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ABSTRACT
Leveraging GPUs’ high parallelism can signi!cantly improve the
real-time computation e"ciency of streaming graph processing.
However, when a large-scale graph exceeds GPU memory capacity,
CPU-GPU cooperative processing often results in substantial and
irregular CPU-to-GPU data transfer overhead. This stems from the
extensive redundant graph accesses during continuous computa-
tion, which can hardly be addressed by existing solutions. In this
work, we present Grapin, an out-of-memory GPU streaming graph
processing system designed to minimize graph data transfer via
two e#ective techniques for eliminating redundant accesses: (1)
Extending advanced incremental processing algorithms to GPUs
by converting their heavyweight data dependency processing into
GPU-friendly forms, eliminating redundant graph accesses from
the computation side; and (2) providing a lightweight yet e"cient
GPU hot subgraph management framework that !nely caches the
frequently accessed dynamic subgraphs in a vertex-centric manner.
Experimental results demonstrate that Grapin can e"ciently pro-
cess large-scale streaming graphs with billions of edges on a single
NVIDIA A5000 GPU. Enabling incremental computation reduces
data transfer by 61%, and the integration of GPU hot subgraph reuse
further reduces the remaining transfer by 72%, resulting in a total
reduction of 89%. Compared with CPU-based solutions, Grapin
achieves speedups ranging from 1.8x to 96.9x (17.9x on average).
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1 INTRODUCTION
In online services such as ByteDance’s e-commerce and advertising
platforms, thousands of graph analysis tasks, including breadth-!rst
search, graph clustering, and product ranking, are executed daily
on massive, dynamic graphs. These graphs undergo continuous
changes, modeling interactions such as likes, comments, and sub-
scriptions among users, videos, and products. A high-performance
streaming graph processing system that e"ciently maintains up-to-
date query results [39] is necessary to ensure high-quality services
for real-time recommendation and fraud detection tasks.

Streaming graph processing involves continuous computation
over dynamic graphs to maintain the result of a single query over
time, as opposed to static graph processing, which typically per-
forms one-shot computation. To improve computational e"ciency,
recent research has explored leveraging GPU-accelerated process-
ing [3, 6, 15, 34, 45, 46]. While these frameworks have demonstrated
promising results, they rely on storing the entire graph in the GPU
to exploit the massive parallelism and high memory bandwidth.
They struggle to handle large graphs that cannot !t into the GPU
memory, requiring the graph to be stored in CPUs and accessed
subgraphs to be transferred on demand at runtime. The continuous
transfer of irregular and dynamically changing graph data often
leads to signi!cant performance degradation.

Traditional out-of-memory GPU systems [8, 13, 24, 27, 28, 35, 52]
typically employ sparsity-aware communication techniques based
on Uni!ed Virtual Addressing (UVA) [37], which maps CPU and
GPU memory into a shared address space. These systems enable
zero-copy access [27] or adopt page-centric uni!ed virtual memory
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Figure 1: Performance of extending zero-copy access (ZC) and uni!ed
memory management (UM) techniques to GPU-based SSSP compu-
tation on synthetic graphs [19] with varying numbers of edges.

management [13, 24], allowing GPUs to seamlessly access required
graph data from the CPU with high e"ciency. However, in stream-
ing graph processing scenarios, existing communication techniques
demonstrate suboptimal performance, as they primarily optimize
transfers of inactive data for short-duration and simple computa-
tion tasks. They lack mechanisms to eliminate the data transfer
caused by duplicate graph accesses during continuous computation.
Figure 1 shows the performance of directly extending zero-copy
(ZC) access [27] and uni!ed virtual memory (UM) [2] techniques
to a recent in-memory GPU streaming graph processing frame-
work, SHGraph [3]. We observe that SHGraph with ZC can be up
to 6.2x slower than one of the state-of-the-art CPU-based solutions,
RisGraph [11]. While SHGraph with UM improves performance
on small graphs by caching and reusing most data in the GPU,
its e"ciency deteriorates as graph sizes increase due to frequent
heavyweight memory page migrations between the CPU and GPU,
ultimately lagging behind CPU-based solutions.

Developing e"cient mechanisms to minimize redundant graph
data accesses for streaming graph processing can be challenging.
First, there is a lack of e"cient GPU computation engines capable
of eliminating redundant graph accesses. In streaming graph pro-
cessing, a signi!cant portion of redundant data accesses stems from
computations over already converged results. Addressing this issue
typically requires incremental algorithms that track each vertex’s
data dependency (i.e., the parent vertex responsible for its conver-
gence) to avoid recomputing vertices whose parent’s result remains
unchanged [14, 39]. However, implementing such algorithms on
GPUs is challenging because correct dependency tracking requires
atomically updating both the vertex result and its associated data
dependency during label propagation. Unfortunately, GPUs do not
provide e"cient mechanisms for implementing atomic updates
across multiple memory locations, limiting the practicality of in-
cremental algorithms under massive parallelism.

Second, there is a lack of e#ective mechanisms for reusing re-
dundant GPU data accesses during long-duration computations.
Continuous computation in streaming graph processing presents
signi!cant opportunities to reuse frequently redundant accesses
to graph data. However, existing data reuse mechanisms rely on
coarse-grained, !xed-length, and heavyweight paged memory man-
agement. When handling sparse and irregular edge accesses in fre-
quently updated graphs, this approach often migrates and caches
excessive, unnecessary graph data, resulting in ine"cient commu-
nication and suboptimal memory utilization [27, 42].

In this work, we present Grapin, a high-performance out-of-
memory GPU streaming graph processing system that executes
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Figure 2: Incremental SSSP computation trace on a toy graph starting
from vertex 3. Thick red arrows indicate edge additions and dashed
green arrows indicate edge deletions.

computations on the GPU while storing graph data in CPU mem-
ory. To minimize redundant graph accesses, Grapin integrates two
key runtime redundancy elimination functions. First, it features a
redundancy-eliminating incremental computation engine.
The engine enables advanced incremental algorithms under mas-
sive GPU parallelism [14, 39] by decoupling the atomic update of
the converged result and its dependency data into a sequence of in-
dependent GPU-native compare-and-swap (CAS) operations. This
reduces redundant graph accesses from the computation side while
maintaining compatibility withwell-established vertex-centric GPU
graph processing techniques. Second, Grapin provides a light-
weight GPU hot subgraph management framework. This
framework !nely tracks the frequently accessed subgraphs in a
vertex-centric manner while storing them compactly in the GPU
memory to maximize data reuse. Through snapshot-oriented data
replacement, vertex-centric edge data migration, and chunkedmem-
ory management, Grapin minimizes the hot subgraph maintaining
overhead on the GPU. Additionally, Grapin adopts a GPU-optimized
data structure that improves data placement, enabling e"cient ac-
cess to dynamic graphs without compromising update performance.

Experiments on an NVIDIA A5000 GPU demonstrate that Grapin
reduces graph accesses by 28%-71% (avg. 61%) through its redundancy-
eliminated computation engine and further decreases CPU-GPU
data communication by 67%-80% (avg. 72%) by e"ciently caching
and reusing the frequently accessed subgraph on the GPU. These
two techniques bring a total of 89% transfer reduction. Overall,
Grapin achieves speedups ranging from 1.8x to 96.9x (avg. 17.9x)
over CPU-based systems. Furthermore, we demonstrate the e#ec-
tiveness of Grapin on real-world graphs from our industrial partner.

2 BACKGROUND
2.1 Streaming Graph Processing
Let 𝐿 = (𝑀 , 𝑁) be a directed or undirected graph, where 𝑀 is a set
of vertices and 𝑁 → 𝑀 ↑𝑀 is a set of edges. A graph algorithm is de-
!ned by a function 𝑂, which is iteratively executed over the graph.
We denote the result after convergence as 𝑃 ↓ = 𝑂↔ (𝐿, 𝑃0), where
𝑃 ↓ = 𝑂(𝐿, 𝑃 ↓). In streaming graph processing, the algorithm𝑂 oper-
ates on a graph whose structure is modi!ed by a stream of updates,
including edge and vertex additions and deletions. To maintain con-
sistency, updates are batched into a sequence of {ω𝐿0,ω𝐿1, . . .}.
The goal is to compute the latest result for each snapshot 𝐿𝐿 , i.e.,
𝑃𝐿 = 𝑂↔ (𝐿𝐿 , 𝑃𝐿 ), where 𝐿𝐿= 𝐿𝐿↗1↘ω𝐿𝐿 . The naive approach of re-
computing 𝑃𝐿 from the initial state 𝑃0 is ine"cient as it reprocesses
many already converged vertices for every snapshot [14, 39].
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Table 1: The access volume on the !ve graphs when running SSSP
with 10 batches of 100K edge mutations.

