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ABSTRACT

Subgraph matching, a cornerstone of graph analytics, critically

su!ers from redundant computations during the search process. Ex-

isting methods primarily target identical computations redundant

operations that are localized to individual query vertices but fail to

address similar redundancies that recur across multiple query ver-

tices. In this paper, we present a novel algorithm, called FiPE, that

accelerates subgraph matching through Fine-grained and Powerful

Equivalences. FiPE rede"nes redundancy elimination by shifting

the optimization granularity from isolated vertices to vertex pairs

and multiple vertex patterns. It introduces vertex-pair equivalence to

cluster candidate pairs with isomorphic neighbor structures, even if

their individual vertices di!er, enabling pruning of similar computa-

tions between these vertex pairs. FiPE proposes group equivalence to

defer equivalence checks to later search depths, capturing potential

redundancies incrementally. To fully exploit the advantages of the

equivalence, we introduce two optimization techniques: a matching

order generation method to reduce the overall search space and an

e#cient con$ict resolution mechanism to avoid two query vertices

being mapped to the same data vertex. Experiments on real-world

graphs highlight the superiority of FiPE. FiPE achieves a speedup

of 2 to 3 orders of magnitude on various graphs under the EPS

(embeddings per second) metric.
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(b) Data graph𝐺

Figure 1: A running example of subgraph matching.

1 INTRODUCTION

Subgraph matching has broad applications across domains such as

social network analysis [9, 26, 27, 47], biological data mining [8, 36],

and fraud detection [10, 33]. It enables the discovery of complex

patterns within large-scale graph data by identifying isomorphic

mappings subgraphs to a speci"ed query graph 𝑄 . Let us consider

the query graph 𝑄 and the data graph 𝐺 in Figure 1. The subgraph

induced by the blue vertices in 𝐺 is isomorphic to 𝑄 .

1.1 Redundant Computation in the Search Tree

Due to its NP-hard nature [14], subgraph matching poses signi"-

cant computational challenges, especially when the query graph

𝑄 and data graph 𝐺 are large. Therefore, numerous algorithms [2–

6, 11, 14, 16, 18, 19, 21, 30, 31, 35, 37, 40] have been proposed for

subgraph matching. These algorithms typically follow a "ltering-

ordering-enumerating paradigm: (1) The "ltering step identi"es

initial candidate vertices in the data graph for each query vertex; (2)

The matching order, which speci"es the sequence in which query

vertices or edges are compared to the data graph, is established; (3)

The embeddings of the query graph are enumerated by exploring

all possible vertex assignments in a depth-"rst manner.

The enumeration phase can be represented as a depth-"rst search

(DFS) tree. Figure 2 illustrates the DFS tree corresponding to the

query graph 𝑄 and data graph 𝐺 depicted in Figure 1, using the

matching order 𝑢0 ³ 𝑢1 ³ 𝑢2 ³ 𝑢3 ³ 𝑢4. A path from root to leaf in

the DFS tree materializes the vertex pairs {𝑢0, 𝑣0}, {𝑢1, 𝑣4}, {𝑢2, 𝑣1},

{𝑢3, 𝑣2}, and {𝑢4, 𝑣3}, representing an isomorphic embedding of

𝑄 in 𝐺 . After "nding this embedding, the algorithm backtracks
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Figure 2: DFS backtracking tree.

to vertex 𝑢2 and then attempts to match 𝑢3 with 𝑣3. This process

continues recursively until the entire search tree is traversed.

Identical Computation between Subtrees. Identical computa-

tions may occur frequently during the matching process. This hap-

pens when a query vertex 𝑢 matches di!erent data vertices, but

the candidates for 𝑢’s neighboring vertices remain unchanged. This

may arise due to the absence of edge connections or because the

candidates share the same connections to the data vertices. As a

result, the subsequent search process becomes identical, leading

to redundant computations. Given two subtrees whose roots are

siblings in the DFS tree, we say these two subtrees are “identical

subtrees” if they share the same structure except the roots.

Example 1.1. The search tree depicted in Figure 2 illustrates an

example in which duplicate computations occur for the query ver-

tices 𝑢3 and 𝑢4. As shown by the dark shaded areas in Figure 2, the

subtrees rooted at (𝑢2, 𝑣1) and (𝑢2, 𝑣8) within the subtree rooted at

(𝑢1, 𝑣4) exhibit identical search structures. Similarly, the subtrees

rooted at (𝑢2, 𝑣1) and (𝑢2, 𝑣11) within the subtree rooted at (𝑢1, 𝑣7)

also have identical structures. Such identical computations are con-

sidered common in the backtracking process. In particular, the edge

(𝑣2, 𝑣3) is repeatedly visited unnecessarily. !

We quantify redundant computations during the search tree

using the concept of the identical ratio at depth 𝑘 . The identical

ratio, shorted by IR, is de"ned as:

IR@𝑘 = 1 −
#di!erent subtrees@𝑘

#subtrees@𝑘
, (1)

where “#di!erent subtrees@𝑘” and “#subtrees@𝑘” represent the

number of di!erent subtrees and the number of total subtrees at

depth 𝑘 , respectively. For example, in Figure 2 there are 16 subtrees

at depth 4, of which only two are distinctrooted at (𝑢4, 𝑣3) and

(𝑢4, 𝑣2). Therefore, IR@4 = 1 − 2
16 = 87.5%, indicating a high level

of identical computation at this level of the search.

Table 1 ("rst row) presents the average identical ratios for 100

query graphs, each with of 8 vertices, on the YeastS graph [12].

The results reveal that identical search subtrees constitute a sig-

ni"cant portion of the search space. Thus, minimizing redundant

computations can lead to substantial query speedups [44].

Similar Computation in the Search Tree. Beyond identical com-

putations within subtrees, the subgraph matching process also

Table 1: The average overlap ratios on Yeast at different

depths in the backtracking process (%).

depth(𝑘) 1 2 3 4 5 6 7

IR@𝑘 98.47 31.92 34.53 38.79 31.66 34.52 41.17

SR@𝑘 98.47 97.63 94.19 90.18 82.35 83.36 84.76

involves numerous similar computations that exhibit substantial

overlap in their corresponding search subtrees.

Example 1.2. As shown by the shaded gray areas in Figure 2,

the subtrees rooted at (𝑢1, 𝑣4) and (𝑢1, 𝑣7) are not identical due to

di!ering internal vertices (𝑢2, 𝑣8) and (𝑢2, 𝑣11). However, they share

a signi"cant portion of their structure, resulting in backtracking

processes that are highly similar. Identifying and leveraging the

redundant computations within these similar subtrees could greatly

improve the e#ciency of subgraph matching. !

To measure the similarity between subtrees, we use the Jaccard

similarity of their search spaces. Subtrees with a similarity score

exceeding 0.9 are grouped into the same bucket. For the depth 𝑘 of

the search tree, we count the number of buckets and compute the

similarity ratio (shorted by SR) as:

SR@𝑘 = 1 −
#buckets@𝑘

#subtrees@𝑘
, (2)

where “#buckets@𝑘” and “#subtrees@𝑘” represent the number of

buckets and the number of subtrees at depth 𝑘 , respectively.

The second row of Table 1 reports the average similarity ratio

for the same set of query graphs on the YeastS graph. The overlap

ratios consistently exceed 80%, compared to the 30-40% observed

for identical ratios. These "ndings reveal substantial redundancy

within the search space, highlighting signi"cant opportunities for

optimization through the reduction of duplicate computations.

Limitations of Existing Methods.Most existing subgraph match-

ing algorithms primarily focus on addressing redundant computa-

tions of identical search subtrees. These methods can be broadly

categorized into three approaches: (1) Pruning based on repeated

failures [2, 6, 13, 21]: This approach identi"es and records the query

vertices that cause failures and skips those that are not responsible

for failures. (2) Pruning based on repeated successes [21]: This method

detects equivalent candidates for each query vertex. Once one can-

didate is matched, the results for other equivalent candidates can be

inferred directly. (3) Pruning based on postponed extension [4, 18, 40]:

This technique analyzes the query graph to identify vertices lead-

ing to identical subtrees and moves these vertices to the end of the

matching order.

While these approaches can reduce some redundant computa-

tions, they are limited to pruning identical computations for individ-

ual query vertices or their candidates. As shown in Figure 2, beyond

identical subtrees, we observe that the subtrees rooted at (𝑢1, 𝑣4),

. . . , (𝑢1, 𝑣7) share substantial similarity as they have identical partial

structures. However, existing methods are not able to capture such

redundant computations between these similar subtrees. To over-

come this limitation and further reduce computational overhead,

it is crucial to identify and leverage redundancies among similar

subtrees throughout the search tree.
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1.2 Our Approach and Contributions

As mentioned earlier, overlaps between subtrees frequently occur

during the backtracking process. E!ectively detecting and reducing

this redundancy can greatly enhance the performance of subgraph

matching. However, identifying these overlaps is highly challenging,

as the structure of the DFS search tree is not known in advance,

and overlaps may arise at any depth within the tree.

