
Extensible and Robust Evaluation of SimilarityQueries
Daniel Schmitt

University of Salzburg, Austria
danielulrich.schmitt@plus.ac.at

Thomas Hütter
Software Competence

Center Hagenberg, Austria
thomas.huetter@scch.at

Nikolaus Augsten
University of Salzburg, Austria
nikolaus.augsten@plus.ac.at

ABSTRACT

We study the similarity join problem from a systems perspective.
A similarity join retrieves all similar record pairs from two collec-
tions based on a given distance function. Existing solutions are often
optimized for a single distance function and domain. Such mono-
lithic solutions are limited in both their extensibility to new distance
functions and their robustness against changing data characteristics.

To address these challenges, we introduce Fast, a similarity join
algorithm designed for extensible and robust query evaluation. It
leverages a novel abstraction called reductions, which transform
similarity join problems from complex domains into simpler ones.
A reduction graph is constructed to systematically enumerate query
plans. Since cost models for similarity queries are typically unavail-
able, Fast employs runtime partitioning and a sampling-based strat-
egy to select anear-optimal queryplanwithperformanceguarantees.
It can utilize prebuilt indexes or build them on-the-fly, incorporating
caching techniques to accelerate index construction and probing. Ex-
tensive experiments across diverse datasets, domains, and distance
functions show that Fast consistently performs close to the optimal
plan. Finally, two case studies highlight its strength as a baseline and
its utility for prototyping future similarity join algorithms.

PVLDBReference Format:

Daniel Schmitt, Thomas Hütter, and Nikolaus Augsten. Extensible and
Robust Evaluation of Similarity Queries. PVLDB, 18(11): 3868 - 3882, 2025.
doi:10.14778/3749646.3749660

PVLDBArtifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/DatabaseGroup/fast-similarity-evaluation.

1 INTRODUCTION

Similarity joins are a fundamental operation in data integration,
entity resolution, and information retrieval [11, 12, 16, 42, 54, 67, 79].
They use a predefined distance function to retrieve all pairs of sim-
ilar records from two datasets. A common variant, the range join,
matches records if their distance is within a threshold. The choice
of distance function is application-specific and heavily depends on
the domain of the records: for sets, for example, Jaccard or overlap
similarity is common [47]; string joinsmay rely on edit distance [30]
or on Jaro similarity [17]; and for hierarchical data like JSON or
XML, tree-based distances such as the JSON edit distance [28] or
pq-grams [5] have been used.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749660

Despite decades of progress in developing efficient physical opera-
tors for specific distance functions [19, 26, 27, 29, 35, 44, 57, 71, 79, 80,
83], integrating similarity joins into database systems remains chal-
lenging. In particular, two major system-level challenges persist [3]:

• Extensibility: Similarity measures are highly application-
dependent, and numerous distance functions have been
proposed [17, 49, 51]. A system must allow new distance
functions to be added with low engineering effort.

• Robustness: The performance of similarity join algorithms
varies drastically depending on dataset characteristics and
query parameters. Effective operator selection is essential
for robust system performance.

Asanexampleof the extensibility challenge, considera systemthat
implements a physical operator for set similarity joins. Extending
such a system to support tree similarity joins (e.g., using tree edit dis-
tance forXMLdocuments) typically requires substantial engineering
effort: a suitable joinalgorithmmustbeselectedordeveloped, special-
ized index structures (e.g., pq-grams [5] or positional label sets [29])
must be implemented, and new access and join logicmust bewritten.
The existing code for set similarity joins is not easily reusable.

Building a system that is robust across diverse workloads is chal-
lenging: the performance of different similarity join algorithms
varies significantly depending on dataset characteristics (e.g., data
distribution, record sizes) and query parameters (e.g., the similarity
threshold) [30, 57]. Experimental evaluations consistently show that
no single algorithm performs best across all scenarios; a poor algo-
rithm choice may degrade performance by orders of magnitude [57].
The lack of suitable cost models [3] complicates query optimization.

We argue that these challenges arise from how similarity join
algorithms are typically designed: as monolithic, tightly coupled im-
plementations. Most approaches extract features from input records
and evaluate a pairwise filter condition, for example, extracting 𝑝𝑞-
grams from trees. A physical join operator then uses this filter to
identify matching record pairs, such as via an index-nested loop
join with prefix filtering. Current solutions hardcode both the filter
condition and the physical operator into a single, inseparable unit.
This monolithic design has serious drawbacks: it limits robustness,
as fixed internal plans cannot adapt to varying workloads, and it
hinders extensibility, as components are difficult to reuse. As a re-
sult, developers are forced to implement and maintain a growing
collection of isolated, specialized algorithms.

Modularization using Reductions.We propose addressing these
challenges through amodular design centered around a new abstrac-
tion: reductions. A reduction explicitly defines how a similarity join
probleminonedomain (e.g., treeswith treeeditdistance) canbe trans-
formed into a similarity join in another, typically simpler domain
(e.g., sets with structural similarity). While such transformations
have appeared implicitly in prior work, they were tightly coupled to
specific algorithms and not reusable across contexts [22, 27, 29, 77].

3868

https://doi.org/10.14778/3749646.3749660
https://github.com/DatabaseGroup/fast-similarity-evaluation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749660
https://www.acm.org/publications/policies/artifact-review-and-badging-current

By elevating reductions to first-class, formally defined compo-
nents, we decouple the specification of similarity from its physical
execution. This enables a clean separation of concerns: domain ex-
perts define reductions tailored to their data and distance functions,
while system developers build and optimize a shared set of physical
join operators over well-supported domains (e.g., sets, strings, or
trees). The lack of a clear separation between reduction and execu-
tion has repeatedly led to suboptimal algorithms, where effective
reductionswere combinedwith inefficient join operators [27, 29, 50].

This modular architecture offers two key benefits. First, it im-
proves extensibility: new distance functions can be supported by
defining a reduction to an existing domain, without implementing
a full join algorithm from scratch. Second, it enhances robustness:
reductions can be composed with different physical operators, en-
abling the system to explore a larger space of query plans.

To systematically capture these combinations, we introduce the
notion of a reduction graph, where nodes represent intermediate do-
mains and edges correspond to reductions or physical join operators.
This abstraction allows us to enumerate a wide variety of evaluation
strategiesmany of which have not appeared in previous workand
choose among them adaptively at runtime.

Query Planning.Using the reduction graph, we enumerate a set
of query plans. Traditional database systems rely on cost models to
optimize query plans, but suchmodels are not available for similarity
join operators [3]. Since the performance of these operators depends
heavily on dataset characteristics and query parameters, selecting an
efficient plan is challenging. This problem is related to estimating the
cardinality of similarity joins, which has applications in predicate
and join ordering [31, 48, 61, 75]. However, existing estimators only
predict the output size of a similarity join, whereas the performance
of a similarity join often depends on the size of intermediate results;
information that is not captured by these estimators.

To address the lackof suitable costmodels,wepropose a sampling-
based strategy: each plan is executed for a short timeslice, and its
progress guides future choices. Plan selection ismodeled as aMarkov
decisionprocess, and theUpperConfidenceTree (UCT) algorithm[41]
guarantees eventual convergence to the best query plan.

In summary, our contributions are as follows:

• Our Fast (FullyAutomatic SimilarityTransformation) al-
gorithm leverages the novel abstraction of a reduction graph
to enumerate all possible evaluation plans.

• For query planning, we propose a feedback strategy based on
runtime partitioning and provide performance guarantees
w.r.t. the optimal plan. We do not require cost models.

• To reduce the overhead of partial indexes, we propose a
caching strategy that stores intermediate results across re-
peated selections of the same evaluation plan.

• Extensive experiments on twenty datasets, three domains,
and various distances show the robustness of our approach:
On average, Fast is only 12% slower than the optimal plan.

• Two case studies show the extensibility of Fast and its value
as a benchmark: Although the fastest query plans rely on
techniques that have been known for over a decade, three
out of four recent algorithms fail to significantly improve
over Fast.

Omitted proofs appear in an extended version of this paper [56].

2 BACKGROUNDAND PROBLEM STATEMENT

Similarity Search. Similarity searchmatches similar record pairs (𝑟,𝑠)
fromdatasets𝑅,𝑆 in adomainT . Record similarity is assessedbyadis-
tance function 𝑑 : T 2→R+

0 .D denotes the set of distance functions.
We focus on range similarity join queries: Given datasets𝑅,𝑆 ⊆T and
threshold 𝜀, the range similarity join𝑅˜︁⊲⊳𝜀𝑑𝑆 finds all pairs (𝑟,𝑠) ∈𝑅×𝑆
with 𝑑 (𝑟,𝑠) ≤ 𝜀. In this paper, we focus on self joins (𝑅 =𝑆) that are
common for applications such as entity resolution [79]. However,
all results generalize to non-self joins.

Domains and Distance Functions.We focus on sets, strings, and
trees as they are widely used in similarity search [4]. In particular,
these domains form a ladder of increasing structure: Every (finite)
set can be represented as a string and every string can be represented
as a tree without losing information. Many algorithms for similarity
search take the opposite direction: A reduction in structure allows
for faster computations, e.g., by reducing the tree edit distance with
cubic runtime to the quadratic time string edit distance [43].

Commonly studied distance functions on strings and trees are
their respective edit distances. For sets, we consider all symmet-

ric [15] similarity measures. Symmetric similarity measures on sets
can be rewritten as a minimum required overlap given the sizes of
two sets. Symmetric similarity measures include common similarity
measures like Jaccard, Cosine, and Dice, or the Hamming distance.

Upper Confidence Tree (UCT).We leverage UCT [41] for plan selec-
tion. UCT finds near-optimal solutions for aMarkov Decision Process

(MDP). For our purposes, an MDP is a tuple (S,A,𝛿,R) consisting of
a set of statesS, a set of actionsA, a deterministic transition func-
tion 𝛿 : S×A→S, and a stochastic reward function R assigning
probability distributions for rewards in [0,1] to states.

UCT [41] balances the aspects of exploration – exploring parts
of the tree with little information to aid in future decisions – and
exploitation – repeating choices that led to large rewards in the past.
To this end,UCTmaintainsboth theaverage reward𝑟 and thenumber
of visits 𝑣 for each node. To select a path, UCT starts in the root of
the UCT tree and always selects child 𝑐 with parent 𝑝 maximizing
the average reward 𝑟𝑐 plus a bias term𝑤

√︁
log(𝑣𝑝)/𝑣𝑐 with weight

𝑤 . With increasing visits to 𝑐 , the certainty increases and the bias
decreases. Theoretical guarantees require setting𝑤 proportional to
theheightof the tree [41], butempirically, application-specific tuning
of𝑤 can lead to improvedperformance [21].After achievinga reward
at a leaf node, the statistics of all nodes along the path are updated.

TheperformanceofUCTandsimilar algorithms ismeasured in the
regret of their decisions. Regret is the difference in rewards between
the selected policy of the learning algorithm and the optimal policy.
Our approach requires the notion of cumulative regret, which mea-
sures the difference in expected maximal rewards compared to the
achieved rewards over all choices of the algorithm. ForUCT, the cumu-
lative regret after 𝑛 selections is𝑂 (log𝑛) (Theorem 6 in [41]). While
other algorithms converge faster than UCT [24, 25], their different
notionof regret is not suitable for ourpurpose.UCTand its variations
have been successfully used to solve game [40, 60, 64, 73, 81] and
planning [38] problems. Most notably, the strongest Go programs
are based onUCT [60] and solveMDPswith branching factors of≥40
and depths ≥20 [81]. Our use case is currently significantly smaller
in branching factor (≤4) and depth (≤4), leaving room for future
extension.

3869

Problem Statement. The goal of this work is to develop a system
that is capable of computing similarity joins on sets, strings, and
trees with edit distance and symmetric set similarities. Furthermore,
the system should satisfy the followingproperties: (1)Extensibility:
Support for new distance functions can be added without significant
rework. (2)Robustness: The system adapts to a given query, e.g.,
its characteristics, and computes its result efficiently.

