeled graphs [17, 23, 42], while others target un-
labeled graphs [22, 24, 25]. The majority, however, are designed
for vertex-labeled graphs [2-5, 13, 16, 19, 21], with some methods
claiming to support various label configurations. Several subgraph
enumeration techniques are tailored for multicore architectures
or distributed systems [1, 7, 20, 22, 24, 25, 29, 32, 38, 39, 41, 43].
In contrast, optimization techniques for single-threaded subgraph
matching algorithms [2-5, 13, 16, 19, 21] often rely on processes.

To reduce the search space, various techniques leverage local
features to generate initial candidate sets for each query vertex u [21,
35, 37, 40]. NLF [46] refines the candidate selection by choosing
data vertices whose neighbor label frequency is no less than that
of u. CFL [4] constructs a Breadth-First Search (BFS) tree for the
query graph and filters candidates by examining edges in the tree.
DPiso [13] uses a similar propagation technique by constructing a
Directed Acyclic Graph (DAG) for the query graph.

Most exploration-based subgraph matching algorithms can be
broadly categorized into three approaches: (1) Pruning based on
repeated failures [2, 6, 13, 21], (2) Pruning based on repeated suc-
cesses [21], (3) Pruning based on postponed extension [4, 18, 40]:
Repeated failures. This approach identifies data vertices respon-
sible for query failures, bypassing vertices that cause these failures.
DPiso [13] introduces a pruning method based on failing set tech-
nique which records the failure reasons along the matching process.
BICE [6] integrates failing sets and introduces bipartite matching
to further prune unnecessary backtracking steps. GuP [2] proposes
guard-based pruning, which records failures encountered during
the backtracking process as “guards”. It prunes redundant back-
tracking efforts when the same failures are encountered again.
Repeated successes. The method identifies equivalent candidates
for each query vertex. Once a candidate is matched, the results
of other equivalent candidates can be directly inferred. VEQ [21]
introduces equivalence sets, capturing both success and failure
cases, where matching one vertex in a set enables direct inference
for the remaining vertices in the set.

Postponed extension. This technique examines the query graph
to locate vertices that lead to identical subtrees, postponing these
vertices to the end of the matching order for optimization. First,
vertices with degree 1 can be placed at the end for matching [4, 13,
21]. Second, when all neighbors of a query vertex have been added
to the partial matching, it can be placed at the end [18, 40].

Although these approaches effectively reduce redundant compu-
tations, their optimization is limited to eliminating redundancies
that are strictly identical. Repeated failures occur when subtrees
consistently return empty result sets, while repeated successes de-
pend on isomorphic subtrees to infer the same successful results.
Postponed extension addresses redundancies that naturally arise
from identical subtree structures. However, these methods fail to
address redundancies among similar but non-identical search sub-
trees, presenting opportunities for further optimization.

3 OVERVIEW OF OUR APPROACH

Different from the existing algorithms that treat individual vertices
as the unit of matching, we propose a more flexible and powerful
subgraph matching approach, called FiPE. FiPE can aggregate sim-
ilar matching subtrees and leverage their overlapping regions to
minimize redundant computations. To achieve this, we first estab-
lish vertex-pair equivalence between consecutive vertex pairs in
the matching order, enabling the detection of redundant computa-
tions across adjacent layers. Building on vertex-pair equivalence,
we construct group equivalence to identify redundant computa-
tions throughout the entire matching path. Finally, we design a
matching order generator and an efficient enumeration technique
to seamlessly integrate with the equivalence computation process.