#Edge
Volume of edge access Changed

edge volume
in each batch

Total
w/o DM

Total
with DM

Redun
#Intra

Redun
#Inter

#Top20%
Vertices

OK 0.10B 4.76B 0.99B 0.12B 0.78B 0.54B 16.8M
WK 0.41B 9.12B 4.59B 0.62B 3.58B 3.5B 16.3M
TW 1.83B 22.79B 18.64B 2.11B 14.72B 3.70B 19.7M
FR 2.41B 88.29B 30.02B 5.46B 22.15B 11.21B 19.5M
UK 3.07B 157.12B 50.72B 22.89B 25.09B 22.45B 16.4M

Incremental computation with dependency-memoization.
Recent research has explored Dependency-Memoization (DM) tech-
niques [33, 39] that utilize cached data dependencies to bypass the
converged vertices and reduce unnecessary computation (i.e., incre-
mental streaming graph processing [39]). In the DM algorithm, data
dependencies indicate the direct parents on the critical computa-
tion path that leads to convergence. The DM technique decomposes
computation into two stages: result correction and iterative calcu-
lation, allowing it to identify and recompute the vertices a#ected
by graph changes separately. Figure 2 shows an example of using
DM on the SSSP algorithm. The Result array stores the shortest
paths, while the Parent array stores the direct predecessor on the
shortest path (i.e., data dependency). In the result correction stage,
an invalid message propagates from all a#ected vertices to their
outgoing neighbors. Each vertex receiving the invalid message from
its predecessor (indicating that its shortest path passes through the
a#ected vertices) marks its result as invalid and propagates the
invalid message to its neighbors. The iterative computation stage
begins with the active vertices generated by result correction and
iteratively processes all vertices until convergence. We summarize
related work in Section 8 and refer interested readers to [14, 20, 39].
Streaming graph processing on the GPU. Extending the De-
pendency Memoization algorithm to the GPU is a challenging task
because it requires maintaining the consistency of Result and Par-
ent for every vertex during iterative computation, i.e., modifying
the Parent to the direct precursor as soon as the Result is updated
to ensure correctness. However, GPUs lack such e#ective mecha-
nisms to address the issue. The native CAS operations provided
by CUDA [17] and OpenCL [30] support only a single value of
basic data types. The limited branching capability and massive
parallelism make exclusive lock-based Result-Parent pair synchro-
nization [11, 14] ine"cient and uneconomical [5]. Consequently,
GPU-based streaming graph systems often resort to a naive ap-
proach [3, 6, 15, 34, 45, 46] that recomputes from scratch. Although
the high memory bandwidth and massive parallelism help mitigate
the overhead of redundant computation, these systems still struggle
to process large graphs due to limited GPU memory capacity.
Redundant graph accesses among long-duration computa-
tions. Streaming graph processing continuously updates the result
of a query over time. This causes many vertices to be accessed re-
peatedly, even when employing advanced incremental algorithms
[14]. Figure 3 (a)-(d) shows the DM computation traces for the SSSP
algorithm on an example graph (with two batches of updates, ω𝐿1

and ω𝐿2), where redundant accesses occur both within and across
batches, causing increased communication overhead.

To demonstrate the practical impact of redundant access, we
evaluate the edge data access volume of running SSSP with 10

batches in Table 1. The results show that the DM algorithm re-
duces 20%-79% data transfer compared to the recomputation-based
approach, which is essential for high performance. However, the
total access volume remains high, ranging from 9.9x to 16.5x the
number of edges, with intra-batch and inter-batch redundant ac-
cesses accounting for 12%-45% and 49%-78% of the total accesses,
respectively. Due to the power-law distribution, certain frequently
accessed vertices exhibit higher access frequencies than others. The
top 20% of frequently accessed vertices are accessed 1.3x to 3.5x
more frequently than the remaining 80%, contributing an average
of 47% (up to 76%) of the total edge access. This creates substantial
optimization opportunities for reusing the transferred edge data.

Nevertheless, e"ciently achieving this goal in streaming graph
scenarios remains a challenging task. The di"culty arises not only
from the sparsity of edge data access but also from access am-
pli!cation triggered by updates on evolving graphs. In particular,
modifying a single edge can a#ect the data of an entire neighbor-
hood. As shown in Table 1, updating a small batch of edges (100K)
can invalidate data volumes exceeding 100 times their original size.

2.2 Out-of-Memory GPU Graph Processing
Recent studies have proposed out-of-memory GPU graph process-
ing that store small-scale vertex values and index data on the GPU,
while placing large-scale edge data, such as neighbor IDs and edge
weights, on the CPU [11, 27, 42]. During iterative computation, edge
data for accessed vertices is transferred to the GPU on demand,
preserving the semantics and convergence guarantees of iterative
graph processing [42, 53]. The primary bottleneck lies in the edge
data transfer between CPU and GPU. Uni!ed Virtual Addressing
(UVA) [27], which allows GPUs to access CPU memory directly,
has emerged as a promising solution.
Sparsity-aware communication based on zero-copy access.
Whether in static or dynamic graph processing, each iteration only
accesses a small portion of the randomly distributed graph data.
This requires the communication method to be aware of and exploit
this sparsity [11, 27, 42]. EMOGI [27] employs the zero-copy (ZC)
access mechanism, allowing GPUs to access the graph data from
the CPU directly. With the zero-copy mechanism, GPUs can ac-
cess variable-length neighborhoods using several !ne-grained and
low-cost PCIe requests (each ranging from 32B to 128B) and skip
unnecessary ones. This makes zero-copy technology a promising
communication method for streaming graph processing. However,
zero-copy access does not support data caching. As shown in Figure
3 (e), each neighborhood access requires a separate CPU-to-GPU
data transfer, meaning that zero-copy access causes redundant
graph transfers. We note that some frameworks [31, 53] propose
mitigating access sparsity through CPU-assisted data compaction.
However, these methods require additional engineering e#ort and
su#er from unstable communication performance [28, 42]. Given
these limitations, we choose to adopt a GPU-centric solution.
Uni!ed memory management-based GPU data reuse. Halo
[13], Liberator [13, 35], and Grus [41] store graph data in a managed
memory space visible to both CPU and GPU and leverage uni!ed
memory management to support automated edge data migration
and caching with a default page size of 4 KB. Figure 3 (f) shows the
communication trace with uni!ed memory management, where
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Figure 3: (a)-(d) shows SSSP computation on an example graph (𝑀0) with two batches of updates (𝑀1 and𝑀2). Zero-copy mechanism (e) directly
accesses the graph data from CPU in a vertex-centric manner, its transfer volume is almost equal to the edge access volume (transferring
18 edges in the example). Uni!ed memory management (f) migrates and caches memory pages containing accessed graph data, the data
transferred can far exceed the actual demand (transferring 28 edges in the example) due to coarse-grained page replacement.

Table 2: Read and write ampli!cation of UM management.

OK WK TW FS UK
(a) Data transfer of SSSP computation based on a CSR1.

Edge accesses (GB) 2.08 13.6 24.8 58.1 127.2
Actual Transfer(GB)2 1.43 6.83 142.7 524.8 884.1
Read ampli!cation 0.7X 0.5X 5.8X 9.0X 7.0X
(b) Updated pages with 100K edge mutations in VCSR [16].

Updated pages(↑4KB)2 118K 233K 581K 443K 440K
Updated adjlists(↑8B) 16.8M 16.3M 19.7M 19.5M 16.4M
Write Ampli!cation 3.5X 7.1X 14.7X 11.4X 13.5X
1 We use static graph processing on the CSR to exclude the impact of
sparse dynamic graph structures.

2 The number is collected using the NVIDIA Nsight system [29].

repeated accesses to the loaded edge pages are handled within the
GPU memory (e.g., v5 in the 3rd and 7th iterations; v2 in the 5th it-
eration). However, the page-centric data caching mechanism is not
as e"cient as expected. On one hand, the heavyweight TLB invali-
dation causes each page fault handling to take tens of microseconds,
causing low PCIe bandwidth utilization [27, 31]. On the other hand,
the coarse-grained page migration and update-triggered page in-
validation can lead to a signi!cant amount of unnecessary data
transfer and memory consumption, far exceeding the amount of
accessed data. We evaluate this impact in Table 2 by measuring
the data access volume for graphs with varying sizes. For large
graphs where the data size exceeds the GPU memory capacity, page
transfer volume can be 9.0x larger than edge accesses. Furthermore,
topological structure updates with streaming graphs introduce cas-
cading memory page invalidations. As indicated by Table 2 (b),
applying 100K edge mutations to a CSR-like dynamic graph struc-
ture [16] leads to 1.2x-5.8x more page faults, with only 6.8%-28.4%
of the data being part of the changed subgraph. While reducing the
page size is a potential solution, it is hard to implement in practice,
as page size is typically determined by the operating system rather
than by users or application developers.

To optimize graph data reuse in heterogeneous memory systems,
recent studies, e.g., CoreGraph [18], propose preprocessing the
graph to extract a frequently accessed structure for reusing them.
However, these approaches rely on heavyweight o$ine processes
that repeatedly run graph algorithms (e.g., SSSP) on the input graph,
making the overhead of rebuilding core subgraphs often exceeds
the computation cost itself (Section 5.1) and thus impractical. In
summary, developing e#ective data reuse mechanisms requires
e"ciently handling the sparse graph access patterns, maximizing
cache utilization, and detecting graph changes with low overhead.

GPU access-optimized
Dynamic graph structure

𝑺𝒊−𝟏
Input

Converged
Result on 𝑮𝒊−𝟏 

Snapshot 𝑮𝒊−𝟏

OutputGrapin

CPU

GPU

DM-based incremental 
computation engine 𝑺𝒊 New result 

on 𝑮𝒊  

Snapshot 𝑮𝒊

0

1

53

24
Graph updates

insert edge <0, 2>
delete edge <2, 5>

0

1

53

24

X

Lightweight GPU hot 
graph management

Figure 4: Grapin overview.

3 GRAPIN SYSTEM
We present Grapin, an out-of-memory GPU system designed for
high-performance streaming graph processing. An overview is
shown in Figure 4. Grapin maintains the dynamic graph in CPU
memory while storing vertex data and performing computation on
the GPU. It leverages zero-copy access for transparent and e"cient
on-demand retrieval of edge data from CPU memory during com-
putation. Grapin minimizes CPU-GPU memory access through two
key redundancy elimination components.
DM-based incremental computation engine. To minimize re-
dundant accesses caused by computing converged vertices, Grapin
extends the advanced DM algorithm to GPUs (Section 4). It in-
troduces a decoupled updating mechanism that transforms the
heavyweight atomic update of result-parent pairs into a sequence
of independent GPU-native CAS operations, seamlessly integrating
the DM algorithm into vertex-centric GPU computation engines.
GPU hot (frequently accessed) graph management. To min-
imize redundant accesses in long-duration computations, Grapin
introduces a lightweight yet e"cient GPU hot graph management
framework (Section 5). This framework tracks frequently accessed
subgraphs at the vertex level and compactly stores them in GPU
memory, enabling Grapin to access only cold data from the CPU,
thereby reducing data transfers. To ensure the correctness of itera-
tive processing, Grapin maintains the latest graph in CPU graph
and synchronizes updates to the GPU hot subgraph cache for ev-
ery graph snapshot through an e"cient snapshot-oriented data
replacement module, which leverages GPU-parallel, vertex-centric
hot subgraph tracking and edge data loading, along with chunked
memory management, to minimize data replacement overhead.