3 REDUCE-FILTER-VERIFY FRAMEWORK

Mostalgorithms for similarity searcharebasedon thefilter-verify [29,
44, 46, 55] framework.We extend this framework by an explicit re-
duce step, which was an implicit part in the filter step of previous
algorithms. A reduce-filter-verify algorithm consists of three steps:

Reduce: The dataset, distance function, and threshold are re-
ducedby a reduction. LetD be a set of distance functions.A reduction
from domain T1 to T2 (where possibly𝑇1=𝑇2) is a (partial) function
𝜌 : T1×D×R+

0 →T2×D×R+
0 . It maps a record from T1, a distance

function on T1, and a threshold onto a record from T2, a distance
function on T2, and a new threshold. Typically, domain T2 has less
structure than T1; examples include converting trees to sets [6, 29],
strings [32, 43, 80], or vectors [43]. We simply write 𝜌 (𝑟), 𝜌 (𝑑), and
𝜌 (𝜀) if the other arguments are clear from context; 𝜌 (𝑅) denotes the
dataset computed by pointwise application of 𝜌 to the elements in
the dataset 𝑅. A reduction serves as a filter condition: Pairs removed
in the join computed in the reduced domain (computed on 𝜌 (𝑅) and
𝜌 (𝑆) usingdistance function𝜌 (𝑑) and threshold𝜌 (𝜀)) areguaranteed
to not be in the result.We refer to this property as similarity supersets:

𝑅˜︁⊲⊳𝜀𝑑𝑆 ⊆ 𝜌 (𝑅)˜︁⊲⊳𝜌 (𝜀)
𝜌 (𝑑)𝜌 (𝑆)

Filter: The filtering step is implemented by a physical join opera-
tor (or join operator for short) that computes the similarity join after
reduction: 𝜌 (𝑅)˜︁⊲⊳𝜌 (𝜀)

𝜌 (𝑑)𝜌 (𝑆). By the similarity supersets property, all
pruned pairs are true negatives, i.e., they are not part of 𝑅˜︁⊲⊳𝜀𝑑𝑆 . We
assume that join operators are index-based: Given a query 𝜌 (𝑞), the
index returns a set of candidates including all truly similar pairs. We
will state further assumptions on the index structure in Sections 5
and 6. All current state-of-the-art algorithms for similarity search
on discrete domains satisfy these assumptions [10, 20, 26, 29, 35, 44,
53, 57, 83].

Verify: The candidates produced by the filtering step include
all true positives, but also false positives. The false positives are
removed by computing the similarity on the original domain and
comparing against the threshold. As computing the similarity on the
reduced data is typically faster than on the original data, candidates
are often verified on the reduced data first.

4 QUERY PLAN ENUMERATION

Any algorithm following the reduce-filter-verify framework can be
decomposed into three parts: reduce, filter, and verify. Hence, any
such algorithm can be seen as a query plan composing a specific
reduction step, a joinoperator, andaverificationprocedure.We intro-
duce the reductiongraph toenumerateall validqueryplans foragiven
query. Informally, a reduction graph connects distance functions
using reductions. Distance functions connected to some algorithm
can be evaluated by said algorithmwithout further reduction.

Tr
ee

St
rin

g
Se
t

TED

SED Jaro

Struct. Set Sim. Jaro Overlap

Jaccard Hamming Dist.

Symmetric Set Similarity

1

2 3

4 5

1 Label Sets [4]
2 Trav. Strings [27]
3 Euler Strings [1]
4 𝑞-Grams [26]
5 Character Sets

a

b

dc

a TJoin [29]
b PassJoin [44]
c Prefix [9, 14]
d Palloc [19]

Figure 1: Reduction graph for sets, strings, and trees.

TED

a Struct. SS.

Symm. SS.

c d

1

SED

b Struct. SS

Symm. SS.

c d

4

2

SED

b Struct. SS

Symm. SS.

c d

4

3

Figure 2: Query plans/MDP for TED represented as a tree.

Definition 4.1 (Reduction Graph). A reduction graph is a directed
acyclic edge-labeled multigraph. It distinguishes two types of nodes:
(1) A distance node corresponds to a distance function on some do-
main. (2)Algorithmnodes correspond to a concrete join algorithm.A
distance node connects to an algorithm node if a similarity join with
that distance function can be evaluated by the algorithm. Edges be-
tween distance nodes correspond to reductions between the distance
functions and their respective domains.

Paths in the reduction graph starting at some distance node for
some distance function 𝑑 and ending in an algorithm 𝑎 correspond
to query plans of a reduce-filter-verify algorithm: The reduction step
is the composition of all reduction edges on the path. The filter step
is implemented by the join operator 𝑎. For the verification step, we
reverse the path and evaluate the reduced distance function for each
distance node, pruning dissimilar pairs in the process. To enumerate
all possible query plans P for a given distance function, we perform
standard depth-first search from the corresponding distance node.
The correctness of such query plans follows from compositionality
of reduction functions and the correctness of filtering algorithms.

Example 4.2. Consider the reduction graph depicted in Figure 1.
There are nine possible query plans for a similarity query using the
tree edit distance (TED). Figure 2 visualizes all plans as a tree.

• Trees: Use TJoin [29] without any reduction.
• Sets: Reduce the trees to sets of node labels and use either

Prefix [9, 14] or Palloc [19].
• Strings: Use traversal strings [27] or Euler strings [1] to

convert the trees to strings. Then, use the string edit distance

3870

(SED) algorithm PassJoin [44]. Alternatively, perform an-
other reduction to sets using 𝑞-grams [26]. In the latter case,
filtering is performed using Prefix [9, 14] or Palloc [19].

5 STATIC INDICES QUERY EVALUATION

Given a query, the reduction graph enumerates all query plans P
to evaluate the query. Similarity join algorithms generally do not
have cost models that could be leveraged to select the best plan.
Instead, we propose to use a sampling-based approach that executes
one query plan for a short duration, measures its performance, and
bases its future selections on the previous performance of a plan. The
selections based on previous performance use the Upper Confidence
Tree (UCT) [41] algorithm to ensure eventual convergence to the
fastest plan. In this section, we define requirements on the similarity
join algorithm implementing the filtering step, briefly describe the
setup and challenges of using UCT, and show how near-optimal
query plans can be selected.

5.1 Requirements on Similarity Join Algorithms

As stated in Section 2, we require that all join operators imple-
menting the filter step in the reduce-filter-verify framework are
index-based. The algorithmmust satisfy the following requirements:
(1) Independent-Index:A dataset can be indexed in advance with-
outknowledgeabout the futurequeries. (2)Total-Recall:Foragiven
query record, the algorithm returns a superset of all similar records
in the indexed dataset, possibly including false positives. (3) Prefix-
Search: The index allows queries on a prefix of the dataset. In other
words, for a given dataset 𝑅={𝑟1,...,𝑟𝑛}, the algorithm can perform
queries on any 𝑅′={𝑟1,...,𝑟𝑖 }with 𝑖≤𝑛. Inverted list indexes support
such queries by storing the records sorted by record ID.

5.2 Leveraging UCT for Plan Selection

Weaddress three non-trivial challenges to leverageUCT for effective
plan selection: (1)Wemodel the problemof plan selection as anMDP
(cf. Section 2). (2) We link the rewards in the MDP to the algorithm’s
runtime to achieve theoretical runtime guarantees (Section 5.3).
(3) We propose methods to reuse partial results computed during a
timeslice. This is required for both the runtime analysis and practical
performance of Fast (Sections 5.3, 6.2, and 6.4).

Our MDP closely corresponds to the representation of the set of
query plans P as a tree (cf. Figure 2): In the tree, nodes are distance
functions or algorithms, edges to inner nodes are reductions, and
root-leaf paths are query plans. In the MDP, nodes correspond to
prefixes of such paths, actions are either reductions or algorithms,
and transitions are the edges connecting the path prefixes. Rewards
for all inner nodes are zero. The rewards on the leaf nodes represent
the performance of the leaf’s query plan.

5.3 Finding Efficient Query Plans

We first discuss a variant of Fast that assumes that the indexes
required for all query plans 𝑝 ∈P are available. Conceptually, com-
puting a (similarity) join requires comparing all pairs of records.
Figure 3a visualizes all required comparisons for a similarity self-
join. Due to the symmetry of distance functions, only the upper
triangular matrix needs to be computed. To avoid the explicit com-
parison of all pairs of records, index-based similarity algorithms use

an index that only returns promising pairs. Still, the area of the upper
triangular matrix represents the full work required for the join.

Next, we address the following problem of finding a good evalua-
tion strategy:Given a set of queryplansP, e.g., computed by enumer-
ating all paths starting from the query’s distance node in the reduc-
tiongraph (cf. Section4),wewant toevaluate the similarity joinusing
some query plans 𝑝 ∈P that – in hindsight – approximately perform
as well as the single optimal plan 𝑝∗ ∈P. To this end, we use similar
ideas as Trummer et al. [68] by evaluating partial joins with times-
lices usingdifferent queryplans. To compute a join,wefirst construct
an UCT instance corresponding to theMDP ofP (cf. Section 5.2).We
then repeatedly select a plan 𝑝 ∈P using the UCT instance. A plan
consists of (1) the reduction 𝜌 implemented as the composition of
any number of reduction functions, (2) a join operator implementing
the filter step, and (3) a verification procedure. After selecting the
current plan, the plan is executed by following the reduce-filter-verify
framework for the next non-processed record 𝑟𝑖 (cf. Figure 3a).We re-
duce 𝑟𝑖 to 𝜌 (𝑟𝑖) and probe 𝜌 (𝑟𝑖) against the index on 𝜌 (𝑅), obtaining
a set of candidates. To avoid symmetric result pairs, we only probe
𝜌 (𝑟𝑖) against the prefix of 𝜌 (𝑅) consisting of the first 𝑖−1 records.
According to the assumptions in Section 5.1, prefix index queries
can be performed efficiently. To verify the results, we proceed as
described in Section 4: Let 𝜌 = 𝜌1 ◦ ··· ◦ 𝜌𝑚 and 𝜌𝑘 = 𝜌1 ◦ ··· ◦ 𝜌𝑘
for 𝑘 ≤𝑚. We verify all candidates starting from the lowest level
with reduction 𝜌𝑚 and continue with the higher levels 𝜌𝑚−1,𝜌𝑚−2,...
until reaching the identity reduction 𝜌0. The verification at level 𝑘
removes all candidates 𝑠 with 𝜌𝑘 (𝑑) (𝜌𝑘 (𝑟),𝜌𝑘 (𝑠))>𝜌𝑘 (𝜀).

Example 5.1. Consider a Tree Edit Distance (TED) lookup of 𝑟
using the plan: TED SED Str.SS Sym.SS2 4 c For filtering, a tree is
reduced to its traversal string, which itself is reduced to a set of 𝑞-
grams with structural and then symmetric set similarity constraints
(𝜌 (𝑟) = 𝜌3 (𝜌2 (𝜌1 (𝑟)))). A candidate 𝑠 (retrieved by probing 𝜌 (𝑟)
against the prefix index) is then verified in stages: (1) Using symmet-
ric set similarity𝜌3 (𝑑)with threshold𝜌3 (𝜀) (corresponding to the full
reduction 𝜌3◦𝜌2◦𝜌1), (2) using structural set similarity 𝜌2 (𝑑) with
threshold 𝜌2 (𝜀), (3) using the string edit distance 𝜌1 (𝑑) with thresh-
old 𝜌1 (𝜀), and finally (4) TED 𝑑 (𝑟𝑖 ,𝑠) and 𝜀 (identity reduction 𝜌0).

When probing from left to right (cf. Figure 3a), we probe against
increasingly larger indexes that can yield larger candidate sets. To
reduce this skew of increasing verification effort, we alternatingly
pick a record from the left and the right side of the unprocessed
records. We continue probing until we reach a timeout.

After the timeout, we evaluate the plan’s performance and update
the UCT instance. The chosen plan’s performance for a timeslice is
the number of conceptually compared pairs of records (cf. Figure 3a,
hatched area). As we alternate between both sides of 𝑅, we have
𝑚(|𝑅 |−1) non-reflexive and non-symmetric pairs after processing
2𝑚 records with𝑚 records from each side. As UCT expects rewards
between 0 and 1, we normalize by the size of the upper triangular
matrix |𝑅 | (|𝑅 |−1)/2. This results in the reward function 2𝑚

|𝑅 | .
Discussion. Prebuilding all possible indexes allows for a simple

analysis. In particular, the query plans selected by UCT perform
asymptotically as well as the optimal query plan. The key require-
ment for this result is that theworkof all plans is shared:Theprogress
of each plan towards computing the join result can be reused effi-
ciently. Once a record has been probed by any query plan, it will not

3871

remaining processed timeslice progress timeslice computation

𝑅
probing

𝑅

in
de
xi
ng

𝑟𝑖

𝑟𝑖+𝑘

𝑟 |𝑅 |−𝑖+1
𝑟 |𝑅 |−𝑖−𝑘+1

(a) StatFast

𝑅
index and probe

𝑅

in
de
x
an
d
pr
ob

e 𝑟𝑖

𝑟 𝑗
𝑟𝑖+𝑘

𝑟 𝑗+𝑘

(b) DynFast

Figure 3: Processing pattern of StatFast and DynFast

𝑅 𝑆

𝑟𝑖 𝑠𝑖
III III IV

Figure 4: Two-sided incremental probe-and-insert

be probed again. This holds in the case of static indexes. For dynamic
indexes as described in Section 6, some parts of the result must be
discarded and recomputed later.