Algorithm 2 outlines the processing flow of FiPE. In a backtrack-
ing step, we first get the current vertex pair p to be matched (line 3).
Then we compute the sub-trees for current p based on the candi-
date sets of the vertex pair (line 4). If none valid search tree can be
built, just return empty results (lines 5-6). We recognize the over-
lapped search space and put them into different equivalent groups
(line 7). For each group, we add it to partial matching M and then

Algorithm 2: FiPE-Backtrack(Q, G, CS, O, M)
Input: query graph Q, data graph G, candidate sets CS,
matching order O, and partial matching M
Output: the embeddings of Q in G
1 if [M] = (|O| — 1) then
2 L Enumerate all embeddings;

3 p =« next pair from O;

4 T(p) « Compute-Subtrees(CS, u);

5 if T(p) = 0 then

6 L return 0;

7 E(p) « Compute-Equivalence(p, T(p));
8 foreach e in E(p) do

9 M — MU {e};

10 Set-Space(M’);

1 FiPE-Backtrack(Q, G, CS, 0, M’);

12 Clear-Space(M);

uy(a)

u @V

(a) Query graph Q,

(b) Data graph G,

Figure 3: An example for FiPE illustration.

the next backtracking step is evoked after updating the candidates
of unmatched query pairs (lines 9-11). From line 8 of Algorithm 2,
we observe that the primary distinction between FiPE and other
subgraph matching algorithms lies in its basic matching unit.
Vertex-pair Equivalence. We propose a vertex-pair equivalence
technique to address redundant computations between adjacent
layers of the search tree. This method captures equivalence by
focusing on vertex pairs along the matching order rather than
individual vertices. Specifically, we define the neighbors of a query
vertex pair as the union of the neighbors of both vertices within the
pair. The candidate pairs with the same neighbors are then grouped
into vertex-pair equivalence sets. By leveraging these equivalence
sets, we can eliminate redundant computations within each set.
Vertex-pair equivalence relaxes the constraint of vertex equivalence
and identifies similar computations within the search tree.

Group Equivalence. Vertex-pair equivalence identifies and elim-
inates redundant computations in local search spaces formed be-
tween consecutive vertices in the matching order. To extend this
ability to the entire search space, we propose the group equiva-
lence technique, which considers all vertices in the matching path.
We gradually build group equivalence by relaxing the conditions
for constructing vertex-pair equivalence. We allow candidate ver-
tex pairs to be grouped into the same equivalent set even if their
neighbors are not the same.

Optimizations. We propose an ordering technique to optimize
the search tree by reducing both its width and height. To mini-
mize width, vertices with the smallest candidate sets are prioritized,
reducing the overall branching factor. To minimize height, inde-
pendent verticeswhose neighbors are already matchedbypass edge
constraint verification and are embedded separately, eliminating the
need for backtracking. We introduce an efficient enumeration tech-
nique to list embeddings while avoiding vertex reuse. Our approach
postpones the vertex reuse check until the enumeration process
for independent vertices. Since this process eliminates the need
for edge constraint validations and candidate set updates for any
vertex, our enumeration technique achieves remarkable efficiency.

4 VERTEX-PAIR EQUIVALENCE

The existing vertex equivalence requires all neighbors of two ver-
tices to be identical, which is often too restrictive. To effectively
identify and exploit overlaps in the search subtrees during the
backtracking process, we adopt a pair of vertices (instead of one
vertex) as the basic unit for constructing equivalence, referred to as

3900

vertex-pair equivalence. This finer granularity enables a more pre-
cise characterization of overlaps, reducing redundant computations
caused by repeated visits of vertex pairs.

Definition 4.1 (Vertex-pair Equivalence). Let {uy, u;} be a pair
of query vertices in Q following the matching order ¢, and let M
denote the current partial matching that includes all vertices pre-
ceding uy, in ¢. Let 02, v}ll € Vi be candidate vertices for uy, and
v?,vtl € Vi be candidate vertices for u;. We say that the candi-
date combinations (vg, v?) and (v}ll,u}) are vertex-pair equivalent
under M if extending M with either mapping {(up, 02), (ut, v?)} or
{(up, U}ll), (ut, U})} results in the same candidate sets for all remain-
ing unmatched query vertices.

Vertex-pair equivalence implies that the two candidate combina-
tions yield identical search subtrees in the remaining search space.
It allows us to extract overlaps between neighbors of different ver-
tices, avoiding redundant computations caused by these overlaps.

