
Bonspiel: Low Tail Latency Transactions in
Geo-Distributed Databases

Fan Cui Eric Lo Srijan Srivastava Ziliang Lai

The Chinese University of Hong Kong

{fcui22, ericlo, srijan, zllai}@cse.cuhk.edu.hk

ABSTRACT
Tail latency is crucial as it impacts user satisfaction and service-

level objectives (SLOs). However, geo-distributed databases have

long struggled with this issue due to wide-area network access,

resulting in tail latencies of several or even exceeding ten seconds.

In this paper, we highlight that further optimizing atomic commit

protocols does not help but hit a tail latency wall. Instead, mak-

ing concurrency control and access method selection geo-aware

can mitigate this issue. To this end, we present Bonspiel, a new

geo-distributed database equipped with geo-aware concurrency

control and access method selection. In our experiments, Bonspiel

successfully caps the tail latency of TPC-C at 1.8 seconds. Remark-

ably, it achieves this while maintaining full generality – it is fully

SQL-compliant and strongly consistent, with both average latency

and system throughput remaining at the top of the field.

PVLDB Reference Format:
Fan Cui, Eric Lo, Srijan Srivastava, and Ziliang Lai. Bonspiel: Low Tail

Latency Transactions in Geo-Distributed Databases. PVLDB, 18(11): 3840 -

3853, 2025.

doi:10.14778/3749646.3749658

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/fancui-cuhk/Bonspiel.git.

1 INTRODUCTION
Large-scale web applications, ranging from social networks to e-

commerce, are often powered by geo-distributed databases [8, 14,

17, 22, 55, 72, 75, 86, 93]. These databases feature high scalability

and availability by partitioning data and replicating the partitions

across multiple regions.

With data partitioned, Atomic Commit (AC) plays a vital role

in multi-region (MR) transactions. Over the years, the majority of

the efforts [29, 33, 37, 52, 54, 59, 60, 63, 68, 71, 75, 83, 85, 86, 91–94]

have focused on minimizing the atomic commit latency. Figure

1 illustrates the improvement in average latency across four geo-

distributed databases developed at different times. These are the

general ones in the sense that they do not impose any require-

ment on workload (e.g., can support branching in transactions).

As shown in the figure, there have been consistent improvements,

provided that we follow their experimental setting, reporting (1)

average latency using (2) YCSB-A with (3) 100% multi-region
(MR) transactions on (4) low contention (𝜃 = 0.2).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.

doi:10.14778/3749646.3749658

Spa
nne

r
TA

PIR GP
AC R4

0

200

400

600

800

A
ve

ra
g
e
la
te
n
cy

(m
s)

Low Contention

1.6x

Figure 1: Average latency of four general geo-distributed
databases. YCSB-A; 100% MR transactions; Low Contention
(𝜃=0.2). 5 replicas on 5 regions. Detailed setup in Section 4.

Under this setting, we can see that starting with the pioneer,

Spanner [22], introduced by Google in 2012, followed by TAPIR

[91] (2015), GPAC [54] (2019), till most recently R4 [40] (2024),

the average latency of geo-distributed databases has improved by

1.6×. The latency improvements are primarily attributed to the

optimizations in their replicated atomic commit protocols, where

the corresponding commit time has been reduced from 3 wide-area

network (WAN) round-trip times (RTT) in Spanner, to 1–2 RTTs in

TAPIR and GPAC, and more recently down to 1–1.5 RTTs in R4.

1.1 Wait! What About Tail Latency?
Optimizing the atomic commit protocol can unquestionably reduce

the atomic commit latency of MR transactions. However, end-to-end

tail latency is crucial for user-facing applications, and its signifi-

cance becomes even more critical when a geo-distributed database

is offered as a cloud service with service-level objectives (SLOs)

[11, 18, 19, 26, 36, 47, 62, 66, 67, 74, 87].

Figure 2 shows the performance of the relevant systems when

reporting their 99.9% (p999) tail latency on both low contention

(𝜃 = 0.2) and high contention (𝜃 = 0.8) scenarios. It is apparent that

the optimization of atomic commit in these systems does not translate
to improved tail latency.

1.2 What about TPC-C?
An industrial-strength geo-distributed database should not excel in

only one type of workload. Unfortunately, most studies on general

geo-distributed databases have been evaluated only on YCSB and

some microbenchmarks (e.g., [29, 40, 52, 75, 83, 85, 91]). In light

of this, we changed the workload to TPC-C and studied the tail

latency, as shown in Figure 3.

TPC-C simulates a realistic workload where there are only
10–15% MR transactions, with the remainder being single-region

(SR) transactions. Under TPC-C, we find that systems with optimized
atomic commit do not have better tail latency than Spanner either; in

fact, they often have worse, even though tail latency is primarily in-

fluenced by longer-running MR transactions, and enhancing atomic

commit should reduce the number of RTTs in MR transactions.

3840

https://doi.org/10.14778/3749646.3749658
https://github.com/fancui-cuhk/Bonspiel.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749658
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Spanner
TAPIR

GPAC R4
0

2

4

6

8

10

12
p

9
9

9
la

te
n

cy
(s

)
Low Contention

commit

exec

abort

Spanner
TAPIR

GPAC R4
0

2

4

6

8

10

12

p
9

9
9

la
te

n
cy

(s
)

High Contention
commit

exec

abort

Figure 2: Tail latency (with breakdown). YCSB-A; 100% MR
transactions.

Spanner
TAPIR

GPAC R4
0

1

2

3

4

5

6

p
9

9
9

la
te

n
cy

(s
)

Low Contention
commit

exec

abort

Spanner
TAPIR

GPAC R4
0

1

2

3

4

5

6

p
9

9
9

la
te

n
cy

(s
)

High Contention
commit

exec

abort

Figure 3: Tail latency (with breakdown). TPC-C.

1.3 Where Does the Time Go?
To provide insights into the factors contributing to tail latency

(primarily attributed to slower MR transactions), Figures 2 and 3

include a detailed time breakdown. Specifically, due to contention,

a transaction may abort and re-execute multiple times before it

can successfully commit. The breakdown shows (1) the execution
time and (2) the commit time of the final successful round of a

transaction, as well as (3) the abort time, which reflects the time

wasted on failed attempts.

The breakdown reveals that optimizing the atomic commit pro-

tocol (from Spanner to R4) does reduce commit time; however, this

reduction is secondary, especially when considering the abort time

spent on failed attempts. This issue is even more pronounced under

high contention scenarios, which are commonly found in many

real-world workloads [15, 19, 84, 87]. From the breakdown, we as-

sert that, to effectively optimize tail latency, the primary focus
should be on reducing the abort time of MR transactions.

The abort time of an MR transaction is determined by: (1) its

abort rate, quantified by the number of aborts and retries before

it can successfully commit (Figures 2 and 3), multiplied by (2) its

abort penalty, measured by the time spent on a failed round.

For (1), the high abort rate of MR transactions is primarily caused

by contention with SR transactions, as the latter dominate in most

realistic workloads [24, 33, 60, 64, 65, 68, 70]. In geo-distributed

databases, SR transactions are not lightweight because they also

need to access theWANduring logging. This results in them holding

locks for an unconventionally extended period of time, causing a

high number of aborts even under low contention [40, 41, 51, 77].

This issue arises regardless of the concurrency control protocol

used (e.g., 2PL [12] or OCC [39]).

Most deterministic concurrency control (DCC) protocols [29,

33, 59, 60, 68, 77] can avoid transaction aborts. However, these

protocols require prior knowledge of the transactions’ read-write

sets, limiting the customer base from a cloud service standpoint.

