
PBench: Workload Synthesizer with Real Statistics for Cloud
Analytics Benchmarking

Yan Zhou†

Renmin University, China

zhouyan2018@ruc.edu.cn

Chunwei Liu†

MIT CSAIL

chunwei@csail.mit.edu

Bhuvan Urgaonkar
Penn State and AWS

urgaonkb@amazon.com

Zhengle Wang
Renmin University, China

wangzhengle@cau.edu.cn

Magnus Mueller
Amazon Web Services

magnusmu@amazon.com

Chao Zhang*
Renmin University, China

cycchao@ruc.edu.cn

Songyue Zhang
Renmin University, China

zhangsongyue@ruc.edu.cn

Pascal Pfeil
Amazon Web Services

pfeip@amazon.de

Dominik Horn
Amazon Web Services

domhorn@amazon.de

Zhengchun Liu
Amazon Web Services

zcl@amazon.com

Davide Pagano
Amazon Web Services

dpagano@amazon.com

Tim Kraska
MIT and AWS

kraska@mit.edu

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

Ju Fan*
Renmin University, China

fanj@ruc.edu.cn

ABSTRACT

Cloud service providers commonly use standard benchmarks like

TPC-H and TPC-DS to evaluate and optimize cloud data analytics

systems. However, these benchmarks rely on !xed query patterns

and fail to capture real execution statistics of production cloud

workloads. Although some cloud database vendors have recently

released real workload traces, these traces alone do not qualify

as benchmarks, as they typically lack essential components (i.e.,

queries and databases). To overcome this limitation, this paper stud-

ies a new problem of workload synthesis with real statistics, which

generates synthetic workloads that closely approximate real exe-

cution statistics, including key performance metrics and operator

distributions. To address this problem, we propose PB!"#$, a novel

workload synthesizer that constructs synthetic workloads by (1)

selecting and combiningworkload components from existing bench-

marks and (2) augmenting new workload components. This paper

studies the key challenges in PB!"#$. First, we address the chal-

lenge of balancing performance metrics and operator distributions

by introducing a multi-objective optimization-based component

selection method. Second, to capture the temporal dynamics of

real workloads, we design a timestamp assignment method that

progressively re!nes workload timestamps. Third, to handle the dis-

parity between the original workload and the candidate workload,

we propose a component augmentation approach that leverages

large language models (LLMs) to generate additional workload

components while maintaining statistical !delity. Experimental

results show that PB!"#$ reduces approximation error by up to 6³

compared to state-of-the-art methods.

PVLDB Reference Format:

Yan Zhou, Chunwei Liu, Bhuvan Urgaonkar, Zhengle Wang, Magnus

Mueller, Chao Zhang, Songyue Zhang, Pascal Pfeil, Dominik Horn,

Zhengchun Liu, Davide Pagano, Tim Kraska, Samuel Madden, and Ju Fan.

PBench: Workload Synthesizer with Real Statistics for Cloud Analytics

Benchmarking. PVLDB, 18(11): 3883 - 3895, 2025.

doi:10.14778/3749646.3749661

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/ruc-datalab/PBench/tree/main.

1 INTRODUCTION

The growing signi!cance of cloud-based database systems has cre-

ated a demand for new benchmarking approaches. Existing bench-

marks, notably those from TPC [5, 12, 27], are not well-suited for

cloud workloads due to two key limitations. First, these bench-

marks are not designed to accommodate the varying degrees of

concurrency commonly observed in cloud databases, making them

ine"ective in accurately capturing the performance characteristics

of modern cloud database systems. Second, recent studies [31, 32]

have shown that the distribution of query operators (e.g., the fre-

quency of joins and aggregates) in modern cloud workloads di"ers

signi!cantly from those in traditional benchmarks. Given that dif-

ferent operator distributions correspond to various business logic

patterns and can lead to varying cost-optimal query optimization

strategies in the cloud [11, 19, 38, 41], it is crucial for benchmark

workloads to accurately re#ect the real-world operator distributions.

To address these limitations, several cloud database vendors,

including Snow#ake [7] and Amazon Redshift [2], have released

customer workload traces [31, 33], which are anonymized logs cap-

turing real execution statistics from cloud workloads. These traces

Chao Zhang and Ju Fan are the corresponding authors.
†

indicates equal !rst author
contribution.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749661

3883

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: An Example Workload Trace from Redset

include key performance metrics (e.g., CPU Time) and workload

characteristics (e.g., operator distributions), o"ering valuable in-

sights into real-world cloud database behavior. Figure 1 illustrates

an example workload trace from Redset [31], which provides real

statistics, including a performance metric, CPU Time, and an oper-

ator distribution feature, Join Number.

Leveraging these traces presents an opportunity to develop

benchmarks that better re#ect real-world cloud database workloads.

However, these traces alone do not constitute benchmarks, as they

typically lack essential components like the original SQL queries

and their underlying databases, making them unsuitable for directly

evaluating cloud database system performance.

Workload Synthesis with Real Statistics. To address this issue,

this paper introduces a new problem of workload synthesis with real

statistics, which aims to generate synthetic workloads that closely

approximate the performance metrics (e.g., CPU Time) and operator

distributions (e.g., the frequency of joins, scans, and aggregations)

observed in real cloud workload traces. Given that real workload

traces lack the original SQL queries and their underlying databases,

this work focuses on constructing synthetic workloads by (1) se-

lecting and combining workload components, i.e., SQL queries and

their corresponding databases, from existing benchmarks, such as

TPC-H and TPC-DS, and (2) generating new components when

existing queries and databases are insu$cient.

Key Challenges. E"ectively addressing the problem of workload

synthesis with real statistics presents three key technical challenges.

(C1) Balancing approximation objectives. Selecting an appropriate

set of workload components from existing benchmarks is challeng-

ing due to the need to simultaneously approximate both perfor-

mance metrics and operator distributions. These two objectives are

inherently intertwined, i.e., adjusting one (e.g., increasing the join

number) often impacts the other (e.g., leading to higher CPU time).

This interdependence complicates the workload component selec-

tion process, making it di$cult to construct a synthetic workload

that accurately captures the statistics of real workload traces.

(C2) Preserving temporal dynamics. Since cloud workloads exhibit

varying levels of concurrency, short-term #uctuations (e.g., within

30 seconds), and periodic query patterns [20], naively distributing

queries over time may fail to capture these temporal dynamics,

leading to discrepancies between the synthetic and real workloads.

Thus, the second challenge lies in e"ectively assigning timestamps

to the selected workload components to preserve the temporal

dynamics in real workload traces.

(C3) Augmenting workload components.Workload components from

existing benchmarks may be insu$cient to construct a synthetic

workload that accurately re#ects real traces due to the disparity

between the original workload and the candidate workload. These

disparities are often caused by di"erent query patterns and underly-

ing databases, and it is challenging to augment additional workload

components of high quality due to the huge search space.

Our PB!"#$ Approach. In this paper, we propose PB!"#$, a

novel approach for workload synthesis that e"ectively approxi-

mates real statistics from cloud workload traces. PB!"#$ takes a

real workload trace (e.g., from Redset [31] or Snowset [33]) as input

and constructs a synthetic workload by strategically selecting and

combining workload components from existing benchmarks.

Technically, to address challenge (C1), we propose a compo-

nent selection approach that e"ectively balances the approxima-

tion of both performance metrics and operator distributions. We

formulate component selection as a multi-objective optimization

problem using integer linear programming (ILP) and employ e$-

cient algorithms to solve it. To address challenge (C2), we propose

a timestamp assignment method that incrementally re!nes the

temporal distribution of the selected workload components. We

employ a simulated annealing-based approach that progressively

adjusts workload timestamps, transitioning from a coarse-grained

approximation to a !ne-grained alignment with the temporal dy-

namics of real workload traces. To address challenge (C3), we pro-

pose a component augmentation approach that leverages large

languagemodels (LLMs) to generate newworkload components.We

design e"ective prompting strategies and a trial-and-error genera-

tion mechanism for the LLM to produce new workload components

that signi!cantly reduce the approximation error.

Di!erences from Existing Methods. Several existing studies

have explored generating synthetic workloads based on standard

benchmarks [32, 35]. However, they fall short in accurately ap-

proximating complex real cloud workload traces. First, CAB [32]

employs heuristic strategies, such as randomly selecting queries

from a prede!ned query pool, and lacks a principled method to

ensure that the generated synthetic workload closely approximates

the real workload. Second, while Stitcher [35] employs Bayesian

optimization [15], it overlooks operator distributions. Given that

the inherent interaction between performance metrics and opera-

tor distributions, as mentioned previously, this limitation hinders

Stitcher’s ability to generate balancedworkloads. Moreover, Stitcher

selects all queries from a single benchmark without !ltering out

irrelevant or redundant queries, thus lacking a !ne-grained mecha-

nism to select queries relevant to real workloads.

Downstream Tasks and Extensibility. By accurately !tting exe-

cution statistics from real workload traces, PB!"#$ is designed to

support a wide range of downstream tasks that require realistic and

representative workloads. In industrial settings, PB!"#$ can facil-

itate downstream tasks in ongoing industrial use cases involving

advanced workload management tasks such as AutoWLM [29] and

Redshift’s autoscaling mechanism, Sage Scaling [25]. In this paper,

we demonstrate the applicability of PB!"#$ to a downstream task,

namely database benchmarking in our experiments. By preserving

the high !delity of the original workloads, PB!"#$ enables mean-

ingful comparisons of performance across systems like Snow#ake

3884

Table 1: Notations

Notation Description Notation Description

! Original Workload "±! Query of# !