4 DM-BASED INCREMENTAL COMPUTATION
ON GPUS

As described in Section 2.1, the DM algorithm decomposes com-
putation into two phases. The Result correction phase performs a
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how multiple vertices concurrently update the shortest path.

Algorithm 1 IncCompNbr(Tvtx src, Tvtx dst, Tval ewght,
Tvtx *parent, Tval *result, Tval *bu#er)
1: new_path = buffer[src] + ewght; //(Line 1-2) update the result
2: old_path = atomicMin(&result[dst], new_path)
3: if new_path<old_path then //(Line 4-7) update the dependency
4: old_p=parent[dst]

5: repeat
6: old_p= atomicCAS(&parent[dst],old_p,src)

7: until (new_path!=result[dst]||src==parent[dst])

BFS traversal from the initially updated vertices, identifying those
requiring recomputation by checking whether the current result’s
Parent depends on the a#ected vertices. This phase can be naturally
embedded into existing vertex-centric GPU computation kernels
[40, 44]. In contrast, the iterative computation phase iteratively re-
computes the Result values for those checked in the previous stage
and updates the parent value accordingly. In this phase, the re-
sult value and dependency data (i.e., Result and Parent) must be
atomically updated under massive parallelism during computation.
However, the lack of atomicity support for values spanning multiple
memory locations prevents GPUs from supporting such operations
(Section 2.1). To address this limitation, Grapin introduces a result-
dependency decoupled update mechanism.

The key idea of our approach is to decouple an atomic Result-
Parent update into a sequence of independent CAS operations.
We observe that for certain graph algorithms, the value of each
vertex is typically updatedmonotonically by an accumulative vertex
update function (e.g., SSSP using the min operation [43, 50]). This
property ensures that each Result value eventually converges to
a deterministic optimum. As a result, the Parent value only needs
to point to the !nal optimal value, rather than recording every
intermediate state during computation. Based on this observation,
we adopt a decoupled update approach, as illustrated in Figure 5
(b). First, concurrent threads atomically update Result using atomic
vertex update operations such as min() and max(). Next, threads
that successfully update Result attempt to compete for the optimal
Parent by modifying it through a loop of CAS operations. The loop
exits if: 1) The update succeeds; or 2) The Result value changes,
indicating a better value is found. In case 2), the intermediate Parent
value can be discarded early to reduce overhead.

Compared to CPU-based approaches that use heavyweight ex-
clusive locks (as shown in Figure 5 (a)), Grapin requires only a series
of lightweight CAS operations on basic data types, making it highly
suitable for GPU’s massive parallelism. In addition, the decoupled

update method preserves the integrity of the vertex-centric graph
processing model. This allows seamless integration with existing,
highly optimized graph processing engines without requiring mod-
i!cations to the original data structure, computation logic, or APIs.
Grapin extends a state-of-the-art GPU graph processing system,
SEP-Graph [40], and provides a similar vertex-centric programming
interface. Algorithm 1 shows the neighbor processing function of
the SSSP algorithm. The function begins with an atomic shortest
path update on the Result (Lines 1-2), which is the same as the oper-
ations in SEP-Graph. Subsequently, the Parent update (Lines 4-7) is
performed for vertices successfully updated in Line 3 via a loop of
CAS operations. The loop terminates when the update succeeds (if
src==parent[dst]) or a shorter path that invalidates the current
parent is found (new_path!=result[dst]). The data dependency
handling process (Lines 4-7) is algorithm-agnostic. Users do not
need to reimplement dependency handling for each algorithm.

Correctness. The DM-based algorithm with the decoupled up-
date implementation requires input graph algorithms to satisfy
the monotonicity [14, 39], ensuring that under concurrent CAS
operations with multiple competing values, each vertex’s Result
deterministically converges to an optimal value (e.g., the shortest
path), regardless of the update order [50]. In the original design, a
single atomic update, i.e., comparing the Result and swapping
both the Result and Parent !elds, ensures that the Parent always
points to the current Result until an optimal Result is reached. For
the decoupled approach, correctness can be ensured by proving
that the optimal Result and optimal Parent (produced by the opti-
mal Result) can be obtained separately after concurrent execution.
Since the algorithm is monotonic, parallel CAS on the Result !eld
intuitively converges to the optimal value. In the following, we
enumerate all possible execution interleavings across threads to
demonstrate that the Parent !eld eventually reaches the optimal
value. We observe that, after the Result updates complete, threads
fall into one of three possible cases:
-Case 1. Failed Result update: If a thread fails to update the Result,
it implies the proposed value is not optimal. Consequently, it will
not enter the loop and will make no changes to the Parent value.
-Case 2. Successful Result update with sub-optimal values:
The looped CAS on Parent in Lines 5–7 results in two sub-cases:
2.1) The Parent update temporarily succeeds. However, the Parent
value will eventually be overwritten by a better Result, which must
appear later since the current Result is sub-optimal. 2.2) A better
Result appears before the Parent is updated, terminating the looped
CAS and discarding the current Parent update (Line 7).
-Case 3. Successful Result update with the optimal value: If a
thread successfully updates the Result with the optimal value, the
looped CAS in Lines 5–7 of Algorithm 1 will eventually update the
Parent to the optimum based on the current Result, as no better
Result value will appear to override the loop.

In all scenarios, only the Parent of the optimal Result is retained.
This guarantees the correctness of the decoupled updatemechanism
under parallel execution.

Condition checking. Checking whether a graph algorithm is
monotonic is a key step in enabling incremental computation. For-
tunately, recent studies have investigated su"cient conditions for
monotonicity based on the property of the edge message and vertex
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Algorithm 2 Scheduling for a set of active vertices 𝑀𝑁𝑂𝑃
1: for each 𝑄 ≃ 𝑅𝐿𝑀𝑁 do: assign a warp or block based on CTA [23]
2: if warp_id==0 then
3: {adj𝑂 , adj𝑃 , flg} ⇐.Grapin.adj_index (𝑄)
4: broadcast(adj𝑂 , adj𝑃 , flg) //within the warp/block
5: for offset from adj𝑂 to adj𝑃 do //in parallel
6: {𝑆,𝑇𝑄,𝑅 } ⇐ Grapin.adj_list(offset,flg)
7: IncCompNbr(𝑄,𝑆,𝑇𝑄,𝑅 . . . ) //computation code

update functions in the label propagation [10, 14, 43]. They also
provide automated condition checkers based on satis!ability mod-
ulo theories (SMT) solvers [14]. Users can directly leverage these
tools to verify whether an algorithm can be deployed in Grapin.

Load balancing and uni!ed graph access. Grapin’s computa-
tion engine builds on recent advances in GPU graph processing
[4, 40], using Cooperative Thread Array scheduling [23] to adap-
tively assign each vertex to a warp or block and coalesce edge
accesses for load balancing, as shown in Algorithm 2. Since Grapin
manages graph data with both CPU and GPUs, during computation,
all threads within a warp/block use a leading thread to obtain the
start and end positions, along with a %ag flg indicating whether
the data originates from the CPU or GPU for uni!ed access.

5 LIGHTWEIGHT GPU HOT GRAPH
MANAGEMENT

To maintain the evolving frequent-accessed subgraphs with precise
and e!cient tracking of sparsely accessed vertices,memory-e!cient
cache organization, and low-cost data replacement, we de!ne the
frequently accessed subgraph at the granularity of a snapshot, i.e.,
𝑄𝑅𝑆𝑃𝐿𝐿↗1, and model the cache management problem as the e"-
cient storage and transition of 𝑄𝑅𝑆𝑃𝐿s across snapshots.

Problem statement. For each graph snapshot 𝐿𝐿 = (𝑀 𝐿 , 𝑁𝐿 ), the
frequently accessed subgraph 𝑄𝑃𝐿𝐿 = (𝑄𝑀 𝐿 ,𝑄𝑁𝐿 ) is de!ned as the
subgraph induced by a selected set of hot vertices 𝑄𝑀 𝐿 ⇒ 𝑀 𝐿 and
their outgoing edges in𝐿𝐿 . This subgraphmust satisfy the following
three conditions. First, hotness ranking: for all 𝑇 ≃ 𝑄𝑀 𝐿 and 𝑈 ≃
𝑀 𝐿 \𝑄𝑀 𝐿 , we require that 𝑉𝑅𝑆𝑊𝑋𝑌𝑌 (𝑇) ⇑ 𝑉𝑅𝑆𝑊𝑋𝑌𝑌 (𝑈), ensuring that
all vertices included in 𝑄𝑅𝑆𝑃𝐿𝐿 are more frequently accessed than
those excluded from it. Second, edge data consistency: for each
𝑇 ≃ 𝑄𝑀 𝐿 , all of its outgoing edges in 𝐿𝐿 must be preserved in
𝑄𝑅𝑆𝑃𝐿𝐿 , that is, {⇓𝑇,𝑈⇔ ≃ 𝑁𝐿 } = {⇓𝑇,𝑈⇔ ≃ 𝑄𝑁𝐿 }. This ensures that
the edge data in the 𝑄𝑅𝑆𝑃𝐿𝐿 remains identical to that in the most
recent graph snapshot, thereby avoiding correctness issues caused
by accessing inconsistent neighborhoods. Third,memory constraint:
the total size of 𝑄𝑅𝑆𝑃𝐿𝐿 must not exceed a user-speci!ed budget
based on the remaining available GPU memory. The objective of
GPU hot graph management is to e"ciently store each𝑄𝑅𝑆𝑃𝐿𝐿 and
transition from 𝑄𝑅𝑆𝑃𝐿𝐿 to 𝑄𝑅𝑆𝑃𝐿𝐿+1 when switching snapshots.