For (2), the high abort penalty of MR transactions is primarily

attributed to the access method employed by most systems. Specifi-

cally, many geo-distributed databases (e.g., Spanner and R4) always

read records from the leader of the replication group [55].While this

always “read-leader” access method ensures the transaction reads

fresh records, it incurs a high abort penalty if the leader is far away

and the transaction eventually aborts. TAPIR does not suffer from

this problem by choosing to always read from the nearest replica of

the replication group. However, its always “read-nearest” access
method exposes TAPIR to a higher abort rate when records are

frequently updated, as the data retrieved from the nearest replica

may not be as fresh as that obtained from the leader.

1.4 Bonspiel
In this paper, we introduce Bonspiel, a novel geo-distributed data-

base system that significantly reduces tail latencywhilemaintaining

top performance in system throughput and average latency. Bon-

spiel employs two key techniques: (1) a geo-distributed concurrency
control (GDCC) protocol designed to reduce the abort rate of MR

transactions with minimal impact on SR transactions, and (2) geo-
aware access method selection (GAMS) to minimize the abort penalty

for MR transactions, without negatively affecting the abort rate.

Since MR transactions dominate tail latency, and their latency is

heavily interfered by the predominance of SR transactions in real-

istic workloads, GDCC prioritizes MR transactions over SR transac-

tions to prevent MR transactions from being easily aborted by SR

transactions. Existing concurrency control protocols that support

transaction prioritization are typically lock-based and tightly inte-

gratedwith classical deadlock prevention schemes such asWOUND-

WAIT or WAIT-DIE [2–4, 69]. However, they become ineffective

in a geo-distributed setting. For example, in WOUND-WAIT, high-

priority transactions are never blocked by low-priority transactions.

When a high-priority transaction (𝐻) attempts to access a record

locked by a low-priority transaction (𝐿), 𝐻 simply aborts 𝐿. In geo-

distributed databases, if we consider MR transactions to have higher

priority than SR transactions, this approach can indeed reduce the

abort rate at the cost of increasing the abort rate of SR transactions.
However, as discussed, SR transactions are not lightweight in a

geo-distributed setting, as they also require WAN access during

logging. Hence, WOUND-WAIT would severely jeopardize system

throughput and average latency.

In response to this issue, the concurrency control in Bonspiel,

GDCC, is designed specifically for the geo-distributed context, elim-

inating all the aborts of MR transactions caused by conflicting SR

transactions without jeopardizing the abort rate of SR transactions.

GDCC is based on OCC, which generally admits higher concur-

rency than lock-based approaches [19, 53, 78, 80, 87, 89]. Unlike

Polaris [87], a recent OCC designed for the single-node setting that

supports priority, GDCC guarantees that MR transactions are both

abort-free and wait-minimal with respect to SR transactions; i.e.,

an MR transaction is never aborted due to any SR transaction, and

almost never need to wait for an SR transaction to finish its WAN

logging. Furthermore, GDCC also guarantees SR transactions are

always wound-free, i.e., once an SR transaction has successfully

validated its read and write sets, it would never be wounded (i.e.,

aborted) by others. This wound-free property allows Bonspiel to

achieve low tail latency with high system throughput.

Bonspiel has GAMS, which enables reading different records

with different access methods within the same transaction. An

MR transaction can therefore choose the better option between

read-leader and read-nearest for each record based on factors

3841

Leader for partition P
Follower for partition PP

P*

Txn

P1 P2

EU-east

P3*

P4 P5*

US-west

P6

Client

P1 P2*

EU-south

P3

P1* P2

EU-west

P3P4 P5

US-central

P6* P4* P5

US-east

P6

Figure 4: An example geo-distributed database. A data parti-
tion 𝑃 is replicated to several data centers. 𝑃∗ stands for the
the leader replica.

such as record’s update frequency and network latency, and select-

ing the one that would ultimately minimize abort rate and abort

penalty. Overall, Bonspiel achieves a tail latency improvement of

up to 2.2× on TPC-C and YCSB, while maintaining top-tier average

latency and throughput compared to state-of-the-art systems.

2 PRELIMINARY
Figure 4 illustrates a typical setup of a geo-distributed database,

where data is partitioned by regions or countries. Each data partition
and its log are replicated to data centers in different regions for fault

tolerance and high availability, using a State Machine Replication

(SMR) protocol with strong consistency. Partitions can be further

sub-partitioned for scalability, and a partition 𝑃 can be either fully
replicated across all data centers or partially replicated in some but

not all data centers. A transaction is successfully committed after

its log is replicated and becomes durable.

Geo-distributed databases can be categorized into leader-based
and leaderless systems, based on the SMR protocols used. Leader-

based geo-distributed databases [14, 22, 40, 54, 75, 83, 85, 86] utilize

leader-based SMR protocols (e.g., Multi-Paxos [44], Raft [61]) for

logging, where a designated replica serves as the leader to replicate
transaction logs to other replicas known as followers. In such sys-

tems, the leader always has the most up-to-date data. By default,

the leader is located in the region where its data originates. For

example, the partition 𝑃1 in Figure 4 contains data for EU-west
clients and has three replicas. The leader replica, 𝑃1∗, is set to be
located in the EU-west data center, ensuring that most transactions

from that region benefit from fast local accesses [33, 60, 68]. If the

leader fails, a new leader is elected to ensure continuous service.

In a system with 2𝑓 + 1 replicas aiming to tolerate 𝑓 simultaneous

server failures, the replication quorum size is 𝑓 + 1, meaning that a

log is durable if replicated to 𝑓 + 1 replicas. All industrial systems

are leader-based [14, 22, 75, 86].

Leaderless geo-distributed databases [37, 59, 91] utilize leaderless

SMR protocols [10, 27, 45, 46, 57], aiming to reduce latency through

fast paths [46], which allows any replica to initiate replication of

transaction logs, bypassing the leader and saving WAN round trips.

However, fast paths require a larger quorum size of ⌈3/2𝑓 ⌉ + 1 for

fault tolerance. Furthermore, if a transaction fails to gather enough

votes to form a quorum during the fast path, it resorts to a classic

leader-based slow path.
In leader-based systems, transactions typically exhibit low la-

tency variance due to the smaller quorum size, requiring fewer

replicas to respond. In contrast, leaderless systems may experience

high latency variance, particularly under high contention, as trans-

actions need to wait for more replicas to respond andmany fast path

failures can occur. We choose to develop Bonspiel as a leader-based

system for the above reasons, while including leaderless systems

in the evaluation section. Discussions in the following assume a

leader-based system setting.

In geo-distributed databases, clients submit transactions to the

nearest data center for processing. Transactions can be classified

into two types: single-region (SR) transactions, which access data

from partitions with leaders located in a single region, and multi-

region (MR) transactions, which access data from partitions with

leaders distributed across multiple regions.

2.1 Single-Region (SR) Transactions
SR transactions are executed and committed in the data center that

hosts the partition leaders, i.e., the leader replicas of the required
partitions (e.g., 𝑃1∗ in Figure 4). In systems using OCC protocols, the

lifecycle of an SR transaction consists of three phases: the execution
phase, the validation phase, and the commit phase [39, 78, 89].

An SR transaction starts the execution phase by reading the

required records and their associated timestamps into a private

read set and writing the updates into a private write set. Once

all operations are completed, the transaction enters the validation

phase, where it performs a validation to determine whether to

commit or abort.

The validation process checks for serializability conflicts with

concurrent transactions, aborting the transaction if any conflicts

are detected. Specifically, during validation, the transaction first

attempts to lock all records in its write set [39, 78, 89]. If all locks in

the write set are successfully acquired, it then checks whether any

record in its read set is locked or has been updated by others via

cross-checking the records’ timestamps. If validation fails, the trans-

action is aborted by releasing all acquired locks and discarding its

read/write sets. Otherwise, the validation succeeds, the transaction

enters the commit phase and logs its write set to all replicas using

an SMR protocol across the WAN. After successful log replication,

the partition leader installs the write set locally, releases the locks

on the write set, and acknowledges the client and the other replicas

that the transaction has been committed.