!̃ Synthesized Workload $ ±
! Database of# !

% Performance Feature % ±
! % of# !

& Performance Metrics '±
ℎ!

ℎ-th& of# !

) Operator Distributions *±#! +-th) of# !

" ! ,-th Customer Query - ±
! Duration of# !

. ! Timestamp of " ! !̃$ Workload by C

$ Customer’s Database /
(%)
!

Number of# ! in É
(%) of !̃$

% ! % of " ! .
(%)

!&
. of 0-th# ! in É

(%) of !̃$

É
(%) 1-th Time Window %'! ,-th Generation Goal

2 (% !)
É
(%) ’s ,-th Time Interval EP% %'! ’s Positive Example

% (%) ! ’s % in É
(%)

EN ! %'! ’s Negative Examples

%̃ (%) !̃ ’s % in É
(%) #(

% ! %'% ’s ,-th Positive Examples

% (% !) ! ’s % in 2 (% !) #)
% ! %'% ’s ,-th Negative Example

#% (% !) !̃ ’s % in 2 (% !) #̃ Synthesized Component

! ,-th Workload Component %
$̃

% of #̃

t1 t2 t3

Figure 2: Workload Synthesis with Real Statistics

and Redshift. Moreover, PB!"#$ is an extensible framework that

can incorporate more metrics (e.g., query plan patterns and execu-

tion behaviors). We illustrate this #exibility through an experiment

that matches sub-query structures, showcasing its potential for

supporting downstream tasks such as query optimization.

Contributions. Our contributions are summarized as follows.

(1) We introduce a novel problem of workload synthesis with real

statistics, which is formally de!ned in Section 2.

(2) We propose PB!"#$, an e"ective approach to workload synthe-

sis with real statistics (Section 3). We develop e"ective techniques

in PB!"#$ for component selection and timestamp assignment

(Section 4). We also leverage an LLM-based method for component

augmentation (Section 5).

(3) We have developed and open-sourced PB!"#$ to support cloud

analytics benchmarking. To evaluate its e"ectiveness, we conducted

extensive experiments on two widely-recognized cloud workload

traces, Snowset [33] and Redset [31] (Section 6). Experimental results

show that PB!"#$ achieves up to a 6x reduction in approximation

error compared to state-of-the-art methods.

2 PROBLEM FORMALIZATION

Figure 2 illustrates the problem of workload synthesis with real sta-

tistics. Given a real workload trace where original SQL queries and

underlying databases are unavailable, the problem is to generate a

synthetic workload that, when executed, produces statistics closely

approximate the target workload’s performance metrics and opera-

tor distributions. In particular, given that real workload traces lack

the original SQL queries and their underlying databases, this work

focuses on constructing synthetic workloads by (1) combiningwork-

load components, i.e., SQL queries and their corresponding databases,

from existing benchmarks, such as TPC-H and TPC-DS, and (2) gen-

erating new workload components as needed from scratch.

Then, the generated synthetic workload o"ers an e"ective so-

lution for downstream tasks, like database benchmarking [9, 39, 40],

performance tuning [30], and bug detection [3], allowing database

developers to perform realistic evaluations while preserving privacy

and avoiding exposure of sensitive workloads or data.

Below, we formally de!ne the studied problem. The notations

used throughout this paper are summarized in Table 1. We !rst

formalize real workload traces derived from Snowset or Redset.

De!nition 2.1. CloudWorkload! .Aworkload! is a time se-

ries of queries {"1,. . . , "3 } to be run against a database# , where each

timestamped query "1 is denoted as {#, {$1 ,"1 }}. Note that while

the queries and their corresponding databases are conceptually

represented, they remain inaccessible in practice.

De!nition 2.2. Performance Feature % . We formalize the

real statistics of a workload trace using the performance feature

% =< &,' >, where & represents a set of performance metrics,

and ' denotes operator distributions, capturing the percentage

distribution of di"erent SQL operators. To facilitate window-level

synthesis, we aggregate the performance features within the i-th

time window É
(1) , yielding the window-based performance feature

representation < É
(1)
,& (1)

,' (1)
>. Here, & (1) is the aggregated

performance metrics vector, and ' (1) is the aggregated operator

distribution vector.

Recall that this work focuses on constructing synthetic work-

loads by combining workload components from existing benchmarks.

Thus, we de!ne the workload component as follows.

De!nition 2.3. Workload Component(. The synthetic work-

load is constructed over a set of workload components(1,(2, . . . ,(3 ,

where each component(, includes a query"
±
, and its corresponding

populated database #±
, , both derived from existing benchmarks.

Now, we are ready to de!ne the problem of workload synthesis

with real statistics as follows.

De!nition 2.4. Workload Synthesis with Real Statistics.

Given the performance features % of a target workload! , the prob-

lem is to synthesize a new workload !̃ such that, for each time

window, the synthesized performance features ³É (1) , &̃ (1)
, '̃ (1) ´

closely approximate the target features ³É (1) ,& (1)
,' (1) ´, minimiz-

ing the approximation error (e.g., using Mean Absolute Error). The

synthesis process involves both (1) assembling workload compo-

nents by selecting queries from existing benchmarking pools and

(2) generating new workload components as needed from scratch.

Remarks. We assume that the source cloud cluster and the target

cloud cluster for benchmarking are su$ciently similar in terms of

node count, machine con!gurations, and database system, ensuring

a high-!delity evaluation environment. In addition, the quality

of synthesized workloads depends on whether the system used to

generate the initial workload trace is the same as the one used to

synthesize and execute the new workload. This is because PB!"#$

is designed to produce high-!delity synthetic workloads by closely

3885

Workload Components Stage 3: Component Augmentation

Customer Workload Traces Stage 1: Synthesizer
Data Preparation

 Stage 2:
Workload Synthesis

Figure 3: Overall Framework of PB!"#$

matching system-speci!c performance features, which are in#u-

enced by the underlying system behavior. However, Once PB!"#$

has synthesized a benchmark from a particular system trace (e.g.,

Redshift or Snow#ake), the resulting workload can be replayed on

other platforms to enable cross-system comparisons.

Moreover, In this paper, we focus on matching CPU time,

scanned bytes, and operator distributions because these are among

the most critical performance metrics for cloud OLAP systems. For

example, CPU time re#ects computational resource consumption,

while scanned bytes indicate storage I/O, both of which are key

billing units in cloud environments and directly impact system cost

and performance. Neverthless, we note that other metrics, particu-

larly query plan patterns and execution behaviors, are also essential,

especially for downstream tasks such as query optimization. We

emphasize that PB!"#$ is designed as a highly extensible frame-

work capable of targeting any performance or structural metric

presented in the workload traces.

3 AN OVERVIEW OF PBENCH

3.1 Overall Framework of PB!"#$

Figure 3 illustrates the overall framework of PB!"#$, which syn-

thesizes a workload that closely approximates the performance

metrics& and operator distributions ' of a real workload! trace

through the following three stages: (1) Synthesizer Data Prepa-

ration, where workload components are collected from standard

benchmarks. (2) Two-Phase Workload Synthesis, which !rst

formulates the synthesis problem as an integer linear program-

ming task and then assigns timestamps to preserve the temporal

dynamics of the real workload ! . (3) Workload Component

Augmentation, where an LLM-based module generates additional

queries to further enhance approximation e"ectiveness. Below, we

present details of each of the three stages in PB!"#$.

3.1.1 Synthesizer Data Preparation. We select widely-used bench-

marks for workload synthesis, including TPC-H, TPC-DS, and YCSB.

TPC-H and TPC-DS serve as medium (22 query templates) and

heavy (99 query templates) analytical workload components, re-

spectively, while YCSB represents lightweight transactional work-

load components. To prepare workload components, we consider

two key factors: scale factor (SF) and skewness. The SF parameter

controls the database size, where a larger SF leads to higher resource

consumption for queries. The skewness parameter controls dataset

skewness, in#uencing query execution patterns. For instance, a

higher skew results in high ratios between CPU Time and Scanned

Bytes. Once the workload components are prepared, we pro!le the

queries to obtain their corresponding performance features. These

features are aggregated at multiple levels to de!ne the objectives for

the workload synthesis tool, including: (1) Window-level aggrega-

tion to capture overall workload statistics, (2) Interval-level aggrega-

tion to re#ect !ner-grained execution patterns, and (3) Query-level

features to model individual query characteristics. For additional

details on this stage, please refer to Section 3.2.

3.1.2 Two-Phase Workload Synthesis. Given a target workload

trace! , we divide it into multiple time windows and aggregate per-

formance metrics and operator distributions within each window.

These aggregated statistics, referred to as aggregated performance

features, serve as the approximation objectives, such as total CPU

time or the number of join operators, as illustrated in Figure 1.