In this paper, we propose a novel backtracking search method

FiPE, which leverages Fine-grained and Powerful Equivalences.

FiPE could address the challenge of e#ciently handling the numer-

ous similar regions of the search space, rather than focusing solely

on the relatively infrequent identical parts. FiPE utilizes vertex-pair

equivalence and group equivalence to e!ectively capture overlaps

between similar subtrees, enabling a "ner-grained detection of re-

dundancies. Compared with existingmethods, FiPE can identify and

exploit not only identical computations but also structural similari-

ties across subtrees, signi"cantly reducing redundant computations

and improving the overall e#ciency. Furthermore, we introduce an

optimized ordering and con$ict resolution mechanism to enhance

the e#ciency and scalability of the FiPE search process.

To reduce the duplicate computations in both identical and sim-

ilar subtrees, we adopt a "ner-grained equivalence, vertex-pair

equivalence, by using a pair of vertices as the basic unit to iden-

tify overlaps. Unlike vertex-based equivalence, vertex-pair equiva-

lence extends the equivalence scope to pairs of vertices. Vertex-pair

equivalence focuses on the relationships between vertices and their

neighbors, allowing it to capture redundancies caused by overlap-

ping neighbor sets that vertex-based equivalence would miss. Thus,

the vertex-pair equivalence is theoretically proved to dominate the

existing vertex-based equivalence (Theorem 4.1).

Vertex equivalence focuses only on the currently matched ver-

tex, limiting its ability to detect redundancies to sibling vertices.

To address this limitation, we propose group equivalence, which

considers all previously matched query vertices as a whole. This

broader perspective allows for the detection of overlaps between

more distant parts of the search tree. With group equivalence, we

can identify overlaps between di!erent paths in the DFS search tree.

As long as these distinct paths result in similar search subtrees, we

can further explore shared portions of the search subtrees and elim-

inate redundant computations. By capturing these overlaps, group

equivalence addresses redundancies that vertex-based equivalence

fails to detect, signi"cantly enhancing the e#ciency.

To fully exploit the advantages of the methods proposed above,

we introduce two optimization techniques. The "rst is a matching

order generation method designed to minimize the number of can-

didates and e!ectively reduce the overall search space. The second

is an e#cient con$ict resolution mechanism, which addresses a

critical challenge in subgraph isomorphism matching by ensuring

that no two query vertices are mapped to the same data vertex.

In summary, we make the following contributions:

(1) We propose a "ner-grained vertex-pair equivalence by using a

pair of vertices as the basic unit, e!ectively reducing overlaps

caused by repeated traversals in DFS search trees.

(2) We introduce the concept of group equivalence, which gener-

alizes vertex equivalence to a set of vertices, facilitating the

identi"cation of overlaps between matching paths. Group equiv-

alence enhances the ability to detect overlapping subtrees and

reduces redundant computations more e!ectively.

(3) We develop a matching order generation method to reduce the

search space and an e#cient con$ict resolution mechanism to

ensure valid vertex mappings, enhancing the overall e#ciency

and robustness of the approach.

(4) We conduct extensive experiments to demonstrate the e!ective-

ness and e#ciency of the proposed methods.

2 PRELIMINARY

2.1 Problem Definition

In this paper, we focus on undirected and vertex-labeled graphs.

For ease of representation, let 𝐺 = (𝑉𝐺 , 𝐸𝐺 , Σ, 𝐿𝐺 ) represent the

data graph, where 𝑉𝐺 is a set of vertices and 𝐸𝐺 is a set of edges.

The set Σ represents all possible vertex labels, with label mappings

de"ned by 𝐿𝐺 : 𝑉𝐺 → Σ. Similarly, a query graph is denoted as

𝑄 = (𝑉𝑄 , 𝐸𝑄 , Σ, 𝐿𝑄 ). We denote a vertex in the query graph 𝑄

as 𝑢 and a vertex in the data graph 𝐺 as 𝑣 . An edge in the query

graph is represented as 𝑒 (𝑢1,𝑢2) ∈ 𝐸𝑄 , and an edge in the data

graph is denoted as 𝑒 (𝑣1, 𝑣2) ∈ 𝐸𝐺 . Given 𝑢 ∈ 𝑉𝑄 , 𝑁 (𝑢) denotes

the neighbors of 𝑢, i.e., 𝑁 (𝑢) = {𝑢′ |𝑒 (𝑢,𝑢′) ∈ 𝐸𝑄 }.

Definition 2.1 (Subgraph Isomorphism). Given a query graph𝑄 =

(𝑉𝑄 , 𝐸𝑄 , Σ, 𝐿𝑄 ) and a data graph𝐺 = (𝑉𝐺 , 𝐸𝐺 , Σ, 𝐿𝐺 ),𝑄 is subgraph

isomorphic to 𝐺 if there exists an injective function 𝑓 : 𝑉𝑄 → 𝑉𝐺
that satis"es the following two conditions:

(1) ∀ 𝑢 ∈ 𝑉𝑄 , we have 𝐿𝑄 (𝑢) = 𝐿𝐺 (𝑓 (𝑢)) where 𝑓 (𝑢) ∈ 𝑉𝐺 ;

(2) ∀ 𝑒 (𝑢1,𝑢2) ∈ 𝐸𝑄 , we have 𝑒 (𝑓 (𝑢1), 𝑓 (𝑢2)) ∈ 𝐸𝐺 .

The injective function means that the vertices in𝑉𝑄 must match

di!erent vertices in𝑉𝐺 , and 𝑓 is also called an isomorphic embedding

of𝑄 in𝐺 . Each embedding can be represented by a set of vertex pairs

{(𝑢, 𝑓 (𝑢)) |𝑢 ∈ 𝑉𝑄 , 𝑓 (𝑢) ∈ 𝑉𝐺 }. A partial embedding 𝑀 : 𝐼 → 𝑉𝐺
is an embedding of a subgraph of 𝑄 that is induced by 𝐼 , where 𝐼

is a subset of 𝑉𝑄 . An extension of partial embedding𝑀 is to add a

vertex pair (𝑢, 𝑣) into𝑀 , denoted by𝑀 ∪ (𝑢, 𝑣).

Definition 2.2 (Subgraph Matching). Given a query graph 𝑄 and

a data graph 𝐺 , subgraph matching "nds all embeddings of 𝑄 in 𝐺 .

The "ltering-ordering-enumerating framework outlined in Al-

gorithm 1 is widely adopted in existing subgraph matching algo-

rithms [34, 44]. First, a "ltering process is conducted to identify

and retain the initial candidate set 𝐶 (𝑢) for each query vertex 𝑢

(line 1). Subsequently, a matching order 𝜑 is determined to guide

the enumeration process (line 2). Given the candidate set 𝐶 and

the matching order 𝜑 , the embeddings of the query graph are then

enumerated through a general backtracking process (lines 4-14).

At each backtracking step, the algorithm selects the next query

vertex 𝑢 to be mapped (line 7). The valid candidates for 𝑢 are then

computed based on the previously mapped vertices (line 8). For

each data vertex 𝑣 in the valid candidate set 𝐶𝑀 (𝑢) and not used

in𝑀 (lines 10-11), the algorithm extends the partial mapping and

recursively invokes the next step (lines 12-14).

2.2 Related Work

Subgraph matching encompasses a wide range of problem settings

and algorithms. Regarding label con"gurations, some approaches
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Algorithm 1: General Backtracking Method

Input: query graph 𝑄 , data graph 𝐺

Output: all the embeddings of 𝑄 in 𝐺

1 𝐶 ← build candidate sets;

2 𝜑 ← generate a matching order;

3 Enumerate(𝐶,𝜑, ∅, 0);

4 Procedure Enumerate(𝐶,𝜑,𝑀, 𝑖)

5 if 𝑖 = |𝜑 | then

6 outputM, return;

7 𝑢 ← Select-Next-Vertex(𝐶,𝜑,𝑀);

8 𝐶𝑀 (𝑢) ← Compute-Candidate-Set(𝐶,𝑀,𝑢);

9 foreach 𝑣 ∈ 𝐶𝑀 (𝑢) do

10 if 𝑣 is used in𝑀 then

11 continue;

12 𝑀 ← 𝑀 ∪ (𝑢, 𝑣);

13 Enumerate(𝐶,𝜑,𝑀, 𝑖 + 1);

14 Remove (𝑢, 𝑣) from𝑀 ;

focus on edge-labeled graphs [17, 23, 42], while others target un-

labeled graphs [22, 24, 25]. The majority, however, are designed

for vertex-labeled graphs [2–5, 13, 16, 19, 21], with some methods

claiming to support various label con!gurations. Several subgraph

enumeration techniques are tailored for multicore architectures

or distributed systems [1, 7, 20, 22, 24, 25, 29, 32, 38, 39, 41, 43].

In contrast, optimization techniques for single-threaded subgraph

matching algorithms [2–5, 13, 16, 19, 21] often rely on processes.