Previous studies [19, 53, 78, 80, 87, 89] indicate that OCC gen-

erally admits higher concurrency than lock-based concurrency

control. Therefore, GDCC, Bonspiel’s concurrency control protocol,

is based on OCC, and we focus on OCC in the rest of the discussion.

Regardless of the specific concurrency control protocol used, it is

important to note that in a geo-distributed setting, SR transactions
require logging across the WAN. This log replication results in a

significantly longer lock-holding time (a.k.a. contention footprint)

[40, 41, 51, 77] of 1 WAN RTT and longer latency (in𝑚𝑠) compared

to a non-geo-distributed setting (latency in 𝜇𝑠).

2.2 Multi-Region (MR) Transactions
MR transactions access data from partitions whose leaders reside

in multiple regions. The data center that receives the transaction

from the client serves as the transaction coordinator (e.g., EU-west
in Figure 4). The lifecycle of an MR transaction also consists of an

execution phase, a validation phase, and a commit phase.

The execution phase of an MR transaction involves reading

data from participants that hosts the required data partitions (e.g.,

3842

Read Access Latency Data Freshness

read-leader Depends
∗

Freshest

read-nearest Lowest Depends
∗

Table 1: Properties of access methods. ∗Depends on whether
the partition leader is co-located with the coordinator.

US-east and EU-south for a cross-country transaction in Figure

4). For most geo-distributed databases (e.g., Spanner, R4), when a

transaction performs read operations, they adopt a read-leader
approach that always reads a partition from its leader replica. If

the leader replica of the partition happens to co-locate with the

transaction coordinator (e.g., 𝑃1∗ in EU-west), then it is a local read,

incurring no WAN RTT. Otherwise, the read operation is a remote

read (e.g., 𝑃2∗ in EU-south), requiring one WAN RTT.

TAPIR uses a read-nearest approach instead. Specifically, trans-
actions always read from the data center nearest to the coordinator

that holds the required partition. When the nearest data center hap-

pens to host the leader replica of a partition (e.g., 𝑃1∗ in EU-west),
the reads are both fast and fresh. However, when the nearest data

center only hosts a follower replica of the partition (e.g., 𝑃3 in

EU-west), these reads may return fresh or stale data, depending on

whether the required data item is being updated at the leader (𝑃3∗

in EU-east) while the follower is being read. Table 1 summarizes

the discussion above.

After the execution phase, an MR transaction steps into the vali-

dation phase, using an atomic commit (AC) protocol to coordinate

an atomic commit-vs-abort decision among all participants. In a

leader-based system, coordination messages are sent to the leader

replica only and the leader will replicate those to their respective

followers accordingly.

Upon receiving any initial AC messages (e.g., 2PC-prepare in

2PC [56]), every participant performs OCC validation on their re-

spective partitions. Similar to an SR transaction, this involves lock-

ing their responsible write sets, validating the read sets, and logging

their decisions using an SMR protocol across the WAN. After gath-

ering the individual decisions from all participants, the coordinator

formulates a final decision. Subsequently, the transaction enters the

commit phase, during which the coordinator logs the final decision

across the WAN, notifies the participants to either install the write

set (or discard it if aborted), release the locks, and inform the client

of the final decision.

The SOTAAC protocol, R4 [40], has made many steps of the SMR

logging and the AC process to run in parallel, effectively reducing

the atomic commit latency and the contention footprint of MR

transactions in a geo-replicated environment from 3 WAN RTTs in

Spanner to just 1 WAN RTT for 3 replicas (1.5 RTT for more than 3

replicas). In any case, in geo-distributed databases, both SR and
MR transactions require WAN accesses, leading to latencies
that are in the same order of magnitude (both in𝑚𝑠).

3 BONSPIEL
Bonspiel is a geo-distributed database that delivers low tail latency

transactions across geo-distributed availability zones. It supports

both full and partial replication, accommodating general work-

loads without any specific assumptions, including those with non-

deterministic transaction branches and DATE functions. Bonspiel

excels in handling workloads with any realistic mix of single-region

(SR) and multi-region (MR) transactions. It consistently provides

low tail latency across varying levels of contention while maintain-

ing top-tier performance in average latency and system throughput.

Bonspiel adopts leader-based replication using Raft [61], and

employs R4 [40] as the atomic commit protocol with replication. In

the following subsections, we introduce the two key components

of Bonspiel: (1) geo-distributed concurrency control (GDCC), which
prioritizes MR transactions over SR transactions to minimize the

abort rate of MR transactions (Section 3.1), and (2) geo-aware access
method selection (GAMS), which dynamically chooses different ac-

cess methods for different records to reduce the abort penalty for

MR transactions (Section 3.2).

3.1 Geo-Distributed Concurrency Control
The concurrency control protocol of Bonspiel is built on optimistic

concurrency control (OCC) [39] and is specifically optimized for

geo-distributed environments. In this context, both multi-region

(MR) and single-region (SR) transactions are costly, as the system’s

high availability necessitates wide-area network (WAN) access for

logging. This leads to the following design principles of Bonspiel’s

Geo-Distributed Concurrency Control (GDCC) protocol:

• MR Abort-Free (with respect to SR): MR transactions should

be abort-free with respect to SR transactions. MR transactions,

as the key determinant of tail latency, should not be aborted by

any SR transaction, especially considering the prevalence of the

latter in real workloads. Of course, an MR transaction can still be

aborted if there are serializability conflicts with other concurrent

MR transactions. For brevity, in what follows, we omit the phrase

“with respect to SR transactions” when the context is clear.

• SR Wound-Free: The Abort-Free nature of MR transactions

could easily result in solutions that prioritize MR transactions

over SR transactions by wounding (i.e., aborting) SR transactions

in the event of any conflict. However, since SR transactions

are both costly and prevalent, unconditionally wounding them

would severely jeopardize overall system throughput and average

latency. Therefore, SR transactions should remain wound-free
once they have successfully validated their read and write sets.

• MRWait-Minimal (with respect to SR): To reduce the latency of
MR transactions, it is essential not only to ensure they are abort-

free but also to minimize their wait on SR transactions. However,

completely eliminating the need for MR transactions to wait on

SR transactions is practically infeasible, as MR Abort-Free and SR

Wound-Free literally leavewaiting as the only option on the table.
Therefore, the guiding principle is to make the majority of an

MR transaction’s critical path wait-free. If waiting is absolutely

necessary, we must minimize the wait time of MR transactions

to reduce their tail latencies as much as possible. We will also

omit the phrase “with respect to SR” when the context is clear.

Guided by these principles, Bonspiel’s Geo-Distributed Concur-

rency Control (GDCC) is structured as an OCC-based protocol that

prioritizes MR transactions over SR transactions. Within GDCC, SR

transactions are assigned the lowest priority and MR transactions

have varying levels of higher priority. The challenge of GDCC lies

in how to achieve all three principles simultaneously.

3843

To support priority under OCC, GDCC adopts the reservation
concept from Polaris [87]. Reservation provides a priority primitive

in OCC. During execution, an MR transaction reserves required

records before accessing them, indicating its intent to use those

records with priority. SR transactions cannot make reservations.

Transactions will check for the following types of conflicts during

execution and validation to ensure that lower-priority transactions

cannot update records reserved by higher-priority transactions

until the latter complete (commit or abort):

(1) Reserve-lock conflict: One transaction requests a reserva-

tion on item 𝑥 while another holds a lock on 𝑥 .

(2) Reserve-reserve conflict: One transaction requests a reser-

vation on 𝑥 while another has already reserved 𝑥 .

(3) Lock-lock conflict: The typical OCC conflict, where one

transaction requests a lock on 𝑥 during validation, but 𝑥 is

already locked.