5.4 Regret Analysis

We analyze the expected regret of Fast with prebuilt indexes (called
StatFast). Our goal is to perform approximately as well as the best
query plan 𝑝∗ in P. In other words, we want to compare the policy
of always selecting 𝑝∗ for every timeslice to the plans selected by
StatFast. This notion is exactly captured by cumulative regret, i.e.,
the difference in the sum over all rewards achieved during execu-
tion. As the reward for each timeslice is defined to be the size of the
processed partial join, rewards measure the throughput of a policy.
We will then relate throughput and execution time.

Regret Model and Assumptions.Wedenote optimal quantities with
∗-superscripts, e.g., our approach requires 𝑛 timeslices while the
optimal runtime is 𝑛∗. We analyze regret under the assumption that
runtime is high compared to the number of plans. In particular, we
assume that we achieve the asymptotic regret bounds of UCT and
do not suffer from transitory regret [18]. Furthermore, we assume
that the runtime related to traversing and updating the UCT tree and
switching between plans is negligible. Finally, we assume that the
average reward of the optimal algorithm cannot be arbitrarily small
(Ω(1)). To this end, timeslices are increased for large input sizes. This
is in line with related work utilizing UCT in database systems [68].

Lemma 5.2. StatFast has runtime regret of𝑂 (log𝑛).

We also express this additive regret in the more intuitive form of
a multiplicative regret, bounding the asymptotic runtime ratio of
Fast and the fastest algorithm.

Lemma 5.3. StatFast has bounded expectedmultiplicative runtime

regret 𝑛/𝑛∗ that converges to 1with 𝑛→∞.

6 DYNAMIC INDICES QUERY EVALUATION

In this section, we remove the assumption that the indexes of all
query plans are built in advance. Our approach follows the typical
procedure in similarity joins of alternatingly building and probing
the index. After clarifying the assumptions, we introduce a dynamic
version of Fast that builds indexes on-the-fly, analyze its regret, and
reduce its overhead for practical applications.

6.1 Requirements on Similarity Join Algorithms

In addition to the requirements defined in Section 5.1, we require:
(4)Updatability: Efficient incremental updates are supported: We
can alternate between indexing new records and probing records
without knowing all indexed records in advance. (5)Range-Search:
In addition to index prefixes (cf. Assumption (3)), any contiguous
range of record IDs can be probed efficiently. If an algorithm is used
to index a dataset 𝑅={𝑟𝑖 ,...,𝑟𝑙 }, it supports efficient queries on any
contiguous subset 𝑅′ = {𝑟 𝑗 , ... ,𝑟𝑘 } with 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑙 . Inverted list
indexes support such queries by storing the lists sorted by record
ID, finding the first record in the range using binary search, and
skipping the remainder of the list after finding an ID higher than 𝑘 .

6.2 Plan Evaluation with Index Construction

Missing prebuilt index structures poses an issue for evaluating the
performance inside a timeslice. Index construction in itself does not
constitute progress of the similarity join and thus should not be part
of the reward. Otherwise, the index-construction part of the reward
would be plan specific and would thus lead to regret bounds depen-
dent on the number of query plans. Instead, we interleave building
and probing the index to get a sample of the average performance
of a specific query plan.

Incremental Probe-and-Index.When probing a record, the current
state of the index will not encompass the full relation in general.
Hence, we cannot simply partition the space of all record pairs like
for the non-incremental setting in Figure 3a. Instead, we will alter-
nate between building, probing, and verifying the next record. A
simple implementation of this approach has been used in various
similarity join algorithms [9, 19, 44, 79], but it can only be used to
compute self-joins.Wewill refer to this approach as Inc1S (incremen-

tal one-sided) and introduce it as a special case of Inc2S (incremental

two-sided) that we will discuss next. In our setting, Inc1S can only
compute triangles along the diagonal in Figure 3b. For all other cases,
we have to compute a non-self join between different parts of the
relation using the following variation Inc2S that was already briefly
discussed by Bouros et al. [13] in the context of the prefix filter. Fig-
ure 4 shows the overall structure. Given two relations 𝑅,𝑆 of equal
size, we I take the 𝑖-th record 𝑟𝑖 from 𝑅, probe it against the current
index on 𝑆 , and verify the candidates. In step II , we insert 𝑟𝑖 into the
index on𝑅. Step III and IV correspond to I and II with reversed roles
of 𝑅 and 𝑆 . We proceed to the next record of both sides until both
relations are processed. Inc1S works like Inc2S by setting 𝑅=𝑆 and
skipping steps III and IV . Both Inc1S and Inc2S require the assumed
updatability (cf. Section 6.1) of the index structure.

To conceptually compare all pairs of points in the upper triangular
matrix in Figure 3b, we use both Inc1S and Inc2S. Given some pair
of starting records (𝑟𝑖 ,𝑟 𝑗), we either execute Inc1S if 𝑖 = 𝑗 or Inc2S
otherwise until a timeout is reached. After the timeout, we have

3872

Algorithm 1: Block scheduling
Data: Stack S, initially ((((1,1),(|𝑅 |, |𝑅 |)),{𝑈𝐿,𝑈𝑅,𝐿𝑅}))

1 Function FullyProcessed():
2 do pop from S; remove popped subblock from 𝑆⊤

3 while 𝑆⊤ fully processed

4 Function PartiallyProcessed(computed block 𝐵𝑐):
5 while 𝑆⊤ not covered by 𝐵𝑐 do

// blocks are processed from UL to LR

6 push𝑈𝐿 subblock of 𝑆⊤ onto S
7 FullyProcessed() // 𝑆⊤ was fully processed

8 Function NextBlock():
9 if 𝑆⊤ partially processed then push its next subblock onto S

10 return 𝑆⊤

reached some record (𝑟𝑖+𝑘 ,𝑟 𝑗+𝑘) such that all pairs in the squarewith
the corners (𝑟𝑖 ,𝑟 𝑗) and (𝑟𝑖+𝑘 ,𝑟 𝑗+𝑘) have been evaluated (cf. Figure 3b).
For self-joins using Inc1S, a triangle is computed. From now on, we
will refer to both squares and triangles as blocks. Computing the full
join requires covering the full upper triangular matrix with blocks.
The sizes of the blockswill differ significantly both between different
query plans and different parts of the matrix.

Block Scheduling. To avoid fragmentation and bookkeeping and
guarantee covering all required pairs of records, we propose the
following partitioning scheme of the matrix depicted in Algorithm 1.
Algorithm 1 only encapsulates the scheduling of blocks; its functions
are called as part of Fast. Wemaintain a stackS of blocks that still
need to be filled. Each block consists of four subblocks𝑈𝐿,𝑈𝑅,𝐿𝐿,𝐿𝑅

of equal size constructed by halving both sides of the block. In ad-
dition to the block,S also stores the set of subblocks of each block
that have not been computed yet.

Initially,S contains the full dataset ((1,1),(|𝑅 |,|𝑅 |)) with all sub-
blocks {𝑈𝐿,𝑈𝑅,𝐿𝑅}; 𝐿𝐿 is missing to avoid symmetric pairs of self-
joins. To schedule the next block (cf. Algorithm 1, NextBlock), we
peek at the topS⊤ of the stack. IfS⊤ has no computed subblocks, the
full blockS⊤ is scheduled. Otherwise, the next subblock is pushed
toS (becomingS⊤) and scheduled.

After obtaining a block, it is processed using either Inc1S or
Inc2S. There are two cases: (1) If the block is fully processed be-
fore reaching a timeout (cf. Algorithm 1, FullyProcessed), it is
removed fromS and the block’s parents are updated. (2) Otherwise,
the block was not fully processed before reaching a timeout (cf. Al-
gorithm 1, PartiallyProcessed). This can only happen for the last
block scheduled during a timeslice. In this case, the partially com-
puted block is recursively split into its subblocks until the computed
area of the partially computed block covers a subblock. Each sub-
block in the recursion is added toS. Once these blocks reach the top
of the stack again, their upper left subblockwill have been computed
already. Hence, we remove their UL subblock.

In the case of partially processed blocks, we discard the results
from the partial block (cf. hatched area in Figure 3b) up to the last
fully computed aligned subblock (resp. triangle, cf. shaded area in
Figure 3b). We observe that the ratio of discarded results is bounded.

Lemma 6.1. At most 3/4 of the pairs of tuples processed in any

timeslice are discarded upon reaching a timeout.

𝐵1

𝐵2

S= ((𝐵2,{𝑈𝐿,𝑈𝑅,𝐿𝐿,𝐿𝑅})
(𝐵1,{𝑈𝑅,𝐿𝑅}))

(a)

𝐵1

𝐵2

𝐵3

𝐵𝑐𝐵𝑐 𝐵4

S= ((𝐵4,{𝑈𝐿,𝑈𝑅,𝐿𝐿,𝐿𝑅})
(𝐵3,{𝑈𝑅,𝐿𝐿,𝐿𝑅})
(𝐵2,{𝑈𝐿,𝑈𝑅,𝐿𝐿,𝐿𝑅})
(𝐵1,{𝑈𝑅,𝐿𝑅}))

(b)

Figure 5: Example of block scheduling.

Example 6.2. Consider the block scheduling state depicted in
Figure 5a. The𝑈𝐿 subblock of 𝐵1 was already fully processed. In the
next step, 𝐵2 is scheduled as it is the top of the stack S. Figure 5b
shows the progress 𝐵𝑐 of computing 𝐵2 after reaching a timeout, i.e.,
𝐵2 is only partially processed. As 𝐵2 is only partially processed, 𝐵2’s
𝑈𝐿 subblock is partitioned two times until a resulting subblock is
fully covered by𝐵𝑐 . The𝑈𝐿 subblock of𝐵3 is fully processed, popped
fromS, and𝐵4 is pushed to the stack tobe scheduledas thenext block.

Discussion.Discarding partially computed blocks simplifies the
analysis and leads to at most constant multiplicative regret com-
pared to the optimal algorithm choice by leveraging the bound on
discarded result tuples. In practice, we continue the execution of
Inc1S or Inc2S until the next larger subblock is fully processed. In
these cases, the timeslice has varying size and the reward is the
summed area over the measured time.

6.3 Regret Analysis

Assumptions.We analyze Fast with dynamic indexes (called Dyn-
Fast) under the assumption that the throughput of each query plan
approximates a stationary distribution. In particular, the throughput
does not change when changing the size of the timeslice. To this
end, we select larger timeslices for DynFast than for StatFast to
reduce the skew introduced by disproportionately high indexing
and probing cost compared to the verification cost for small blocks.
We will discuss the size of the timeslice in Section 7.

Lemma 6.3. DynFast has runtime regret of (1−1/4)𝑛+𝑂 (log𝑛).

Lemma 6.4. DynFast has bounded expectedmultiplicative runtime

regret that converges to 4with 𝑛→∞.

6.4 Practical Considerations

Vectorization of Query Evaluation. In both StatFast and DynFast
as described in Sections 5.3 and 6.2 , queries are evaluated record-by-
record:Asingle record is reduced, probed, andcandidates areverified.
To reduce the overhead of performing multiple reductions, lookups
insidean index, andoneormoreverificationprocedures,wepartition
all records intosmallmicrobatches andhandleamicrobatchof records
in each invocationof a reduction, lookup, or verification. This style of
vectorized evaluationof queryplans is common inqueryengines [39].

Support for IndexUpdates.DynFastrequiresalgorithms tosupport
index updates in order to build indexes on-the-fly. In their original
version, Prefix [9, 14], Palloc [19], PassJoin [44], and TJoin [29]
assume some order on the records to build their index. All algorithms

3873

require their records to be sorted in ascending size and possibly
lexicographically based on their content to break ties. In general,
different algorithmsmight require incompatible orderings,making it
impossible to sort the data only once for all algorithms. Additionally,
if an algorithm requires a reduction, we initially do not knowwhich
partsof thedatasetwill be reducedandneed tobeordered.To this end,
we adapt all algorithms to support incremental updates in any order.

All algorithms Prefix, Palloc, PassJoin, andTJoin internally use
amulti-level index structure. Someof these levels only performpoint
queries and some support range queries. As an example, a typical
index implementing a prefix filtermaps set elements to lists of record
IDs sorted by record length. For a given set element (point query),
the range of potentially similar records due to their size is scanned
(range query). We replace each sorted list with an in-memory 𝐵+

tree to support range queries and updates, while having high scan
performance. All other algorithms are adapted similarly.

Caching of Indices.DynFast evaluates a plan on a block by build-
ing and probing the respective index, which is discarded afterwards.
We propose a caching strategy to reduce the overhead of index con-
struction. The cache keeps a set of indexes for each plan and can
reuse an index if the plan is selected again for a different block.