Design outline. Grapin provides three key components to support
e"cient GPU dynamic graph management. First, Grapin adopts a
vertex-centric approach for precisely identifying subgraphs needing
replacement based on historical vertex access frequency (Section
5.1). Second, to maximize memory utilization of the cache, it em-
ploys the Compressed Sparse Row (CSR) format for e"cient and
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Figure 6: The hot subgraph is stored compactly and replaced in
snapshots. Data migration is carry out in a vertex centric manner.
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Figure 7: An example of memory-e"cient hotness tracking with the
window size con!gured to 3.

compact data storage (Section 5.2). Third, Grapin adopts a snapshot-
oriented cache replacement framework (Section 5.3), which parti-
tions the CSR edge array into multiple logical chunks and leverages
GPU-parallel, vertex-centric cache loading to accelerate data re-
placement. This design strikes a balance between cache quality
and data replacement e"ciency. First, vertex-centric hot subgraph
tracking ensures high-quality data loading and caching for the
sparse graph. Second, snapshot-oriented cache replacement lever-
ages the GPU’s high parallelism, thus eliminating the high overhead
of manipulating variable-length and fragmented edge data. Figure
6 shows the work%ow. The neighborhoods of multiple vertices are
stored in a compact format to save memory. The cache is updated
when switching batches. In the !rst batch, the frequently accessed
subgraph includes vertices 0 and 2. Before the second batch starts,
Grapin identi!es the subgraph that needs updating based on past
access patterns and performs parallel replacement. It retains the
neighbors of hot vertex v1, loads the neighbor of new hot vertex
v5, and updates the neighbors of v2 due to structural changes.

5.1 Vertex-centric Hot Subgraph Tracking
In Grapin, we compute the vertex-centric hotness score based on
the past access frequency within a sliding window:

𝑉𝑅𝑆𝑊𝑋𝑌𝑌 (𝑇)𝐿+1 =
)︄𝐿
𝑈=𝐿↗𝑉 𝑍𝑈 (𝑇), (1)

where 𝑎 + 1 represents the currently scheduled batch,𝑍𝑈 (𝑇) denotes
the access frequency (AFQ) of vertex 𝑇 in batch 𝑏 , and 𝑐 is the sliding
window size that determines the timeliness of vertex hotness. This
approach enables smooth detection of temporal variations in access
frequency while mitigating the impact of sharp %uctuations.

E#ectively tracking the hotness score on the GPU requires care-
ful optimization as it involves maintaining the AFQ of all vertices
in the recent 𝑐 batches. This requires additional memory of size
|𝑀 | ↖ (𝑐 +1). We observe that the AFQ is often in the range of tens to
a few hundred in graph processing, much smaller than the represen-
tation range of commonly used data types, e.g., the 32-bit int. Based
on this observation, Grapin utilizes a single byte to track the AFQ
of a vertex in each batch and calculates the hotness incrementally
through bit shifting. Figure 7 shows an example with a con!gura-
tion of 𝑐=3. In this example, a 4-byte integer is used to maintain
the AFQs of each vertex in 3 batches, and 2 additional bytes are
used to maintain the hotness value. During computation, Grapin
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uses the leftmost byte to record the accesses to the vertex of the
current batch. After computation, Grapin incrementally computes
the hotness by subtracting the AFQ of the oldest batch and adding
the AFQ of the just !nished batch. Finally, Grapin shifts the integer
to the right by 8 bits, removing the oldest AFQ in the rightmost
byte and setting the leftmost byte to zero for future computation.
In this work, we set 𝑐 = 3 as the !xed parameter, as con!guring 𝑐
to small values (e.g., from 3 to 6) yields similar performance, but
𝑐 = 3 requires only a single integer for each vertex.
Candidate determination. According to the de!nition of 𝑄𝑅𝑆𝑃𝐿 ,
Grapin uses the top 𝑑 hot vertices whose aggregated neighbor size
does not exceed a given capacity as candidates for constructing the
hot subgraph. First, Grapin sorts all vertices based on their hotness.
Subsequently, Grapin computes the pre!x sum of the degree of
the sorted vertices to determine the storage requirement. Finally,
Grapin employs binary search to determine the top 𝑑 hot vertices
whose aggregated size is smaller than a given capacity. All these
operations are performed on the GPU using Thrust [7] primitives
(BlockRadixSort() and BlockScan()) for high-performance.
Overhead analysis. In Grapin, tracking the frequently accessed
subgraph involves two lightweight steps: (1) vertex-centric hotness
computation; and (2) candidate selection based on vertex sorting.
The overall time complexity is dominated by the sorting stage, i.e.,
𝑒 (𝑀 log𝑀 ), and both steps are e"ciently accelerated within the
GPU. In contrast, preprocessing-based methods [18] incur signi!-
cantly higher overhead due to the heavyweight o$ine processing.
As a general example, CoreGraph [18] identi!es the core struc-
ture with high edge centraality by running the SSSP algorithm
from 𝑓 selected vertices, resulting in a total time complexity of
𝑒 (𝑓 (𝑀 + 𝑁) log𝑀 ). 𝑒 ((𝑀 + 𝑁) log𝑀 ) is the cost of a single SSSP
execution. This process incurs the overhead of𝑓 out-of-memory
recomputations over the entire graph, which is𝑓 times more costly
than the computation of each batch. Such substantial cost renders
these methods impractical for streaming graph workloads.

5.2 CSR-based GPU Cache Management
Grapin uses the CSR structure to store cached subgraphs on the
GPU, providing optimal memory utilization. To e"ciently index
the data for fast GPU retrieval, Grapin utilizes two index arrays
of size |𝑀 | to maintain the start position and length of the neigh-
borhood for each vertex. For vertices outside the cache, the start
position is marked invalid (-1), and the length is set to 0. This data
organization enables quick veri!cation of whether a vertex is in the
cache and allows locating its edge data with 𝑒 (1) overhead. How-
ever, compacted data storage introduces challenges for replacing
vertex neighborhoods, as it requires reorganizing the entire CSR
structure to reclaim spaces for variable-length entries. This leads
to substantial memory manipulation overhead. To address this, we
propose a chunk-based CSR memory management technique that
con!nes graph data manipulations to a#ected chunks, minimizing
data movement while preserving read e"ciency.

5.3 Snapshot-oriented Cache Replacement with
Chunked Memory Management

Grapin virtually manages the CSR edge list using multiple equal-
length logical chunks. During data replacement, only the chunks

Algorithm 3 Parallel cache management for each snapshot.
1: 𝑄𝑃𝑊_𝑋𝑄𝐿𝑂𝑃 ⇐ 𝑄𝑃𝑊_𝑂𝑁𝑂𝑌𝑋𝑍 \ 𝑂𝑁𝑂𝑌𝑋_𝑂𝑁𝑎𝑍𝐿𝑍𝑁𝑃𝑋
2: 𝑄𝑃𝑊_𝑏𝑐𝑁𝑍 ⇐ 𝑂𝑁𝑂𝑌𝑋_𝑂𝑁𝑎𝑍𝐿𝑍𝑁𝑃𝑋 \ 𝑄𝑃𝑊_𝑂𝑁𝑂𝑌𝑋𝑍
3: 𝑄𝑃𝑊_𝑑𝑋𝑒_𝑆𝑒𝑍 ⇐ 𝑂𝑁𝑂𝑌𝑋_𝑂𝑁𝑎𝑍𝐿𝑍𝑁𝑃𝑋 ↙ 𝑄𝑃𝑊_𝑂𝑁𝑂𝑌𝑋𝑍 ↙ 𝑄𝑃𝑊_𝑆𝑒𝑍
4: 𝑂𝑌𝑆𝑎𝑈_𝑍𝑋𝑏_𝑂𝑎𝑃 [num_chunks] = [0]

1: Marking invalid data and recording deleted data volume for each chunk
5: for each 𝑄 ≃ 𝑄𝑃𝑊_𝑋𝑄𝐿𝑂𝑃_𝑌𝑐𝑃 ↘ 𝑄𝑃𝑊_𝑑𝑋𝑒_𝑆𝑒𝑍 do in parallel
6: 𝑒 = chunkId(𝑄)
7: mark_invalid_nbr(𝑄, 𝑒 , 𝑍𝑋𝑓 (𝑄))
8: 𝑂𝑌𝑆𝑎𝑈_𝑍𝑋𝑏_𝑂𝑎𝑃 [𝑒 ]+ = 𝑍𝑋𝑓 (𝑄)