We then propose a two-phase framework. In the !rst phase, we

formulate the synthesis task as an optimization problem that selects

and combines existing workload components to approximate the

performance features of each time window É
(1) . To solve the prob-

lem, we employ integer linear programming (ILP) to determine the

optimal combination of workload components. In the second phase,

although the ILP-based synthesis yields a coarse-grained workload

for each window, it does not determine the precise temporal dis-

tribution of queries. To address this, we introduce a timestamp

assignment mechanism, which assigns a timestamp $
(1)

,0
to each in-

stance of a workload component(, within window É
(1) . Since this

problem is computationally challenging, we employ a Simulated

Annealing (SA) algorithm to iteratively re!ne the assignment and

improve the temporal !delity of the synthesized workload.

The simulated annealing process yields a locally optimal solu-

tion to the timestamp assignment problem. The performance gap

between the candidate query set and the actual user workload, as

addressed in Section 3.1.3, is e"ectively mitigated by the augmenta-

tion phase, which in turn enhances the SA algorithm’s ability to

converge toward a near-optimal solution. For more details, please

refer to Section 4.

3.1.3 Workload Component Augmentation. Simply selecting work-

load components from existing benchmarks (like TPC-H and TPC-

DS) is often insu$cient to approximate the performance features

of real workloads due to di"erences between the original workload

and the candidate workload. To bridge this gap, we design an LLM-

based workload augmenter that automatically generates additional

workload components to better approximate the real workload. The

high-level idea is to !rst identifying underperforming time win-

dows, then guiding the LLMs to generate additional components

for these time windows, and !nally enabling query re!nement by

injecting expert hints. Selecting an appropriate database for the

generated queries poses another challenge. Even though we pre-

pare a set of benchmark databases in advance, discrepancies in

data distribution between the generation target and the available

databases may hinder the LLM’s ability to generate queries with

the desired performance characteristics [13]. To address this, we

implement a heuristic-driven database selection mechanism that

dynamically re-selects or regenerates databases when the LLM fails

3886

to produce a suitable query after multiple attempts. For additional

details on this stage, please refer to Section 5.

3.2 Synthesizer Data Preparation

This stage comprises two key processes: workload trace preparation

and workload component preparation.

3.2.1 Workload Trace Preparation. The statistics collected from

the cloud may be query-level statistics (like Snowset or Redset) of

one speci!c cluster and database or instance-level time series data

which are denoted as < "1 , %1 , $1 >, where "1 is inaccessible. When

handling query-level statistics, it is required to set a generation

granularity and aggregate query-level statistics into performance

features % (1 ,) . To approximate target statistics at the time-interval

level, we assume a uniform distribution of resource consumption

over time during query execution. Note that assuming a uniform

distribution of resource consumption over time is a simpli!cation

and may not capture the actual execution behavior of all queries.

We adopted this assumption because !ne-grained runtime met-

rics, speci!cally, time-series data that show how resources (e.g.,

CPU time or I/O) are consumed throughout a query’s lifecycle, are

typically unavailable in real-world workload traces.

To determine an appropriate time window length, we employ

an empirical approach to balance generation accuracy and genera-

tion e$ciency. After !nalizing a time window, we aggregate the

feature % of all queries running within the time window É
(1) to

obtain the corresponding generation target % (1) . The aggregation

function may vary depending on the indicators or input datasets.

For example, as for performance indicators like CPU Time and

Scanned Bytes, we can sum up the resource consumption of all

queries. For operator distribution, since Snowset provides informa-

tion about operator runtime and Redset provides the number of

operators for each query, we can aggregate and transform them

into statistics using average or sum, thus we obtain the operator

distribution of Snowset and operator numbers of Redset.

3.2.2 Workload Component Preparation. To ensure a diverse set

of queries and databases, we !rst generate benchmark databases

with di"erent sizes and data skewnesses. The database size is con-

trolled by the scale factor parameter and the data skewness can be

generated using !ve scales of skewness utilizing tools like TPC-H

skewed generation tool [4] [23]. The data size primarily impacts

the Scanned Bytes; while the skewness will in#uence the joining

fan-out distributions, thereby a"ecting the intermediate result size

and the CPU Time of the queries. To compensate for the di"erence

between the customer’s invisible database and the pre-prepared

benchmark databases in real-time, we propose a workload compo-

nent augmentation method (See Section 5).

Remarks. Current single-threaded pro!ling approach provides

only a rough approximation of runtime behavior, especially in

scenarios where queries are executed concurrently and interact

through shared system resources. Looking forward, we plan to

incorporate advanced modeling techniques such as graph neural

networks (e.g., as in STAGE [36]) to better capture and generalize

complex inter-query and subsystem interactions.

4 TWO-PHASE WORKLOAD SYNTHESIS

4.1 Workload Component Selection Phase

4.1.1 Optimization Objective. To synthesize a workload with real

statistics, we combine multiple workload components within a time

window, and each selected component can be repeated multiple

times as shown in Figure 4. Therefore, the objective is to select and

combine multiple workload components to build !̃# such that the

total relative error of the performance feature is minimized.

argmin

/
(%)
!

3∑

1=1

(

3ℎ∑

ℎ=1

&&&&&&

∑4
,=1)

(1)
, ·*±

ℎ,
¸&

(1)

ℎ

&
(1)

ℎ

&&&&&&
+

3#∑

+=1

&&&&&&

∑4
,=1)

(1)
, · +±+ , ¸'

(1)
+

'
(1)
+

&&&&&&
)

, .$.)
(1)
, c Z

·
,)

(1)
, < -,

4∑

,=1

)
(1)
, < .,

4∑

,=1

)
(1)
, ·/ ±

, ñ 0

(1)

The optimization objective is denoted as the above equation, where

)
(1)
, is the repetition count of the 1-th workload component in the

2-th time window;&
(1)

ℎ
and '

(1)
+ are the aggregated values of the

ℎ-th performance metric and the 4-th operator distribution in the

2-th time window, respectively. Given component (, ,*
±
ℎ,

is the

ℎ-th performance metric, and +±+ , is the 4-th operator distribution;

/ ±
, is the duration of (, ; 5+ , 5ℎ , 6 are the upper bounds of 4, ℎ, and

1 , respectively; -, ., 0 are three constraint values.

4.1.2 Programming Constraints. To obtain a synthetic workload

that is as realistic as possible, we impose the following constraints:

• Duration constraint.The total duration of all selectedworkload

components,)
(1)
, ·/ ±

, , must not exceed the time window length

multiplied by the maximum concurrency of the system (usually

set to the number of CPU cores). We represent this value as 0 .

• Diversity constraint. PB!"#$ needs to guide the workload

synthesizer to combine di"erent workload components for better

diversity. This is achieved by limiting the number of repetitions

of each workload component to a speci!ed value -.

• Total count constraint. To avoid generating a workload con-

sisting of massive short queries, PB!"#$ limits the total number

of workload components used to . (when the count of queries in

the customer’s workload is known, . can be set accordingly).

4.1.3 Integer Linear Programming. Given the above-de!ned opti-

mization objectives, constraints, and decision variables, workload

component selection can be formulated as an Integer Linear Pro-

gramming (ILP) problem. The problem is NP-hard, as it can be

reduced from the well-known multi-objective multidimensional

knapsack problem (MOMKP) [22].

By formulating the ILP problem, we can leverage standard ILP

solvers to determine the optimal count of eachworkload component,

thereby synthesizing a workload with realistic statistics.

3887

Time Window CPU Time/s Scan Bytes/GB Filter Num Agg Num ...

Γ
(1) 20 20 34 2 ...

Γ
(2) 30 40 2 21 ...
...

Γ
(n) 20 10 32 33 ...

C CPU Time/s Scan Bytes/GB Filter Num Agg Num ...
C1 2 2 0 0 ...
C2 1.3 3 2 3 ...
...
Cv 1.7 1 1 2 ...

C CPU Time/s Scan Bytes/GB Filter Num Agg Num ... Duration
C1 2 2 0 0 ... 39
C2 1.3 3 2 3 ... 32
...
Cv 1.7 1 1 2 ... 50

gWC

gWC

gWC

fW

Errornew < Error

Errornew ≥ Error

Errornew < Errorbest

...

fW

Γ
(1)

Γ
(2)

Γ
(3)

Γ
(4)

Γ
(5)

Γ
(1)

Γ
(2)

Γ
(3)

Γ
(4)

Γ
(5)

γ
(11)

...γ
(1m)

γ
(21)

...γ
(2m)

γ
(31)

...γ
(3m)

γ
(41)

...γ
(4m)

γ
(51)

...γ
(5m)

{t
(1)
11 , t

(1)
12 , . . . , t

(1)

1x
(1)
1

, t
(1)
21 , . . . , t

(n)

vx
(n)
v

}

{t
(1)
11 , t

(1)
12 , . . . , t

(1)

1x
(1)
1

, t
(1)
21 , . . . , t

(n)

vx
(n)
v

}

Γ
(1)

:

< C1, x
(1)
1 >,

< C2, x
(1)
2 >,

...,

< Cv, x
(1)
v

>

Γ
(n)

:

< C1, x
(n)
1 >,

< C2, x
(n)
2 >,

...,

< Cv, x
(n)
v

>

Minimize

n
X

i=1

(

nh
X

h=1

�

�

�

�

�

Pv

j=1 x
(i)
j ∗m0

hj −M
(i)
h

M
(i)
h

�

�

�

�

�

+

nu
X

u=1

�

�

�

�

�

Pv

j=1 x
(i)
j ∗ o0uj −O

(i)
u

O
(i)
u

�

�

�

�

�

)

Subject to x
(i)
j ∈ Z

å, x
(i)
j < y,

vX

j=1

x
(i)
j < z,

vX

j=1

x
(i)
j ∗ T 0

j ≤ l

Time Window fW (γ(ij) indicates the timestamp) Time Window Error Time Interval Error

Γ
(1) < C11, γ

(13) >,< C12, γ
(17) >,< C58, γ

(15) >, . . . 0.12 0.15

Γ
(2) < C41, γ

(25) >,< C42, γ
(27) >,< C72, γ

(27) >, . . . 0.11 0.12
.