We reuse an index structure under the following conditions given
some to-be-computed block 𝐵: (1) If some index fully covers either
side of 𝐵, we select the smallest among them.We select the smallest
index to reduce the number of required skips while scanning the
index. (2) If an index according to (1) does not exist, we search for an
index that starts at the same offset into the dataset as𝐵. Among all of
them, we select the largest index. Selecting the largest index reduces
the overhead of otherwise having to probemultiple indexes. (3) Oth-
erwise, use either Inc1S or Inc2S to build a new index. Due to the
assumption on efficient range search (cf. Assumption (5), Section 6.1),
cases (1) and (2) can be computed efficiently.

While current standalone implementations of similarity joins
typically build their index on-the-fly [9, 19, 29, 78], database sys-
tems usually prebuild index structures and maintain them under
updates [58]. As a significant side effect of implementing index reuse,
DynFast supports using prebuilt indexes to potentially speed up
query evaluation. To this end, any existing index for some query
plan is added to the cache before execution of DynFast. During
computation, DynFast can choose between using existing indexes
or building a new index structure for some other query plan from
scratch depending on the performance of each query plan.

Caching of Intermediate Reduction Data and Signatures. For Dyn-
Fast, the samemicrobatchof recordsmightappear inmultiplepartial
join computations for the same query plan. To compute the partial
join, each record in themicrobatch is reduced, probedand/or indexed,
and verified. To reduce the cost of reducing the same microbatch
multiple times, we cache the result of the reduction. As multiple
query plans might share some of their reduction steps, the result of
each reduction step is cached to speed up the evaluation of related
query plans. As an example, consider the query plans for TED in
Figure 2. Assume that the query plan TED SED Str.SS Sym.SS2 4 c

is evaluated first. For the next timeslice, TED SED2 b is selected.
Due to their common prefix, the cached reduction data of SED is
reused. In this case, no further reductions are necessary. Otherwise,
only the remaining reductions along the path are performed.

Table 1: Dataset characteristics.

#Documents Document Size Universe
average 99.9 pct.

General datasets

Se
ts

BMS-POS 3.2·105 9.3 61 1657
Kosarak 6.1·105 11.9 378 41270
DBLP14-Set 5.2·106 77.7 209 24158
Lnonis1 8.2·106 20.3 39 44103

St
rin

gs

DBLP-String 1.4·106 106.3 294 37
Enron 2.5·105 885.0 18332 37
Trec 3.5·105 845.2 2793 37
Word 1.2·105 9.7 19 26

Tr
ee
s

DBLP-Tree 3.9·106 26.1 81 1.8·107
Python 1.5·105 944.1 23682 3.4·106
Sentiment 9645 37.3 99 19470
Swissprot 3.2·105 998.7 9561 7.4·106

Supplementary datasets

St
rin

gs

Gen20kl 2.0·104 20000 20058 5
Gen50ks 5.0·104 5000 5047 4
Trec2 2.3·105 1218.1 2834 37
Uniref 4.0·105 446 3519 24

Tr
ee
s

JScript1k 3.9·104 8775.8 3.3·105 2.5·106
Python1k 3.6·104 3012.6 3.7·104 2.6·106
Swissprot1k 1.2·105 1902.0 13·104 6.4·106
SyntheticLU 1.0·106 40 40 10000

To reduce the cost of probing the same microbatch against the
same index multiple times, we further cache intermediate data re-
quired to probe the index. In similarity search, most algorithms (and
in particular all algorithms implemented in Fast) are based on a
signature scheme [57]. Intuitively, a signature scheme computes hash
values for a given record. Depending on the algorithm, signature
computation can be quite expensive. To reduce the burden of re-
dundant signature computation for the same microbatch, we store
its signatures in a cache. For our implementation, we use the least
recently used replacement strategy for both caches.

7 EXPERIMENTAL EVALUATION

In this section,weevaluate theperformanceof Fast.Wefirstdescribe
the datasets and the implementation of Fast that we use in our eval-
uation. We then evaluate StatFast and DynFast, focusing on their
ability to select efficient query plans in various settings. Afterwards,
we show Fast’s utility as a benchmark by comparing it against spe-
cialized state-of-the-art algorithms and demonstrate its extensibility.

7.1 Experimental Setup

We conducted all experiments on a cluster of servers, each having
one AMD EPYC 9354P CPUwith 32 cores and 384 GiB memory. We
executed between 1-4 jobs on each server in parallel, depending on
required memory.We implemented Fast, including all reductions
and join operators, in C++. Our adaptations of the algorithms to sup-
port updates (cf. Section 6.4) have a negligible runtime impact for
Palloc and PassJoin compared to preprocessing upfront. Dynamic
updates for Prefix require dynamic token reassignments, leading to
performance differences of less than±15%, depending on the dataset
and threshold, but the overall performance patterns remain the same.
Missing data points correspond to timeouts (4 hours).

3874

Datasets.Weuse twelve general and eight supplementary datasets
in our evaluation. The general datasets are chosen from the pool of
datasets used in previous works such that they cover diverse charac-
teristics in document and universe size. The supplementary datasets
are used to highlight specific aspects of an algorithm (e.g., due to
skewed characteristics) and to reproduce experiments in Section 7.3.
We refer to Mann et al. [47] for details on BMS-POS and Kosarak.
DBLP14-Set1 and Lnonis1 are described in Schmitt et al. [57]. The
four general string datasets are from Jiang et al. [30]; the four general
tree datasets are from Hütter et al. [29]. Gen20kl, Gen50ks, Trec2,
andUniref are longer-string datasets from recent approximate string
edit distance join works [33, 82, 83]. JScript1k, Python1k, and Swis-
sprot1k [35] are subsets of larger tree datasets consisting only of
large trees (≥1000 nodes). SyntheticLU is a synthetic tree dataset
with a uniform and small (104 tokens) universe; all trees have height
four and fanout three. Table 1 shows characteristics of all datasets.

Distance Functions.We evaluate Fast with Jaccard similarity on
sets, the string edit distance on strings, and the tree edit distance
on trees. We evaluated similar or larger ranges of distance thresh-
olds 𝜀 compared to previous work. We study the extensibility of our
approach to Jaro similarity in Section 7.4.

Algorithmic Variations.We compare both StatFast (cf. Section 5)
and DynFast (cf. Section 6) in awarm and a cold variation, i.e., four
variations in total. In cold StatFast, denoted StatFastC, all indexes
have to be built at runtime; in warm StatFast, denoted StatFastW,
all indexes are prebuilt. For DynFast, DynFastC and DynFastW
refer to DynFast with empty and filled (index, reduction, signature)
caches, respectively. The caches are warmed up by executing the
same join twice and only measuring the second execution.

Algorithmic Parameters.We set all cache sizes (index, reduction,
intermediate data) to 2|𝑅 |.We exclude Euler strings in Figure 1 due to
their similarity to traversal strings.WeexcludeTJoin for dynamic ex-
periments due to its high similarity to label sets with Prefix.We use
TJoin’s verification procedure for all tree plans. We set 𝑞=3 for the
𝑞-gram reduction. We set the timeslice to 0.2 seconds for StatFast.
In DynFast, we set timeslices for Inc1S and Inc2S differently, using
a timeslice of 0.2 and 0.8, respectively, to reduce skew as stated in
Section 6. Inspired by the scaling experiments in Trummer et al. [68],
we set the exploration weight𝑤 (cf. Section 2) proportionally to the
achieved rewards. While Trummer et al. [68] use a fixed weight, we
dynamically update𝑤 at runtime. UCT requires random variables
in [0,1] and is often used with a weight of

√
2 [68]. In Fast, rewards

represent relative throughput and tend to range between 0 and 10−4.
For such small rewards, high explorationweights lead to long conver-
gence times. To this end, we scale the exploration weight depending
on the observed rewards, initially setting𝑤 =0.01

√
2 and updating

to𝑤 =
√
2𝑟𝑚𝑎𝑥 with exponentially increasing intervals between each

update for the highest observed reward 𝑟𝑚𝑎𝑥 .

7.2 Evaluating Fast’s Standalone Performance

We first evaluate Fast’s internals, focusing on its ability to select
query plans using static (StatFast) and dynamic (DynFast) indexes.

7.2.1 Evaluation of StatFast. We evaluate the ability of StatFast
to select highly performant query plans. To this end, we compare

1DBLP14-Set uses the current DBLP version [65] with preprocessing from [57, 76].

StatFast against a standalone execution of each individual query
plan. In this setting, we assume that all indexes are prebuilt and only
measure the time to compute the join. Figure 6 reports the results on
all general datasets. A query plan is named after its reduction step(s)
(Q: 𝑞-grams, T: traversal strings, L: label sets) and the join algorithm.

In general, the best query plan differs for different datasets and
thresholds. On set data, Palloc performs best in most settings, only
being outperformed by Prefix on high thresholds in Kosarak.

On strings, PassJoin and Q-Prefix compete for the best query
plan.Ondatasetswithshort strings (DBLP-StringandWord),PassJoin
is the most selective query plan and requires few verifications. For
longer strings and higher thresholds (Enron and Trec), the light-
weight Q-Prefix approach is selective enough.

For trees, the label-set-based query plans and in particular L-
Prefixare the fastestonall datasetsexceptSentimentdue to their low
overhead. This is due to the large universe size; many uncommon to-
kens are readily leveraged by Prefix and Palloc to filter candidates.
Sentiment has a smaller universe size than other datasets, requiring
methods that preserve more of the tree structure than label sets.
Hence, traversal-string-based approaches (in particular T-PassJoin)
slightly outperform the other plans. Motivated by this observation,
we additionally evaluate StatFast on the supplementary dataset
SyntheticLU (not shown) to compare the performance of query plans
onadatasetwitha small universe size.On thatdataset, plansbasedon
the prefix filter (Prefix and TJoin) are outperformed by the more se-
lective T-PassJoin and L-Palloc by up to three orders of magnitude.

StatFast closely follows the best performing query plan. On av-
erage over all thresholds and datasets, StatFast is only 12% slower
than the fastest query plan. The worst case happens for extremely
short runtimes on the Sentiment dataset at threshold 𝜀 =2, where
StatFast requires 0.03 seconds compared to the optimal 0.012 sec-
onds (factor2.5).Whenonlyconsidering runtimesof at least 1 second,
the average and maximum slowdown of StatFast shrink to 7% and
38%, respectively. To summarize, StatFast effectively selects the
fastest query plan and has little overhead.

7.2.2 Analysis of Plan Selection. On its path to convergence, UCT
will inevitably also select non-optimal plans for a few timeslices.
However, the majority of timeslices - over 90% in most settings - are
executed using a single, optimal query plan. In cases where overall
execution time is very short and multiple algorithms have compara-
ble performance, no consensus is reached before termination. This
behavior is observed for high 𝜖 values on BMS-POS and Kosarak,
and for low 𝜖 values on Sentiment and Python.

With the exception of TJoin (due to its similarity to L-Prefix),
all algorithms and reductions are required for the most efficient
query plan in at least one setting: Prefix: Kosarak (high 𝜀), Enron,
Trec, DBLP-Tree, Swissprot; Palloc: BMS-POS, Kosarak (low 𝜀),
DBLP14-Set, Lnonis1, Sentiment (low 𝜀); PassJoin: DBLP-String,
Word, Sentiment (high 𝜀), SyntheticLU; Q-grams: Enron, Trec; Tra-
versal strings: Sentiment (high 𝜀); Label sets: DBLP-Tree, Swissprot,
Sentiment (low 𝜀).

7.2.3 Evaluation of Algorithmic Variations. We now evaluate the
cold and warm variants of DynFast and StatFast (cf. Section 7.1).

Runtime Evaluation. Figure 7 shows the runtime performance of
all four variations. We expect the following descending order of per-
formance for the different scenarios: (1) StatFastW does not require

3875

0.75 0.8 0.85 0.9 0.95

100

101

ru
nt

im
e

[s] BMS-POS

0.75 0.8 0.85 0.9 0.95

100

100.5

Kosarak

0.75 0.8 0.85 0.9 0.95

102
103
104

DBLP14-Set

0.75 0.8 0.85 0.9 0.95
101
102
103
104

Lnonis1

1 2 3 4 5 6

101
102
103

ru
nt

im
e

[s] DBLP-String

2 4 6 8 10 12

101

102
Enron

2 4 6 8 10 12
101

102

Trec

1 2 3 4 5 6
100
101
102
103

Word

1 2 3 4 5 6 7

102

104

ϵ

ru
nt

im
e

[s] DBLP-Tree

4 8 12 16 20
102.5

103

103.5

ϵ

Python

2 4 6 8 10 12 14 16
10−2

100

102

ϵ

Sentiment

10 20 30 40 50
101
102
103
104

ϵ

Swissprot

StatFastW Prefix PallocSet StatFastW Q-Prefix Q-Palloc PassJoinString

StatFastW TJoin L-Palloc L-Prefix TQ-Prefix TQ-Palloc T-PassJoinTree

Figure 6: Comparison of StatFast against all individual query plans.