To reduce the search space, various techniques leverage local

features to generate initial candidate sets for each query vertex𝑢 [21,

35, 37, 40]. NLF [46] re!nes the candidate selection by choosing

data vertices whose neighbor label frequency is no less than that

of 𝑢. CFL [4] constructs a Breadth-First Search (BFS) tree for the

query graph and !lters candidates by examining edges in the tree.

DPiso [13] uses a similar propagation technique by constructing a

Directed Acyclic Graph (DAG) for the query graph.

Most exploration-based subgraph matching algorithms can be

broadly categorized into three approaches: (1) Pruning based on

repeated failures [2, 6, 13, 21], (2) Pruning based on repeated suc-

cesses [21], (3) Pruning based on postponed extension [4, 18, 40]:

Repeated failures. This approach identi!es data vertices respon-

sible for query failures, bypassing vertices that cause these failures.

DPiso [13] introduces a pruning method based on failing set tech-

nique which records the failure reasons along the matching process.

BICE [6] integrates failing sets and introduces bipartite matching

to further prune unnecessary backtracking steps. GuP [2] proposes

guard-based pruning, which records failures encountered during

the backtracking process as “guards”. It prunes redundant back-

tracking e"orts when the same failures are encountered again.

Repeated successes. The method identi!es equivalent candidates

for each query vertex. Once a candidate is matched, the results

of other equivalent candidates can be directly inferred. VEQ [21]

introduces equivalence sets, capturing both success and failure

cases, where matching one vertex in a set enables direct inference

for the remaining vertices in the set.

Postponed extension. This technique examines the query graph

to locate vertices that lead to identical subtrees, postponing these

vertices to the end of the matching order for optimization. First,

vertices with degree 1 can be placed at the end for matching [4, 13,

21]. Second, when all neighbors of a query vertex have been added

to the partial matching, it can be placed at the end [18, 40].

Although these approaches e"ectively reduce redundant compu-

tations, their optimization is limited to eliminating redundancies

that are strictly identical. Repeated failures occur when subtrees

consistently return empty result sets, while repeated successes de-

pend on isomorphic subtrees to infer the same successful results.

Postponed extension addresses redundancies that naturally arise

from identical subtree structures. However, these methods fail to

address redundancies among similar but non-identical search sub-

trees, presenting opportunities for further optimization.

3 OVERVIEW OF OUR APPROACH

Di"erent from the existing algorithms that treat individual vertices

as the unit of matching, we propose a more #exible and powerful

subgraph matching approach, called FiPE. FiPE can aggregate sim-

ilar matching subtrees and leverage their overlapping regions to

minimize redundant computations. To achieve this, we !rst estab-

lish vertex-pair equivalence between consecutive vertex pairs in

the matching order, enabling the detection of redundant computa-

tions across adjacent layers. Building on vertex-pair equivalence,

we construct group equivalence to identify redundant computa-

tions throughout the entire matching path. Finally, we design a

matching order generator and an e$cient enumeration technique

to seamlessly integrate with the equivalence computation process.

Algorithm 2 outlines the processing #ow of FiPE. In a backtrack-

ing step, we !rst get the current vertex pair 𝑝 to be matched (line 3).

Then we compute the sub-trees for current 𝑝 based on the candi-

date sets of the vertex pair (line 4). If none valid search tree can be

built, just return empty results (lines 5-6). We recognize the over-

lapped search space and put them into di"erent equivalent groups

(line 7). For each group, we add it to partial matching𝑀 and then

Algorithm 2: FiPE-Backtrack(𝑄,𝐺,𝐶𝑆,𝑂,𝑀)

Input: query graph 𝑄 , data graph 𝐺 , candidate sets 𝐶𝑆 ,

matching order 𝑂 , and partial matching𝑀

Output: the embeddings of 𝑄 in 𝐺

1 if |𝑀 | = ( |𝑂 | − 1) then

2 Enumerate all embeddings;

3 𝑝 =← next pair from 𝑂 ;

4 𝑇 (𝑝) ← Compute-Subtrees(𝐶𝑆,𝑢);

5 if 𝑇 (𝑝) = ∅ then

6 return ∅;

7 𝐸 (𝑝) ← Compute-Equivalence(𝑝,𝑇 (𝑝));

8 foreach e in E(p) do

9 𝑀′
← 𝑀 ∪ {𝑒};

10 Set-Space(M’);

11 FiPE-Backtrack(𝑄,𝐺,𝐶𝑆,𝑂,𝑀′);

12 Clear-Space(M’);
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Figure 3: An example for FiPE illustration.

the next backtracking step is evoked after updating the candidates

of unmatched query pairs (lines 9-11). From line 8 of Algorithm 2,

we observe that the primary distinction between FiPE and other

subgraph matching algorithms lies in its basic matching unit.

Vertex-pair Equivalence.We propose a vertex-pair equivalence

technique to address redundant computations between adjacent

layers of the search tree. This method captures equivalence by

focusing on vertex pairs along the matching order rather than

individual vertices. Speci!cally, we de!ne the neighbors of a query

vertex pair as the union of the neighbors of both vertices within the

pair. The candidate pairs with the same neighbors are then grouped

into vertex-pair equivalence sets. By leveraging these equivalence

sets, we can eliminate redundant computations within each set.

Vertex-pair equivalence relaxes the constraint of vertex equivalence

and identi!es similar computations within the search tree.

Group Equivalence. Vertex-pair equivalence identi!es and elim-

inates redundant computations in local search spaces formed be-

tween consecutive vertices in the matching order. To extend this

ability to the entire search space, we propose the group equiva-

lence technique, which considers all vertices in the matching path.

We gradually build group equivalence by relaxing the conditions

for constructing vertex-pair equivalence. We allow candidate ver-

tex pairs to be grouped into the same equivalent set even if their

neighbors are not the same.

Optimizations. We propose an ordering technique to optimize

the search tree by reducing both its width and height. To mini-

mize width, vertices with the smallest candidate sets are prioritized,

reducing the overall branching factor. To minimize height, inde-

pendent verticeswhose neighbors are already matchedbypass edge

constraint veri!cation and are embedded separately, eliminating the

need for backtracking. We introduce an e"cient enumeration tech-

nique to list embeddings while avoiding vertex reuse. Our approach

postpones the vertex reuse check until the enumeration process

for independent vertices. Since this process eliminates the need

for edge constraint validations and candidate set updates for any

vertex, our enumeration technique achieves remarkable e"ciency.

4 VERTEX-PAIR EQUIVALENCE

The existing vertex equivalence requires all neighbors of two ver-

tices to be identical, which is often too restrictive. To e#ectively

identify and exploit overlaps in the search subtrees during the

backtracking process, we adopt a pair of vertices (instead of one

vertex) as the basic unit for constructing equivalence, referred to as

vertex-pair equivalence. This !ner granularity enables a more pre-

cise characterization of overlaps, reducing redundant computations

caused by repeated visits of vertex pairs.

Definition 4.1 (Vertex-pair Equivalence). Let {𝑢ℎ,𝑢𝑡 } be a pair

of query vertices in 𝑄 following the matching order 𝜑 , and let 𝑀

denote the current partial matching that includes all vertices pre-

ceding 𝑢ℎ in 𝜑 . Let 𝑣0
ℎ
, 𝑣1
ℎ
³ 𝑉𝐺 be candidate vertices for 𝑢ℎ , and

𝑣0𝑡 , 𝑣
1
𝑡 ³ 𝑉𝐺 be candidate vertices for 𝑢𝑡 . We say that the candi-

date combinations (𝑣0
ℎ
, 𝑣0𝑡 ) and (𝑣1

ℎ
, 𝑣1𝑡 ) are vertex-pair equivalent

under𝑀 if extending𝑀 with either mapping {(𝑢ℎ, 𝑣
0

ℎ
), (𝑢𝑡 , 𝑣

0
𝑡 )} or

{(𝑢ℎ, 𝑣
1

ℎ
), (𝑢𝑡 , 𝑣

1
𝑡 )} results in the same candidate sets for all remain-

ing unmatched query vertices.

Vertex-pair equivalence implies that the two candidate combina-

tions yield identical search subtrees in the remaining search space.

It allows us to extract overlaps between neighbors of di#erent ver-

tices, avoiding redundant computations caused by these overlaps.

Lemma 4.2. If (𝑣0
ℎ
, 𝑣0𝑡 ) and (𝑣

1

ℎ
, 𝑣1𝑡 ) are vertex-pair equivalent, then

the subtrees in the DFS search tree rooted at these combinations are

isomorphic. Consequently, any subtree rooted at (𝑣1
ℎ
, 𝑣1𝑡 ) is redundant

and can be safely pruned without affecting the correctness of the

search process.

Proof. By De!nition 4.1, (𝑣0
ℎ
, 𝑣0𝑡 ) and (𝑣1

ℎ
, 𝑣1𝑡 ) are vertex-pair

equivalent if, after adding {(𝑢ℎ, 𝑣
0

ℎ
), (𝑢𝑡 , 𝑣

0
𝑡 )} or {(𝑢ℎ, 𝑣

1

ℎ
), (𝑢𝑡 , 𝑣

1
𝑡 )}

to the partial matching 𝑀 , the candidate sets for all unmatched

vertices remain identical. Since the candidate sets determine the

remaining search space, the subtrees rooted at these two vertex

pairs in the DFS search tree are isomorphic. Thus, exploring the

subtree rooted at (𝑣1
ℎ
, 𝑣1𝑡 ) is redundant and can be safely pruned

without a#ecting the correctness of the search process. !