(4) Lock-reserve conflict: One transaction enters validation and

requests a lock on 𝑥 , but 𝑥 is already reserved.

When an SR transaction enters the validation phase, it will abort

if it detects that some records in its write set are reserved by other

transactions. A tricky situation arises when (a) an SR transaction

𝑆 has locked all records in its write set, successfully validated, but

has not released the locks because logging is still in process, and

(b) an MR transaction 𝑀 arrives and attempts to reserve some of

those locked records during its execution phase. In this case, we

encounter the following issues:

(I1) MR Abort-Free: cannot abort𝑀 ;

(I2) SR Wound-Free: cannot wound 𝑆 ;

(I3) MR Wait-Minimal: not wanting𝑀 to wait for 𝑆 to release

its locks because 𝑆 ’s WAN logging is slow.

Note that this is what sets GDCC apart from Polaris, as Polaris

was not designed for geo-distributed databases and would choose to

wait in I3, leading to poor tail latency in a geo-distributed environ-

ment. In Bonspiel, we borrow the NO-WAIT policy from traditional

locking schemes [69] and apply it in a novel way to MR transac-

tions during their OCC-style execution phase. NO-WAIT refers to

a self-abort (DIE) in locking schemes [69]. In OCC-based Bonspiel,

we interpret NO-WAIT in a novel way as a “proceed”:𝑀 does not

wait for 𝑆 to finish its logging, but proceeds to read the items locked

by 𝑆 and continues to place reservations on all required items. As a

result, under Bonspiel, MR transactions genuinely never wait for

SR transactions during their execution phase.

When comparing Bonspiel to Polaris, two challenges emerge

with the introduction of the new NO-WAIT option. First, while

NO-WAIT can make𝑀 wait-free during its execution phase, it may

lead to𝑀 being aborted by 𝑆 during its validation phase, thereby

violating the MR Abort-Free principle. Specifically, by not waiting

for 𝑆 to finish its updates and continuing to read items locked by 𝑆 ,

𝑀’s reads are stale, causing it to abort during validation. Second,

although NO-WAIT can render𝑀 wait-free in its execution phase,
it does not reduce the wait time for𝑀 during its validation phase.

To address the first challenge, Bonspiel allows dirty writes made

by SR transactions to be early visible [28, 30, 31] to MR transactions

once an SR transaction has successfully validated its read/write

sets and before it completes its WAN logging. Since locks remain

MR start

reserve_lock_conflict_resolution(): NO-WAIT or WAIT

reserve success reserve fail

for in : reserve()

for in : read(); for in : write()

for in :

lock_reserve_conflict_resolution()

lock_lock_conflict_resolution()

lock()

cross_check()

for all involved partitions: validate(,)

commit()

MR
SR

early_visible()

log(Txn ID,)

unlock()
ex

ec
ut

iu
on

 p
ha

se
va

lid
at

io
n

ph
as

e

All votes
commit?

unreserve()

apply_change()

log(Txn ID,)

unlock()

unreserve()

make_visible()

SR start

abort()

Yes

No

co
m

m
it

ph
as

e

reserve_reserve_conflict_resolution()

apply_change()

Figure 5: Transaction Lifecycle in Bonspiel.
held until SR’s logging is finished in GDCC, this early-visible-write

approach ensures serializability and recoverability.

Regarding the second challenge, consider a scenario where (a) SR

has locked all records in its write set during validation but has not

released the locks, as in the previous case (a), but now (b’) the MR

transaction𝑀 has used NO-WAIT to complete its execution phase

and is entering its validation phase, initiating lock acquisition for its

own write set. In this situation, we encounter the same issues I1 and

I2 as before, but with the difference that now NO-WAIT (proceed)

is not an option for issue I3 since𝑀 is now in its validation phase,

it has to wait for 𝑆 to release locks for correctness.

To mitigate this, GDCC is meticulously designed to ensure that

any unavoidable wait either is on the non-critical path of the MR

transaction’s validation phase (thus not adding to the physical

latency of MR) or that the wait time for 𝑀 to acquire the lock

released by 𝑆 is minimized. The latter is accomplished by carefully

overlapping the execution phase of𝑀 with the logging process of

𝑆 , so that by the time the lock acquisition request from𝑀 reaches

the leader of the required record, the logging of 𝑆 on the same

record is often completed with the locks released. Consequently,

the lock acquisition request fromMR is effectively wait-free in most

circumstances.

3.1.1 Transaction Lifecycle. Figure 5 illustrates the lifecycle of a
transaction in Bonspiel, highlighting GDCC’s distinctions from

standard OCC of geo-distributed databases in blue. During the exe-

cution phase, SR transactions execute as in standard OCC, while

3844

MR transactions utilize a reserve primitive to reserve records in

their read and write sets before accessing them. When an MR trans-

action attempts to reserve a record 𝑥 , it may find that 𝑥 is locked or

reserved by another transaction. In such cases, the MR transaction

follows a Reserve-Lock Conflict Resolution scheme and a Reserve-
Reserve Conflict Resolution scheme to determine the outcome of the

reservation (Section 3.1.2).

After the execution phase, a transaction enters its validation

phase (validate), validating its read and write sets on the leader of

every involved partition. The validation phase is mostly traditional:

first attempts to lock all the records in the write set (lock), and if all
locks are successfully acquired, the transaction then cross-checks

the timestamps of the records in the read set against the latest

timestamps of those records (cross_check). The only distinction

here is that when attempting to lock all the records in the write set,

the transaction employs a Lock-Reserve Conflict Resolution scheme

on top of a Lock-Lock Conflict Resolution scheme to resolve the

conflicts in case the required records are already locked or reserved

by concurrent transactions (Section 3.1.3).

Based on the outcomes of Lock-Lock and Lock-Reserve Conflict

Resolutions, along with the cross_check result, a transaction may

either abort or pass the validation and proceed to commit. Note

that the MR Abort-Free property in GDCC only ensures that an

MR transaction is not aborted by an SR transaction, but does not

prevent aborts arising from serializability conflicts between MR

transactions.

GDCC admits different commit paths for SR andMR transactions.

For MR transactions, they follow a mostly traditional commit pro-
cedure, which first logs the write sets, then makes the writes visible

to other transactions, releases the locks on the write set, removes

the reservations on the read and write sets by sending the write

sets and unlock/unreserve requests to the respective leader of each

record, and finally applies the changes to the durable storage (i.e., a

majority of replicas in geo-distributed settings). For SR transactions,

they make their write sets early visible (early_visible) once after
successful validation. Then, they log their write sets, release the

locks and reservations, and applies the changes as usual. Write set

logging is managed by Raft. Therefore, any logging failures are

transparently handled by the Raft protocol (e.g., leader re-election),

requiring no additional mechanisms.

3.1.2 Execution phase: Reservation. In GDCC, only MR transac-

tions can do reservations. When reserving a record, an MR trans-

action first checks whether its intended reservation conflicts with

any existing locks on the required records and follows a Reserve-

Lock Conflict Resolution scheme to resolve the conflict. Next, it

checks whether its intended reservation conflicts with any existing

reservations on the required records and follows a Reserve-Reserve

Conflict Resolution scheme to determine the reservation result

(SUCCESS or FAILURE). It is important to note that a reservation

failure for an MR transaction, at worst, represents only a priority

inversion, which does not compromise correctness. Consequently,

in Bonspiel, a transaction will never be aborted in the execution

phase despite the reservation outcome.