0.75 0.8 0.85 0.9 0.95
10−1

100

ru
nt

im
e

[s] BMS-POS

0.75 0.8 0.85 0.9 0.95

100

101
Kosarak

0.75 0.8 0.85 0.9 0.95

102
103
104

DBLP14-Set

0.75 0.8 0.85 0.9 0.95
101

102

103
Lnonis1

1 2 3 4 5 6
100
101
102

ru
nt

im
e

[s] DBLP-String

2 4 6 8 10 12
100

101

102
Enron

2 4 6 8 10 12
100
101
102

Trec

1 2 3 4 5 6
100
101
102
103

Word

1 2 3 4 5 6 7
101
102
103
104

ϵ

ru
nt

im
e

[s] DBLP-Tree

4 8 12 16 20
102.5

103

ϵ

Python

2 4 6 8 10 12 14 16
10−2

100

102

ϵ

Sentiment

10 20 30 40 50
101

102

103

ϵ

Swissprot

StatFastC StatFastW DynFastC DynFastW

Figure 7: Comparison of StatFast and DynFast.

Table 2: Index redundancy of StatFast vs. DynFast.

Dataset redund. % red.

BMS-POS 0 −100%
Kosarak 0.60 −40%

DBLP14-Set 0.14 −86%
Lnonis1 0.08 −92%

DBLP-String 0.16 −92%
Enron 0.30 −85%

Dataset redund. % red.

Trec 0.32 −84%
Word 1.04 −48%

DBLP-Tree 0.47 −91%
Python 1.7 −66%

Sentiment 0.95 −81%
Swissprot 0.55 −89%

indexing and has less overhead than DynFast. (2) DynFastW can
leverage its caches to avoidmost index constructionwork and reduce
the overhead of DynFast. (3) DynFastC starts with an empty index
cache, but does not construct all indexes. (4) StatFastC constructs
all indexes and is unsuitable if the number of query plans is high.

The results in Figure 7 are consistent with our expectation for
most datasets (Kosarak, Word, DBLP-Tree, Python, Sentiment, Swis-
sprot, high 𝜀 for DBLP-String, Enron, and Trec). For low distance
thresholds 𝜀, DynFastW outperforms StatFastW on BMS-POS (sim-
ilarity 𝜀≥0.75), DBLP-String (𝜀≤2), Enron (𝜀≤6), and Trec (𝜀≤4). This
result is an effect of caching at the hardware level: For low thresh-
olds, indexes are small and might fit into the processor’s cache. In
DynFastW, we execute the same query twice and thus access the
same index structures that are already in the processor cache. When
flushing the hardware cache in between runs, the difference between
DynFastW and StatFastW decreases for all results affected by this
phenomenon. On DBLP14-Set and Lnonis1, for high thresholds,
probing is expensive compared to verification. In general, DynFast
requires probing the same record multiple times against small, par-
tial indexes. Even with caching of intermediate reduction data and

3876

signatures, DynFast falls behind StatFast on these datasets. On
average over all executions, DynFastW, DynFastC, and StatFastC
are 58%, 197%, and 306% slower than StatFastW.

Evaluation of Index Redundancy. We further analyze the index
redundancy of DynFast compared to StatFast.We define the index
redundancy as the average number of additional indexes that a single
record is indexed in. For StatFast, each query plan corresponds to
an index and thus its index redundancy is |P |−1. DynFast avoids
building major parts of inefficient indexes, only building highly per-
formant ones. Table 2 lists the average index redundancyof DynFast
and the relative reduction to StatFast on all datasets. On average,
DynFast requires 80%, 77%, and 82% fewer additional indexes on
sets, strings, and trees, respectively.

In summary, our results show that (1) DynFastW has lower index
redundancy at the cost of a moderate runtime penalty compared to
StatFastW due to its probing overhead, and (2) DynFastC outper-
forms StatFastC both in terms of runtime and index redundancy.

7.3 Fast as a Baseline

We now evaluate the performance of Fast as a baseline for new
join algorithms.We therefore consider three recently proposed algo-
rithms for sets, strings, and trees and compare them to Fast. To this
end, we compare against StatFastC (slowest variation on average,
cf. Section 7.2.3) for algorithms that we outperform and StatFastW
(fastest variation on average, cf. Section 7.2.3) for algorithms that out-
performus.Weomit the remainingvariationsof Fast to avoid clutter.

7.3.1 Comparison against TwoL (Sets). TwoL [57] was recently
proposed as a similarity join algorithm on sets for symmetric set
similarity functions. Its main contribution is its ability to combine
two index structures for set similarity and adapt to the dataset’s char-
acteristics. Compared to Fast, it only supports similarity search on
sets and is based on optimizing a cost model estimating the cost of a
join using either parts of individual indexes or both at the same time.
It promises high performance on datasets withmixed characteristics.

Experimental Setup and Results. We compare the author’s im-
plementation of TwoL against StatFastC on all set datasets (cf.
Table 1). Compared to Fast, TwoL requires preprocessed datasets.
The preprocessing time is not included in our results.We compare on
Jaccard similarity. For Jaccard, TwoL combines Prefix with Palloc.
Similarly, Fast can select the Prefix or the Palloc plan.

Figure 8 shows the runtime (left axis) of TwoL and StatFastC;
Prefix and Palloc are included for reference. TwoL and Fast per-
form nearly identically. They both effectively avoid the highly inef-
ficient choice of Prefix on DBLP14-Set and Lnonis1. The right axis
of Figure 8 shows the usage ratio of Palloc (#timeslices for Fast,
#reindexed records for TwoL) in Fast and TwoL. Both algorithms
are clearly correlated in their choices.

Conclusion.Fastbehavesnearly identically toTwoLboth in terms
of runtime and index decisions. Hence, including TwoL into Fast
will not yield any significant improvement.

7.3.2 Comparison against MinJoin++ (Strings). MinJoin++ [33] is
an approximate algorithm for the string edit distance. It is based
on splitting all strings into disjoint substrings using pivot points
selectedwith randomhash functions on𝑞-grams. Compared to other
algorithms like PassJoin, the number of substrings is linear in 𝜀.

MinJoin++ focuses on long strings and promises finding all pairs
with high probability.

Experimental Setup and Results.We compare MinJoin++ against
Fast on all four general string datasets (cf. Table 1) and four supple-
mentary string datasets (Gen20kl, Gen50ks, Trec2, Uniref; cf. Table 1)
that were used in the original evaluation of MinJoin++ [33]. We use
the author’s implementation of MinJoin++ [34] and set all parame-
ters according to the author’s default suggestions [33]. In addition to
3-grams included in Fast by default (cf. Section 7), we add additional
𝑞-gram reductions for 𝑞 ∈ {5,7,9,11,13,15} due to the small universe
sizes of the genetic datasets (Gen20kl, Gen50ks).

Figure 9 shows the runtime of MinJoin++ and StatFastW on
DBLP-String,Word,Gen20kl, andUniref. The performance onEnron
and Trec (not shown) is similar toWord, while the performance on
Gen50ks and Trec2 (not shown) is similar to Gen20kl and Uniref, re-
spectively. For MinJoin++, we additionally show the recall for each
data point. On datasets with very long strings and high thresholds
(Gen20kl, Gen50ks, Trec2, Uniref), MinJoin++ significantly outper-
forms Fast while achieving high recall (>99%). For datasets with
short strings (Word,DBLP-String) and for larger thresholds onEnron
andTrec,MinJoin++ only achieves low recalls (<50%) inmany cases.
This is a known limitation of randomization used inMinJoin++ [33].

Conclusion. The performance of MinJoin++ heavily depends on
the dataset. On datasets with short strings, MinJoin++ achieves
low recall and high runtimes; on datasets with long strings, Min-
Join++ finds all result pairs with a significant speedup compared to
Fast. Therefore, we consider MinJoin++ a worthwhile candidate
for inclusion in the reduction graph of Fast.

7.3.3 Comparison against SyncSig (Trees). SyncSig [35] introduces
two approximate algorithms (BJoin and EJoin) for TED. Both are
similar toMinJoin and either partition the trees into balls (BJoin) or
partition the Euler strings of the trees (EJoin). Similar to MinJoin,
both algorithms claim high performance for large trees.

Experimental Setup and Results. SyncSigwas already compared to
TJoin on the general datasets (cf. Table 1) in the original work [35].
For these datasets, all algorithms performed similarly: They all must
verify at least the true-positive trees and the verification step is
responsible for most of the runtime. The authors thus remove all
trees smaller than 1000 nodes to reduce the output size. We use
their datasets (JScript1k, Python1k, Swissprot1k; cf. Table 1) for this
evaluation. We use the author’s implementation of SyncSig [36].

Figure 10 shows the runtime of SyncSig in both its BJoin and
EJoin variant and StatFast (from scratch, i.e., including indexing
time). After the execution of StatFast, we observe that the query
plan TED Str.SS Sym.SS1 d

2 outperforms all other query plans
significantly. We then measure only the performance of this single
query plan (referred to as StatFast (partition only) in Figure 10).
StatFast (partition only) always outperforms BJoin and shows
similar performance to EJoin. The remaining difference in runtime
on JScript1k and Python1k can be attributed to the materialization
of data reductions: By computing Palloc directly on the nodes of
the tree without materializing them as sets, this gap can be reduced.

Conclusion. To the best of our knowledge, no existing algorithm
for TED uses a query plan similar to the Palloc-based plan of Fast.

2The variation of Palloc used here disables deletion neighborhoods and is equivalent
to the partition filter in PartEnum [2].

3877

0.75 0.8 0.85 0.9 0.95
0

5

10

ϵ

ru
nt

im
e

[s] BMS-POS

0.75 0.8 0.85 0.9 0.95
0
2
4
6

ϵ

Kosarak

0.75 0.8 0.85 0.9 0.95
0

0.5

1

·104

ϵ

DBLP14-Set

0.75 0.8 0.85 0.9 0.95
0
2
4
6

·103

ϵ

Lnonis1

0

0.5

1

Pa
ll

oc
us

ag
e

0

0.5

1

0

0.5

1

0

0.5

1

StatFastC TwoL Prefix Palloc StatFast (% Palloc) TwoL (% Palloc)

Figure 8: Runtime comparison of Fast against TwoL.

1 2 3 4 5 6

102

104
99.4 98.4 94.6 81.3 54.9 33.2

ϵ

ru
nt

im
e

[s] DBLP-String

1 2 3 4 5 6
100
101
102
103

78.8
53.0 34.2 16.5

12.1 5.9

ϵ

Word

100 200 300 400

102

104

100 100 100 100 100 100 100 100

ϵ

Gen20kl

5 10 15 20 25
100.5

101

101.5

100 100 100 99.8 99.1

ϵ

Uniref
StatFastW MinJoin++

Figure 9: Runtime comparison of Fast against MinJoin++.

10 15 20 25 30 35 40
101.5
102

102.5

ϵ

ru
nt

im
e

[s] JScript1k

10 15 20 25 30 35 40

101

102

ϵ

Python1k

10 15 20 25 30 35 40
101

102

ϵ

Swissprot1k
StatFastC StatFastC (partition only) EJoin BJoin

Figure 10: Runtime comparison of Fast against SyncSig.

This query plan is efficient andperforms approximately aswell as the
better variation of SyncSig on all tested datasets.Hence, the addition
of SyncSig to Fast would not yield a significant improvement.

7.4 Fast as a Tool for Prototyping

We show the extensibility of Fast to an unsupported similarity func-
tion as a method to design a similarity join algorithm. To this end,
we demonstrate the inclusion of the Jaro similarity on strings and
show the required steps to implement baseline support for Jaro in-
side Fast using reductions. Furthermore, we compare Fast against
Limes [22, 50], a state-of-the-art algorithm for Jaro similarity joins.

Jaro Similarity.The Jaro similarity is ameasure defined on strings.
For two strings 𝑟,𝑠 , we define the number of matches𝑚 as the num-
ber of identical characters that appear at most max{ |𝑟 |, |𝑠 | }

2 character
positions apart from each other in 𝑟 and 𝑠 . Furthermore, we define
the number of transpositions 𝑡 as the cardinality of the subset of
matches that are not matched at the same position in both strings.
Then, the Jaro similarity is defined as 𝑑 𝑗 (𝑟,𝑠) = 1

3 (
𝑚
|𝑟 | +

𝑚
|𝑠 | +

𝑚−𝑡
𝑚

).
Jaro similarity is used in entity linking and related fields [17, 22, 52].