To determine vertex-pair equivalence, we analyze how adding a

candidate pair (𝑢ℎ, 𝑣ℎ), (𝑢𝑡 , 𝑣𝑡 ) to the current partial matching 𝑀

a#ects the candidate sets of other unmatched vertices. This process

applies to both edge-constrained vertex pairs (where 𝑒 (𝑢ℎ,𝑢𝑡 ) ³

𝐸𝑄 ) and unconstrained (𝑒 (𝑢ℎ,𝑢𝑡 ) ∉ 𝐸𝑄 ) vertex pairs.

We restrict the update to the candidate sets of the neighbors of

𝑢ℎ,𝑢𝑡 . This localized update is su"cient because if the candidate

sets of all neighboring vertices remain unchanged, the candidate

sets of all other unmatched vertices will remain unchanged as well.

Neighbor Classification. We classify the neighbors of the ver-

tex pair {𝑢ℎ,𝑢𝑡 } into three categories based on their connection

patterns in the query graph 𝑄 :

• ℎ𝑛𝑏𝑟 : Neighbors connected only to the head vertex 𝑢ℎ . For edge-

constrained pairs (𝑒 (𝑢ℎ,𝑢𝑡 ) ³ 𝐸𝑄 ), ℎ𝑛𝑏𝑟 omits 𝑢𝑡 ; otherwise, it

includes all of 𝑢ℎs neighbors.

• 𝑡𝑛𝑏𝑟 : Neighbors connected only to the tail vertex 𝑢𝑡 . For edge-

constrained pairs, 𝑡𝑛𝑏𝑟 excludes 𝑢ℎ ; otherwise, 𝑡𝑛𝑏𝑟 includes all

neighbors of 𝑢𝑡 .

• 𝑠𝑛𝑏𝑟 : Shared neighbors connected to both 𝑢ℎ and 𝑢𝑡 .

Candidate Set Updates. To update the candidate sets of these

neighbors after adding the candidate pair {(𝑢ℎ, 𝑣ℎ), (𝑢𝑡 , 𝑣𝑡 )} to the

partial matching, we !rst de!ne the function 𝑁𝑀 (𝑣,𝑢′), which

computes the valid neighbors of a candidate vertex 𝑣 for a query
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Figure 5: Vertex-pair equivalence.

vertex 𝑢′ under the current partial matching𝑀 , as follows:

𝑁𝑀 (𝑣,𝑢′) = 𝐶𝑀 (𝑢′) ∩ 𝑁𝐺 (𝑣),

where 𝐶𝑀 (𝑢′) denotes the candidate set of 𝑢′ under𝑀 , and 𝑁𝐺 (𝑣)

represents the neighbors of 𝑣 in the data graph 𝐺 .

Based on this de!nition, the candidate sets for the three cate-

gories of neighbors are updated as follows:

𝐶𝑀 ′ (ℎ𝑛𝑏𝑟 ) = 𝑁𝑀 (𝑓 (𝑢ℎ),ℎ𝑛𝑏𝑟 ) ∩𝐶𝑀 (ℎ𝑛𝑏𝑟 ),

𝐶𝑀 ′ (𝑡𝑛𝑏𝑟 ) = 𝑁𝑀 (𝑓 (𝑢𝑡 ), 𝑡𝑛𝑏𝑟 ) ∩𝐶𝑀 (𝑡𝑛𝑏𝑟 ),

𝐶𝑀 ′ (𝑠𝑛𝑏𝑟 ) = 𝑁𝑀 (𝑓 (𝑢ℎ), 𝑠𝑛𝑏𝑟 ) ∩ 𝑁𝑀 (𝑓 (𝑢𝑡 ), 𝑠𝑛𝑏𝑟 ),

where 𝑀′ denotes the updated partial matching after adding the

candidate pair, and 𝑓 (𝑢) represents the mapping of a query vertex

𝑢 to a data vertex in 𝑀 . For pairs without edge connection, the

updates to ℎ𝑛𝑏𝑟 and 𝑡𝑛𝑏𝑟 do not exclude 𝑢𝑡 and 𝑢ℎ , respectively, as

there is no edge constraint between 𝑢ℎ and 𝑢𝑡 .

Example 4.3. We construct the auxiliary data structure A based

on the initial candidate sets. In Figure 4, we list the candidates of

each query vertex and extract edges from the data graph 𝐺2 in

Figure 3(b). Let us illustrate vertexpair equivalence for the query

vertices (𝑢1,𝑢3) in both the edgeconstrained and unconstrained

cases, using the auxiliary structures from Figure 5.

Edgeconstrained.As shown in Figure 5(a), since 𝑒 (𝑢1,𝑢3) ³ 𝐸𝑄 ,

we consider the candidate edges {𝑒 (𝑣1, 𝑣4), 𝑒 (𝑣2, 𝑣3), 𝑒 (𝑣2, 𝑣4)}. The

neighbors are classi!ed into ℎ𝑛𝑏𝑟 = {𝑢0}, 𝑡𝑛𝑏𝑟 = {𝑢5,𝑢6}. Select-

ing either 𝑒 (𝑣2, 𝑣3) or 𝑒 (𝑣2, 𝑣4) yields identical candidate sets for

𝑢0,𝑢5,𝑢6, so these two edges are vertexpair equivalent. By contrast,

𝑒 (𝑣1, 𝑣4) leads to a di#erent neighbor candidate pro!le.

Unconstrained. As shown in Figure 5(b), when 𝑒 (𝑢1,𝑢3) ∉ 𝐸𝑄 ,

we form the Cartesian product {𝑣1, 𝑣2} × {𝑣3, 𝑣4}. All combinations

share the same candidates for𝑢0 and𝑢6, and in addition (𝑣1, 𝑣3) and

�2

�5

�

�4

�6 �7

�1 �2

�0

��

�6 �5

��

�10

�0

�3 �4

�6 �7
(a) Vertex equivalence A𝑣

ß_{ÿ ßuÏ[

�1

�0 �8 �9

�4

�6 �8

�6

�2

�9�5

�3

�10 �7

�0

��

�6 �5

�2

��

��

(b) Group equivalence

Figure 6: Vertex equivalence and group equivalence.

(𝑣2, 𝑣3) produce identical sets for𝑢5. Thus these two pairs are equiv-

alent and only one is explored, whereas (𝑣1, 𝑣4) and (𝑣2, 𝑣4) yield

di#erent neighbor candidates and must be examined separately. "

Using vertex-pair equivalence, we group duplicate search spaces

of vertex pairs into distinct equivalence sets. For the vertex pairs

within each set, we perform the backtracking step only once.

Complexity Analysis. To separate the candidate combinations of

a vertex pair (𝑢ℎ,𝑢𝑡 ) into di#erent vertex-pair equivalent sets, we

can optimize the process by !rst separately traversing the candidate

sets of 𝑢ℎ (the head vertices) and 𝑢𝑡 (the tail vertices) instead of

evaluating every combination directly. This approach reduces the

computational overhead by avoiding a full pairwise traversal of

candidate combinations.

For a given vertex pair (𝑢ℎ,𝑢𝑡 ), let 𝐶 (𝑢ℎ) and 𝐶 (𝑢𝑡 ) represent

the candidate sets of 𝑢ℎ and 𝑢𝑡 , respectively. The process involves

the following three steps:

(1) Head Traversal: Traverse the candidate set 𝐶𝑀 (𝑢ℎ) of 𝑢ℎ to

partition it based on equivalence. For each candidate vertex

𝑣ℎ ³ 𝐶𝑀 (𝑢ℎ), we check the neighbors on ℎ𝑛𝑏𝑟 . This step has a

time complexity of𝑂 (|𝐶𝑀 (𝑢ℎ) | ·𝛿𝑄 ), where 𝛿𝑄 is the maximum

degree of any query vertex in the query graph 𝑉𝑄 .

(2) Tail Traversal: Traverse the candidate set 𝐶𝑀 (𝑢𝑡 ) of 𝑢𝑡 to

partition it based on equivalence. For each candidate vertex

𝑣𝑡 ³ 𝐶𝑀 (𝑢𝑡 ), we check the neighbors on 𝑡𝑛𝑏𝑟 . This step has a

time complexity of 𝑂 ( |𝐶𝑀 (𝑢𝑡 ) | · 𝛿𝑄 ).

(3) Combining Head and Tail: After partitioning 𝐶𝑀 (𝑢ℎ) and

𝐶𝑀 (𝑢𝑡 ), we combine the partitions and then compare the neigh-

bors on 𝑠𝑛𝑏𝑟 to form vertex-pair equivalent sets. The time com-

plexity of this step is 𝑂 ( |𝐶𝑀 (𝑢ℎ) | · |𝐶𝑀 (𝑢𝑡 ) | · 𝛿𝑄 ).