Γ
(n) < C21, γ

(n3) >,< C61, γ
(n7) >,< C81, γ

(n9) >, . . . 0.07 0.10

Time Window gWC CPU Time/s Scan Bytes/GB Filter Num Agg Num . . . Time Window Error Time Interval Error

Γ
(1) < C1, x

(1)
1 >, . . . , < Cv, x

(1)
v > 19.8 20.0 34 2 . . . 0.12 0.90

Γ
(2) < C1, x

(2)
1 >, . . . , < Cv, x

(2)
v > 30.2 39.4 2 20 . . . 0.11 1.12

. .

Γ
(n) < C1, x

(n)
1 >, . . . , < Cv, x

(n)
v > 19.8 9.8 31 30 . . . 0.07 0.78

Time Interval CPU Time/s Scan Bytes/GB

γ
(11) 5 10.1

γ
(12) 3 9.8
...

γ
(nm) 1 2.0

Time Interval fW ’s CPU Time/s fW ’s Scan Bytes/GB Time Interval Error

γ
(11) 5 10.1 0.3

γ
(12) 3 9.8 0.2
...

γ
(nm) 1 2.0 0.5

Figure 4: Two Phase Workload Synthesis

4.2 Timestamp Assignment Phase

After the !rst phase, PB!"#$ generates a workload that approxi-

mates the performance features within a coarse-grained time win-

dow. However, it still faces two key challenges as follows:

First, the ILP-based selection handles the small windows with

longer queries. Speci!cally, the ILP solver operates on disjoint time

windows and treats eachwindow in isolation to avoid cross-window

interference. This design, however, prevents the inclusion of long-

running queries that span across multiple windows. As a result,

while the ILP stage is e"ective for matching workload features

at the window level, it lacks the #exibility to capture !ne-grained

temporal patterns, especially when windows are too small and long-

running queries a"ect the resource usage across multiple windows.

Second, the ILP-based solution focuses only on “which” and

“howmany” queries to send in each time window, neglecting “when”

they actually arrive. Sending queries at the very beginning or uti-

lizing a Poisson distribution or a uniform distribution will all lead

to di"erences compared to the distribution of actual query arrival

time, thus limiting the e"ectiveness of synthetic workloads.

To deal with the issues above, PB!"#$ proposes a !ne-grained

method to assign workload components’ timestamps at the interval

level, thereby better simulating the temporal dynamics of real work-

loads. Compared to approximating performance metrics like CPU

Time and Scanned Bytes, approximating the operator distribution

for each time interval is more challenging. Hence, we do not pursue

approximating the operator distribution at the interval level.

4.2.1 Concurrent Processing Assumption. Normally, processingmul-

tiple queries in parallel a"ects the queries’ execution time. There-

fore, we need to e"ectively estimate the execution time of each

query when multiple queries are executed simultaneously. To ad-

dress this issue, we employ a lightweight prediction model. Build-

ing on the approach in [29], we model the impact of adding a new

query with pro!led duration / . Speci!cally, if /̂ represents the

average duration of 7 existing queries in the target time interval,

the updated average duration/ ± after incorporating the new query

(yielding 7 ± = 7 + 1 total queries) is given by: / ±
=

(
±

(
-+5

(
-̂+ 1

(
-

)

5 ± .

As OLAP systems evolve to become more complex and heteroge-

neous in resource usage, we believe more sophisticated modeling

is necessary. Recent studies [36, 37] have proposed GNN-based ap-

proaches to better capture such interactions. We plan to integrate

these promising directions into our framework in future work.

4.2.2 Simulated Annealing. To achieve a !ne-grained generation,

we model the timestamp assignment problem as a programming

problem, and the optimization goal is to minimize the total error of

all time intervals in each time window É
(1) . Consequently, PB!"#$

develops a simulated annealing-based algorithm to assign the times-

tamp to each query (i.e., the query’s starting time). The algorithm

performs in three steps. First, it initializes a timestamp assignment

of workload components. Second, it randomly modi!es the current

assignment by adjusting one workload component’s starting time

to create a new solution. Third, it recursively checks if the new

solution has a lower error. If this is the case, it accepts the current

solution with a certain probability to avoid getting stuck in local

optima. The probability of accepting a worse solution is controlled

by a "temperature" parameter 8 that gradually decreases as the

algorithm progresses. The process repeats for a few iterations, grad-

ually lowering the temperature and re!ning the solution, until a

stopping criterion is met (e.g., no signi!cant improvement over a

set number 9 of steps).

5 WORKLOAD AUGMENTATION WITH LLMS

The e"ectiveness of our two-phase workload synthesis is highly

sensitive to the quality of candidate workload components. When

user workloads and candidate components demonstrate similari-

ties in overall resource consumption patterns, performance char-

acteristic ratios, and operator distributions, the synthesis error

remains minimal. However, substantial discrepancies in these as-

pects would result in signi!cant synthesis errors. Speci!cally, such

di"erences may fall into the following two aspects. (1) Resource

consumption di"erences: User workloads demonstrate more diverse

resource utilization patterns compared to the !xed resource pro-

!les of benchmark-derived component candidates. (2) Operator

distribution di"erences: The CAB benchmark study [32] reveals that

3888

user workloads (Snowset) exhibit a higher prevalence of projec-

tion operators and fewer scan/!lter operators when compared to

TPC-H/TPC-DS benchmarks. Consequently, combining benchmark

queries cannot e"ectively reproduce authentic user workload op-

erator distributions. These discrepancies necessitate the workload

component augmentation module in PB!"#$.

5.1 Workload Component Augmentation

The augmentation task with new workload components can be

formulated as a constraint-aware query generation problem. We

formally de!ne the problem as follows: Given target performance

features %6 and an underlying database # , the objective is to syn-

thesize a workload component (: ±
,#) whose execution features

% ± minimize the approximation error relative to %6 .

We employ large language models (LLMs) to generate queries

that match target features %6 (comprising performance metrics

*6 and operator requirements +6). Our approach introduces a

version-agnostic prompting strategy decoupled from speci!c LLM

implementations and a modular framework designed for adaptation

to future LLM advancements. The framework incorporates three

core technical components:

5.1.1 Few-shot Prompting. Because LLMs cannot inherently un-

derstand query-performance relationships in zero-shot settings, we

provide informative examples for each target %6
,
to enable e"ective

query generation. The similarity between target %6
,
and existing

component features % ±1 is computed using Euclidean distance calcu-

lated as below:

(;0<_92*(%6 ,(,) = 1/(

√√√ 3ℎ∑

ℎ=1

(*±

ℎ,
¸*6

ℎ
)2 +

3#∑

+=1

(+±
+ ,

¸ +6+)2 + 1)

(2)

We select the top-= most similar or dissimilar components as

positive/negative examples >5 />7 for generation guidance. These

examples enable the LLM to learn query patterns from positive

examples and avoid query patterns from negative examples. As

illustrated in Figure 5 (for target %6
1
), green and brown markers

identify positive and negative examples, respectively.

5.1.2 Iterative Refinement. In general, LLMs cannot reliably gen-

erate queries meeting target criteria in a single attempt due to

their limited understanding of query-performance relationships.We

therefore employ an iterative re!nement strategy where the LLM

progressively generates better-aligned queries based on di"erences

between current outputs and target speci!cations. Speci!cally, for

each generated query, PB!"#$ performs pro!ling to extract its

performance features and quantify the discrepancy from the tar-

get speci!cations. All generated queries are incorporated into the

workload component candidate set regardless of error magnitude,

as even imperfect queries contribute bene!cially to the ILP opti-

mization process. The system iteratively requests regenerations

from the LLM until either the generated query achieves the target

accuracy or the maximum iteration threshold is reached.

5.1.3 Expert Knowledge Injection. Instead of issuing a generic re-

generation request, PB!"#$ computes the feature vector di"erences

Table 2: LLM Hints for Query and Data Augmentation

Scenarios LLM Hints & Database Augmentor

Actions

Generated query

has lower CPU

Time & lower

Scanned Bytes

(i) Try to generate a query that performs

computation on a larger table. (ii) Try to

delete some predicates to scan more data. (iii)

Try to add a dimensional table into the query.

Generated query

has higher CPU

Time & lower

Scanned Bytes

(i) Scan more data while deleting some

operators. (ii) Use more Inner Join operators

to reduce the intermediate result size. (iii)

Avoid accessing indexed columns.