2: Reclaiming space within and across a"ected chunks
9: 𝑂𝑌𝑆𝑎𝑈_𝐿𝑍_𝑔𝑐𝑑𝑃𝑋𝑍 ⇐chunk_sort_by(𝑂𝑌𝑆𝑎𝑈_𝑍𝑋𝑏_𝑂𝑎𝑃 )
10: 𝑒_𝑔𝑃𝑁𝑑𝑃 = 0; 𝑒_𝑋𝑎𝑍 = idx_last_nonzero(𝑂𝑌𝑆𝑎𝑈_𝑔𝑐𝑑𝑃𝑋𝑍 )
11: for each 𝑂𝑌𝑈 ≃ 𝑂𝑌𝑆𝑎𝑈_𝐿𝑍_𝑔𝑐𝑑𝑃𝑋𝑍 [0 : 𝑒_𝑋𝑎𝑍 ] do in parallel
12: 𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈 ] ⇐ compaction(𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈 ] )
13: 𝑋𝑕𝑒𝑃𝑖_𝑂𝑁𝑂𝑌𝑋 ⇐ {}
14: while 𝑒_𝑔𝑃𝑁𝑑𝑃 ω 𝑒_𝑋𝑎𝑍 do
15: 𝑂𝑌𝑈_𝑌𝑋𝑁𝑍 = 𝑂𝑌𝑆𝑎𝑈_𝐿𝑍_𝑔𝑐𝑑𝑃𝑋𝑍 [𝑒_𝑔𝑃𝑁𝑑𝑃 ]
16: 𝑂𝑌𝑈_𝑃𝑁𝐿𝑏 = 𝑂𝑌𝑆𝑎𝑈_𝐿𝑍_𝑔𝑐𝑑𝑃𝑋𝑍 [𝑒_𝑋𝑎𝑍 ]
17: cut a slice of 𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈_𝑌𝑋𝑁𝑍 ] to !ll 𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈_𝑃𝑁𝐿𝑏 ]
18: if if_full(𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈_𝑃𝑁𝐿𝑏 ]) then
19: 𝑒_𝑋𝑎𝑍 ↗ ↗
20: if if_empty(𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈_𝑌𝑋𝑁𝑍 ]) then
21: 𝑋𝑕𝑒𝑃𝑖_𝑂𝑁𝑂𝑌𝑋 ⇐< 𝑂𝑌𝑈_𝑌𝑋𝑁𝑍, 𝑔_𝑒𝑐𝑔 = 0 >
22: 𝑒_𝑔𝑃𝑁𝑑𝑃 + +
23: 𝑂𝑌𝑈_𝑌𝑋𝑁𝑍 = 𝑂𝑌𝑆𝑎𝑈_𝐿𝑍_𝑔𝑐𝑑𝑃𝑋𝑍 [𝑒_𝑔𝑃𝑁𝑑𝑃 ]
24: 𝑋𝑕𝑒𝑃𝑖_𝑂𝑁𝑂𝑌𝑋 ⇐< 𝑂𝑌𝑈_𝑌𝑋𝑁𝑍, remain(𝑓_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈_𝑌𝑋𝑁𝑍 ] ) >

3: allocating the physical location for the newly inserted vertices
25: 𝑏𝑐𝑂𝑁𝑏_𝑍𝑋𝑓[ |𝑄𝑃𝑊_𝑏𝑐𝑁𝑍 ↘ 𝑄𝑃𝑊_𝑑𝑋𝑒_𝑆𝑒𝑍 | ] = [foreach...(𝑍𝑋𝑓 (𝑄) ) ]
26: 𝑏𝑐𝑓𝐿𝑂_𝐿𝑍𝑊 [ ] ⇐ prefix_sum(𝑏𝑐𝑂𝑁𝑏_𝑍𝑋𝑓[ ])
27: 𝑂𝑌𝑆𝑎𝑈_𝑑𝑁𝑎𝑓𝑋 [ ] = chunk(𝑄𝑃𝑊_𝑏𝑐𝑁𝑍 ↘ 𝑄𝑃𝑊_𝑑𝑋𝑒_𝑆𝑒𝑍, 𝑏𝑐𝑓𝐿𝑂_𝐿𝑍𝑊 [ ] )
28: for each 𝑄 ≃ 𝑄𝑃𝑊_𝑏𝑐𝑁𝑍 ↘ 𝑄𝑃𝑊_𝑑𝑋𝑒_𝑆𝑒𝑍 do in parallel
29: 𝑂𝑌𝑈_𝐿𝑍𝑊 = chunk_idx(𝑂𝑌𝑆𝑎𝑈_𝑑𝑁𝑎𝑓𝑋, 𝑄)
30: 𝑐 𝑗 𝑗 𝑔𝑋𝑃 = 𝑏𝑐𝑓𝐿𝑂_𝐿𝑍𝑊 [𝑄 ] ↗ 𝑏𝑐𝑓𝐿𝑂_𝐿𝑍𝑊 [𝑂𝑌𝑆𝑎𝑈_𝑑𝑁𝑎𝑓𝑋 [𝑂𝑌𝑈_𝐿𝑍𝑊 ] ]
31: < 𝑒𝑌𝑖_𝑂𝑌𝑈_𝐿𝑍, 𝑔_𝑒𝑐𝑔 >= 𝑋𝑕𝑒𝑃𝑖_𝑂𝑁𝑂𝑌𝑋 [𝑂𝑌𝑈_𝐿𝑍𝑊 ]
32: 𝑒𝑌𝑖_𝐿𝑍𝑊 [𝑄𝑃𝑊 ]=𝑒𝑌𝑖_𝑂𝑌𝑈_𝐿𝑍↖chunk_size+𝑔_𝑒𝑐𝑔+𝑐 𝑗 𝑗 𝑔𝑋𝑃

4: vertex-centric data loading using zero-copy access
33: for each 𝑄 ≃ 𝑄𝑃𝑊_𝑏𝑐𝑁𝑍 ↘ 𝑄𝑃𝑊_𝑑𝑋𝑒_𝑆𝑒𝑍 do in parallel
34: load_nbr_from_cpu(v, 𝑒𝑌𝑖_𝐿𝑍𝑊_𝑔𝑃𝑁𝑑𝑃 [𝑄𝑃𝑊 ], 𝑍𝑋𝑓 (𝑄)) //zero-copy

containing cold or modi!ed data are evicted, reclaimed, compacted,
and reused for newly loaded data, while the unchanged chunks
remain intact. This design transforms the heavyweight full CSR
data movement into more e"cient intra-chunk and inter-chunk
memory movement limited to a#ected chunks. Notably, this design
does not physically modify the CSR structure or interfere with
vertex-centric data migration. Edge data transfers between the com-
putation engine, GPU hot subgraph cache, and CPU graph storage
are still performed in a vertex-centric manner via global memory
access and CPU-to-GPU zero-copy memory access. Grapin lever-
ages GPUs to accelerate the data replacement process, as shown in
Algorithm 3. Before starting computation, Grapin determines ver-
tices that need to be loaded, evicted, and replaced due to structural
updates (Lines 1-3) and allocates an array to record the volume of
deleted data for each chunk (Line 4).
Parallel marking of eviction data. In this stage, a vertex-centric
GPU kernel is launched to scan all deleted vertices (Lines 7-8), mark-
ing their indices and neighborhoods as invalid (0 for the degree and
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-1 for the neighborhoods) and incrementing the deletion counter
for space reclaiming. The logical chunk ID 𝑔 is computed by divid-
ing the neighborhood start position by the chunk size (Line 6). To
minimize data races over the deletion counter, Grapin maintains
separate counters in shared memory for each SM, recording data
locally and synchronizing at the end.
Localized space reclaiming for a#ected chunks. Grapin !rst
identi!es all a#ected chunks (Lines 9-10) using the deletion counter
and then reclaims space within each chunk (Lines 11-12). The re-
claiming process consists of two stages. First, new indices are com-
puted based on the pre!x sum of the degrees of the remaining
vertices. Second, the remaining neighborhoods are compacted us-
ing the Thrust remove_if() primitive, which moves active data to
the beginning while preserving the relative order [36]. After intra-
chunk compaction, Grapin further compacts data across chunks
to create continuous space for newly loaded data. Grapin iterates
from the smallest to the largest chunk, slicing and redistributing
the data to un!lled chunks to free the current chunk for loading
new data (Lines 14-22). The reclaimed chunks and their local start
indices 𝑌_𝑔𝑅𝑌 are appended to an empty cache list (Line 21) for
subsequent memory allocation. The value of 𝑌_𝑔𝑅𝑌 indicates the
starting position of the available space of a chunk, set to zero for an
empty chunk, and a non-zero value for the last chunk containing
the remaining data.
Parallel space allocation. First, Grapin computes the pre!x sum
of vertex degrees to determine the logical index for each to-be-
loaded vertex (Lines 25-26). Then, it calculates physical chunks
using these logic indices, packing and slicing continuous data into
chunks and assigning them to the corresponding chunk IDs, such
that the aggregated neighborhood size does not exceed chunk_size.
Grapin maintains an array to record the vertex range for each chunk
(Line 27). Finally, it computes its physical indices based on the chunk
ID, logical index, and available space 𝑌_𝑔𝑅𝑌 of the chunk (Line 32).
Vertex-centric data loading. Grapin utilizes zero-copy access to
load new data from the CPU. Each to-be-loaded vertex is assigned
to a thread warp/block, with edge data loading tasks distributed
across all threads. Such GPU-directed, vertex-centric data loading
combined with the vertex-centric hotness computation in Section
5.1 enables Grapin to e"ciently load and cache the edge data of
hot vertices that are sparsely scattered across the CPU graph [27].
Application developers are relieved from explicitly gathering and
transferring edge data across the graph with varying distributions.

6 DYNAMIC GRAPH ACCESS OPTIMIZATION
Optimizing CPU-to-GPU neighbor data transfers for every access is
critical for performance but challenging in streaming graphs. This
di"culty arises because existing dynamic graph structures often
distribute graph data across non-contiguous memory segments to
handle graph updates [3, 12, 15, 34, 45]. While these approaches
are well-suited for in-memory computation, they incur substantial
communication overhead due to remote addressing or unnecessary
data transfers in the out-of-memory processing scenarios. As shown
in Figure 9, zero-copy access over existing dynamic graph structures
achieves only 9% to 48% of the performance of the CSR format. To
address this issue, Grapin optimizes the Packed Memory Array
(PMA)-based CSR structure [16] for e"cient dynamic graph access.
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0 1 2 3 4 5 6

… 6 …
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Figure 8: An example of Grapin’s graph structure update on a toy
graph, including inserting edge ⇓3, 2⇔, deleting edge ⇓4, 3⇔, and re-
claiming space for 𝑄0. We assume that Grapin uses a memory exten-
sion unit size of 4, meaning four slots are appended whenever the
space is full. For 𝑄0, space is reclaimed by compacting its neighbor-
hood entries toward the head. For 𝑄3, the new edge is inserted at the
tail, followed by an adjustment that allocates four new slots at the
rear. For 𝑄4, the edge is deleted by marking it with a deletion $ag.
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Figure 9: Throughputs of various graph data structures normalized to
CSR. The experimental setup is described in Section 7. Graph access
and update throughput aremeasured by the average number of edges
processed per second during SSSP execution and the application of
10 batches of 100K edge mutations, respectively.