The time complexity of handling a single vertex pair (𝑢ℎ,𝑢𝑡 ) is:

𝑂
(

|𝐶𝑀 (𝑢ℎ) | · 𝛿𝑄 + |𝐶𝑀 (𝑢𝑡 ) | · 𝛿𝑄 + |𝐶𝑀 (𝑢ℎ) | · |𝐶𝑀 (𝑢𝑡 ) | · 𝛿𝑄
)

,

where |𝐶𝑀 (𝑢ℎ) | and |𝐶𝑀 (𝑢𝑡 ) | represent the sizes of the valid candi-
date sets for 𝑢ℎ and 𝑢𝑡 , respectively. Since |𝐶𝑀 (𝑢ℎ) | and |𝐶𝑀 (𝑢𝑡 ) |
are bounded by max𝑢𝑖 ³𝑉𝑄 |𝐶 (𝑢𝑖 ) |, this simpli!es to:

𝑂

(

max
𝑢𝑖 ³𝑉𝑄

|𝐶 (𝑢𝑖 ) |
2 · 𝛿𝑄

)

.

In practice, the sizes of the valid candidate sets |𝐶𝑀 (𝑢ℎ) | and

|𝐶𝑀 (𝑢𝑡 ) | are usually small, making the overhead of computing

vertex pairs negligible.
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Compare with Vertex Equivalence. The vertex equivalence tech-

nique proposed in VEQ [21] groups the candidates of each vertex

that share the same neighbors in A into an equivalence set. By

reusing the search results within the set, it avoids redundant com-

putations at each depth of the search tree. Because vertex-pair

equivalence provides a !ner-grained equivalence, vertex equiv-

alence is a special instance of vertex-pair equivalence. In other

words, any redundancy pruned by vertex equivalence would also

be pruned by vertex-pair equivalence.

Theorem 4.1. For an adjacent vertex pair (𝑢ℎ,𝑢𝑡 ), if 𝑢ℎ belongs

to a vertex equivalence set, then there always exists a corresponding

vertex-pair equivalence set for (𝑢ℎ,𝑢𝑡 ). In this vertex-pair equivalence

set, the head vertices of the pairs share identical neighbors in the search

space, and the tail vertices map to the same vertex.

Proof. Consider an adjacent vertex pair (𝑢ℎ,𝑢𝑡 ), and assume

that 𝑢ℎ belongs to a vertex equivalence set. Let the vertex equiva-

lence set of𝑢ℎ be denoted as {𝑣0
ℎ
, 𝑣1
ℎ
, . . . , 𝑣𝑘

ℎ
}, where 𝑘 is the number

of candidates in the set. By the de!nition of vertex equivalence, all

candidates in this set share the same neighbors in the search space.

Now, consider 𝑢𝑡 , the vertex adjacent to 𝑢ℎ , and let {𝑣
0
𝑡 , 𝑣

1
𝑡 , . . . , 𝑣

𝑚
𝑡 }

denote the candidates for 𝑢𝑡 . We now construct vertex-pair equiva-

lence sets for (𝑢ℎ,𝑢𝑡 ) by de!ning, for each vertex 𝑣
𝑖
𝑡 in 𝑣

0
𝑡 , 𝑣

1
𝑡 , . . . , 𝑣

𝑚
𝑡 ,

a vertex-pair equivalence set as {(𝑣0
ℎ
, 𝑣𝑖𝑡 ), (𝑣

1

ℎ
, 𝑣𝑖𝑡 ), . . . , (𝑣

𝑛
ℎ
, 𝑣𝑖𝑡 )}. In

this construction, the head vertices 𝑣
𝑗

ℎ
( 𝑗 ³ {0, 1, . . . ,𝑛}) in each

pair share identical neighbors in the search space, as guaranteed

by the vertex equivalence of 𝑢ℎ , while the tail vertices are !xed to

the same vertex 𝑣𝑖𝑡 .

Thus, vertex equivalence is inherently subsumed by vertex-pair

equivalence, as the latter captures all redundancies identi!ed by the

former while providing a !ner-grained equivalence structure. !

This indicates that we can always construct structurally equiva-

lent sets from the vertex equivalence sets for the vertex pair without

edge constraints, thereby pruning at least as many redundant com-

putations in the search space as vertex equivalence.

Example 4.4. Considering the auxiliary data structureA𝑣 shown

in Figure 6(a). the candidates 𝑣1, 𝑣2 of 𝑢1 are vertex equivalent be-

cause they have the same neighbors on 𝑢0,𝑢3. The candidate vertex

pairs {(𝑣1, 𝑣3), (𝑣2, 𝑣3)} and {(𝑣1, 𝑣4), (𝑣2, 𝑣4)} are edge equivalent

sets. For the auxiliary structure A𝑒 in Figure 5(a), none vertex

equivalent set can be constructed on neither 𝑢1 nor 𝑢3. But we can

recognize the vertex-pair equivalent set {(𝑣1, 𝑣4), (𝑣2, 𝑣4)} as we

depicted in Example 4.3. "

5 GROUP EQUIVALENCE

While vertex-pair equivalence improves the detection of overlap in

the search space, it remains limited to vertex pairs. To enable !ner-

grained and more comprehensive overlap detection, we propose

group equivalence, which generalizes equivalence to a set of vertices.

Definition 5.1 (Group equivalence). Given two partial matchings

𝑀1 and𝑀2 with all the matched vertices following the matching or-

der𝜑 of a query graph𝑄 , the partial matchings𝑀1 and𝑀2 are group

equivalent if the valid candidate sets for all unmatched vertices (i.e.,

independent vertices) are identical.

Lemma 5.2. If two partial matchings 𝑀1 and𝑀2 are group equiv-

alent, then the subtrees in the DFS search tree rooted at these partial

matchings are isomorphic. Consequently, any subtree rooted at 𝑀2 is

redundant and can be safely pruned without affecting the correctness

of the search process.

Proof. By the de!nition of group equivalence,𝑀1 and𝑀2 have

identical valid candidate sets for all unmatched vertices. Since the

candidate sets determine the remaining search space, the subtrees

rooted at𝑀1 and𝑀2 in the DFS tree are isomorphic. Thus, pruning

the subtree rooted at𝑀2 eliminates redundancy without a#ecting

the correctness of the search process. !

Group equivalence treats all matched query vertices as a single

group, enabling the detection of duplicate computations across the

entire partial matching process progressively during backtracking.

However, directly computing group equivalence is computationally

expensive, as the number of partial matchings for a query graph

𝑄 grows exponentially with the depth of the matching process. To

overcome this challenge, we propose constructing group equiva-

lence incrementally based on vertex-pair equivalence computations.

Delayed Neighbors. During vertexpair equivalence computation,

there may be cases where the candidate sets of a vertex pair are

not equivalent at the current depth. However, as additional vertices

are matched, the introduction of new constraints on the candidate

sets may cause the group (i.e., a set of vertex pairs combined with

the newly added vertex) to evolve into equivalence. This process

of equivalence evolution may continue iteratively. To detect group

equivalence in a timely manner, we propose delayed neighbors,

denoted as 𝑑𝑛𝑏𝑟 .

Delayed neighbors defer part of the equivalence computation to

deeper levels of the search tree, allowing us to identify redundant

computations that emerge as the search progresses. We denote𝑢𝑛𝑥𝑡
as the next vertex after 𝑢𝑡 in the matching order 𝜑 and 𝑢% as the

set of vertices matched after 𝑢𝑡 along 𝜑 . The computation of 𝑑𝑛𝑏𝑟
is: if the vertex pair has an edge constraint, 𝑑𝑛𝑏𝑟 is assigned as 𝑢𝑛𝑥𝑡 .

Otherwise, 𝑑𝑛𝑏𝑟 is computed as 𝑁 (𝑛𝑛𝑏𝑟 ) ∩ 𝑁 (𝑢𝑡 ) ∩ 𝑢%𝑡 .

Example 5.3. Considering the example in Figure 6(b). The match-

ing order is 𝑢1 ≺ 𝑢3 ≺ 𝑢4 ≺ 𝑢0 ≺ 𝑢2 ≺ 𝑢5 ≺ 𝑢6. (𝑢1,𝑢3) is

the !rst vertex pair to be matched. There are four valid combi-

nations (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣1, 𝑣4), (𝑣2, 𝑣4) and the next vertex in 𝜑

is 𝑢4. The four categories of neighbors are ℎ𝑛𝑏𝑟 = {𝑢0}, 𝑡𝑛𝑏𝑟 =

{𝑢6}, 𝑠𝑛𝑏𝑟 = {𝑢2} and 𝑑𝑛𝑏𝑟 = {𝑢5}. The combinations (𝑣1, 𝑣3) and

(𝑣2, 𝑣3) have the same neighbors on 𝑢0, 𝑢2, and 𝑢6, but di#erent

neighbors on 𝑢5. Therefore, they are not vertex-pair equivalent.