Generated query

has lower CPU

Time & higher

Scanned Bytes

(i) Perform arithmetic operations on some

columns. (ii) Introduce more subqueries,

joins (JOINs), set operations (UNION,

INTERSECT, etc.), and complex aggregation

operations (GROUP BY, HAVING) while

accessing less tables. (iii) Add another

dimensional table and do more joins between

the fact table and dimensional tables.

CPU Time and

Scanned Bytes are

lower or higher

Use or generate a benchmark database with

a higher or lower Scale Factor.

CPU Time/Scanned

Bytes Ratio is lower

or higher

Use a benchmark database of higher or lower

skewness, or select a database with a more

complex schema.

between generated queries and the target and provides these di"er-

entials as explicit feedback to guide the LLM’s regeneration.

Speci!cally, to help the LLM make more e"ective adjustments,

we introduce LLM hints that are designed with the aid of external

expert knowledge. These hints are used to construct high-quality

prompts for regenerating queries that better match the desired

performance characteristics. Several examples of such hints are

illustrated in Table 2. For instance, if a generated query exhibits

low CPU Time and high Scanned Bytes, PB!"#$ guides the LLM to

incorporate more subqueries, join operations (e.g., JOIN), set oper-

ations (e.g., UNION and INTERSECT), and complex aggregations

(e.g., GROUP BY and HAVING), while accessing fewer tables.

Due to the fact that a user’s database is typically not visible,

PB!"#$ may fail to generate suitable queries using the existing

benchmark databases. To address this issue, PB!"#$ employs a

heuristic-driven database regeneration strategy when multiple query

generation attempts fail. Common error scenarios and correspond-

ing remedies are summarized in Table 2. For example, when both

CPU Time and Scanned Bytes are consistently too low or too high,

this often indicates that the selected database’s scale factor is either

too small or too large, thus requiring adjustment. If a suitable pre-

generated database with the desired scale factor is not available, a

new one must be generated. In another example, when the CPU

Time-to-Scanned Bytes ratio remains signi!cantly lower than the

target, this may suggest that the database lacks su$cient intermedi-

ate result complexity. To mitigate this, we can either use a database

with higher skewness or switch to a more structurally complex

benchmark, such as moving from TPC-H to TPC-DS, which fea-

tures richer table relationships and query patterns.

5.2 Workload Augmentation Procedure

The overall work#ow for workload augmentation, as shown in

Figure 5, consists of the following seven steps.

3889

User Performance Features

q CPU Time/s Scan Bytes/GB ... Agg Num
q1 2.5 4.3 ... 2
q2 1.7 1.5 ... 0
...

qn 1.3 1.9 ... 1

Augmentation Goal

C CPU Time/s Scan Bytes/GB ... Agg Num
C1 2 2 ... 0
C2 1.3 3 ... 3
...

Cv 1.7 1 ... 2

Existing Workload Components
C CPU Time/s Scan Bytes/GB ... Agg Num
CP

11
2 4.2 ... 2

...

CP

1w
2.3 3.9 ... 1

...

CN

1w
5 1 ... 8

Positive & Negative Example

Generate a query on <TPC-H 1GB> database, the
schema is <{customer (c_custkey INTEGER,
c_name &}>. Table9s sizes are <{<customer" :
"23MiB=,...}>. You are required to generate a SQL
of <CPU Time: 200, Scan Byte: 50, Aggregation
Operator: 1,&>. You can learn these queries9
patterns, <(i) Query: "SELECT * FROM lineitem
WHERE &", CPU Time: 100, Scan Bytes: 10, ...
(ii)&>. You can refer to some queries that there
patterns are to be avoided in your generation: <(i)
Query: "SELECT * FROM lineitem", CPU Time: 10,
Scan Bytes: 100, ... (ii)... >

LLM

Compare with Goal

Generation Error

CPU Time is <lower> than expected, Scan Bytes
is <lower> than expected, and the generated
SQL has 1 Aggregation operators rather than 2.
Try to generate a query that scans more data
and do more computation on larger table. You
can try to delete some predicates.

LOOP &&

Final Generated Workload Component

d

e

f

g

h

i

(i) Try to generate a
query that scans

more data& (iii) Try to
delete the predicates.

CPU Time/s Scan Bytes/GB ... Agg Num
1.9 3.8 ... 1

CPU Time/s Scan Bytes/GB ... Agg Num
-0.3 -0.2 ... -1

Q : <SELECT count(*) FROM &
DB : TPC-H 1GB

CPU Time/s Scan Bytes/GB ... Agg Num
2.1 4.1 ... 2

Q : <SELECT count(*) , sum(TAX) FROM LINEITEM WHERE &
DB : TPC-H 1GB

j

F
G CPU Time/s Scan Bytes/GB ... Agg Num

F
G
1

2.2 4.0 ... 2
F

G
2

1.1 1.4 ... 0
...

F
G

k
1.4 2 ... 3

eC

LLM

Figure 5: LLM-based Workload Component Augmentation

(1) Target Generation: The user workload is clustered to identify

representative target feature vectors {%6
1
, . . . , %6

0
} that capture

the diversity of workload characteristics.

(2) Example Retrieval: Based on the similarity function de!ned

in Equation 2, relevant examples are retrieved from existing

query pools, including both similar and dissimilar queries to

aid LLM generalization.

(3) Initial Prompting: The LLM is prompted with database meta-

data, representative targets, and selected examples to guide the

initial query generation process.

(4) Real-timeMeasurement: The generated queries are executed

against the target database to collect performance metrics, en-

abling empirical evaluation of how closely the queries match

the desired characteristics.

(5) Expert Guidance: When discrepancies between generated and

target features arise, prede!ned expert rules are introduced as

LLM hints to guide subsequent query generation.

(6) Iterative Re"nement: A feedback loop re!nes the queries

by incorporating real-time performance measurements and

expert hints, improving alignment with the target features over

multiple iterations.

(7) Database Augmentation: If query re!nement fails to meet

target metrics, the database is augmented by adjusting parame-

ters such as scale factor and data skewness, or by regenerating

the dataset to support the desired performance behaviors.

6 EXPERIMENTS

6.1 Experiment Setup

Platform and Implementation.We use the same experiment set-

ting as our baselines. For each server node, we use a Databend [8]

8C16G setting and we leverage Prometheus [28] to collect the met-

rics. For Redset’s query-to-query baseline experiment, we run our

evaluation on a 4-node ra3.4xlarge Redshift provisioned cluster

and collect metrics via the statistic tables including stl_wlm_query,

stl_scan, and stl_explain. We use CBC Solver [14] as our ILP solver

and Python SimAnneal Package [34] as our SA solver. We use a

state-of-the-art LLMmodel for the Augmenter (Note that we cannot

disclose the model name due to Amazon policy).

Workload Traces. For Snowset, we cluster all the traces into !ve

query arrival time patterns based on CAB [32]’s summarization. We

randomly select a one-hour trace from each pattern’s traces. These

selected traces contain both short-term and long-term peak loads,

ensuring good representativeness for the entire Snowset dataset. All

of the !ve traces are used for ablation experiments. For Redset, we

randomly select two one-hour traces for window-level experiments,

and three 24-hour traces on four nodes for query-level experiments.

Workload Components. We prepare TPC-H, TPC-DS, the Join

Order Benchmark (JOB) [18], and YCSB [10] with various scale

factors. JOB is a benchmark that contains 113 OLAP queries and a

dataset collected from IMDB [17]. As for TPC-H, we use sizes of

500M, 1G, 2G, 5G, 9G. As for TPC-DS, we use sizes of 1G and 2G.

As for Redset’s 4-node experiments, we use sizes of 1G, 10G, 100G,

1T, and 3T for both TPC-H and TPC-DS.

Evaluation Metrics. For window-level performance evaluation,

we use Mean Absolute Error (MAE), Geometric Mean Absolute

Percentage Error (GMAPE), and Geometric Mean Q-Error (GMQE)

per time window as the evaluation metrics. We use the geometric

mean of the relative error metrics instead of the arithmetic mean to

avoid the in#uence of several extremely large relative error values.

For window-level (or query-level) evaluation, 5 denotes the number

of time windows (or user queries).

MAE=
1

3

*∑

%=1

&&&% (%)
¸ %̃ (%)

&&& (3)

GMAPE= (

*∏

%=1

&&&&&
% (%)

¸ %̃ (%)

% (%)

&&&&& + 1)
1
* ¸ 1 (4)

GMQE= (

*∏

%=1

max

(
% (%)

%̃ (%)
,

%̃ (%)

% (%)

)
)
1
* (5)

Baseline. We evaluate two baselines as follows: (1) Stitcher [35]:

It synthesizes workloads by adjusting the sending concurrency

and frequency of benchmark queries using Bayesian Optimiza-

tion(BO) [15]. Since it is not open-sourced, we follow the instruc-

tions in [35] and collect training data of various con!gurations of

benchmark suite combinations based on the workload components

we use. We train a linear model for each "workload type" (e.g. TPC-

H 5G & TPC-DS 1G), and use BO [16, 26]) to !nd the solution. For

each time window, we run 400 iterations of the BO processes to

achieve the best accuracy. (2) CAB [32]: It creates a query pool

and selects queries from the query pool to simulate the user work-

load’s CPU Time. We use all our prepared workload components

3890

queries to construct the query pool for a fair comparison. Since it

is open-sourced, we use their code to run the experiments.