PMA-based CSR structure with neighbor aggregation. Figure
8 provides an overview of this design. It stores the neighborhoods of
all vertices in a single PMA, ensuring compact storage for e"cient
single-vertex neighborhood access. Meanwhile, neighborhoods of
di#erent vertices are sparsely organized with gaps to facilitate
e"cient edge updates. To enable fast retrieval from GPUs, Grapin
uses a pair of start and end position indices (stored in the GPU for
high-performance access) to locate the edge data of each vertex.
When there is a slot available at the end of the adjacency list, new
data is appended directly, and the end position is updated. If space
is insu"cient, an adjustment operation is triggered, recursively
checking and adjusting the positions of the neighborhoods (on
the PMA array) of the ”full” vertex to ensure that every vertex has
adequate gaps at the end (vertex 3 in Figure 8 is an example). Grapin
leverages the well-established adjustment policy [16].
Zero-copy access optimization. Grapin allocates the edge data
on pinned CPU memory using the cudaMallocHost() function.
With vertex-centric task scheduling (as discussed in Section 4), zero-
copy access operates similarly to accessing the global memory [27].
Edge accesses from each warp are consolidated into PCIe memory
requests and processed in a cacheline-aligned manner. If a vertex’s
adjacency list spans two or more cachelines, the increased memory
requests can reduce data transfer e"ciency [27]. To optimize this,
Grapin modi!es the graph structure adjustment algorithm to ensure
that each vertex’s starting position is a multiple of 128 bytes.
Optimization evaluation. Figure 9 shows the performance im-
provement of Grapin, without and with memory-aligned optimiza-
tion (-MA), compared to three SOTA in-memory processing base-
lines: (1) CSR for static graphs, (2) GPMA [34], which adopts the
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Table 3: Datasets used in the experiment.

Graphs Vertices Edges Size
orkut (OK) [47] 2,997,166 106,350,214 1.5GB
wiki-en (WK) [21] 13,593,032 437,208,542 6.3GB

public twitter-2009 (TW) [22] 52,579,682 1,963,263,821 28GB
friendster (FS) [1] 68,349,466 2,586,147,869 45GB
uk-2007 (UK) [1] 105,153,952 3,301,876,564 55GB

Industry Production-G1 92,198,925 1,013,722,137 15GB
Production-G2 123,297,501 2,724,318,436 42GB

naive PMA-based CSR structure, and (3) SHGraph [3], which uses a
hash-indexed adjacency list structure for fast insertion. We observe
that the basic design, featuring neighbor-aggregated storage and a
CSR-like data access mechanism, improves graph access through-
put to 60%-93% (avg. 67.2%) of CSR. In contrast, the performance
of GPMA and hash-indexed adjacency lists is only 9%-48% of that
of the CSR structure due to the need to access discontinuous edge
slices. Building on the basic structure, the memory-aligned opti-
mization (-MA) further enhances access performance by 4.3%-7.0%,
achieving throughputs of 63%-97% (avg. 71.6%) of CSR. While the
PMA-based CSR structure exhibits relatively lower graph update
performance compared to hash-indexed adjacency lists, prioritiz-
ing access performance over update performance is a reasonable
trade-o#, as computations are the primary source of overhead [11].

7 EXPERIMENTAL EVALUATION

Environments. The experiments are conducted on a GPU server
equipped with two Intel Xeon Silver 4316@2.30GHz CPUs, 40 CPU
cores in total, 384GB DRAM, and one NVIDIA A5000 (24GB) GPU
with PCIe 4.0 interconnect. The server runs Ubuntu 20.04 OS with
Linux 5.15 kernel, GCC-7.5, and CUDA 11.4.

Algorithms. The experiments involve four representative graph
analysis algorithms with di#erent computation patterns: Breadth
First Search (BFS), Single Source Shortest Path (SSSP), PageRank
(PR), and Connected Component (CC).

Baselines. We use three representative baselines: Ingress [14]
(CPU), RisGraph [11] (CPU), and SHGraph [3] (GPU). RisGraph runs
recomputation-based PageRank because it does not support incre-
mental PageRank computation. We also implement Grapin-ZC (uti-
lizing zero-copy access) and Grapin-Page (enabling page memory
caching [32] in 4KB) as out-of-GPU processing baselines, both utiliz-
ing the dynamic graph access optimization while disabling GPU hot
subgraph management. These two extensions can be considered the
enhanced version of existing systems [13, 24, 27, 35, 41], featuring
an e"cient incremental computation engine and communication
optimizations. We also extend Grapin-ZC with a recomputation-
based engine (i.e., Grapin-ReComp) to demonstrate the e"ciency
of incremental processing. For CPU-based systems, we follow the
recommended con!gurations [11, 14], setting 2 threads per CPU
core to optimize parallel execution. For Grapin, the default GPU
cache capacity is con!gured to 4GB. The chunk size is set to 32MB
to ensure each chunk can accommodate the largest vertex while
maintaining low scheduling overhead. [53]. Considering that the
size of streaming graphs tends to grow beyond GPU memory, we
adopt out-of-memory processing, even if the initial graph size !ts
into GPU memory, to better re%ect practical settings.

Datasets and workloads. Table 3 presents the information on !ve
publicly available graphs and the two product association graphs
extracted from our industrial partners. For public graphs, we follow
[26] to convert them into streaming graphs by uniformly select-
ing a set of edges from the original graph as edge updates, with
50% allocated for insertions and 50% for deletions. The updates are
packed and mixed into 10 batches. This ensures that the graph up-
dates maintain the same distribution as the original graph. For the
production graphs, we use their natural timestamps to construct
the workload (see Section 7.4 for details). Static graph processing is
!rst conducted on𝐿0, which is constructed from edges not selected
and assigned for deletion, to establish the initial !xed point. Subse-
quently, incremental processing is sequentially executed on the 10
batches, with each batch of updates processed until convergence.
We report the time taken for the computation over all 10 batches.

7.1 Overall Comparison
We use 10 batches of 1K, 10K, and 100K edge mutations to thor-
oughly evaluate the e"ciency of Grapin, as shown in Table 4.

Comparison with CPU-based systems. Bene!ting from GPU
parallel processing and e"cient dynamic graph transfer, Grapin
outperforms CPU-based systems across all cases. Speci!cally, it
achieves speedups ranging from 1.8x to 96.9x (avg. 16.2x) over
RisGraph and 7.4x to 70.2x (avg. 19.4x) over Ingress. RisGraph runs
out of memory on the UK graph for the CC algorithm. PageRank
achieves a higher speedup (avg. 33.3x) compared to BFS, SSSP, and
CC (avg. 7.8x, 14.3x, and 14.0x, respectively), as its arithmetic-heavy
aggregation bene!ts more from the GPU’s parallel acceleration. The
advantage of Grapin over CPU-based systems grows with graph
size. Speci!cally, on two small graphs, Grapin achieves average
speedups of 6.2x, 14.1x, 8.2x, and 14.3x for BFS, SSSP, CC, and PR,
respectively. On three billion-scale graphs, Grapin achieves average
speedups of 8.9x, 14.4x, 18.7x, and 45.9x for the four algorithms.

Comparison with GPU-based systems. While SHGraph outper-
forms Grapin on the smallest graph orkut, it encounters memory
exhaustion issues on four larger graphs. In contrast, Grapin and its
variations succeed in all cases. Grapin-Recomp fails to consistently
outperform CPU-based solutions due to the high volume of redun-
dant graph accesses to already converged data. Building upon this,
Grapin-ZC, which integrates the proposed incremental computa-
tion engine, reduces data transfers by 28% to 71% (avg. 61%) and
achieves performance improvements of 1.3x-2.9x (avg. 2.3x) across
four algorithms. PageRank bene!ts less than other algorithms be-
cause computing %oating-point PR values requires more access to
achieve convergence, even with incremental computation. The im-
provement of incremental processing remains signi!cant even with-
out hot subgraph management. Bene!ting from the e"cient GPU
hot subgraph management (Section 5), Grapin signi!cantly reduces
communication and achieves speedups ranging from 1.7x to 5.8x
(avg. 3.0x) over Grapin-ZC. The performance improvement from
hot subgraph caching remains consistent across various algorithms,
yielding average improvements ranging from 2.8x to 3.3x. More-
over, the performance improvement becomes more pronounced
with increasing graph scale, achieving speedups of 2.4x-2.9x on the
two small graphs and 2.9x-3.5x on the three large graphs.
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Table 4: Execution times (in second) across 10 batches of 1K, 10K, and 100K edge mutations. OOM indicates running out of memory.
batch size=1K batch size=10K batch size= 100K