LEMMA 4.2. If(Ug, v(t)) and (Ullz’ U;) are vertex-pair equivalent, then
the subtrees in the DFS search tree rooted at these combinations are
isomorphic. Consequently, any subtree rooted at (v}ll, 0}) is redundant
and can be safely pruned without affecting the correctness of the
search process.

Proor. By Definition 4.1, (02, u?) and (0}11,0}) are vertex-pair
equivalent if, after adding {(up, v(;l), (us, U?)} or {(up, U}ll), (ug, v})}
to the partial matching M, the candidate sets for all unmatched
vertices remain identical. Since the candidate sets determine the
remaining search space, the subtrees rooted at these two vertex
pairs in the DFS search tree are isomorphic. Thus, exploring the
subtree rooted at (v}ll, 0}) is redundant and can be safely pruned
without affecting the correctness of the search process. O

To determine vertex-pair equivalence, we analyze how adding a
candidate pair (up, vp), (us, vr) to the current partial matching M
affects the candidate sets of other unmatched vertices. This process
applies to both edge-constrained vertex pairs (where e(up, u;) €
Eg) and unconstrained (e(up, uy) ¢ EQ) vertex pairs.

We restrict the update to the candidate sets of the neighbors of
up, uz. This localized update is sufficient because if the candidate
sets of all neighboring vertices remain unchanged, the candidate
sets of all other unmatched vertices will remain unchanged as well.
Neighbor Classification. We classify the neighbors of the ver-
tex pair {up,u;} into three categories based on their connection
patterns in the query graph Q:

o h,pr: Neighbors connected only to the head vertex uy,. For edge-
constrained pairs (e(up, us) € EQ), hyp, omits u;; otherwise, it
includes all of uys neighbors.

tapr: Neighbors connected only to the tail vertex u;. For edge-
constrained pairs, t,;, excludes uy; otherwise, t,,;, includes all
neighbors of u;.

Spbr: Shared neighbors connected to both uy, and u;.
Candidate Set Updates. To update the candidate sets of these
neighbors after adding the candidate pair {(up, vp), (us, v¢)} to the
partial matching, we first define the function Nys(v,u’), which
computes the valid neighbors of a candidate vertex v for a query

Uy Vo | Vg| Vo

U (v, | v,
Us| Vs Vg| Vg
Uz Uy
V3| Uy
u
Uug |v 3 Vs V7 |ug

Figure 4: Initial candidate set structure A.

(a) Edge-constrained A,

(b) Non-edge-constrained A,,

Figure 5: Vertex-pair equivalence.

vertex u’ under the current partial matching M, as follows:
Num(v,u") = Cu(u') N NG (v),

where Cyr(u”) denotes the candidate set of v’ under M, and Ng (v)
represents the neighbors of v in the data graph G.

Based on this definition, the candidate sets for the three cate-
gories of neighbors are updated as follows:

Cw (hppr) = N (f (up), Bpr) 0 Cpp(Bpr),
Cwmr (tnor) = Nm(f (ue), tnpr) 0 Cpr (tnpr),

Cwm (Subr) = Ny (f (up), sppr) O Ny (f (@), Spr)s

where M’ denotes the updated partial matching after adding the
candidate pair, and f(u) represents the mapping of a query vertex
u to a data vertex in M. For pairs without edge connection, the
updates to h,p, and t,;, do not exclude u; and uy, respectively, as
there is no edge constraint between uy, and u;.

Example 4.3. We construct the auxiliary data structure A based
on the initial candidate sets. In Figure 4, we list the candidates of
each query vertex and extract edges from the data graph G; in
Figure 3(b). Let us illustrate vertexpair equivalence for the query
vertices (u1,u3) in both the edgeconstrained and unconstrained
cases, using the auxiliary structures from Figure 5.

Edgeconstrained. As shown in Figure 5(a), since e(u1, u3) € Eg,
we consider the candidate edges {e(v1,v4), e(v2,v3), e(vz,04)}. The
neighbors are classified into hyp, = {uo}, typr = {us, ug}. Select-
ing either e(v2,v3) or e(v2,v4) yields identical candidate sets for
u, Us, Ug, so these two edges are vertexpair equivalent. By contrast,
e(v1,v4) leads to a different neighbor candidate profile.