Hyper parameter settings. Time window É is set to 5 minutes,

and time interval ? is set to 30 seconds. For ILP, we set diversity

constraint - to 10, and total count constraint . is equal to twice the

original user query count. For TA, we set the terminating criterion’s

no-improvement step number 9 = 100 and we use a SA tool [34] to

set the maximum and minimum temperatures.

6.2 Evaluation of PB!"#$ on Snowset

Overall Evaluation. Table 3 reports the evaluation results of work-

load synthesis at the time window level over Snowset, reporting the

average performance across !ve workload traces. For simplicity,

we omit the GMAPE measurement of approximation errors for op-

erator distributions. The results indicate that PB!"#$ signi!cantly

outperforms the baselines, achieving up to 6³ lower GMAPE for

performance metrics and much lower errors for operator distribu-

tions. Speci!cally, PB!"#$ achieves a GMAPE of 17.37% for CPU

Time and 12.43% for Scanned Bytes. The superior performance

of PB!"#$ can be attributed to its workload synthesis approach,

which e"ectively simultaneously approximate both performance

metrics and operator distributions.

In summary, the results demonstrate that, for real workload

traces from Snowset, PB!"#$ achieves superior approximation of

both performance metrics and operator distributions, and signi!-

cantly outperforming existing methods.

Time Interval Results. We also evaluate the performance of the

approaches on time interval results. As shown in Table 4, PB!"#$

achievesmore than 3³ lower GMAPE compared to CAB and Stitcher

for CPU Time and Scanned Bytes. Due to the small sample size

within each time interval, errors can be in#uenced by singular

values, leading to a higher mean error. Nevertheless, PB!"#$ ef-

fectively captures peak patterns. Figure 6 compares the original

Snowset traces with the replayed performance traces of the syn-

thetic workloads. Due to the space limit, we present results for three

representative traces, illustrating how well PB!"#$ captures real

workload dynamics across di"erent workload patterns. PB!"#$

consistently achieves better approximation performance across dif-

ferent workload patterns, including high spikes, low peaks, and

sustained peaks. In contrast, CAB and Stitcher struggle to approx-

imate certain peaks and exhibit larger errors due to their coarse

granularity and limited adaptability.

It is worth noting that PB!"#$ may occasionally exhibit slight

deviations in peak positions. This is primarily due to inaccuracies

in estimating execution times under concurrent query processing,

which is a challenge that a"ects all methods, including the baselines.

While we apply a linear slow-down model to approximate these

variations, completely eliminating such mismatches is infeasible.

Fortunately, as these deviations result only in minor peak shifts

or slight peak #attening within a few seconds, it has insigni!cant

impact on the overall performance.

E#ciency Evaluation.We also evaluate the generation time of

each method to compare their e$ciency. CAB synthesizes work-

loads within milliseconds, as it simply selects queries randomly

without requiring training or prediction. Stitcher incurs minimal

time for model training, as it only !ts a few linear models, but

requires an average of 122 minutes to assemble the workload. In

contrast, PB!"#$ signi!cantly improves e$ciency, taking an aver-

age of 6 minutes for ILP and 8 minutes for TA, resulting in a total

synthesis time of 14 minutes—making it 8³ faster than Stitcher. It is

worth noting that for real-time workload synthesis and replay, the

synthesis time must remain within the length of the workload trace

(60 minutes in this case) to ensure uninterrupted processing. Ther-

fore, PB!"#$meets this requirement, demonstrating its practicality

for online workload synthesis and benchmarking.

6.3 Ablation Study of PB!"#$

6.3.1 Evaluation on TA & ILP. Figure 7a and Table 6 shows the

results of PB!"#$’s w/o Timestamp Assignment (TA) results. Since

our baselines have no timestamp assignment step, we randomly

send workload components within the time window. It can be

seen that when we do not assign timestamps (i.e., performing the

!rst phase only), the !tting result shows a signi!cant mismatch.

With timestamp assignment, the results for performance metrics

are signi!cantly improved (i.e., 2.4³ and 1.6³ better GMAPE on

CPU Time and Scanned Bytes, respectively). Note that TA has no

impact on the operator results as the ratio is !xed in a time window

regardless of the queries’ order or the length of the time window.

Moreover, to evaluate the e"ectiveness of the ILP stage, we im-

plement a baseline Greedy that selects the most similar query per

time window based on average feature similarity within each win-

dow (matching the original workload’s query count). As shown in

Table 5, the results clearly demonstrate that our ILP-based method

achieves 3x-5x better performance across all measured features.

This is because Greedy processes each window with a single query

variant, while PB!"#$ dynamically combines multiple queries per

window. This compositional #exibility enables PB!"#$ to better

approximate the target feature distributions.

6.3.2 Evaluation on Workload Augmentation. Figure 7b shows the

comparison results with and without the LLM-based workload

components augmenter. It can be observed that the workload com-

ponent added by LLM signi!cantly improves the !tting accuracy.

In particular, as shown in Table 5, compared with ILP+TA, PB!"#$

improves not only the accuracy of performance metric !tting but

also signi!cantly enhances the accuracy of operator ratio !tting.

This improvement stems from the fact that traditional benchmark

queries often contain a higher proportion of computational opera-

tors, which deviates from the operator distributions observed in real

customer workloads. By augmenting the candidate query set with

components generated through our LLM-based augmenter, PB!"#$

e"ectively reduces this mismatch, thereby achieving a lower !tting

error across both performance and operator-level features.

We also compare PB!"#$ with a traditional query generator,

SQLSmith [1], which generates queries and then selects those that

satisfy the execution constraints. As shown in Table 5, after incorpo-

rating these queries into the workload component candidate pool,

we !nd that PB!"#$ outperforms SQLSmith in !tting operator

ratios by up to 28%, while also achieving better mean absolute error

(MAE) performance on CPU Time and Scanned Bytes. In terms

of e$ciency, we observe that SQLSmith requires over two hours

to generate and verify 1,000 queries in order to !nd 82 executable

ones, whereas PB!"#$ completes this task in just 43 minutes. These

3891

Table 3: Evaluation of PB!"#$ on Snowset

Methods
CPU Time (s) Scanned Bytes (GB) Filter Ratio Aggregate Ratio Join Ratio Sort Ratio

MAE GMAPE(%) GMQE MAE GMAPE(%) GMQE MAE GMQE MAE GMQE MAE GMQE MAE GMQE

Stitcher 64.89 110.16 2.27 71.10 43.61 2.71 0.12 1.35 0.12 1.39 0.16 1.02 0.02 1.68

CAB 41.01 25.24 1.25 24.83 45.43 1.86 0.73 5.41 0.73 5.25 0.66 4.26 0.56 5.05

PB!"#$ 22.41 17.37 1.15 3.70 12.43 1.25 0.00 1.03 0.00 1.03 0.00 1.09 0.00 1.00

Figure 6: Replayed Traces on Snowset with Di!erent Methods

Table 4: Results on Snowset (Time Interval)

Methods
CPU Time Scanned Bytes

MAE (s) GMAPE (%) GMQE MAE (GB) GMAPE (%) GMQE

Stitcher 20.29 163.10 4.41 3.37 82.85 2.71

CAB 32.13 154.18 10.57 4.52 80.57 4.73

PBench 7.75 36.05 1.49 2.32 25.23 1.56

(a) Replayed Traces of w/o Timestamp Assignment on Snowset

(b) Replayed Traces of w/o LLM Augmenter on Snowset

Figure 7: Ablation Study Replayed Traces on Snowset

results highlight the advantages of our hint-guided, LLM-powered

query generation approach over traditional query generation meth-

ods in both e$ciency and !delity to real-world workloads.

We also provide a more detailed observation that, on average,

88.1% of the queries in the synthesized Snowset workloads across

!ve traces were generated by LLMs. This high proportion is mainly

in#uenced by two factors. First, as more LLM-generated queries

are added to the candidate pool, the ILP-based selector has a higher

chance of !nding suitable matches with the desired performance

pro!les. Second, when benchmark queries diverge signi!cantly

from the target workload in terms of performance characteristics,

the ILP solver tends to favor LLM-generated queries, which are

explicitly tailored to better re#ect the statistical and behavioral

features of the original trace.

6.4 Evaluation of PB!"#$ on Redset

Figure 8 and Table 7 show the results of PB!"#$ and baselines

on three Redset traces. Table 7 shows that PB!"#$ outperforms

baselines as well. For CPU Time, PB!"#$ achieves better GMAPE

than Stitcher and CAB. As for Scanned Bytes, PB!"#$ outper-

forms Stitcher and CAB in terms of MAE. As for operator numbers

like Aggregation and Join number, PB!"#$ excels due to its multi-

objective optimization and workload component augmenter, thus it

outperforms all the baselines and achieves a GMQE of 1.00 for the

aggregation number. Figure 8 shows that PB!"#$ can !t almost

every peak of the customer trace, indicating that the timestamp

assignment method works well on Redset. We also evaluate the

performance metrics matching accuracy in the interval level. As

shown in Table 9, we achieve more than 2.5³ higher accuracy in

GMAPE than the baselines for CPU Time.