Alg. System OK WK TW FS UK OK WK TW FS UK OK WK TW FS UK

BFS

RisGraph 3.8 6.4 37.5 64.8 47.8 3.6 6.9 39.6 69.3 52.4 3.8 7.5 40.3 70.3 51.8
Ingress 8.1 20.6 83.5 140.7 145.6 9.2 22.4 94.6 149.9 160.9 11.8 22.9 97.6 154.3 164.9
SHGraph 0.78 OOM OOM OOM OOM 0.81 OOM OOM OOM OOM 0.74 OOM OOM OOM OOM
Grapin-RComp 5.7 11.7 31.4 79.8 160.6 5.9 12.2 31.7 83.6 163.3 6.2 12.5 33.1 85.8 176.5
Grapin-ZC 3.7 4.9 23.1 31.6 47.1 2.9 5.0 24.1 30.2 46.2 2.6 5.5 28.1 31.9 39.3
Grapin-Page 1.5 2.8 44.6 75.3 138.6 1.9 2.5 45.4 78.3 143.0 1.6 5.6 48.7 77.6 139.9
Grapin 1.0 2.1 6.2 9.8 14.2 1.2 1.9 7.2 10.4 14.4 1.3 2.5 8.7 11.0 14.1

SSSP

RisGraph 16.1 17.4 44.8 221.3 135.6 13.4 17.4 53.4 195.0 140.7 15.4 21.9 61.5 199.6 148.7
Ingress 9.5 28.8 89.4 240.0 193.9 10.3 29.0 97.4 237.8 203.0 10.9 33.4 92.2 241.2 214.8
SHGraph 0.58 OOM OOM OOM OOM 0.67 OOM OOM OOM OOM 0.91 OOM OOM OOM OOM
Grapin-RComp 6.1 11.9 27.7 87.7 167.5 6.2 12.4 27.4 87.5 168.1 7.7 12.6 27.8 90.6 182.9
Grapin-ZC 1.9 5.9 19.7 34.0 44.6 2.1 5.5 19.8 34.5 41.9 2.4 6.5 23.7 34.0 44.7
Grapin-Page 1.8 4.4 40.3 142.4 158.8 2.4 5.1 42.2 209.2 151.9 1.6 5.0 44.7 195.2 156.2
Grapin 0.7 1.8 4.3 11.3 15.2 0.7 2.0 4.2 12.5 15.7 1.0 2.1 7.2 13.4 16.8

CC

RisGraph 2.0 7.4 44.0 60.2 OOM 2.0 7.5 46.0 69.4 OOM 2.2 7.6 53.6 69.0 OOM
Ingress 9.3 28.3 205.5 400.7 205.8 9.5 30.8 219.8 412.9 203.5 12.3 32.5 215.8 418.1 225.1
SHGraph 0.64 OOM OOM OOM OOM 0.88 OOM OOM OOM OOM 0.79 OOM OOM OOM OOM
Grapin-ReComp 6.0 11.4 30.4 85.1 164.2 6.0 11.5 32.1 86.0 167.1 6.3 12.4 32.4 89.4 168.0
Grapin-ZC 1.8 4.5 20.7 30.4 37.4 1.9 4.6 20.0 29.5 38.0 1.9 5.3 23.2 30.6 40.5
Grapin-Page 1.0 2.3 40.0 80.5 74.8 1.0 2.7 43.7 73.7 67.2 1.4 4.8 43.7 81.6 75.1
Grapin 0.8 1.7 5.8 10.2 13.0 1.1 1.6 6.9 11.5 14.7 1.1 2.4 9.4 12.5 15.0

PR

RisGraph 90.4 270.3 1986.1 2925.1 4404.7 105.8 286.1 2076.0 2930.1 4538.3 105.3 291.5 2283.0 3142.1 4720.1
Ingress 68.2 164.2 1865.0 2119.6 2966.1 63.7 157.4 1895.4 1874.8 3664.4 67.8 197.2 2250.2 2323.2 4112.6
SHGraph 3.76 OOM OOM OOM OOM 4.29 OOM OOM OOM OOM 6.41 OOM OOM OOM OOM
Grapin-ReComp 16.3 38.0 327.4 200.2 219.4 18.3 41.3 330.3 201.51 251.9 25.5 58.8 330.1 353.7 392.8
Grapin-ZC 15.0 31.4 213.7 91.2 177.3 19.8 38.6 215.1 148.8 228.0 24.9 55.0 232.0 276.5 340.8
Grapin-Page 10.8 13.6 1496.7 911.5 1103.3 11.6 15.9 1502.5 1250.8 1367.8 14.5 23.4 155.2 1709.2 1670.2
Grapin 6.3 12.9 41.0 30.2 85.3 6.8 13.9 37.3 89.6 106.7 8.3 14.0 44.0 91.9 111.3

Table 5: The volume of communicated data (in the number of edge).

Graph Trans-ZC Trans-with HotSG Trans-UMTotal Intra-Redun Inter-Redun
OK 0.99B 0.26B (∝73%) 0.04B (∝61%) 0.15B (∝81%) 0.14B(∝85%)
WK 4.6B 1.2B (∝74%) 0.3B (∝55%) 0.7B (∝82%) 2.3B (∝51%)
TW 18.6B 3.7B (∝80%) 0.8B (∝62%) 1.5B (∝90%) 38.3B (2.1x)
FS 30.0B 9.6B (∝68%) 1.8B (∝67%) 6.2B (∝72%) 167.5B (5.6x)
UK 50.7B 16.8B (∝67%) 6.5B (∝72%) 8.7B (∝65%) 151.2B (3.0x)

Comparison with UM-based approaches. While Grapin-Page
outperforms Grapin-ZC on two small graphs, its performance re-
mains inferior on three large-scale graphs (excluding PR on TW@100K).
Grapin-Page frequently migrates memory pages containing little
active data between the CPU and GPU, diminishing data reuse e"-
ciency. In some cases (e.g., SSSP on the UK), Grapin-Page even per-
forms worse than CPU-based systems. In contrast, leveraging !ne-
grained vertex-centric hot subgraph management, Grapin achieves
speedups ranging from 0.9x to 40.3x (avg. 7.5x) over Grapin-Page.
Grapin-Page shows comparable performance to Grapin for CC on
Orkut, as the entire graph can be cached in the GPU.
Varying batch sizes. Compared to CPU-based systems andGrapin-
ZC, Grapin achieves average speedups of 14.6x and 3.1x, 12.5x and
2.9x, and 12.7x and 3.1x with batch sizes of 1K, 10K, and 100K,
respectively. Since its performance gains remain consistent across
di#erent batch sizes, we adopt a batch size of 100K for subsequent
analysis. A detailed evaluation of Grapin ’s performance under
batch sizes ranging from 1 to 100M is provided in Section 7.3.

7.2 GPU Hot Graph Management Performance
Communication reduction analysis. Table 5 presents the re-
duction in communication volume achieved by the hot subgraph
management and uni!ed memory management using the SSSP
algorithm. We observed that the proposed vertex-centric hot sub-
graph management leads to an overall 67%-80% reduction in CPU-
GPU communication across the !ve graphs (Total). Speci!cally,

Table 6: Performance breakdown of Grapin-ZC (GZC) with and with-
out hot subgraph management (HSG).

Time (s)
Graph OK WK TW FS UK
Con!g GZC +HSG GZC +HSG GZC +HSG GZC +HSG GZC +HSG
Overall 2.43 1.00 6.46 2.12 23.72 7.16 34.00 13.40 44.72 16.83

GraphUpd 0.02 0.02 0.57 0.58 2.95 2.67 0.01 0.01 0.86 0.95
HotSGRep 0 0.27 0 0.51 0 0.30 0 0.34 0 1.61
IncComp 2.41 0.69 5.89 1.04 20.77 4.19 33.99 13.05 43.86 14.27

the communication of redundant graph accesses within each batch
(Intra-Dup) is reduced by 55%-72%, while redundant graph accesses
across two sequential batches (Inter-Dup) are reduced by 65%-90%.
In contrast, while uni!ed memory exhibits good performance on
small graphs, its coarse-grained data migration results in a transfer
volume increase of 2.1x to 5.6x on large graphs.

Performance breakdown. We analyze the time cost of di#erent
components in Grapin, including GPU Computation (IncComp),
CPU Graph Updating (GraphUpd), and GPU hot subgraph Replace-
ment (HotSGRep). Communication overhead is included in Inc-
Comp, thanks to the asynchronous nature of zero-copy access.
The results are shown in Table 6. Although the GPU-resident hot
subgraphs signi!cantly reduce communication overhead, incre-
mental computation still dominates the runtime, accounting for
49.0% to 97.3% across di#erent graphs. In contrast, on the three
large graphs, HotSGRep accounts for only 2.1% to 9.6% of the total
runtime, thanks to e"cient snapshot-oriented data replacement.
On the two small graphs, OK and WK, it contributes a higher pro-
portion, ranging from 24.1% to 27.0% of the overall runtime. Figure
10 further shows the performance breakdown across batches. The
vertex-centric hot subgraph management exhibits progressive im-
provement, stabilizing after three batches of warm-up. The time
spent on graph updating and hot subgraph updating remains con-
sistent across batches. For SSSP, the !rst batch requires more time
because many critical paths are a#ected.
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Figure 12: Performance with varying hot subgraph sizes on the UK
graph on a 24GB A5000 GPU and a 48GB A6000 GPU. The upper axis
indicates the ratio of cached graph for di#erent algorithms.