Reserve-Lock Conflict Resolution. Table 2 shows the resolution
scheme of Bonspiel in case an MR transaction𝑀 tries to reserve a

record 𝑥 but the record 𝑥 is already locked by another SR transaction

Table 2: Execution Phase: Reserve-Lock Conflict Resolution.
𝑀

reserve(𝑥)
WOUND-

WAIT

WAIT-

DIE

Polaris GDCC

𝑥 is locked

by 𝑆

Abort 𝑆

(WOUND)
WAIT for

lock release

WAIT for

lock release

Proceed
(NO-WAIT)

𝑥 is locked

by𝑀′
WAIT for

lock release

Self-abort

(DIE)
WAIT for

lock release

WAIT for
lock release

Table 3: Exec. Phase: Reserve-Reserve Conflict Resolution
𝑀 reserve(𝑥) GDCC

𝑥 is reserved by 𝑆 —

𝑥 is reserved by𝑀′
Reserve SUCCESS

𝑆 or by another MR transaction𝑀′
. In simple terms, the Reserve-

Lock Conflict Resolution of Bonspiel is conditional-waiting: the MR

transaction proceeds immediately (NO-WAIT) if the locker holder

is an SR transaction, but it waits (WAIT) if the locker holder is an

MR transaction. Of course, if 𝑥 is not locked,𝑀 always proceeds.

The rationale for𝑀 choosing NO-WAIT when the locker holder

is an SR transaction is clear — for the MR Wait-Minimal principle.

The rationale for𝑀 choosing WAIT when the locker holder is also

an MR transaction𝑀′
is that both𝑀 and𝑀′

hold equal importance.

Since the locker holder𝑀′
has already acquired the lock – meaning

that𝑀′
has finished remote data access and is closer to lock release

point, it is more beneficial for𝑀 to wait for𝑀′
.

In fact, there are always other options for 𝑀 . For example, we

can borrow traditional deadlock prevention schemes like WOUND-

WAIT andWAIT-DIE from lock-based concurrency control [2–4, 69]

and apply them here (Table 2). As discussed in the introduction,

applying WOUND-WAIT here would mean wounding the lock

holder SR and hurting the overall system throughput and average

latency. Applying WAIT-DIE in this context means that if the lock

holder is an SR transaction 𝑆 , 𝑀 would begin a long wait for 𝑆’s

WAN logging, prolonging its latency and abort penalty. Conversely,

if the lock holder is another MR transaction𝑀′
,𝑀 might need to

abort itself, increasing its abort rate. The problem of Polaris also

becomes clearer here. In Polaris, the MR transaction𝑀 that seeks to

reserve will WAIT until the lock holder releases the lock, regardless

of whether the locker holder is an SR or an MR transaction. This

approach exposes𝑀 to the same long-waiting issue as WAIT-DIE,

since the lock holder is often an SR transaction in real workloads.

Reserve-Reserve Conflict Resolution. After conditional wait-
ing, the MR transaction𝑀 will next proceed to resolve the potential

conflicts between its intended reservation and the existing reserva-

tions made by other MR transactions𝑀′
.

Table 3 outlines the resolution scheme of Bonspiel in this sce-

nario. First, SR transactions cannot make reservations, so there is

nothing to resolve between𝑀 and SR transactions (−). Second, if
there are existing reservations on a record 𝑥 made by other MR

transactions 𝑀′
, Bonspiel still considers 𝑀’s reservation as SUC-

CESS by allowing multiple reservations on 𝑥 . The rationale is that

a reservation is merely a performance primitive, prioritizing MR

transactions over SR transactions under the lens of tail latency.

Any violation of the reservation would not cause correctness issues.

Since the current reservation holder𝑀′
may later fail to validate

and be aborted, allowing𝑀 ’s reservation to succeed causes no harm

but provides𝑀 with a higher chance to commit. Real serializability

3845

conflicts between 𝑀 and 𝑀′
would be resolved later when they

reach their validation phase. Of course, when there is no reservation

on 𝑥 , the reservation must succeed.

In summary, the basic Reserve-Reserve Conflict Resolution scheme

of Bonspiel is ALWAYS SUCCEED. It is considered basic because

we will later introduce different priorities among MR transactions

(Section 3.1.5) as an optimization, where reservations may FAIL.

3.1.3 Validation Phase. After the execution phase, a transaction

enters the validation phase, begins with acquiring the locks for its

write set. When no transaction has reserved or locked a record 𝑥

in its write set, lock(𝑥) always returns a SUCCESS.

Table 4: Validation Phase: Lock-Reserve Conflict Resolution.
Lock

requester
Reservation

owner GDCC

𝑆
𝑆 ′ –

𝑀
Self-abort

(DIE)

Lock
requester

Reservation
owner GDCC

𝑀
𝑆 –

𝑀′ Proceed

(NO-WAIT)

Lock-Reserve Conflict Resolution. When a transaction tries to

acquire the lock on record 𝑥 in its write set, but another transaction

has already reserved 𝑥 , Bonspiel follows Table 4 to resolve such

lock-reserve conflicts.

First, 𝑥 can never be reserved by SR transactions (−) because
they cannot make reservations. Second, when the transaction that

seeks to lock is an SR transaction 𝑆 and the record of interest 𝑥 is

already reserved by another MR transaction𝑀 , 𝑆 must be aborted

(DIE) to yield the commit opportunity to 𝑀 , in order to comply

with the MR Abort-Free principle. Third, when the lock requester

is an MR transaction 𝑀 and the record of interest 𝑥 is already

reserved by another MR transaction𝑀′
, there is no issue because

𝑀′
has only reserved 𝑥 but has not locked it. In other words,𝑀 can

PROCEED to validate whether it has any lock-lock conflict with

other transactions.

Lock-Lock Conflict Resolution. When a transaction 𝑇 attempts

to acquire the lock on 𝑥 but there is another transaction𝑇 ′
holding

the lock, Bonspiel follows the standard OCC [39] to resolve the

lock-lock conflict
1
– the lock requester 𝑇 ALWAYS WAIT until the

lock holder 𝑇 ′
releases the lock. This applies regardless of the type

and priority of the lock requester 𝑇 and the lock holder 𝑇 ′
.

However, one might wonder whether this ALWAYSWAIT policy,

while standard (and hence correct), conflicts with the MR Wait-

Minimal principle. In the following, we explain why it does not,

due to the meticulous design of GDCC.

First, there are four types of lock-lock conflicts between the lock

requester 𝑇 and the lock holder 𝑇 ′
:

(1) (S-S conflict): both 𝑇 and 𝑇 ′
are SR transactions;

(2) (S-M conflict): Requester𝑇 is an SR transaction and lock holder

𝑇 ′
is an MR transaction;

(3) (M-M conflict): both 𝑇 and 𝑇 ′
are MR transactions;

(4) (M-S conflict): Requester𝑇 is an MR transaction and lock holder

𝑇 ′
is an SR transaction.

Among these, only type (4) is relevant to the MR Wait-Minimal

principle. Therefore, we focus on explaining why𝑀 seldom waits

for 𝑆 to release the lock. We point out that:

1
In standard OCC implementation, the write sets are sorted to avoid deadlocks [78, 89].

 on coordinator on 's leader on 's leader

reserve()

lock()

unlock()

log()
.
.
.
.
.
.
.
.

lock()

unlock()

log()
reserve():

read()
.
.
.
.
.
.
.

AC-prepare()
.
.
.
.
.
.

receive
AC-vote

... ...

...

...

...

lock()

Data Center 1 Data Center 2

AC-vote

Lemma 3.1

va
lid

at
io

n
ph

as
e

rpc_reserve()

rpc_read()

co
m

m
it

ph
as

e

return

Lemma
3.1

AC-prepare
rpc_lock() Lemma 3.2:

no-wait for lock

ex
ec

ut
io

n
ph

as
e

va
lid

at
io

n
ph

as
e

D3

D1
...

D2

co
m

m
it

ph
as

e

va
lid

at
io

n
ph

as
e

1

2

3

4

5

6

11 12

7

8

9

10

13

's
 le

ad
er

<-
--W

A
N

>

fa
rt

he
st

 fo
llo

w
er

Figure 6: Schedule of an MR transaction𝑀 and two SR trans-
actions 𝑆𝑥 , 𝑆𝑦 . Operations requiring WAN access are in blue.