6.5 Evaluation on Extensibility

To demonstrate the extensibility of PB!"#$ to new metrics, we

conduct an experiment in PostgreSQL 16 to evaluate its ability to

match subquery plan structures, which are critical for query op-

timization. Speci!cally, we focus on two-way join substructures,

capturing both the physical join type and the base tables involved

(e.g., a Hash Join between the orders and customer tables). Since

such !ne-grained details are absent in Redset and Snowset, we

simulate a “user workload” using a random query generator that

3892

Table 5: Ablation Study Results on Snowset

Methods
CPU Time Scanned Bytes Filter Ratio Aggregate Ratio Join Ratio Sort Ratio

MAE (s) GMAPE (%) GMQE MAE (GB) GMAPE (%) GMQE MAE GMQE MAE GMQE MAE GMQE MAE GMQE

ILP+TA 5.51 31.58 1.90 2.28 29.61 1.65 0.65 4.47 0.65 4.35 0.24 1.95 0.28 2.26

SQLSmith 107.41 24.33 1.28 12.01 20.55 1.51 0.08 1.31 0.09 1.28 0.03 1.11 0.01 1.01

Greedy 68.62 41.13 1.48 19.41 53.16 1.71 0.74 5.42 0.74 5.27 0.06 1.10 0.38 2.33

PBench 22.41 17.37 1.15 3.70 12.43 1.25 0.00 1.03 0.00 1.03 0.00 1.09 0.00 1.00

Figure 8: Replayed Traces on Redset

Table 6: Ablation Study of TA Phase (Time Interval)

Methods
CPU Time (s) Scanned Bytes (GB)

MAE GMAPE (%) GMQE MAE GMAPE (%) GMQE

ILP+LLM 26.41 175.60 4.63 5.67 98.91 4.22

PBench 7.75 36.05 1.50 2.32 25.24 1.57

samples from the TPC-H query pool. The resulting workload spans

one hour, contains 880 SQL queries, and exhibits concurrency levels

from 1 to 8. We extract 18 distinct types of two-way joins from

this workload. In our setting, we assume access only to aggregated

statistics over the 18 join types, without the underlying subquery

structures. PB!"#$ then serves as an intermediate tool that trans-

forms these coarse-grained summaries into a concrete synthetic

workload with rich structural !delity. As shown in Table 8, the

synthetic workload closely matches the distribution of join types in

the original, including Hash Join (HJ), Sort-Merge Join (SMJ), and

Nested Loop Join (NLJ).

We further demonstrate the utility of the synthesized workload

in facilitating query optimization. By enumerating scan and join

type hints, we are able to systematically explore alternative execu-

tion strategies for subqueries. Our !ndings reveal that the default

physical operators chosen by the optimizer are not always the most

e$cient. For example, in TPC-H Q3, a Hash Join can be replaced

with a Nested Loop Join to achieve better performance under spe-

ci!c hint con!gurations. This experiment highlights how PB!"#$

can reproduce meaningful subquery plans and enable controlled

plan variations, thereby supporting physical operator tuning and

optimization testing.

6.6 Evaluation on Downstream Task

To evaluate the e"ectiveness of PB!"#$ on database benchmarking,

we synthesize workloads from two traces, namely Snowset Trace

4 (The third trace in Figure 6) and Redset Trace 2. We then replay

the synthetic workloads on Snow#ake and Redshift. Both systems

are provisioned with 8 vCPUs to ensure a fair comparison.

Figure 9: Database Benchmarking using PB!"#$

Snowset Trace 4 is both read- and compute-intensive, and

Snow#ake is well suited to this workload due to its decoupled stor-

age and compute architecture, which allows independent scaling un-

der heavy load. In contrast, Redset Trace 2 consists of highly concur-

rent short queries, where Redshift excels due to its AutoWLM [29]

that can manage such workloads e$ciently.

As shown in Figure 9, the latency distributions on the syn-

thetic workloads derived from Snowset and Redset respectively

match these expectations: Snow#ake outperforms Redshift on the

synthetic workload derived from Snowset Trace 4, while Redshift

surpasses Snow#ake on the synthetic workload derived from Redset

Trace 2. These results indicate that PB!"#$ successfully preserves

the key performance characteristics of the original traces in the

generated workloads, which demonstrates its practical value in

database benchmarking and selection, especially when direct ac-

cess to production workloads is unavailable.

7 RELATED WORK

In the following, we introduce the related work in benchmark-based

workload synthesis and constraint-aware query generation.

Benchmark-Based Workload Synthesis. There have emerged

several works aiming to synthesize new workloads based on exist-

ing benchmarks. Particularly, Wan et al. developed Stitcher [35] to

combine entire database benchmarks such as TPC-H’s 22 queries

3893

Table 7: Results on Redset

Methods
CPU Time (s) Scanned Bytes (GB) Join Num Aggregate Num

MAE GMAPE (%) GMQE MAE GMAPE (%) GMQE MAE GMAPE GMQE MAE GMAPE GMQE

Stitcher 18.17 27.09 1.50 8.50 61.65 3.42 56.45 337.82 5.28 135.21 74.56 5.81

CAB 8.29 25.70 1.26 10.89 138.75 4.17 187.45 95.52 36.29 55.48 188.43 10.72

PB!"#$ 7.52 24.49 1.24 6.83 97.16 2.53 0.59 6.56 1.06 0.47 0.46 1.00

Table 8: Fitting Results for Two-Way Join Substructures (Total Counts) HJ, SMJ, and NLJ denote Hash Join, Sort-Merge Join, and

Nested Loop Join, respectively; pa, li, re, na , su, ps, cu, or are table abbreviations

Workload

Substucture HJ

(pa & li)

HJ

(re & na)

NLJ

(re & na)

NLJ

(ps & su)

HJ

(ps & pa)

HJ

(ps & su)

HJ

(su & na)

NLJ

(su & na)

NLJ

(ps & pa)

Original 34 105 39 105 77 32 70 78 39

Synthesized 34 105 39 105 76 32 69 78 39

Workload

Substructure HJ

(or & li)

NLJ

(pa & li)

NLJ

(cu & or)

NLJ

(su & li)

NLJ

(li & li)

HJ

(cu & or)

NLJ

(ps & li)

SMJ

(li & pa)

NLJ

(or & li)

Original 174 75 80 75 78 81 39 47 83

Synthesized 174 75 80 72 78 81 39 47 83

Table 9: Results on Redset (Time Interval)

Methods
CPU Time (s) Scanned Bytes (GB)

MAE GMAPE (%) GMQE MAE GMAPE (%) GMQE

Stitcher 6.03 197.68 8.24 1.21 90.94 4.09

CAB 7.41 230.68 7.41 1.39 128.87 4.67

PB!"#$ 1.43 77.07 1.82 1.06 85.87 2.64

and YCSB [6]’s workload. The system comprises a predictor, a gen-

erator, and an integrator, with linear regression models trained

for each benchmark combination to predict performance metrics.

Renen et al. [32] introduced the CAB tool for synthesizing ana-

lytical workloads, which sets database scales based on log-normal

distributions. CAB allocates CPU time budgets proportional to the

actual sizes of the databases. It schedules query arrivals by seg-

menting the benchmark execution into time periods, where CPU

time consumption is proportional to the number of query requests.

Unfortunately, these works cannot achieve high accuracy as they

employ a coarse-grained !tting strategy and neglect the operator

ratio, while PB!"#$ develops a !ne-grained method to consider

both performance metrics and operator distributions.

Constraint-Aware Query Generation. This line of research fo-

cuses on generating SQL queries that satisfy speci!ed cardinality

constraints over given database tables. A widely adopted approach

involves using traditional query generators, such as SQLSmith [1],

to produce a large pool of queries, from which valid candidates

are subsequently selected. While this method is straightforward, it

su"ers from a low success rate and incurs signi!cant computational

overhead in verifying constraint satisfaction. Zhang et al. [42] intro-

duce a cardinality-aware query generation framework that models

the task as a sequential decision-making process and applies rein-

forcement learning (RL) techniques to optimize it. Mueller et al. [24]

further contribute by developing novel query representations and

predicate selection mechanisms based on feature vectors. However,

RL-base and DL-based methods remain computationally expensive

and challenging to train [21], and they often overlook system-level

performance metrics such as CPU time or scanned bytes.

8 CONCLUSION AND FUTUREWORK

In this paper, we proposed PB!"#$, a workload synthesizer that con-

structs synthetic workloads by strategically selecting and combin-

ing workload components from existing benchmarks. Particularly,

PB!"#$ incorporates e"ective techniques for component selection

and timestamp assignment, and leverages an LLM-enhanced ap-

proach for component augmentation. Extensive experiments on

real workload traces demonstrate that PB!"#$ signi!cantly reduces

approximation errors compared to state-of-the-art methods.

In the future, we would like to deal with several open problems:

(1) Environment Adaptation. The current version of PB!"#$

requires that workload synthesis is performed in an environment

similar to that of the target user. To relax this constraint, we plan to

explore environment adaptation techniques that enable synthesis

even under mismatched conditions. One promising direction is to

develop a performance predictor that estimates a query’s perfor-

mance features in a new execution environment, thereby bridging

the gap between environments.