However, since the di#erence is on a delayed neighbor, we consider

them as potentially group equivalent and add this equivalent set to

the partial matching 𝑀 , updating the candidates of the neighbors

𝑢0, 𝑢2, 𝑢5, and 𝑢6. Then we continue to compute the vertex-pair

equivalence for the next vertex pair (𝑢3,𝑢4). The combinations

are (𝑣3, 𝑣8) and (𝑣4, 𝑣8) and they have the same neighbors on 𝑢5.

And then the partial matching𝑀0 = {(𝑢1, 𝑣1), (𝑢3, 𝑣3), (𝑢4, 𝑣8)} and

𝑀1 = {(𝑢1, 𝑣1), (𝑢3, 𝑣4), (𝑢4, 𝑣8)} highlighted in red forms a group

equivalent set because the same neighbors on the unmatched ver-

tices. The partial matching {(𝑢1, 𝑣2), (𝑢3, 𝑣3), (𝑢4, 𝑣8)} highlighted

in yellow shadow and {(𝑢1, 𝑣1), (𝑢3, 𝑣3), (𝑢4, 𝑣8)} highlighted in

blue thick border will be explored separately. "
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Figure 7: Matching order and candidate sets of query graph

𝑄2 in Figure 3(a).

Complexity Analysis. We compute the group equivalent sets

through a progressive process. At each step, the complexity is

equivalent to that of computing vertex-pair equivalence. We denote

the time complexity of vertex-pair equivalence as T𝑣𝑝 . Thus, the

overall time complexity of complete equivalence is: 𝑂
(

|𝜑 | · T𝑣𝑝
)

.

6 OPTIMIZATIONS

6.1 Matching Order

In this section, we propose an improved matching order for query

vertices to minimize the number of subtrees built during the back-

tracking process. We prioritize selecting vertices with the fewest

candidates. In case of ties, we choose the vertex with the highest

degree to other unmatched vertices.

It is important to note that once all neighbors of a vertex 𝑢 have

been added to the partial matching, the selection of candidates for𝑢

no longer a#ects the valid candidates of other unmatched vertices,

as there are no edge constraints between them. Additionally, the

valid candidates for 𝑢 are equivalent, as they all share the same

neighbors. We refer to such vertices as independent vertices and

place these vertices at the end of the matching order.

We begin by applying the concept of leaf decomposition [4] to

separate degree-1 vertices (leaf vertices). For degree-1 vertices,

once their sole neighbor is matched, they no longer introduce edge

constraints with other unmatched vertices, and thus, are considered

independent vertices. And then, after selecting a query vertex, we

check if any remaining unmatched vertices do not introduce edge

constraints with other unmatched vertices. These vertices are then

classi!ed as independent vertices.

Example 6.1. Consider the example in Figure 3. The initial candi-

date sets for each vertex in query graph𝑄2 are shown in Figure 7(a).

First, we put the degree-1 vertices 𝑢0 and 𝑢6 into the independent

set. For the remaining vertices, since they all have the same num-

ber of candidates, we select them arbitrarily. Assume we select 𝑢1
and 𝑢3 as the !rst two vertices. Then, 𝑢2 does not introduce any

edge constraints with the unmatched vertices, so we place it in

the independent set. If we select 𝑢4 next, then 𝑢5 can be added

to the independent set. In summary, the matching order for 𝑄2

is 𝑢1 ≺ 𝑢3 ≺ 𝑢4, which is highlighted with a bold red border in

Figure 7(b). The independent set is {𝑢0,𝑢2,𝑢5,𝑢6}. "

Complexity Analysis. After selecting a query vertex, we need to

check whether its neighbors become independent vertices, which

has a time complexity of𝑂
(

𝛿𝑄
)

, where 𝛿𝑄 represents the maximum

vertex degree of query graph 𝑄 . Selecting the next query vertex

from the remaining unmatched vertices incurs a time complexity of

𝑂 (𝑛). Therefore, the time complexity for generating the complete

matching order is 𝑂
(

|𝐸𝑄 |2𝛿𝑄
)

.

6.2 Embedding Enumeration

In this subsection, we propose an e"cient enumeration technique

for obtaining the embeddings for the complete equivalent set and

handling the latent vertex con$icts, which occur when multiple

query vertices map to the same data vertex in an embedding. Af-

ter completing the matching of all non-independent vertices, it

becomes crucial to quickly compute the embeddings based on the

constructed complete equivalent sets and the candidate sets of the

independent vertices. Since there are no edge constraints among

the candidates of the independent set, we only need to ensure that

multiple query vertices do not map to the same data vertex in the

embedding, i.e., ensuring the embedding is injective.

For subgraph matching algorithms that accelerate computation

by reusing duplicate results, con$ict handling is a signi!cant chal-

lenge. To reuse overlapping subtrees in the search tree, we must

ensure that the candidate sets of unmatched vertices do not con$ict

with the already computed overlapping parts. While some algo-

rithms propose complex con$ict resolution methods that record

extensive intermediate information during the search [21], it is of-

ten unclear whether the overhead of maintaining this information

justi!es the pruning e"ciency gained.

We propose a relatively simple and e"cient con$ict-handling

approach. FiPE defers con$ict checking until the end of the enumer-

ation (after matching all non-independent vertices). By postponing

con$ict resolution, this approach avoids discarding an entire sub-

tree due to a single vertex con$ict, ensuring maximum utilization of

overlaps. Following the matching order, we sequentially select ver-

tex pairs from the equivalent set of adjacent vertex pairs. We simply

enumerate all possible partial matchings and check for vertex con-

$icts. Subsequently, we enumerate the embeddings of independent

vertices for each partial matching. For the partial matchings that

have no duplicate candidates with all the candidates of independent

vertices, we only need to count the valid embeddings of the inde-

pendent vertices once. The whole embeddings can then be obtained

by applying Cartesian product on them.

Example 6.2. Let us consider the group equivalent set (high-

lighted in red) in Figure 6(b):𝑀0 = {(𝑢1, 𝑣1), (𝑢3, 𝑣3), (𝑢4, 𝑣8)},𝑀1 =

{(𝑢1, 𝑣1), (𝑢3, 𝑣4), (𝑢4, 𝑣8)}. The candidate sets for independent ver-

tices are (𝑢0, {𝑣0, 𝑣8}), (𝑢2, {𝑣5}), (𝑢6, {𝑣10}), (𝑢5, {𝑣7}). The candi-

date set of𝑀0 is {𝑣1, 𝑣3, 𝑣8} which has con$icts with the candidate

set of 𝑢0 and so does𝑀1. We need to enumerate the embeddings for

them separately. And the whole embeddings highlighted in red are

{(𝑢1, 𝑣1), (𝑢3, 𝑣3), (𝑢4, 𝑣8), (𝑢0, 𝑣0), (𝑢2, 𝑣5), (𝑢6, 𝑣10), (𝑢5, 𝑣7)} and

{(𝑢1, 𝑣1), (𝑢3, 𝑣4), (𝑢4, 𝑣8), (𝑢0, 𝑣0), (𝑢2, 𝑣5), (𝑢6, 𝑣10), (𝑢5, 𝑣7)}. The

whole embeddings for partial matching 𝑀2 = {(𝑢1, 𝑣2), (𝑢3, 𝑣3),

(𝑢4, 𝑣9)} are highlighted in yellow shadow and the ones for𝑀3 =

{(𝑢1, 𝑣2), (𝑢3, 𝑣4), (𝑢4, 𝑣9)} are highlighted in blue thick border. "

3903



�

103
106
109

�
� 

�&
�(

��
��

��
�

�&
�#

���
���

���
���

���


�� �� 
�� ���� ��� 	���

HPRD Citeseer WordNet DBLP YeastS Figeys Human Youtube Stanford10−40
10−25
10−10

(a) Relative EPS ratio (VEQ = 1).


$#!,) �!�)*� 
$*!)!!( ���� �+%�& �'( �!* �	�� �*�&"'( �'+*+�!

��
-�

��
-�

��
�

�
��

�)
�

KSS
RM

GUP
BICE

VEQ
FiPE

(b) Query Processing Time.

Figure 8: Overall Performance, where query graph size = (8, 10, 12, 16, 20) and label size = (15, 30, 45, 60).

Table 2: Data graphs with vertex labels.

Dataset |𝑉 | |𝐸 | 𝑑𝐺 Type

Figeys 2,239 6,432 5.7 Protein

YeastS 2,361 7,182 6.1 Protein

Citeseer 3,279 4,552 2.8 Citation

Human 4,674 86,282 36.9 Protein

HPRD 9,303 34,998 7.5 Protein

WordNet 146,005 656,999 9.0 Lexical

Standford 281,903 1,992,636 14.1 Web

DBLP 317,080 1,049,866 6.6 Collab.

Youtube 1,134,890 2,987,624 5.3 Social

Complexity Analysis. Let 𝐶𝑀 (𝑢𝑖 ) denote the equivalent sets of

query vertex 𝑢𝑖 in partial embedding𝑀 . The overall complexity of

embedding enumeration is: 𝑂
(

max𝑢𝑖 ∈𝑉𝑄 |𝐶𝑀 (𝑢𝑖 ) |
|𝑉𝑄 |

)

.