Lemma 3.1. When an MR transaction𝑀 attempts to lock a record
but the record has already been locked by an SR transaction 𝑆 , it
indicates that, on the leader of the record, 𝑆 must have locked the
record before𝑀 reserves it.

Proof. When𝑀 attempts to lock a record, the record must have

been reserved by 𝑀 (or some higher-priority MR transactions if

the advanced optimization in Section 3.1.5 is enabled). According

to GDCC’s Lock-Reserve Conflict Resolution scheme (Table 4), if

𝑀 has reserved the record and 𝑆 subsequently tries to lock, 𝑆 has

to DIE. Now, 𝑆 is still alive and has locked the record, indicating

that𝑀 reserved the record after 𝑆 had already locked it. □

Now, focusing on M-S conflict (type 4), we can show that:

Lemma 3.2. For an MR transaction 𝑀 and a record 𝑦 locked by
an SR transaction 𝑆 , if the RTT from the leader of 𝑦 to the farthest
follower in its nearest quorum is shorter than the RTT from the leader
of 𝑦 to the coordinator of𝑀 , then when𝑀 attempts to lock 𝑦, 𝑆 will
have already released the lock on 𝑦 and𝑀 will require no waiting.

Proof. Consider an MR transaction𝑀 attempting to lock two

records 𝑥 and 𝑦 but they are already locked by two SR transac-

tions 𝑆𝑥 and 𝑆𝑦 , running on the partition leaders of the records,

respectively. By Lemma 3.1, both reserve(𝑥) and reserve(𝑦)
must happen after lock(𝑥) at 𝑥 ’s leader and lock(𝑦) at 𝑦’s leader,

respectively. Figure 6 gives an illustration of that, in which 𝑀’s

reserve(𝑥) arrives 𝑥 ’s leader at 5 after lock(𝑥) by 𝑆𝑥 at 1 ; and

𝑀 ’s reserve(𝑦) arrives 𝑦’s leader at 9 after lock(𝑦) by 𝑆𝑦 at 7 .

Now, consider the only two situations, where the leader of a

locked item is either (a) co-located or (b) not co-located with𝑀’s

coordinator. As 𝑀 is an MR transaction, the leaders of 𝑥 and 𝑦

should come from different regions. Without loss of generality, we

assume 𝑥 is co-located with𝑀’s coordinator, i.e., case (a); and 𝑦 is

not co-located with𝑀′𝑠 coordinator, i.e., case (b).
With the presence of case (b), the critical path of𝑀 lies on case

(b) but not case (a), because the validation of 𝑦 at 12 requires

WAN communication in its atomic commit (AC) process but the

validation of 𝑥 at 11 does not.

Consider the validation of 𝑦 at 12 . It is expected to take one

WAN round-trip for the rpc_lock(𝑦) RPC plus some time to wait

3846

Leader for partition P
Follower for partition PP

P*

P4 P5

US-central

P6*P4 P5*

US-west

P6

P4* P5

US-east

P6
(a)

Leader for partition P
Follower for partition PP

P*

P4 P5*

US-west

P6

P4* P5

US-east

P6

P5

US-central

P6*

(b)

Coord of M

Figure 7: (a) 𝑡𝐿𝐹𝐹 is a typically short; (b) a contrived setup.

for 𝑆𝑦 to release the lock at 13 when the RPC arrives at 𝑦’s leader

but 𝑆𝑦 has not yet unlocked 𝑦. However, we can show that 𝑆𝑦 must

have unlocked 𝑦 by then.

Consider the duration from𝑀 ’s rpc_reserve(𝑦) arriving at 𝑦’s

leader at 9 to𝑀 ’s rpc_lock(𝑦) arriving at𝑦’s leader at 13 .We de-

note this duration as D1. According to Lemma 3.1,𝑀 ’s rpc_reserve(𝑦)
at 9 must arrive after 𝑆𝑦 ’s lock(𝑦) at 7 . We denote the duration

between 𝑆𝑦 ’s lock(𝑦) at 7 and𝑀 ’s rpc_reserve(𝑦) at 9 as D2.

Additionally, we denote the duration between the arrival of 𝑀’s

rpc_reserve(𝑦) at 𝑦’s leader at 9 and 𝑆𝑦 ’s unlock(𝑦) at 10 as

D3. Together, D2 and D3 constitute the lock-holding time of 𝑆𝑦 on

𝑦. D3 alone is strictly shorter than the lock-holding time.

Now it is clear that 𝑀 does not need to wait for 𝑆𝑦 to release

the lock (i.e., it is wait-free) as long as D3 is shorter than D1. Note

that (1) D3 is strictly shorter than 𝑆𝑦 ’s lock-holding time, which is

the duration started from 8 for logging the write set𝑊𝑆𝑦 across

the WAN, which is roughly the RTT between the leader of 𝑦 and

the farthest follower in its nearest quorum; (2) D1 (from 9 to 13)

is strictly greater than the RTT between𝑀’s coordinator and 𝑦’s

leader. Thus, the lemma is proven. □

Lemma 3.2 implies that, under one condition, an MR transaction

does not need to wait for a conflicting SR transaction to release the

lock. The only question is whether that condition – namely, that

the RTT 𝑡𝐿𝐹𝐹 from the leader of 𝑦 to the farthest follower in its

nearest quorum is shorter than the RTT 𝑡𝐶𝐿 from the coordinator

of 𝑀 to the leader of the remote record 𝑦 – always holds, or how

likely it is that it does not hold.

Typically, 𝑡𝐿𝐹𝐹 is short, as most geo-distributed deployments are

designed to form a fast quorum. In contrast, 𝑡𝐶𝐿 depends on the

proximity of the coordinator of𝑀 to the remote leader. However, in

most deployments, 𝑡𝐿𝐹𝐹 ≤ 𝑡𝐶𝐿 should hold. Consider the example

in Figure 7(a), which follows the setup in Figure 4. For a record

𝑦 ∈ 𝑃4with its leader in US-east, 𝑡𝐿𝐹𝐹 (indicated by the red arrow)

represents the RTT between 𝑦’s leader US-east (where 𝑃4∗ resides
in) and the farthest follower, US-central, in the nearest quorum

{US-central, US-east} from the leader. Consequently, regardless

of the location of the coordinator of𝑀 , we have 𝑡𝐿𝐹𝐹 ≤ 𝑡𝐶𝐿 .
2

Of course, one could always contrive a setup that makes 𝑡𝐿𝐹𝐹
very long, thereby violating the condition in Lemma 3.2. For ex-

ample, in Figure 7(b), one follower replica of 𝑃4 is moved from

US-central to a distant region (such as Asia; outside the picture).

When placing the coordinator of𝑀 in US-central, then the near-

est quorum from the leader 𝑃4∗ becomes {US-west, US-east}. In
this case, 𝑡𝐿𝐹𝐹 is the RTT between 𝑃4 in US-west and 𝑦’s leader

2
Since𝑀 is accessing 𝑦 with US-east as 𝑦’s leader,𝑀 ’s coordinator is not in US-east
under non-co-locating case (b).

𝑃4∗ in US-east, whereas 𝑡𝐶𝐿 is the RTT between𝑀’s coordinator

(US-central) and 𝑦’s leader (US-east), resulting in 𝑡𝐶𝐿 < 𝑡𝐿𝐹𝐹 .

However, such a scenario is practically avoidable when deciding

on the replication plan, and indeed, many actual deployments de-

liberately avoid so [33, 60, 68].