(2) OLTP Extension. This work primarily focuses on OLAP-

oriented workloads. In future work, we aim to investigate the appli-

cability of our approach to OLTP-oriented workloads, which pose

unique challenges due to stronger inter-query dependencies (e.g.,

locks, transactions, and frequent updates). Thus, it is challenging

to perfectly !t the performance metrics in such cases. One promis-

ing direction is to incorporate a more sophisticated inter-query

interaction module for capturing complex runtime dynamics.

(3) Distribution-Aware Data Generation. Currently, PB!"#$

relies heavily on existing benchmark databases. However, when

user workloads operate on unseen databases with signi!cantly dif-

ferent data distributions, synthesis accuracy can drastically degrade.

To address this limitation, we plan to develop distribution-aware

data generation techniques that can construct synthetic databases

matching the statistical properties of the target workload’s data,

even in the absence of the original dataset.

ACKNOWLEDGMENTS

This work was supported by the NSF of China (62436010 and

62441230), the DARPA ASKEM program (award HR00112220042),

the ARPA-H Biomedical Data Fabric project, the MIT DSAIL Project,

grants from Liberty Mutual and Google, the United States Air Force

Research Laboratory, the Department of the Air Force Arti!cial

Intelligence Accelerator and was accomplished under Cooperative

Agreement Number FA8750-19-2-1000.

3894

REFERENCES
[1] Seltenreich Andreas, Tang Bo, and Mullender Sjoerd. 2022. SQLsmith. https:

//github.com/anse1/sqlsmith. 2025/04/10.
[2] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh

Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205–2217.

[3] Jinsheng Ba and Manuel Rigger. 2024. Keep It Simple: Testing Databases via
Di"erential Query Plans. Proceedings of the ACM on Management of Data 2, 3
(2024), 1–26.

[4] Peter Boncz, Angelos-Christos Anatiotis, and Ste"en Kläbe. 2018. JCC-H: Adding
Join Crossing Correlations with Skew to TPC-H. In Performance Evaluation and
Benchmarking for the Analytics Era, Raghunath Nambiar and Meikel Poess (Eds.).
Springer International Publishing, Cham, 103–119.

[5] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H analyzed: Hidden
messages and lessons learned from an in#uential benchmark. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 61–76.

[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[7] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. 2016. The snow#ake elastic data warehouse. In Proceed-
ings of the 2016 International Conference on Management of Data. 215–226.

[8] Databend. 2023. TPC-H Benchmark: Databend Cloud vs. Snow#ake. Technical
Report. Databend. https://docs.databend.com/guides/benchmark/tpch Accessed:
2023-11-20.

[9] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Je" Naughton, and
Stratis Viglas. 2021. Diametrics: benchmarking query engines at scale. ACM
SIGMOD Record 50, 1 (2021), 24–31.

[10] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+ T:
Benchmarking web-scale transactional databases. In 2014 IEEE 30th International
Conference on Data Engineering Workshops. IEEE, 223–230.

[11] Haowen Dong, Chao Zhang, Guoliang Li, and Huanchen Zhang. 2024. Cloud-
Native Databases: A Survey. IEEE Transactions on Knowledge and Data Engineer-
ing (2024).

[12] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias U#acker. 2020.
Quantifying TPC-H choke points and their optimizations. Proceedings of the
VLDB Endowment 13, 8 (2020), 1206–1220.

[13] Ju Fan, Tongyu Liu, Guoliang Li, Junyou Chen, Yuwei Shen, and Xiaoyong Du.
2020. Relational Data Synthesis using Generative Adversarial Networks: A
Design Space Exploration. Proc. VLDB Endow. 13, 11 (2020), 1962–1975.

[14] John Forrest and Robin Lougee-Heimer. [n. d.]. CBC User Guide. https://www.
coin-or.org/Cbc/. 2024/12/13.

[15] Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811 (2018).

[16] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and
John P Cunningham. 2014. Bayesian optimization with inequality constraints..
In ICML, Vol. 2014. 937–945.

[17] IMDb. 2024. IMDb Non-Commercial Datasets. https://developer.imdb.com/non-
commercial-datasets/. 2024/12/13.

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[19] Viktor Leis and Maximilian Kuschewski. 2021. Towards cost-optimal query
processing in the cloud. Proceedings of the VLDB Endowment 14, 9 (2021), 1606–
1612.

[20] Guoliang Li, Haowen Dong, and Chao Zhang. 2022. Cloud databases: New
techniques, challenges, and opportunities. Proceedings of the VLDB Endowment
15, 12 (2022), 3758–3761.

[21] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Machine learning for databases.
In Proceedings of the First International Conference on AI-ML Systems. 1–2.

[22] Thibaut Lust and Jacques Teghem. 2010. The multiobjective multidimensional
knapsack problem: a survey and a new approach. arXiv:1007.4063 [cs.DM]
https://arxiv.org/abs/1007.4063

[23] Microsoft. 2024. DSB benchmark. https://github.com/microsoft/dsb. 2024/12/13.
[24] Magnus Müller, Lucas Woltmann, and Wolfgang Lehner. 2023. Enhanced Fea-

turization of Queries with Mixed Combinations of Predicates for ML-based
Cardinality Estimation.. In EDBT. 273–284.

[25] Vikram Nathan, Vikramank Singh, Zhengchun Liu, Mohammad Rahman, An-
dreas Kipf, Dominik Horn, Davide Pagano, Gaurav Saxena, Balakrishnan (Mu-
rali) Narayanaswamy, and Tim Kraska. 2024. Intelligent scaling in Amazon
Redshift. (2024). https://www.amazon.science/publications/intelligent-scaling-
in-amazon-redshift

[26] Fernando Nogueira. 2014–. Bayesian Optimization: Open source constrained
global optimization tool for Python. https://github.com/bayesian-optimization/
BayesianOptimization

[27] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why
You Should Run TPC-DS: A Workload Analysis.. In VLDB, Vol. 7. 1138–1149.

[28] Prometheus. 2024. Prometheus Github Page. https://github.com/prometheus.
2024/12/13.

[29] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George
Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pandis, and
Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine Learning
Enhanced Workload Management in Amazon Redshift. In Companion of the 2023
International Conference on Management of Data (Seattle, WA, USA) (SIGMOD
’23). Association for Computing Machinery, New York, NY, USA, 225–237. https:
//doi.org/10.1145/3555041.3589677

[30] Dana Van Aken, Andrew Pavlo, Geo"rey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[31] Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC is not enough: An analysis of the Amazon Redshift #eet.
Proceedings of the VLDB Endowment 17, 11 (2024), 3694–3706.

[32] Alexander Van Renen and Viktor Leis. 2023. Cloud analytics benchmark. Pro-
ceedings of the VLDB Endowment 16, 6 (2023), 1413–1425.

[33] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, AshishMotivala,
and Thierry Cruanes. 2020. Building an elastic query engine on disaggregated
storage. In 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). 449–462.

[34] Richard J. Wagner. 2024. Python module for simulated annealing. https://github.
com/perrygeo/simanneal. 2024/12/13.

[35] Chengcheng Wan, Yiwen Zhu, Joyce Cahoon, Wenjing Wang, Katherine Lin,
Sean Liu, Raymond Truong, Neetu Singh, Alexandra M. Ciortea, Konstantinos
Karanasos, and Subru Krishnan. 2023. Stitcher: Learned Workload Synthesis
fromHistorical Performance Footprints. In EDBT. OpenProceedings.org, 417–423.
https://doi.org/10.48786/EDBT.2023.33

[36] ZiniuWu, RyanMarcus, Zhengchun Liu, Parimarjan Negi, VikramNathan, Pascal
Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and
Tim Kraska. 2024. Stage: Query Execution Time Prediction in Amazon Redshift.
arXiv:2403.02286 [cs.DB] https://arxiv.org/abs/2403.02286

[37] Ziniu Wu, Markos Markakis, Chunwei Liu, Peter Baile Chen, Balakrishnan
Narayanaswamy, Tim Kraska, and Samuel Madden. 2025. Improving DBMS
Scheduling Decisions with Fine-grained Performance Prediction on Concurrent
Queries–Extended. arXiv preprint arXiv:2501.16256 (2025).

[38] Chao Zhang, Guoliang Li, Leyao Liu, Tao Lv, and Ju Fan. 2025. CloudyBench:
A Testbed for A Comprehensive Evaluation of Cloud-Native Databases. In 2025
IEEE 41st International Conference on Data Engineering (ICDE). IEEE Computer
Society, 2535–2547.

[39] Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for
HTAP Databases. Proceedings of the VLDB Endowment 17, 5 (2024), 939–951.

[40] Chao Zhang, Guoliang Li, Jintao Zhang, Xinning Zhang, and Jianhua Feng.
2024. HTAP Databases: A Survey. IEEE Transactions on Knowledge and Data
Engineering (2024).

[41] Huanchen Zhang, Yihao Liu, and Jiaqi Yan. 2023. Cost-Intelligent Data Analytics
in the Cloud. arXiv preprint arXiv:2308.09569 (2023).

[42] Lixi Zhang, Chengliang Chai, Xuanhe Zhou, and Guoliang Li. 2022. Learnedsql-
gen: Constraint-aware sql generation using reinforcement learning. In Proceed-
ings of the 2022 International Conference on Management of Data. 945–958.

3895