Unconstrained. As shown in Figure 5(b), when e(u1, u3) € Eg,
we form the Cartesian product {v1,v2} X {v3,v4}. All combinations
share the same candidates for uy and us, and in addition (v1,v3) and

3901

(a) Vertex equivalence A,

(b) Group equivalence

Figure 6: Vertex equivalence and group equivalence.

(v2,v3) produce identical sets for us. Thus these two pairs are equiv-
alent and only one is explored, whereas (v1,v4) and (v2,v4) yield
different neighbor candidates and must be examined separately. m

Using vertex-pair equivalence, we group duplicate search spaces
of vertex pairs into distinct equivalence sets. For the vertex pairs
within each set, we perform the backtracking step only once.
Complexity Analysis. To separate the candidate combinations of
a vertex pair (uy, u;) into different vertex-pair equivalent sets, we
can optimize the process by first separately traversing the candidate
sets of uy, (the head vertices) and u; (the tail vertices) instead of
evaluating every combination directly. This approach reduces the
computational overhead by avoiding a full pairwise traversal of
candidate combinations.

For a given vertex pair (up, u;), let C(uy,) and C(u;) represent
the candidate sets of u, and u;, respectively. The process involves
the following three steps:

(1) Head Traversal: Traverse the candidate set Cas(uy,) of uy, to

partition it based on equivalence. For each candidate vertex
vy, € Car(up), we check the neighbors on h,,;,.. This step has a
time complexity of O(|Cas(up)|-60), where &g is the maximum
degree of any query vertex in the query graph Vp.

(2) Tail Traversal: Traverse the candidate set Cps(u;) of us to

partition it based on equivalence. For each candidate vertex
vy € Cpr(uy), we check the neighbors on t,,.. This step has a
time complexity of O(|Car(us)] - 80).
Combining Head and Tail: After partitioning Cas(uy,) and
Cp(ut), we combine the partitions and then compare the neigh-
bors on s, to form vertex-pair equivalent sets. The time com-
plexity of this step is O(|Cp(up)| - [Cpr(ur)| - d0).

The time complexity of handling a single vertex pair (up, u;) is:

O (ICm(up)| - 8¢ + |Cpm(ur)| - 8o + ICr(up)| - ICM(ur)| - 0)

where |Cps(up)| and |Cas(u;)| represent the sizes of the valid candi-
date sets for uy, and u;, respectively. Since |Car(up)| and |Cag(ur)|
are bounded by maxy,;ev,, |C(u;)], this simplifies to:

®)

o

C(u)|*- o).
urlga‘;(gl (ui)| Q)

In practice, the sizes of the valid candidate sets |Cas(uy,)| and
|Cp(uy)| are usually small, making the overhead of computing
vertex pairs negligible.

Compare with Vertex Equivalence. The vertex equivalence tech-
nique proposed in VEQ [21] groups the candidates of each vertex
that share the same neighbors in A into an equivalence set. By
reusing the search results within the set, it avoids redundant com-
putations at each depth of the search tree. Because vertex-pair
equivalence provides a finer-grained equivalence, vertex equiv-
alence is a special instance of vertex-pair equivalence. In other
words, any redundancy pruned by vertex equivalence would also
be pruned by vertex-pair equivalence.

THEOREM 4.1. For an adjacent vertex pair (up, uz), if up, belongs
to a vertex equivalence set, then there always exists a corresponding
vertex-pair equivalence set for (up, u;). In this vertex-pair equivalence
set, the head vertices of the pairs share identical neighbors in the search
space, and the tail vertices map to the same vertex.