Implementing Jaro using Reductions. Besides an implementation
of the similarity function itself, a reduction to a known distance
function with known query plans is required. To this end, we use a
common bound of 𝑑 𝑗 based on the overlap of the character sets of
two strings [22, 74]: Define Jaro Overlap similarity as 𝑑 𝑗𝑜 = 1

3 (
|𝑟∩𝑠 |
|𝑟 | +

|𝑟∩𝑠 |
|𝑠 | + 1), where the strings 𝑟, 𝑠 are interpreted as sets of char-

acters. Then 𝑑 𝑗 (𝑟, 𝑠) ≤ 𝑑 𝑗𝑜 (𝑟, 𝑠). Jaro Overlap is an instance of a

symmetric set similarity, with the equivalent overlap defined as
𝑒𝑞𝑜 𝑗𝑜 (𝑟,𝑠,𝜀)= (3𝜀−1) |𝑟 | · |𝑠 |

|𝑟 |+|𝑠 | . Thus, Jaro Overlap does not require any
significant implementation effort as it is defined by its equivalent
overlap like all other symmetric set similarities.

To summarize, implementing Jaro similarity inside Fast only re-
quires (1) implementing Jaro similarity for pairs of strings, (2) adding
a new equivalent overlap function to support Jaro Overlap, (3) im-
plementing the character sets reduction, mapping strings to sets
(implemented as a special case of 𝑞-grams with 𝑞=1), and (4) regis-
tering Jaro, Jaro Overlap, and character sets in the reduction graph
(cf. Figure 1). Our reduction graph finds two query plans for Jaro
similarity: Jaro is reduced to Jaro Overlap using character sets; then,
Jaro Overlap is evaluated using Prefix or Palloc.

Experimental Evaluation.Wecompare Fast against Limes [22, 50],
a state-of-the-art algorithm for Jaro similarity joins. We adapt the
original implementation of Limes [23]: (1) We reimplement the orig-
inal Java implementation of Limes in C++, (2) adjusted an incor-
rect early termination condition that was previously noticed by
Keil et al. [37], and (3) removed the use of redundant data struc-
tures. Except for modification (2) that is required for correctness, all
modifications increased the performance of Limes.

We evaluate Fast and Limes on all general datasets. Due to high
runtimes for low Jaro thresholds on these datasets, we take samples
such that the runtime of Limes does not significantly exceed one
hour. ForDBLP-String, Enron, andTrec, the samples are of size 60000,
11000, and 8000, respectively. We use the full Word dataset.

Figure 11 shows the runtime of Limes and StatFastC. Except
for low thresholds on Enron and Trec, StatFast significantly out-
performs Limes for all datasets. Limes uses early termination and
grouped verification, but essentially compares all pairs of strings.
Fast leverages both Prefix and Palloc to effectively prune dissim-
ilar pairs and thus does not need to consider all pairs of strings. In
particular, Fast tends to usePrefix for filtering of low thresholds (up
to 0.88−0.94) and Palloc for high thresholds (0.88−0.94 and higher).

To summarize, extending Fast to Jaro similarity only requires
adding the Jaro similarity function, an equivalent overlap function,

3878

0.85 0.88 0.91 0.94 0.97

102

104

ϵ

ru
nt

im
e

[s] DBLP-String

0.85 0.88 0.91 0.94 0.97
101
102
103

ϵ

Enron

0.85 0.88 0.91 0.94 0.97

101
102
103

ϵ

Trec

0.85 0.88 0.91 0.94 0.97

100
101
102
103

ϵ

Word
StatFastC Limes

Figure 11: Runtime comparison of Fast against Limes.

a reduction, and new entries in the reduction graph. In particular,
no new algorithms are required. This prototype serves as a baseline
for algorithms using character sets to bound Jaro similarity. Fast
outperforms the current state-of-the-art algorithm for Jaro joins
Limes by one to three orders of magnitude in most settings.

7.5 Main Experimental Insights

Our experiments (Sections 7.2-7.4) highlight various strengths of
Fast. First, Fast automatically selects near-optimal query plans
with low overhead (on avg. only 12% slower than optimal plans, cf.
Section 7.2.1) and utilizes various algorithmic primitives based on
dataset characteristics (cf. Section 7.2.2). Second, Fast offers flexible
deployment via StatFast and DynFast variations, supporting sys-
temswith pre-built (StatFastW) indexes for frequently queried data
or on-the-fly construction with caching (DynFast) for infrequently
queried data (cf. Section 7.2.3). Third, Fast serves as a robust baseline,
matching or exceeding the performance of specialized algorithms
using query plans not yet reported in the literature (e.g., a novel
Palloc-based plan for TED, cf. Section 7.3.3). Finally, its modular
design facilitates rapid prototyping and extension, as shown by the
Jaro similarity case study where Fast significantly outperformed
a state-of-the-art competitor with minimal coding efforts (cf. Sec-
tion 7.4). Collectively, these findings show that Fast is a robust and
extensible system for similarity query evaluation.

8 RELATEDWORK

Standalone Algorithms.A large number of standalone algorithms for
similarity joins has been proposed in the literature. These works are
orthogonal to ourwork as, to the best of our knowledge, all current al-
gorithms can be included into Fast to extend itwith newquery plans.

Most algorithms for set similarity use the prefix filter [14] or the
partition-and-enumeration framework [2]. We refer to the survey
byMann et al. [47] for details on the numerous variations of prefix-
based algorithms [9, 13, 14, 46, 70, 79]. Further developments include
grouping of index entries and probing signatures [72], efficiently
enumerating subsets as signatures [20], and techniques to combine
multiple algorithms depending on the dataset [57, 76].

For string similarity joins, most algorithms focus on the string
edit distance andwe refer to Jiang et al. [30] for details. Recent devel-
opments for approximate string similarity joins include embedding
SED in Hamming space [82] and splitting the strings at pivot points
determined by a randomized function [33, 83].

In the context of tree edit distance joins, Li et al. [43] survey
bounds based on histograms [32], strings [27], and subtrees [80].
Further developments include splitting the trees into subgraphs and
applying the pigeonhole principle [66], using enhanced label sets

including positional information [29], and approximate approaches
based on tree partitioning or Euler string partitioning [35].

Similarity Joins in Systems. Recently, some systems taking a more
holistic approach to similarity joins have been proposed. SIREN [8]
leverages a traditional DBMS and handles similarity queries exter-
nally.DIMA[62, 63] implements Palloc [19] inApacheSpark and ex-
tends it for distributed computation.DIMAperforms cost-based opti-
mization either using a prebuilt index or by sampling. Silva et al. [59]
study different similarity operators, their conceptual evaluation, and
rewrite rules for query optimization. Wang et al. [75] use machine
learning for cardinality estimation of similarity joins. Sun et al. [61]
reduce the dimensionality of their training data by partitioning and
learning local models. Unlike previous work, we focus on an extensi-
ble system for different similarity functions and domains. Note that
selecting an efficient query plan is orthogonal to estimating the cardi-
nality of the result of the similarity join.While all joins have the same
cardinality, different similarity join algorithms greatly vary in cost.

Feedback-based Query Evaluation. Several query plan selection
schemes using measured runtime performance have been proposed
recently. Eddies [7] routes input tuples to the plan’s operators based
on lottery scheduling [69]without formal guarantees. Li et al. [45] dy-
namically change join orders based on observed selectivities. Trum-
mer et al. [68] use UCT [41] to find efficient join orders during ex-
ecution. Compared to Trummer, our work on similarity queries
introduces a novel technique for query plan enumeration, requires
different MDPmodeling, and different strategies for work sharing.

9 CONCLUSION

We introduced Fast, a similarity join algorithm that is both exten-
sible and efficient, overcoming limitations of current monolithic
solutions. By leveraging reductions to transform complex join prob-
lems into simpler ones, our system efficiently enumerates and selects
optimal query plans via a sampling-based strategy without the need
for cost models. Supporting both prebuilt and on-the-fly indexing
with effective caching, Fast achieves performance near the best
individual plan in our extensive evaluation. Finally, our case studies
further demonstrate Fast’s extensibility and potential as a baseline.

ACKNOWLEDGMENTS

This researchwas funded inwhole, or inpart, by theAustrianScience
Fund (FWF) 10.55776/P34962, the State of Salzburg, Austria: Culture
and Science Department, reference number 20204-WISS/262/9-2021,
and the Austrian ministries BMIMI, BMWET, and the State of Up-
per Austria in the frame of the SCCH COMET competence center
INTEGRATE (FFG 892418).

3879

REFERENCES

[1] Tatsuya Akutsu. 2006. A relation between edit distance for ordered trees
and edit distance for Euler strings. Inf. Process. Lett. 100, 3 (2006), 105–109.
https://doi.org/10.1016/j.ipl.2006.06.002

[2] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact
Set-Similarity Joins. In Proceedings of the 32nd International Conference on

Very Large Data Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal,
Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Mar-
tin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, 918–929.
http://dl.acm.org/citation.cfm?id=1164206

[3] Nikolaus Augsten. 2018. A Roadmap towards Declarative Similarity Queries. In
Proceedings of the 21st International Conference on Extending Database Technology,

EDBT 2018, Vienna, Austria, March 26-29, 2018, Michael H. Böhlen, Reinhard
Pichler, Norman May, Erhard Rahm, Shan-Hung Wu, and Katja Hose (Eds.).
OpenProceedings.org, 509–512. https://doi.org/10.5441/002/EDBT.2018.59

[4] Nikolaus Augsten and Michael H. Böhlen. 2013. Similarity Joins

in Relational Database Systems. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00544ED1V01Y201310DTM038

[5] Nikolaus Augsten, Michael H. Böhlen, and Johann Gamper. 2005. Approximate
Matching of Hierarchical Data Using pq-Grams. In Proceedings of the 31st

International Conference on Very Large Data Bases, Trondheim, Norway, August 30

- September 2, 2005, Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L.
Kersten, Per-Åke Larson, and Beng Chin Ooi (Eds.). ACM, 301–312. http:
//www.vldb.org/archives/website/2005/program/paper/wed/p301-augsten.pdf

[6] Nikolaus Augsten, Michael H. Böhlen, and Johann Gamper. 2010. The pq-gram
distance between ordered labeled trees. ACM Trans. Database Syst. 35, 1 (2010),
4:1–4:36. https://doi.org/10.1145/1670243.1670247

[7] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive
Query Processing. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein (Eds.). ACM, 261–272.
https://doi.org/10.1145/342009.335420

[8] Maria Camila Nardini Barioni, Humberto Luiz Razente, Agma J. M. Traina, and
CaetanoTraina Jr. 2006. SIREN:ASimilarityRetrieval Engine forComplexData. In
Proceedings of the 32nd International Conference onVery LargeDataBases, Seoul, Ko-

rea, September 12-15, 2006, Umeshwar Dayal, Kyu-YoungWhang, David B. Lomet,
Gustavo Alonso, GuyM. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-
Kuk Kim (Eds.). ACM, 1155–1158. http://dl.acm.org/citation.cfm?id=1164232

[9] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up
all pairs similarity search. In Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, Carey L.
Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy
(Eds.). ACM, 131–140. https://doi.org/10.1145/1242572.1242591

[10] Thomas Bocek, Ela Hunt, David Hausheer, and Burkhard Stiller. 2008. Fast
similarity search in peer-to-peer networks. In IEEE/IFIP Network Operations and
Management Symposium: Pervasive Management for Ubioquitous Networks and

Services, NOMS 2008, 7-11 April 2008, Salvador, Bahia, Brazil, Marcus Brunner,
Carlos Becker Westphall, and Lisandro Zambenedetti Granville (Eds.). IEEE,
240–247. https://doi.org/10.1109/NOMS.2008.4575140

[11] Christian Böhm, Bernhard Braunmüller, Markus M. Breunig, and Hans-Peter
Kriegel. 2000. High Performance Clustering Based on the Similarity Join. In
Proceedings of the 2000 ACM CIKM International Conference on Information and

Knowledge Management, McLean, VA, USA, November 6-11, 2000. ACM, 298–305.
https://doi.org/10.1145/354756.354832

[12] Christian Böhm, Bernhard Braunmüller, Florian Krebs, and Hans-Peter Kriegel.
2001. Epsilon Grid Order: An Algorithm for the Similarity Join onMassive High-
DimensionalData. InProceedings of the 2001ACMSIGMODinternational conference

onManagement of data, Santa Barbara, CA, USA,May 21-24, 2001, SharadMehrotra
and Timos K. Sellis (Eds.). ACM, 379–388. https://doi.org/10.1145/375663.375714

[13] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-
textual similarity joins. Proc. VLDB Endow. 6, 1 (2012), 1–12. https:
//doi.org/10.14778/2428536.2428537

[14] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A Primitive
Operator for Similarity Joins in Data Cleaning. In Proceedings of the 22nd

International Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,

GA, USA, Ling Liu, Andreas Reuter, Kyu-YoungWhang, and Jianjun Zhang (Eds.).
IEEE Computer Society, 5. https://doi.org/10.1109/ICDE.2006.9

[15] Tobias Christiani and Rasmus Pagh. 2017. Set similarity search beyond
MinHash. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). ACM, 1094–1107.
https://doi.org/10.1145/3055399.3055443