7.3 Micro Benchmark
Varying batch sizes. We vary batch sizes from 1 to 100M to eval-
uate the performance of Grapin in Figure 11. The runtime of PR
exhibits slight growth as the batch size increases, as its computation
volume is positively correlatedwith the number of updated edges. In
contrast, the runtime of SSSP depends on whether the critical path
changes and therefore exhibits non-monotonic behavior, except on
Ingress. This is due to the high CSR update overhead in Ingress.
Nevertheless, Grapin’s e#ectiveness remains consistent across all
cases. For the SSSP (PageRank) algorithm, Grapin achieves speedups
ranging from 8.1x-10.6x (15.6x-75.1x), 11.4x-15.2x (21.0x-36.3x), and
2.6x-3.1x (2.1x-3.4x) over RisGraph, Ingress, and Grapin-ZC, re-
spectively. When the batch size reaches 3% of the total graph size
(e.g., 100M edges), most edges are a#ected, signi!cantly reducing
the e#ectiveness of inter-batch data reuse. However, Grapin still
maintains a signi!cant advantage over other baselines.
Varying the size of cached subgraphs on GPUs with di#erent
memory capacities. To evaluate the impact of hot subgraph sizes,
we run all algorithms on the FS graph on an A5000 GPU with 24GB
memory and an A6000 GPU with 48GB memory. On the A5000, we
start with no hot subgraph caching (0GB) and linearly increase the
hot subgraph size to 4GB. On the A6000, we start with no hot sub-
graph caching (0GB) and exponentially increase the hot subgraph
size to 22GB to cache all edge data. We observe from Figure 12
(a) that even with only 1GB allocated to the hot subgraph, Grapin
still delivers considerable performance improvements, achieving
1.6x–2.4x speedups on the A5000 GPU. This is because frequently
accessed vertices account for only a small portion of the graph (less
than 10%) due to the power-law distribution. These results indicate
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Figure 13: Performance with varying insertion and deletion ratios.

Table 7: Performance with various 𝑉 .

𝑉 = 0 1 2 3 4 5 6
SSSP 7.68 7.50 7.34 7.24 7.24 7.22 7.34

PageRank 48.31 45.94 44.60 43.96 43.82 44.37 44.41

Table 8: Runtime comparison (s) between Grapin (in-memory mode)
and SHGraph under 100K edge mutations on the OK graph.

BFS SSSP CC PR
SHGraph Grapin SHGraph Grapin SHGraph Grapin SHGraph Grapin
0.74 0.71 0.91 0.61 0.79 0.75 6.41 7.54

that our approach can be adapted to GPUs of varying resource
constraints. As the hot subgraph size increases from 1GB to 4GB,
the per-GB bene!t of caching diminishes compared to the initial
1GB. However, the overall improvement remains signi!cant. As
the cache size increases from 4 GB to 22 GB on the A6000 GPU,
eventually becoming large enough to hold all edge data, the mar-
ginal bene!t per additional GB decreases exponentially. As shown
in Figure 12 (b), caching the entire edge set yields only a 1.2x–1.3x
improvement over caching 4 GB. This is because accesses to edge
data of cold vertices typically account for only a small portion.
As a result, Grapin does not rely on expensive GPUs with large
memory capacity. Commodity GPUs that can accommodate vertex
data along with a small edge data cache can already deliver high
performance and cost-e#ectiveness.
Varying the ratio of insertions and deletions. Figure 13 shows
the performance of the four systems under varying ratios of edge
insertions and deletions. We observe that Grapin consistently out-
performs the other three systems. For the SSSP algorithm, RisGraph
exhibits slightly inferior performance in the full-deletion workload.
This is attributed to its DM incremental algorithm implementation,
which incurs a high cost in correcting the result dependency tree
[11]. In contrast, Grapin-ZC and Grapin employ the GPU-optimized
DM implementation, demonstrating consistent performance across
diverse insertion-deletion ratios.
Evaluation of 𝑐 . We evaluate the impact of 𝑐 on the runtime of
SSSP and PageRank over the TW graph. As shown in Table 7, com-
pared to disabling the sliding window (𝑐 = 0), setting 𝑐 = 3 leads to a
5.7% to 9.0% reduction in overall runtime. This improvement can be
attributed to e#ective long-term data caching, achieved by reducing
data movements for vertices with unstable hotness. As 𝑐 increases
from 3 to 6, the performance tends to stabilize, while the memory
overhead continues to grow. Setting 𝑐 = 3 achieves a reasonable
trade-o# between performance and memory consumption.
In-memory performance. We compare SHGraph and Grapin
with in-memory processing on Orkut graph, as shown in Table 8.
We observe that the performance gap between SHGraph and Grapin
(in-memory mode) is minor, as the high memory bandwidth and
massive parallelism of the GPU e#ectively mitigate the advantages
of incremental processing. For PageRank, Grapin performs slightly
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worse, as the computation reduction from incremental processing
on Orkut is almost negligible (as indicated by the runtime compari-
son between Grapin-Recomp and Grapin-ZC in Table 4), making
the additional overhead di"cult to amortize. Overall, Grapin is
better suited for out-of-memory processing scenarios.

7.4 Case Study on Real-world Graphs
In two production graphs, vertices represent products in an on-
line store, and edges represent product similarity captured over a
24-hour and 48-hour period, respectively. The average update fre-
quencies are 11,733 and 15,766 edges per second for the two graphs.
We pack the latest 1M edges into 10 batches of 100K mutations and
feed them into RisGraph, Ingress, and Grapin. SHGraph is excluded
from the comparison due to memory exhaustion issues. Figure 14
shows the evaluation across all four algorithms on a server equipped
with dual Intel Xeon 8336C CPUs, 2TB of DRAM, PCIe 4.0, and an
NVIDIA A100 (80GB) GPU. Grapin shows superior performance
compared to CPU systems on advanced hardware. Speci!cally, it
achieves speedups ranging from 2.0x to 22.0x (avg. 12.2x) against
RisGraph and Ingress. In streaming graph applications, there are of-
ten strict requirements on the average computation time to ensure
that the results can keep pace with the latest graph snapshot, pre-
venting the delay caused by graph updates surpassing computation.
In Figure 14, two red lines indicate the border of computation delay
for G1 and G2, i.e., 10↖𝑕𝑃𝑂𝑐𝑕𝑒/𝑖𝑗𝑘𝑆𝑒𝑍 =10↖100𝑑/11733′85.2 sec-
onds and 10↖100𝑑/15766′63.4 seconds, respectively. We observe
that Ingress fails to meet the requirement in most cases. RisGraph
fails to satisfy the requirement for SSSP on G2 and PageRank on
both graphs and almost reaches the backlogging threshold for BFS
and CC on the larger graph, G2. In contrast, Grapin ful!lls the
requirements of all workloads and retains scaling potential.

7.5 Cost-e"ciency and Future Work
Compared to CPU-based solutions, Grapin o#ers signi!cant cost
advantages. Distributed streaming graph processing remains chal-
lenging due to the complexity of managing dynamic graphs across
CPU nodes [11, 14]. Moreover, building a CPU cluster is more ex-
pensive: processing a billion-edge graph requires at least 18 CPU
nodes. Based on Alibaba ECS [9] pricing, renting 18 such nodes (32
vCPUs, 128 GB each at 1.0/hour) costs over 7x more than a single
GPU node (32 vCPUs, 346 GB memory, A10@24GB at 2.5/hour)
with comparable compute power.

Following recent studies [27, 31, 42, 53], Grapin stores vertex data
entirely in the GPU. This does not a#ect scalability, as the number
of vertices is typically several orders of magnitude smaller than the
number of edges [27]. In Grapin, each vertex consumes an average
of 88 bytes to maintain the result, dependency, and index data. A
commonly used 24GB GPU can support graphs with up to 272M
vertices and approximately 7.8B edges, assuming an average vertex

degree of 34.8 (derived from the !ve public graphs). A potential
solution to further scale is to store both vertex and edge data in
CPU memory and schedule them in partitions at runtime, following
the fully external processing model [48, 54]. Compared to Grapin,
this approach incurs additional overhead due to repeated vertex
data loading [54]. Optimizing fully external GPU graph processing
remains an open challenge, which we leave for future work.

8 RELATEDWORK
Incrementalizing graph algorithms. The basic DM algorithm
requires the graph algorithm to satisfy monotonicity [39], limiting
its application to algorithms such as BFS, CC, and SSSP. Graph-
Bolt [26] and DZiG [25] adapt DM to support Bulk Synchronous
Parallel (BSP) semantics by maintaining dependency across itera-
tions. However, they increase the storage overhead from 𝑒 ( |𝑀 |) to
𝑒 (𝑙 |𝑀 |) (𝑙 is the number of iterations), rendering them impractical
for GPU deployment [38]. Ingress [14] and iTurboGraph [20] extend
DM to support non-monotonic graph algorithms (e.g., PageRank) by
transforming them into a monotonic equivalent with similar com-
putation patterns, while maintaining storage overhead at 𝑒 ( |𝑀 |).
Streaming graph processing on GPUs. In-memory GPU stream-
ing graph frameworks [3, 6, 15, 34, 45, 46, 49] typically organize
the graph in non-contiguous memory slices to support parallel
updates. For instance, GPMA [34] divides each vertex’s adjacency
list into small chunks and reserves gaps between them. faimGraph
[45, 46] and SHGraph [3] store edges in multiple blocks and index
them through a linked list or hash table. EGraph [51] introduces
an out-of-memory framework that shares commonly accessed sub-
graphs among multiple concurrent tasks. However, it requires com-
plete data transfer for each task. Grapin-ZC can be viewed as a
communication-optimized version of EGraph.

9 CONCLUSION
Wepresent Grapin, a high-performance out-of-memoryGPU stream-
ing graph processing system that minimizes graph data accesses.
Grapin achieves its e"ciency through two key components for
eliminating redundant accesses: 1) an advanced GPU incremen-
tal graph computation engine, which addresses the challenge of
atomic updates to the result and dependency on GPUs by trans-
forming them into a sequence of GPU-friendly CAS operations; and
2) a GPU dynamic graph management framework that minimizes
CPU–GPU data transfers during long-duration computations, using
!ne-grained and low-overhead graph data caching. Additionally, it
improves dynamic graph access performance with layout optimiza-
tions. Experimental results show that Grapin can process graphs
with billions of edges on a single GPU by e#ectively reducing data
transfers, delivering speedups ranging from 1.8x to 96.9x compared
to CPU-based systems.
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