Proor. Consider an adjacent vertex pair (up, u;), and assume
that uy, belongs to a vertex equivalence set. Let the vertex equiva-
lence set of uy, be denoted as {02, zz}ll, . vz}, where k is the number
of candidates in the set. By the definition of vertex equivalence, all
candidates in this set share the same neighbors in the search space.
Now, consider u;, the vertex adjacent to uy, and let {u?, v}, el u;"}
denote the candidates for u;. We now construct vertex-pair equiva-

lence sets for (up, u;) by defining, for each vertex v; in U?, v}, e U;",
a vertex-pair equivalence set as {(02, v;), (0}1, IR (UZ, vp)}. In
this construction, the head vertices Ufl (j € {0,1,...,n}) in each

pair share identical neighbors in the search space, as guaranteed
by the vertex equivalence of uy, while the tail vertices are fixed to
the same vertex v!.

Thus, vertex equivalence is inherently subsumed by vertex-pair
equivalence, as the latter captures all redundancies identified by the
former while providing a finer-grained equivalence structure. O

This indicates that we can always construct structurally equiva-
lent sets from the vertex equivalence sets for the vertex pair without
edge constraints, thereby pruning at least as many redundant com-
putations in the search space as vertex equivalence.

Example 4.4. Considering the auxiliary data structure A, shown
in Figure 6(a). the candidates v1, vy of u; are vertex equivalent be-
cause they have the same neighbors on ug, u3. The candidate vertex
pairs {(v1,v3), (v2,03)} and {(v1,v4), (v2,04)} are edge equivalent
sets. For the auxiliary structure A, in Figure 5(a), none vertex
equivalent set can be constructed on neither u; nor us. But we can
recognize the vertex-pair equivalent set {(v1,v4), (v2,04)} as we
depicted in Example 4.3. []

5 GROUP EQUIVALENCE

While vertex-pair equivalence improves the detection of overlap in
the search space, it remains limited to vertex pairs. To enable finer-
grained and more comprehensive overlap detection, we propose
group equivalence, which generalizes equivalence to a set of vertices.

Definition 5.1 (Group equivalence). Given two partial matchings
M and M, with all the matched vertices following the matching or-
der ¢ of a query graph Q, the partial matchings M; and M are group
equivalent if the valid candidate sets for all unmatched vertices (i.e.,
independent vertices) are identical.

3902

LEmMMA 5.2. If two partial matchings My and My are group equiv-
alent, then the subtrees in the DFS search tree rooted at these partial
matchings are isomorphic. Consequently, any subtree rooted at My is
redundant and can be safely pruned without affecting the correctness
of the search process.

ProoF. By the definition of group equivalence, M; and M, have
identical valid candidate sets for all unmatched vertices. Since the
candidate sets determine the remaining search space, the subtrees
rooted at M; and M in the DFS tree are isomorphic. Thus, pruning
the subtree rooted at My eliminates redundancy without affecting
the correctness of the search process. O

Group equivalence treats all matched query vertices as a single
group, enabling the detection of duplicate computations across the
entire partial matching process progressively during backtracking.
However, directly computing group equivalence is computationally
expensive, as the number of partial matchings for a query graph
Q grows exponentially with the depth of the matching process. To
overcome this challenge, we propose constructing group equiva-
lence incrementally based on vertex-pair equivalence computations.
Delayed Neighbors. During vertexpair equivalence computation,
there may be cases where the candidate sets of a vertex pair are
not equivalent at the current depth. However, as additional vertices
are matched, the introduction of new constraints on the candidate
sets may cause the group (i.e., a set of vertex pairs combined with
the newly added vertex) to evolve into equivalence. This process
of equivalence evolution may continue iteratively. To detect group
equivalence in a timely manner, we propose delayed neighbors,
denoted as d,;p,,.

Delayed neighbors defer part of the equivalence computation to
deeper levels of the search tree, allowing us to identify redundant
computations that emerge as the search progresses. We denote uy;
as the next vertex after u; in the matching order ¢ and u” as the
set of vertices matched after u; along ¢. The computation of d,,;,,
is: if the vertex pair has an edge constraint, d,p, is assigned as upx;.
Otherwise, d,p,, is computed as N(npp,) N N(us) Nu) .