[16] WilliamW. Cohen. 2000. Data integration using similarity joins and aword-based
information representation language. ACM Trans. Inf. Syst. 18, 3 (2000), 288–321.
https://doi.org/10.1145/352595.352598

[17] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. 2003. A
Comparison of String Distance Metrics for Name-Matching Tasks. In Proceedings
of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), August

9-10, 2003, Acapulco,Mexico, SubbaraoKambhampati andCraigA. Knoblock (Eds.).
73–78. http://www.isi.edu/info-agents/workshops/ijcai03/papers/Cohen-p.pdf

[18] Pierre-ArnaudCoquelinandRémiMunos. 2007. BanditAlgorithms forTreeSearch.
InUAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, Vancouver, BC, Canada, July 19-22, 2007, Ronald Parr and Linda C.
van der Gaag (Eds.). AUAI Press, 67–74. https://doi.org/10.5555/3020488.3020497

[19] Dong Deng, Guoliang Li, HeWen, and Jianhua Feng. 2015. An Efficient Partition
Based Method for Exact Set Similarity Joins. Proc. VLDB Endow. 9, 4 (2015),
360–371. https://doi.org/10.14778/2856318.2856330

[20] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap Set Similarity Joins with
Theoretical Guarantees. In Proceedings of the 2018 International Conference on

Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,

2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
905–920. https://doi.org/10.1145/3183713.3183748

[21] Carmel Domshlak and Zohar Feldman. 2013. To UCT, or not to UCT? (Position Pa-
per). In Proceedings of the Sixth Annual Symposium on Combinatorial Search, SOCS

2013, Leavenworth,Washington, USA, July 11-13, 2013, Malte Helmert and Gabriele
Röger (Eds.). AAAI Press, 63–70. https://doi.org/10.1609/SOCS.V4I1.18299

[22] Kevin Dreßler and Axel-Cyrille Ngonga Ngomo. 2017. On the efficient
execution of bounded Jaro-Winkler distances. Semantic Web 8, 2 (2017), 185–196.
https://doi.org/10.3233/SW-150209

[23] Kevin Dreßler and Axel-Cyrille Ngonga Ngomo. 2017. On the ef-
ficient execution of bounded Jaro-Winkler distances (Source Code).
https://github.com/dice-group/LIMES. Source code accompanying the paper.

[24] Zohar Feldman andCarmelDomshlak. 2013. Monte-Carlo Planning: Theoretically
Fast Convergence Meets Practical Efficiency. In Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA,

August 11-15, 2013, Ann E. Nicholson and Padhraic Smyth (Eds.). AUAI Press.
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=
2382&proceeding_id=29

[25] Zohar Feldman and Carmel Domshlak. 2014. Simple Regret Optimization in
Online Planning for Markov Decision Processes. J. Artif. Intell. Res. 51 (2014),
165–205. https://doi.org/10.1613/JAIR.4432

[26] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrish-
nan, andDivesh Srivastava. 2001. Approximate String Joins in aDatabase (Almost)
for Free. In VLDB 2001, Proceedings of 27th International Conference on Very Large

Data Bases, September 11-14, 2001, Roma, Italy, PeterM.G. Apers, PaoloAtzeni, Ste-
fanoCeri, StefanoParaboschi,Kotagiri Ramamohanarao, andRichardT. Snodgrass
(Eds.). Morgan Kaufmann, 491–500. http://www.vldb.org/conf/2001/P491.pdf

[27] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu. 2002.
Approximate XML joins. In Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002,
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki (Eds.). ACM, 287–298.
https://doi.org/10.1145/564691.564725

[28] Thomas Hütter, Nikolaus Augsten, Christoph M. Kirsch, Michael J. Carey, and
Chen Li. 2022. JEDI: These aren’t the JSON documents you’re looking for?. In
SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,

USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 1584–1597. https://doi.org/10.1145/3514221.3517850

[29] Thomas Hütter, Mateusz Pawlik, Robert Loschinger, and Nikolaus Augsten. 2019.
Effective Filters and Linear Time Verification for Tree Similarity Joins. In 35th

IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April

8-11, 2019. IEEE, 854–865. https://doi.org/10.1109/ICDE.2019.00081
[30] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2014. String Similarity

Joins: An Experimental Evaluation. Proc. VLDB Endow. 7, 8 (2014), 625–636.
https://doi.org/10.14778/2732296.2732299

[31] Liang Jin, Chen Li, and Rares Vernica. 2008. SEPIA: estimating selectivities of
approximate string predicates in large Databases. VLDB J. 17, 5 (2008), 1213–1229.
https://doi.org/10.1007/S00778-007-0061-2

[32] Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer, and Thomas Seidl.
2004. Efficient Similarity Search for Hierarchical Data in Large Databases.
In Advances in Database Technology - EDBT 2004, 9th International Con-

ference on Extending Database Technology, Heraklion, Crete, Greece, March

14-18, 2004, Proceedings (Lecture Notes in Computer Science), Elisa Bertino,
Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides, Manolis
Koubarakis, Klemens Böhm, and Elena Ferrari (Eds.), Vol. 2992. Springer, 676–693.
https://doi.org/10.1007/978-3-540-24741-8_39

[33] Nikolai Karpov, Haoyu Zhang, and Qin Zhang. 2024. MinJoin++: a fast algorithm
for string similarity joins under edit distance. VLDB J. 33, 2 (2024), 281–299.
https://doi.org/10.1007/S00778-023-00806-Z

[34] Nikolai Karpov, Haoyu Zhang, and Qin Zhang. 2024. MinJoin++: a fast
algorithm for string similarity joins under edit distance (Source Code).
https://github.com/kedayuge/MinJoin. Source code accompanying the paper.

[35] Nikolai Karpov and Qin Zhang. 2022. SyncSignature: A Simple, Efficient,
Parallelizable Framework for Tree Similarity Joins. Proc. VLDB Endow. 16, 2 (2022),
330–342. https://doi.org/10.14778/3565816.3565833

[36] Nikolai Karpov and Qin Zhang. 2022. SyncSignature: A Simple, Efficient,
Parallelizable Framework for Tree Similarity Joins (Source Code). https:

3880

https://doi.org/10.1016/j.ipl.2006.06.002
http://dl.acm.org/citation.cfm?id=1164206
https://doi.org/10.5441/002/EDBT.2018.59
https://doi.org/10.2200/S00544ED1V01Y201310DTM038
http://www.vldb.org/archives/website/2005/program/paper/wed/p301-augsten.pdf
http://www.vldb.org/archives/website/2005/program/paper/wed/p301-augsten.pdf
https://doi.org/10.1145/1670243.1670247
https://doi.org/10.1145/342009.335420
http://dl.acm.org/citation.cfm?id=1164232
https://doi.org/10.1145/1242572.1242591
https://doi.org/10.1109/NOMS.2008.4575140
https://doi.org/10.1145/354756.354832
https://doi.org/10.1145/375663.375714
https://doi.org/10.14778/2428536.2428537
https://doi.org/10.14778/2428536.2428537
https://doi.org/10.1109/ICDE.2006.9
https://doi.org/10.1145/3055399.3055443
https://doi.org/10.1145/352595.352598
http://www.isi.edu/info-agents/workshops/ijcai03/papers/Cohen-p.pdf
https://doi.org/10.5555/3020488.3020497
https://doi.org/10.14778/2856318.2856330
https://doi.org/10.1145/3183713.3183748
https://doi.org/10.1609/SOCS.V4I1.18299
https://doi.org/10.3233/SW-150209
https://github.com/dice-group/LIMES
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2382&proceeding_id=29
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2382&proceeding_id=29
https://doi.org/10.1613/JAIR.4432
http://www.vldb.org/conf/2001/P491.pdf
https://doi.org/10.1145/564691.564725
https://doi.org/10.1145/3514221.3517850
https://doi.org/10.1109/ICDE.2019.00081
https://doi.org/10.14778/2732296.2732299
https://doi.org/10.1007/S00778-007-0061-2
https://doi.org/10.1007/978-3-540-24741-8_39
https://doi.org/10.1007/S00778-023-00806-Z
https://github.com/kedayuge/MinJoin
https://doi.org/10.14778/3565816.3565833
https://github.com/nkkarpov/syncsignature

//github.com/nkkarpov/syncsignature. Source code accompanying the paper.
[37] Jan Martin Keil. 2019. Efficient Bounded Jaro-Winkler Similarity Based Search. In

Datenbanksysteme für Business, Technologie undWeb (BTW 2019), 18. Fachtagung

des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 4.-8. März

2019, Rostock, Germany, Proceedings (LNI), Torsten Grust, Felix Naumann,
Alexander Böhm,Wolfgang Lehner, Theo Härder, Erhard Rahm, Andreas Heuer,
Meike Klettke, and Holger Meyer (Eds.), Vol. P-289. Gesellschaft für Informatik,
Bonn, 205–214. https://doi.org/10.18420/BTW2019-13

[38] Thomas Keller and Patrick Eyerich. 2012. PROST: Probabilistic Planning Based on
UCT. In Proceedings of the Twenty-Second International Conference on Automated

Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012,
Lee McCluskey, Brian CharlesWilliams, José Reinaldo Silva, and Blai Bonet (Eds.).
AAAI. http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4715

[39] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter A. Boncz. 2018. Everything You AlwaysWanted to Know About Compiled
and Vectorized Queries ButWere Afraid to Ask. Proc. VLDB Endow. 11, 13 (2018),
2209–2222. https://doi.org/10.14778/3275366.3275370

[40] Julien Kloetzer. 2010. Monte-Carlo Opening Books for Amazons. In Computers

and Games - 7th International Conference, CG 2010, Kanazawa, Japan, September

24-26, 2010, Revised Selected Papers (Lecture Notes in Computer Science), H. Jaap
van den Herik, Hiroyuki Iida, and Aske Plaat (Eds.), Vol. 6515. Springer, 124–135.
https://doi.org/10.1007/978-3-642-17928-0_12

[41] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.
InMachine Learning: ECML 2006, 17th European Conference on Machine Learning,

Berlin, Germany, September 18-22, 2006, Proceedings (Lecture Notes in Computer

Science), Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou (Eds.),
Vol. 4212. Springer, 282–293. https://doi.org/10.1007/11871842_29

[42] Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient Merging and Filtering Al-
gorithms for Approximate String Searches. In Proceedings of the 24th International
Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico,
Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer
Society, 257–266. https://doi.org/10.1109/ICDE.2008.4497434

[43] Fei Li, HongzhiWang, Jianzhong Li, and Hong Gao. 2013. A survey on tree edit
distance lower bound estimation techniques for similarity join on XML data.
SIGMOD Rec. 42, 4 (2013), 29–39. https://doi.org/10.1145/2590989.2590994

[44] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. PASS-JOIN:
A Partition-based Method for Similarity Joins. Proc. VLDB Endow. 5, 3 (2011),
253–264. https://doi.org/10.14778/2078331.2078340

[45] Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S. Colby, and
Guy M. Lohman. 2007. Adaptively Reordering Joins during Query Execution.
In Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, Rada Chirkova, Asuman
Dogac, M. Tamer Özsu, and Timos K. Sellis (Eds.). IEEE Computer Society, 26–35.
https://doi.org/10.1109/ICDE.2007.367848

[46] Willi Mann and Nikolaus Augsten. 2014. PEL: Position-Enhanced Length Filter
for Set Similarity Joins. In Proceedings of the 26th GI-Workshop Grundlagen von

Datenbanken, Bozen-Bolzano, Italy, October 21st to 24th, 2014 (CEUR Workshop

Proceedings), Friederike Klan, Günther Specht, and Johann Gamper (Eds.),
Vol. 1313. CEUR-WS.org, 89–94. https://ceur-ws.org/Vol-1313/paper_16.pdf

[47] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An Empirical
Evaluation of Set Similarity Join Techniques. Proc. VLDB Endow. 9, 9 (2016),
636–647. https://doi.org/10.14778/2947618.2947620

[48] Arturas Mazeika, Michael H. Böhlen, Nick Koudas, and Divesh Srivastava. 2007.
Estimating the selectivity of approximate string queries. ACM Trans. Database

Syst. 32, 2 (2007), 12. https://doi.org/10.1145/1242524.1242529
[49] Manoj Muniswamaiah, Tilak Agerwala, and Charles C. Tappert. 2023. Appli-

cations of Binary Similarity and Distance Measures. arXiv:2307.00411 [cs.CV]
https://arxiv.org/abs/2307.00411

[50] Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, Kleanthi Geor-
gala, Mofeed Mohamed Hassan, Kevin Dreßler, Klaus Lyko, Daniel
Obraczka, and Tommaso Soru. 2021. LIMES: A Framework for Link Dis-
covery on the Semantic Web. Künstliche Intell. 35, 3 (2021), 413–423.
https://doi.org/10.1007/S13218-021-00713-X