7 EXPERIMENTS

7.1 Experimental Setting

Comparison Methods. We select !ve representative subgraph

matching algorithms for comparison, including VEQ [21], BICE [6],

RM [35], KSS [40], and GuP [2]. The source codes of the comparison

methods are obtained from the authors. FiPE supports various !lter

techniques for candidate set construction. For evaluation, we adopt

CFL [4] as the default !lter method.

Data Graphs. We conduct experiments using both real-world and

synthetic datasets. For real-world datasets, we choose a diverse set

of 9 graphs from di"erent domains, including protein interactions,

academic collaboration, lexical networks, and social networks. A

detailed description of these graphs is provided in Table 2. Experi-

ments are performed on all real-world datasets using label sizes of

15, 30, 45, and 60 by default. Vertex labels are randomly assigned

following the methodology of the prior works [2, 34, 44].

For synthetic datasets, we employ the EvoGraph [28] method to

scale small graphs. This allows us to simulate real-world data and

evaluate the scalability of various methods. The vertex labels are

assigned by following the same procedure as for real-world graphs.

Query Graphs. We utilize a sampling method consistent with

prior research [2, 13, 34] to generate most of the query graphs.

We perform a Metropolis-Hastings random walk [15] on the data

graphs and select induced subgraphs as queries. We generate a

diverse set of query graphs by varying two key parameters:

• Query graph size: 8, 10, 12, 16, and 20 vertices.

• Label size: 15, 30, 45, and 60 distinct labels.

We use these label and query sizes as the default setting for all

experiments. For each combination of query size and label size, we

collect 1,000 random query graphs for each real-world data graph,

leading to a total of 180,000 query graphs.

We also include the universal query graphs used in Circinus [18]

and apply them to all data graphs. Note that some universal queries

may not have any embeddings in certain data graphs.

Metrics.We employ three key metrics to evaluate the e"ectiveness

and e#ciency of the methods under comparison:

• Query Processing Time (QPT). Query Processing Time (QPT) mea-

sures the time required to return a speci!ed number of embed-

dings and is commonly used in traditional subgraph matching

methods [2, 13, 21, 34]. Consistent with prior research, we eval-

uate each algorithms performance based on the QPT to return

10
5 embeddings within a 300second time limit.

• Embeddings per Second (EPS). EPS is de!ned as the average num-

ber of embeddings returned per second. The recent survey [44]

de!nes EPS as a uni!ed throughput metric that combines the

number of reported embeddings with the time taken to produce

them. Unlike the QPT metric, which measures only execution

time under !xed limits and can be skewed by threshold settings,

EPS yields a more stable comparison of subgraphmatching algo-

rithms [44]. Following the setup in [44], we set the time limit for

the EPS metric to one second.

• Relative EPS Ratio. The Relative EPS Ratio is the ratio of the EPS of

a given method to the EPS of the baseline method. By de!nition,

the Relative EPS Ratio for the baseline method is 1. This metric

facilitates a clear comparison between di"erent methods.

Experimental Environment. All experiments were executed on a

server running Ubuntu 22.04, equipped with an Intel(R) E5-2596v4

CPU @ 2.2 GHz and 128 GB of RAM.

7.2 Overall Performance

7.2.1 The EPS metric. Figure 8(a) presents the relative EPS ratio

on 9 real-world graphs under the default query label sizes, with

VEQ as the baseline method. It is evident that FiPE outperforms

other methods on the majority of the graphs, with substantial im-

provements of 6 to 8 orders of magnitude on large-scale datasets

such as Stanford and Youtube compared to the other methods. It is

worth noting that the EPS on large-scale graphs is exceptionally

high. This is attributed to the Cartesian product approach used

to enumerate candidates in the independent set, which allows the
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Figure 10: Memory consumption.

rapid computation of a large number of embeddings in a short

time. Overall, FiPE demonstrates a signi!cant advantage on large-

scale graphs, where duplicate computations are more frequent, and

our method e"ectively exploits these redundancies. For small-scale

graphs, existing subgraph matching algorithms are already highly

e#cient, typically processing queries within milliseconds, so the

performance gap between existing methods is relatively small.

7.2.2 The QPT metric. We conducted experiments with an out-

put limit of 105, evaluating them using the QPT metric. Figure 8(b)

presents the QPT results across six methods, averaged on the default

label and query sizes. It shows that FiPE achieves strong perfor-

mance on most graphs. For smaller data graphs, GuP, RM, and FiPE

all exhibit fast processing, with average execution times below 1 ms.

While GuP shows superior QPT, its e#ciency declines when enu-

merating a large number of embeddings. However, VEQ performs

relatively poorly under QPT compared to EPS, as its advantages

become apparent when generating substantial results.

Based on these experiments, we explore FiPEs QPT performance

under output limits of 103, 105, 108, 1012, 1016, and 10
19, denoted

by o3, o5, o8, o12, o16, and o19, respectively. The results in Figure 9

reveal that the QPT performance of most methods is signi!cantly

sensitive to the output limit. With low limits, GuP achieves submil-

lisecond runtimes but deteriorates rapidly as the cap increases. In

contrast, the performance of FiPE improves with higher limits, a

direct result of its !negrained equivalence sharing. This con!rms

FiPEs suitability for largeoutput or fullenumeration scenarios.

7.2.3 Peak Memory Consumption. Figure 10(a) reports the peak

memory usage of di"erent methods, during the EPS evaluation

in Section 7.2.1, measured by the Maximum Resident Set Size on

Ubuntus time tool. FiPE exhibits outstanding memory e#ciency,

requiring less memory than both VEQ and BICE, and slightly less

than GuP and KSS.

To analyze FiPEs internal memory pro!le, we decompose its exe-

cution into !ve stages: Build Graph (BGraph), Filter, Compute Initial
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Figure 11: QPT performance of universal queries.
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Figure 12: Effect of label size of data graphs.

Candidate sets (CInitCS), Compute Equivalences (CEqu), and Enu-

merate (Enum). We take the query with the largest memory usage

as a case study, which is the query number 195 on the Youtube with

label size = 60, query size = 20. Figure 10(b) shows the percentage

of memory usage at each stage compared to the maximum memory

usage. The BGraph stage alone accounts for 94% of the maximum

footprint, with CInitCS reaching the overall peak. The CEqu phase

adds no significant extra overhead. FiPEs simple yet fast vertexcon-

flict detection mechanism avoids storing extraneous data structures

while enabling extensive reuse of duplicate computations.

7.2.4 UniversalQueries. The queries extracted from the data graph

will generate at least one result. To evaluate the performance on

zero result cases, we conduct experiments with some universal

queries from Circinus [18]. Because the result might be zero, we

use QPT as the comparison metric. RM is excluded from this section

of experiments, as its implementation does not correctly handle

queries with zero results. Figure 11 reports the QPT of universal

queries from Circinus [18] on the WordNet and Standford datasets

with four default label sizes. Queries with zero embeddings are

marked with an asterisk (*) in the figure. Overall, GuP and FiPE

demonstrate superior performance across both datasets.

7.3 Scalability Evaluation

We analyze the scalability of FiPE by examining its performance

under the EPS metric with respect to three factors: the label size,

the size of the data graph, and the size of the query graph.

7.3.1 Impact of the Label Size of Data Graph. We begin by ana-

lyzing seven label sizes10, 50, 100, 200, 103, 104, and 10
5 under the

default query size settings. Figure 12 shows the EPS results for the

Figeys, WordNet, and Youtube graphs. Due to memory overflow

issues faced by BICE, VEQ, and GuP when handling large label

sets, these methods could not process data graphs with 10
4 and 105

labels. In most cases, FiPE outperforms other methods. From the

trends observed in the figure, the performance differences between
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Figure 14: Effect of data graph size.

the various methods gradually diminish as the label size increases.

For very large label sizes, the EPS results of the methods converge

and show negligible di!erences. As the label size increases, the

candidate set for each query vertex becomes smaller. In extreme

cases, each query vertex𝑢 has only one candidate. At this point, the

backtracking process becomes simpler, and no redundant computa-

tions can be exploited, which leads to minimal di!erences between

the methods.

7.3.2 Impact of Query Graph Size. In this section, we analyze the

performance of comparisonmethods and FiPE under di!erent query

graph sizes: 8, 10, 12, 16, and 20 (with the default label size settings).

Figure 13 illustrates the EPS results across these query sizes for

three datasets. In the majority of scenarios, FiPE demonstrates

superior performance compared to other algorithms. Notably, the

e"ciency of FiPE increases with the size of the query graph.