Another possibility that may violate the condition involves live

WAN traffic and workload burstiness. For example, when a bursty

workload consumes more bandwidth than the provisioned WAN

capacity, congestion in theWANmessage queuemay result in 𝑡𝐶𝐿 <

𝑡𝐿𝐹𝐹 . These external factors can be mitigated by over-provisioning

or dynamic re-provisioning of WAN bandwidth (e.g., [38]), which

is beyond the scope of this paper.

Read Set Cross-Check. After locking the records in the write

set, the transaction checks whether the records in the read set are

locked or updated by other transactions. If not, validation succeeds.

If any record has been updated, the transaction must abort, as it

has read a stale version. If any record is locked, the transaction

waits for the lock to be released and then checks for updates again.

The wait time in this scenario is also minimal, similar to the wait

experienced in Lock-Lock Conflict Resolution discussed above.

3.1.4 Commit phase: Early Visible Write. Although MR transac-

tions’ reservation scheme enables an MR transaction𝑀 to be gen-

uinely wait-free during the execution phase (see Section 3.1.2), it

also exposes𝑀 to reading records locked by SR transactions await-

ing updates, ultimately causing𝑀 to abort. In other words, without

any remedy, the benefit of a wait-free MR execution phase comes

at the cost of losing MR Abort-Free.

In GDCC, we leverage early visible write (EVW) [6, 28, 30–32, 35]

in SR transactions to solve the problem. Specifically, in traditional

OCC systems, the commit phase follows this sequence:

(1) write the log to the durable storage (write-ahead logging);

(2) publish the write set in the memory, visible to other trans-

actions;

(3) release the locks on the write set; and

(4) apply the changes to the durable storage.

In GDCC, we advocate for the sequence of (2)→ (1)→ (3)→ (4)

for SR transactions instead, making the write set of SR transactions

early_visible() on the leader. By doing so, MR transaction 𝑀

can always read the latest records updated by SR transactions before

the latter carries out the slow logging across the WAN.

Note that this early write visibility is both serializable and recov-

erable because the latest records updated by SR transactions, as seen

by𝑀 , have passed validation with their locks held. GDCC’s EVW

is therefore distinct from the EVW in prior work [6, 28, 30–32, 35],

which is based on 2PL [12] and not only makes the writes early

visible but also releases the locks early (i.e., their EVW follows the

sequence (2) → (3) → (1) → (4)).

When locks are released early as in prior work, significant effort

is required to ensure serializability and recoverability (e.g., reorder-

ing the commit points [28, 30, 31]). In contrast, GDCC does not have

these complications because its EVW retains the locks until logging

is completed. Consequently, any transaction that reads these fresh

updates must commit after the transactions that expose them –

both serializability and recoverability are naturally maintained.

Another complication associated with EVW is the potential for

cascading aborts. Specifically, any transaction that reads a dirty

3847

write exposed by a transaction 𝑇 must abort if 𝑇 eventually aborts.

In prior work that adopts EVW, this issue is either avoided by design

(e.g., deterministic databases do not abort transactions unless facing

a server failure [28]) or mitigated via various methods (e.g., limiting

the length of the cascading abort chain [30, 31]).

GDCC falls into the former category – cascading aborts do not

occur by design unless there is a server failure. This is because

only SR transactions use EVW, and they expose their dirty writes

only after successful validation. In other words, EVW-enabled SR

transactions generally do not abort, so there is no cascading abort

issue. For MR transactions, since they do not use EVW, they would

not induce cascading aborts either.

Of course, like any other systems that use EVW (e.g., [28, 32]),

SR transactions utilizing EVWwould need to be aborted in case of a

server failure, even after they have successfully validated. However,

using EVW in GDCC has the advantage of limiting the cascading

abort chain length to one, even in the face of server failure.

Specifically, if a transaction 𝑇 reads the early visible write of

an SR transaction 𝑆 , and 𝑆 must be aborted due to a server failure,

the cascading abort chain will stop at 𝑇 if 𝑇 is an MR transaction,

as MR transactions do not use EVW. If 𝑇 is an SR transaction, the

cascading abort chain will also stop at 𝑇 . Since 𝑆 is a successfully

validated transaction, it will still hold the lock, preventing 𝑇 from

validating successfully and triggering EVW, thereby stopping the

cascading abort chain from extending further.

3.1.5 Multi-Priority Optimization and Summary. GDCC includes

an optimization that increases the priority level of an MR transac-

tion𝑀 by one whenever it has been aborted 𝑎 times, where 𝑎 is a

system parameter we empirically set to 2. With multiple priorities

among MR transactions, a reservation made by a lower-priority

MR transaction 𝑀 will FAIL if the record has been reserved by a

higher-priority MR transaction𝑀′
(reserve-reserve conflict), and

𝑀 will WAIT if it wants to lock instead (lock-reserve conflict). It is

important to note that 𝑀 failing to reserve simply means it does

not shield itself from being aborted by a higher-priority MR trans-

action𝑀′
. However, it still prevents SR transactions from aborting

𝑀 , as the reservation made by𝑀′
remains in effect. The complete

pseudocode with multiple-priority optimization is available in [5].

In summary, transaction schedules in GDCC are serializable
because its validation step adheres to the one in standard OCC.

These schedules are also recoverable because locks are held until

the end of the commit phase. Furthermore, there are no cascading
aborts, as EVW only exposes dirty writes of transactions that will

commit, thereby limiting the length of the cascading abort chain to

one even if there is a server failure.

MR transactions in GDCC are abort-free against SR transactions

by using reservations. SR transactions in GDCC are wound-free,
as others will ALWAYS WAIT for them once they obtain their locks

during validation. MR transactions in GDCC are wait-minimal
against SR transactions. They are completely wait-free during their

execution phase. Since their execution and validation phases over-

lap with the lock-holding window of the SR lock holder, this buys

the SR lock holder time to release the lock while the MR transac-

tion is executing and sending the atomic commit request, enabling

MR transactions to achieve wait-free performance in most circum-

stances. GDCC, however, does not guarantee that SR transactions

are starvation-free, as priority is given to MR transactions after all.

Nevertheless, SR starvation is unlikely because MR transactions

are relatively few in real workloads, and SR transactions already

have wound-free protection. Our empirical results in Section 4 also

support this – the tail latency of SR transactions in Bonspiel consis-

tently remain low in our experiments, indicating that SR starvation

is a non-issue. Table 5 summarizes GDCC in relation to existing

works, focusing on the MR Abort-Free, SR Would-Free, and MR

Wait-Minimal principles that define a good concurrency control

protocol for geo-distributed databases. The table demonstrates that

GDCC is the only protocol that satisfies all three principles.

Table 5: GDCC and related CC protocols

Protocols MR
Abort-Free

SR
Wound-Free

MR
Wait-Minimal

Sundial [90], NO-WAIT [69] ✗ ✓ ✓

WOUND-WAIT [69] ✓ ✗ ✓

Polaris [87], WAIT-DIE [69] ✓ ✓ ✗

GDCC (ours) ✓ ✓ ✓

3.2 Geo-Aware Access Method Selection (GAMS)
Reducing the latency of the execution phase of an MR transaction

𝑀 can further lead to a reduction in tail latency, both in terms of the

abort penalty and the execution time of the last successfully commit-

ted round of𝑀 . As discussed in Section 2.2, there are currently two

approaches for reading records in a geo-distributed database: (1)

read-leader (RL), which always reads a record from the record’s

leader replica, and (2) read-nearest (RN), which always reads a

record from the replica closest to the transaction coordinator. When

the transaction coordinator is co-located with the record’s leader

replica, RL is clearly the optimal choice, offering the lowest latency

and the freshest data.

However, when the transaction coordinator is not co-located
with the record’s leader replica, RL incurs longer latency although

the data it reads remain freshest. In contrast, RN incurs shorter

latency but carries the risk of returning stale data, which may

result in an abort. Nonetheless, this risk is contingent on the update
frequency of the required records — if the required record is not

frequently updated, RN can achieve optimal latency while still

providing fresh data.