[51] Santiago Ontañón. 2020. An overview of distance and similarity func-
tions for structured data. Artif. Intell. Rev. 53, 7 (2020), 5309–5351.
https://doi.org/10.1007/S10462-020-09821-W

[52] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and Divesh
Srivastava. 2015. Combining Quantitative and Logical Data Cleaning. Proc. VLDB
Endow. 9, 4 (2015), 300–311. https://doi.org/10.14778/2856318.2856325

[53] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. 2011. Efficient
exact edit similarity query processing with the asymmetric signature scheme.
In Proceedings of the ACM SIGMOD International Conference on Management

of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, Timos K. Sellis, Renée J.
Miller, Anastasios Kementsietsidis, and Yannis Velegrakis (Eds.). ACM, 1033–1044.
https://doi.org/10.1145/1989323.1989431

[54] Jianbin Qin and Chuan Xiao. 2018. Pigeonring: A Principle for Faster
Thresholded Similarity Search. Proc. VLDB Endow. 12, 1 (2018), 28–42.
https://doi.org/10.14778/3275536.3275539

[55] Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo Chen, and
Anthony K. H. Tung. 2013. Efficient and Scalable Processing of String
Similarity Join. IEEE Trans. Knowl. Data Eng. 25, 10 (2013), 2217–2230.
https://doi.org/10.1109/TKDE.2012.195

[56] Daniel Schmitt, ThomasHütter, andNikolausAugsten. 2025. Extensible andRobust
Evaluation of Similarity Queries. Technical Report. University of Salzburg. https:
//frosch.cosy.sbg.ac.at/dschmitt/fast-similarity-evaluation/-/tree/squashed/paper

[57] Daniel Ulrich Schmitt, Daniel Kocher, Nikolaus Augsten, Willi Mann, and Alexan-
derMiller. 2023. ATwo-Level SignatureScheme forStable Set Similarity Joins. Proc.
VLDB Endow. 16, 11 (2023), 2686–2698. https://doi.org/10.14778/3611479.3611480

[58] AviSilberschatz,HenryF.Korth, andS. Sudarshan. 2020.Database SystemConcepts,

Seventh Edition. McGraw-Hill Book Company. https://www.db-book.com/
[59] Yasin N. Silva, Walid G. Aref, Per-Åke Larson, Spencer Pearson, and Mohamed H.

Ali. 2013. Similarity queries: their conceptual evaluation, transformations, andpro-
cessing. VLDB J. 22, 3 (2013), 395–420. https://doi.org/10.1007/s00778-012-0296-4

[60] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game
of Go with deep neural networks and tree search. Nat. 529, 7587 (2016), 484–489.
https://doi.org/10.1038/NATURE16961

[61] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for Simi-
larityQueries. InSIGMOD’21: InternationalConferenceonManagementofData,Vir-

tual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, andDi-
vesh Srivastava (Eds.). ACM, 1745–1757. https://doi.org/10.1145/3448016.3452790

[62] Ji Sun, Zeyuan Shang, Guoliang Li, Zhifeng Bao, and Dong Deng. 2019. Balance-
Aware Distributed String Similarity-Based Query Processing System. Proc. VLDB
Endow. 12, 9 (2019), 961–974. https://doi.org/10.14778/3329772.3329774

[63] Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, and Zhifeng Bao. 2017. Dima:
A Distributed In-Memory Similarity-Based Query Processing System. Proc. VLDB
Endow. 10, 12 (2017), 1925–1928. https://doi.org/10.14778/3137765.3137810

[64] Maciej Swiechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek
Mandziuk. 2023. Monte Carlo Tree Search: a review of recent mod-
ifications and applications. Artif. Intell. Rev. 56, 3 (2023), 2497–2562.
https://doi.org/10.1007/S10462-022-10228-Y

[65] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008.
ArnetMiner: extraction and mining of academic social networks. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, Ying Li, Bing Liu, and
Sunita Sarawagi (Eds.). ACM, 990–998. https://doi.org/10.1145/1401890.1402008

[66] Yu Tang, Yilun Cai, and Nikos Mamoulis. 2015. Scaling Similarity Joins
over Tree-Structured Data. Proc. VLDB Endow. 8, 11 (2015), 1130–1141.
https://doi.org/10.14778/2809974.2809976

[67] Joe Tekli, Richard Chbeir, and Kokou Yétongnon. 2009. An overview on XML
similarity: Background, current trends and future directions. Comput. Sci. Rev.

3, 3 (2009), 151–173. https://doi.org/10.1016/J.COSREV.2009.03.001
[68] Immanuel Trummer, JunxiongWang, ZiyunWei,DeepakMaram, SamuelMoseley,

Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. SkinnerDB:
Regret-bounded Query Evaluation via Reinforcement Learning. ACM Trans.

Database Syst. 46, 3 (2021), 9:1–9:45. https://doi.org/10.1145/3464389
[69] Carl A. Waldspurger and William E. Weihl. 1994. Lottery Scheduling: Flex-

ible Proportional-Share Resource Management. In Proceedings of the First

USENIX Symposium on Operating Systems Design and Implementation (OSDI),

Monterey, California, USA, November 14-17, 1994. USENIX Association, 1–11.
http://dl.acm.org/citation.cfm?id=1267639

[70] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix
filtering?: an adaptive framework for similarity join and search. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIG-

MOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen,
Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 85–96.
https://doi.org/10.1145/2213836.2213847

[71] Wei Wang, Jianbin Qin, Chuan Xiao, Xuemin Lin, and Heng Tao Shen. 2013.
VChunkJoin: An Efficient Algorithm for Edit Similarity Joins. IEEE Trans. Knowl.
Data Eng. 25, 8 (2013), 1916–1929. https://doi.org/10.1109/TKDE.2012.79

[72] XuboWang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2019. Leveraging
set relations in exact and dynamic set similarity join. VLDB J. 28, 2 (2019), 267–292.
https://doi.org/10.1007/S00778-018-0529-2

[73] Yizao Wang and Sylvain Gelly. 2007. Modifications of UCT and sequence-like
simulations for Monte-Carlo Go. In Proceedings of the 2007 IEEE Symposium on

Computational Intelligence and Games, CIG 2007, Honolulu, Hawaii, USA, 1-5 April,

2007. IEEE, 175–182. https://doi.org/10.1109/CIG.2007.368095
[74] YaoshuWang, Jianbin Qin, andWei Wang. 2017. Efficient Approximate Entity

Matching Using Jaro-Winkler Distance. InWeb Information Systems Engineering

- WISE 2017 - 18th International Conference, Puschino, Russia, October 7-11, 2017,

Proceedings, Part I (Lecture Notes in Computer Science), Athman Bouguettaya,
Yunjun Gao, Andrey Klimenko, Lu Chen, Xiangliang Zhang, Fedor Dzerzhinskiy,
Weijia Jia, Stanislav V. Klimenko, and Qing Li (Eds.), Vol. 10569. Springer, 231–239.

3881

https://github.com/nkkarpov/syncsignature
https://doi.org/10.18420/BTW2019-13
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4715
https://doi.org/10.14778/3275366.3275370
https://doi.org/10.1007/978-3-642-17928-0_12
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/ICDE.2008.4497434
https://doi.org/10.1145/2590989.2590994
https://doi.org/10.14778/2078331.2078340
https://doi.org/10.1109/ICDE.2007.367848
https://ceur-ws.org/Vol-1313/paper_16.pdf
https://doi.org/10.14778/2947618.2947620
https://doi.org/10.1145/1242524.1242529
https://arxiv.org/abs/2307.00411
https://arxiv.org/abs/2307.00411
https://doi.org/10.1007/S13218-021-00713-X
https://doi.org/10.1007/S10462-020-09821-W
https://doi.org/10.14778/2856318.2856325
https://doi.org/10.1145/1989323.1989431
https://doi.org/10.14778/3275536.3275539
https://doi.org/10.1109/TKDE.2012.195
https://frosch.cosy.sbg.ac.at/dschmitt/fast-similarity-evaluation/-/tree/squashed/paper
https://frosch.cosy.sbg.ac.at/dschmitt/fast-similarity-evaluation/-/tree/squashed/paper
https://doi.org/10.14778/3611479.3611480
https://www.db-book.com/
https://doi.org/10.1007/s00778-012-0296-4
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.14778/3329772.3329774
https://doi.org/10.14778/3137765.3137810
https://doi.org/10.1007/S10462-022-10228-Y
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.14778/2809974.2809976
https://doi.org/10.1016/J.COSREV.2009.03.001
https://doi.org/10.1145/3464389
http://dl.acm.org/citation.cfm?id=1267639
https://doi.org/10.1145/2213836.2213847
https://doi.org/10.1109/TKDE.2012.79
https://doi.org/10.1007/S00778-018-0529-2
https://doi.org/10.1109/CIG.2007.368095

https://doi.org/10.1007/978-3-319-68783-4_16
[75] Yaoshu Wang, Chuan Xiao, Jianbin Qin, Xin Cao, Yifang Sun, Wei Wang,

and Makoto Onizuka. 2020. Monotonic Cardinality Estimation of Similarity
Selection: A Deep Learning Approach. In Proceedings of the 2020 International

Conference on Management of Data, SIGMOD Conference 2020, online conference

[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
1197–1212. https://doi.org/10.1145/3318464.3380570

[76] Manuel Widmoser, Daniel Kocher, Nikolaus Augsten, andWilli Mann. 2023. Met-
ricJoin: LeveragingMetric Properties for Robust Exact Set Similarity Joins. In 39th
IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA,

April 3-7, 2023. IEEE, 1045–1058. https://doi.org/10.1109/ICDE55515.2023.00085
[77] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-Join: an efficient algorithm

for similarity joins with edit distance constraints. Proc. VLDB Endow. 1, 1 (2008),
933–944. https://doi.org/10.14778/1453856.1453957

[78] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. 2009. Top-k Set
Similarity Joins. In Proceedings of the 25th International Conference on Data

Engineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, Yannis E.
Ioannidis, Dik Lun Lee, and Raymond T. Ng (Eds.). IEEE Computer Society,
916–927. https://doi.org/10.1109/ICDE.2009.111

[79] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.
Efficient similarity joins for near-duplicate detection. ACM Trans. Database Syst.

36, 3 (2011), 15:1–15:41. https://doi.org/10.1145/2000824.2000825
[80] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. 2005. Similarity Evaluation on

Tree-structured Data. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, Fatma Özcan
(Ed.). ACM, 754–765. https://doi.org/10.1145/1066157.1066243

[81] Kazuki Yoshizoe, Akihiro Kishimoto, Tomoyuki Kaneko, Haruhiro Yoshimoto,
and Yutaka Ishikawa. 2011. Scalable Distributed Monte-Carlo Tree Search. In
Proceedings of the Fourth Annual Symposium on Combinatorial Search, SOCS

2011, Castell de Cardona, Barcelona, Spain, July 15.16, 2011, Daniel Borrajo,
Maxim Likhachev, and Carlos Linares López (Eds.). AAAI Press, 180–187.
https://doi.org/10.1609/SOCS.V2I1.18194

[82] Haoyu Zhang and Qin Zhang. 2017. EmbedJoin: Efficient Edit Similarity Joins
via Embeddings. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,

2017. ACM, 585–594. https://doi.org/10.1145/3097983.3098003
[83] Haoyu Zhang and Qin Zhang. 2019. MinJoin: Efficient Edit Similarity Joins via Lo-

cal HashMinima. In Proceedings of the 25th ACM SIGKDD International Conference

onKnowledgeDiscovery&DataMining, KDD2019, Anchorage, AK,USA,August 4-8,

2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and
GeorgeKarypis (Eds.). ACM, 1093–1103. https://doi.org/10.1145/3292500.3330853

3882

https://doi.org/10.1007/978-3-319-68783-4_16
https://doi.org/10.1145/3318464.3380570
https://doi.org/10.1109/ICDE55515.2023.00085
https://doi.org/10.14778/1453856.1453957
https://doi.org/10.1109/ICDE.2009.111
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1145/1066157.1066243
https://doi.org/10.1609/SOCS.V2I1.18194
https://doi.org/10.1145/3097983.3098003
https://doi.org/10.1145/3292500.3330853

	Abstract
	1 Introduction
	2 Background and Problem Statement
	3 Reduce-Filter-Verify Framework
	4 Query Plan Enumeration
	5 Static Indices Query Evaluation
	5.1 Requirements on Similarity Join Algorithms
	5.2 Leveraging UCT for Plan Selection
	5.3 Finding Efficient Query Plans
	5.4 Regret Analysis

	6 Dynamic Indices Query Evaluation
	6.1 Requirements on Similarity Join Algorithms
	6.2 Plan Evaluation with Index Construction
	6.3 Regret Analysis
	6.4 Practical Considerations

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Evaluating Fast's Standalone Performance
	7.3 Fast as a Baseline
	7.4 Fast as a Tool for Prototyping
	7.5 Main Experimental Insights

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