Example 5.3. Considering the example in Figure 6(b). The match-
ing order is u3 < u3 < ug < up < uy < us < ug. (ug,u3) is
the first vertex pair to be matched. There are four valid combi-
nations (v1,v3), (vg,v3), (v1,04), (v2,04) and the next vertex in ¢
is ug. The four categories of neighbors are h,p, = {uo}, thp, =
{ue}, sppr = {u2} and d,p, = {us}. The combinations (v1,v3) and
(v2,v3) have the same neighbors on ug, uz, and ug, but different
neighbors on us. Therefore, they are not vertex-pair equivalent.
However, since the difference is on a delayed neighbor, we consider
them as potentially group equivalent and add this equivalent set to
the partial matching M, updating the candidates of the neighbors
ug, ug, us, and ug. Then we continue to compute the vertex-pair
equivalence for the next vertex pair (us3,us). The combinations
are (v3,v3) and (v4,v3) and they have the same neighbors on us.
And then the partial matching My = {(u1, v1), (u3,v3), (ug,vs) } and
M = {(u1,v1), (u3,v4), (ug, vg) } highlighted in red forms a group
equivalent set because the same neighbors on the unmatched ver-
tices. The partial matching {(u1,v2), (u3,v3), (us, v3)} highlighted
in yellow shadow and {(u1,v1), (u3,03), (us, vg)} highlighted in
blue thick border will be explored separately. []

Query Vertex Candidates
Ug {vo, vg, vo}
Uy {v1, 12} uO
Uz {vs, v} Uy
uz {vs, 14}
u, (Q—B)—Bus
Uy {vs, vo} 1 \v
Us {ve, v7}
Ug {v10} uz u3 u6

(a) Candidate sets (b) Matching order

Figure 7: Matching order and candidate sets of query graph
Q2 in Figure 3(a).

Complexity Analysis. We compute the group equivalent sets
through a progressive process. At each step, the complexity is
equivalent to that of computing vertex-pair equivalence. We denote
the time complexity of vertex-pair equivalence as 7yp. Thus, the
overall time complexity of complete equivalence is: O (|¢| - Top) -

6 OPTIMIZATIONS
6.1 Matching Order

In this section, we propose an improved matching order for query
vertices to minimize the number of subtrees built during the back-
tracking process. We prioritize selecting vertices with the fewest
candidates. In case of ties, we choose the vertex with the highest
degree to other unmatched vertices.

It is important to note that once all neighbors of a vertex u have
been added to the partial matching, the selection of candidates for u
no longer affects the valid candidates of other unmatched vertices,
as there are no edge constraints between them. Additionally, the
valid candidates for u are equivalent, as they all share the same
neighbors. We refer to such vertices as independent vertices and
place these vertices at the end of the matching order.

We begin by applying the concept of leaf decomposition [4] to
separate degree-1 vertices (leaf vertices). For degree-1 vertices,
once their sole neighbor is matched, they no longer introduce edge
constraints with other unmatched vertices, and thus, are considered
independent vertices. And then, after selecting a query vertex, we
check if any remaining unmatched vertices do not introduce edge
constraints with other unmatched vertices. These vertices are then
classified as independent vertices.

Example 6.1. Consider the example in Figure 3. The initial candi-
date sets for each vertex in query graph Q are shown in Figure 7(a).
First, we put the degree-1 vertices up and ug into the independent
set. For the remaining vertices, since they all have the same num-
ber of candidates, we select them arbitrarily. Assume we select ug
and u3 as the first two vertices. Then, up does not introduce any
edge constraints with the unmatched vertices, so we place it in
the independent set. If we select uy4 next, then us can be added
to the independent set. In summary, the matching order for Q»
is u1 < u3 < uy, which is highlighted with a bold red border in
Figure 7(b). The independent set is {uo, ua, us, ug }. []

3903

Complexity Analysis. After selecting a query vertex, we need to
check whether its neighbors become independent vertices, which
has a time complexity of O (5Q), where dp represents the maximum
vertex degree of query graph Q. Selecting the next query vertex
from the remaining unmatched vertices incurs a time complexity of
O (n). Therefore, the time complexity for generating the complete
matching order is O (|Eg|*5¢).

6.2 Embedding Enumeration

In <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>