7.3.3 Impact of Data Graph Size. To assess the in#uence of data

graph size, synthetic graphs are created by scaling the smaller

Figeys and Citeseer graphs using EvoGraph [28] with scaling fac-

tors of 5, 10, 20, 50, and 100. We apply the default four kinds of

label sizes for each data graph and then generate 100 query graphs

for each default query sizes. This results in a total of 2,000 queries

for each scaled data graph. Figure 14 illustrates the EPS perfor-

mance of all methods on these synthetic graphs. FiPE consistently

achieves the best performance across all scenarios, showcasing

its notable scalability advantages. Similar to the observations in

Section 7.2, FiPE demonstrates a more pronounced advantage over

other methods as the size of the data graph increases.

7.4 Locality Evaluation

Figure 16(a) reports the branch-, cache-, and node-miss rates of all

methods on four large graphs (Youtube, Stanford, DBLP, WordNet),

aggregated over 8,000 queries spanning $ve query sizes (8, 10, 12,

16, 20) and four label sizes (15, 30, 45, 60). Using perf tool, we

measure branch-miss rate (instructionfetch locality), cache-miss
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Figure 15: Relative EPS ratio (DPiso-FiPE = 1).
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Figure 16: Locality evaluation and two semantics.

rate (on-chip data locality), and node-miss rate (memorypage lo-
cality) to evaluate each algorithms runtime behavior. FiPE exhibits
excellent locality: its node-miss rate is among the lowest of all
methods, branch-miss hovers around 1%, and cache-miss remains
at a moderate level. These stable, low miss rates re!ect FiPEs pre-
dictable control !ow and e"cient data access patterns derived from
#ne-grained equivalence sharing. By contrast, GuP shows large
!uctuations in both branch- and node-miss rates across queries.

7.5 Evaluation on Iso. and Homo. Semantics

By default, FiPE operates under subgraphisomorphism semantics,
guaranteeing a onetoone mapping between query and data ver-
tices. We further extended FiPE to handle homomorphism queries,
where multiple query vertices may map to the same data vertex,
by replacing the vertexcon!ict enumeration with a simple Carte-
sian product over each equivalence sets candidates. Figure 16(b)
plots EPS, averaged on the default label and query sizes, under
both isomorphism and homomorphism semantics. FiPE delivers
excellent EPS performance under both semantics. Across all nine
graphs, homomorphism consistently yields higher throughput than
isomorphism, with the largest gaps observed on Human and DBLP.

7.6 Impact of Filtering Technique

In this subsection, we analyze the impact of employing various
#ltering techniques. Although CFL [4] is our default, FiPE can
seamlessly integrate with a wide range of #ltering methods. We
compare NLF [46], CFL, and DPiso [13] across all datasets.

NLF o$ers a less restrictive #ltering process, allowing for the
rapid generation of candidate sets but with lower accuracy, where
accuracy refers to the proportion of candidates in the set that ulti-
mately contribute to valid embeddings. In contrast, DPiso applies
more stringent checks, leading to higher accuracy at the cost of
increased computation time. CFL strikes a balance between the
two, delivering moderate accuracy and execution time. Detailed
explanations of these #ltering methods can be found in Section 2.2.
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Table 3: The overlap statistic at different depths in the back-

tracking process.

depth 7 6 5 4 3 2 1

Citeseer # trees 51.91 18.79 9.31 9.21 44.95 10.64 6.72
General # buckets 1.00 1.00 1.00 1.00 1.02 1.04 1.05

ratio(%) 97.78 93.50 73.12 44.89 33.37 32.30 29.61

Citeseer # trees 5.60 2.66 2.12 1.67 1.67 1.67 1.67
FiPE # buckets 2.03 1.55 1.94 1.54 1.55 1.55 1.55

ratio(%) 12.19 8.13 4.41 3.06 2.89 2.89 2.89

Figeys # trees 56.45 51.63 183.20 364.96 493.82 393.59 1149.44
General # buckets 1.00 1.01 1.09 1.19 1.96 2.22 2.98

ratio(%) 98.15 97.81 96.09 95.52 93.66 94.75 94.50

Figeys # trees 37.83 47.65 49.53 49.51 49.51 49.51 49.51
FiPE # buckets 10.30 17.63 19.26 19.27 19.22 19.22 19.22

ratio(%) 46.88 39.53 30.26 27.72 28.11 28.11 28.11

YeastS # trees 69.70 45.61 39.99 39.13 43.86 54.50 85.05
General # buckets 1.00 1.00 1.00 1.07 1.84 2.39 2.56

ratio(%) 98.47 97.63 94.19 90.18 82.35 83.36 84.76

YeastS # trees 63.99 56.43 14.28 14.33 14.35 14.35 14.35
FiPE # buckets 6.35 34.04 11.86 11.69 11.73 11.70 11.70

ratio(%) 53.58 27.07 8.07 5.76 5.36 5.84 5.84

Figure 15 depicts the Relative EPS ratio of the three #lters compared
to DPiso-FiPE. We apply the default label sizes for each data graph
and then generate 100 query graphs for each default query size.
NLF-FiPE exhibits relatively poor performance in most scenarios,
indicating that FiPE is better suited to #ltering methods capable of
producing candidate sets with relatively higher accuracy. Overall,
CFL-FiPE consistently achieves the best results across the majority
of datasets, establishing CFL as the recommended default #ltering
technique for our approach.

7.7 The Performance on Reducing Overlapping

We assess the e$ectiveness of FiPE in reducing redundant computa-
tions by analyzing the similarity between subtrees in its backtrack-
ing process. Throughout the process, we record the candidates of
unmatched vertices at each depth, approximate their Jaccard simi-
larity using MinHashLSH [45], and group those with a similarity
exceeding 0.9 into a single bucket. Table 3 summarizes the average
number of subtrees, the number of buckets, and the overlap ratio
per dimension for 100 queries of size 8 across the Figeys, Citeseer,
and YeastS datasets. The overlap ratio is calculated as the average of
individual overlap ratios from each query. The results demonstrate
that FiPE e$ectively reduces the number of constructed search
spaces and signi#cantly lowers the overlap ratio. Remarkably, FiPE
achieves a consistent overlap rate at lower depths since indepen-
dent vertices are matched at these depths, and their candidate sets
remain unchanged after matching other vertices.

7.8 Discussion

FiPE Strengths andLimitations:The experimental results demon-
strate that FiPE achieves dramatic speedups when exhaustively
enumerating subgraph matches on large-scale graphs. It is agnos-
tic to the global shape of the query graphwhether cyclic, acyclic,
or tree-likebecause it relies only on local structural equivalences.
However, this generality comes with overhead: if a query or data
graph lacks repeated structure, few equivalences exist, and the cost
of maintaining them may outweigh the bene#t.

Directed Graphs and DAGs: FiPE readily extends to directed
graphs by splitting each vertexs neighbors into incoming and out-
going partitions. This in-out neighbor partitioning simpli#es the
equivalence detection, since the candidates are considered equiv-
alent only if they match both sets of in- and out-neighbors. In
directed acyclic graphs, the absence of cycles imposes a strict ances-
tordescendant structure, resulting in smaller, #nergrained equiva-
lence classes. Thus, equivalence construction incurs lower overhead,
which leads to faster enumeration and improved performance in
scenarios requiring only a small number of embeddings.
Discussion on How to Integrate into Graph Database Sys-

tems. FiPEs techniques can be seamlessly integrated into the pat-
tern matching pipeline of graph database systems, which typically
include query plan construction, optimization, graph traversal and
matching, and result return. During optimization, our ordering tech-
nique can serve as an optimization rule to construct a query order
that avoids redundant backtracking on “independent” vertices. In
the traversal stage, each new vertex match builds equivalence sets
with already matched vertices; by aggregating candidate branches
for the next step, FiPE uncovers shared computations, reducing
overhead and accelerating matching without altering the pipeline.
For isomorphism queries, the vertexcon!ict technique enables rapid
enumeration of embeddings within these equivalence sets.
Comparison to GuP: The guardbased pruning technique of GuP
records failure patterns encountered during backtracking and uses
them to avoid repeating the same failed branches. In contrast, FiPE
constructs #ne-grained equivalent sets, which not only prevent
repeated failures within each equivalent set but also enable the
reuse of successful search results by sharing embeddings among
equivalent candidates. This broader form of pruning makes FiPE
more powerful, but it also incurs additional computational over-
head. Thus, when only a small number of embeddings is required
and the total enumeration time is short, the lighterweight GuP
outperforms FiPE (as shown in Figure 8(b)); however, in scenarios
demanding all or enormous embeddings (where enumeration time
dominates overall cost), FiPEs aggressive redundancy elimination
yields superior performance (as shown in Figure 8(a) and Figure 9).

8 CONCLUSION

In this paper, we propose a novel algorithm, FiPE, that acceler-
ates subgraph matching through #ne-grained and powerful equiv-
alences. FiPE optimizes subgraph matching by identifying and
reusing similar search subtrees. By introducing vertex-pair equiv-
alence and group equivalence, FiPE enables #ner-grained detec-
tion of redundant computations. Vertex-pair equivalence identi#es
redundant computations between pairs of vertices, while group
equivalence generalizes this concept to detect redundancies across
the entire matching process. Extensive experiments demonstrate
that FiPE reduces query processing time and improves scalability,
outperforming state-of-the-art methods.
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