To leverage the potential of RN in Bonspiel, we must first address

its compatibility with GDCC’s reservation. Specifically, reservation
requests in GDCC must be sent to the remote leader of the record;

therefore, RN alone cannot reduce the latency unless GDCC’s reser-

vation is disabled. In fact, RN with the NO-RESERVE option is

a competitive choice when the required record is not frequently

updated, as reserving that record or not does not matter much there.

In light of that, Bonspiel maintains temperatures [80] to selec-

tively issue RN for reading cold records (with no reservation) and

RL for reading hot records (with reservation). A record’s temper-

ature is measured by its update frequency. Temperatures can be

maintained at per-record or per-page level — a trade-off between

accuracy and space/network overhead. In Bonspiel, we maintain

page-level temperatures. In a full replication setting, sites can col-

lect these statistics locally from the leader and follower replicas it

hosts. In a partial replication setting, each data center periodically

gossips these statistics among one another.

When an MR transaction reads a record 𝑥 during the execution

phase, Bonspiel uses RN with no reservation if the temperature

3848

Table 6: WAN round-trip latency (in ms).
WA PR NSW SG

VA 67 80 196 214

WA - 136 175 163

PR - - 234 149

NSW - - - 87

of 𝑥 is below a threshold 𝑡 ; otherwise, it employs RL with reser-

vation. Bonspiel adopts an experimental-driven approach [79] to

determine the value of 𝑡 . Specifically, the abort rate of MR trans-

actions effectively reflects workload and network conditions (e.g.,

workload drifts, network congestion). Hence, 𝑡 is lowered if MR

transactions experience a high abort rate, encouraging more MR

transactions to read records from the leader and use reservations

for abort protection. Otherwise, 𝑡 is increased to allow more MR

transactions to attempt RN without reservation.

GAMS enables transactions to select the most suitable access

method for each record, thereby improving latency and system

throughput. Take TPC-C as an example, records in the WAREHOUSE
table are frequently updated by Payment transactions – typically

exhibiting high update frequency, so GAMS would let transactions

access them via RL with reservation to minimize aborts. In contrast,

the ITEM table is read-only; thus, records in this table are accessed

via RN without reservation for shorter execution latency. Besides,

by dynamically adapting to live workload and network conditions,

GAMS excels across diverse workloads and maintains robustness

under workload drift.

4 EVALUATION
We evaluate Bonspiel using industrial-strength TPC-C [1]. We uti-

lize YCSB [21] when we need to vary certain parameters that TPC-C

does not allow for modification (e.g., the MR transaction ratio). In

both cases, each client issues one transaction and waits for its com-

mit before issuing the next [40, 41, 89, 90]. Aborted transactions

are retried using the exponential backoff strategy [34].

In TPC-C, we run NEW-ORDER and PAYMENT transactions, follow-

ing the specification with 10% and 15% of them as MR transactions,

respectively. We use 300 warehouses for low contention and 50 ware-
houses for high contention. In YCSB, each transaction accesses 10

keys, selected based on a Zipfian distribution. We use 𝜃 = 0.2 for

low contention and 𝜃 = 0.8 for high contention in YCSB.

All programs were implemented using the DBx1000 framework

in C++ [88]. The experiments were conducted in a simulated WAN

setting comprising five data centers: Virginia (VA), Washington

(WA), Paris (PR), New South Wales (NSW), and Singapore (SG).

The average network round-trip latencies between these data

centers are based on [85] and presented in Table 6. Each data center

runs on Debian 11 servers with two Intel Xeon E5-2620V4 CPUs (8

cores) and 252 GB of DRAM. The WAN bandwidth is 1 Gbps, along

with 10 Gbps in-data-center bandwidth. In the experiments, the

data is sharded into five partitions (P) and replicated (R) five times

across the five data centers (5P5R).

4.1 System-Level Evaluation
We first examine the p999 tail latency, p50 latency, average latency,

and system throughput of Bonspiel, comparing it to state-of-the-

art general geo-distributed databases: Spanner [22], TAPIR [91],

GPAC [54], and R4 [40]. Details of all systems are given in Table

7. We do not compare with geo-distributed databases that require

prior knowledge about the read and write sets of transactions (e.g.,

deterministic databases [29, 33, 42, 59, 60, 60, 68, 77] and some

other non-deterministic ones [83, 85, 92]) since TPC-C includes

dependent operations that they cannot natively support. Besides,

we also exclude Replicated Commit [52] since it has no liveness –

the system blocks upon single-data-center outages [40] and cannot

support partial replication.

Table 7: Bonspiel and system competitors.

System Concurrency
control

Access
method

Atomic commit
with replication

Spanner WAIT-DIE Always RL 2PC&Paxos (3 RTTs)

TAPIR OCC Always RN

Optimized 2PC&Fast Paxos

(1-2 RTTs)

GPAC WAIT-DIE Always RL

Optimized 2PC&Paxos

(2 RTTs)

R4 OCC Always RL

Optimized 2PC&Paxos

(1-1.5 RTTs)

Bonspiel GDCC GAMS Same as R4

4.1.1 Overall Performance. Figure 8 illustrates the results of scaling
the number of clients in TPC-C. In terms of p999 tail latency, Bon-

spiel achieves a speedup ranging from 1.8× to 2.2×. Notably, Bon-
spiel reduces the tail latency from around 3–4 seconds to around 1.7

seconds, significantly enhancing the user experience and the prod-

uct image.More importantly, Bonspiel improves tail latencywithout

compromising average latency, p50 latency or system throughput.

In fact, it exhibits the best average latency and system throughput,

primarily due to significant improvements in the performance of

MR transactions. Figure 9 illustrates the performance of SR transac-

tions in TPC-C, clearly indicating that Bonspiel maintains top-tier

performance for SR transactions. Figures 9(a) and (b) also confirm

that Bonspiel’s design does not result in any starvation issues for SR

transactions, as evidenced by the consistently low p999 tail latency

for SR transactions in Bonspiel.

In Figure 8(b), we observe that the tail latencies of the other

systems surprisingly decrease as the number of clients (system

load) increases under high contention. In fact, the average latency

of their MR transactions worsens by about 28% to 35% (figures

omitted due to space limit) with an increasing number of clients.

However, this increased latency results in fewer, and indeed too few,

MR transactions being committed during each experimental run.

Consequently, when calculating the tail latency, they fall beyond

the 99.9 percentile. As a result, that tail latency reports either the

latency of an SR transaction or the latency of MR transactions that

incur no/few conflict, which explains the decrease in tail latency

observed in those systems.

To further investigate the impact of Bonspiel’s prioritization

of MR transactions over SR transactions, we present the abort

rates
3
and the number of aborts for the transactions in Figure 10.

Specifically, Bonspiel significantly reduces the abort rate of MR

transactions while causing only a marginal, expected increase in

3
TPC-C typically exhibits a higher abort rate owing to its complex transactions. In

geo-distributed environments, these abort rates are significantly elevated, regardless

of contention level, because long WAN access significantly enlarges the transactions’

contention footprint [40, 41, 51], making aborts very likely to occur.

3849

400 600 800 1000 1200
Number of Clients

1.5

2.0

2.5

3.0

3.5

4.0

p
9

9
9

la
te

n
cy

(s
)

1.9x2.2x

(b) High Contention

Spanner TAPIR GPAC R4 Bonspiel

400 600 800 1000 1200
Number of Clients

1.5

2.0

2.5

3.0

3.5

4.0

p
9

9
9

la
te

n
cy

(s
)

1.8x

2.1x

(a) Low Contention

400 600 800 1000 1200
Number of Clients

1.5

2.0

2.5

3.0

3.5

4.0

p
9

9
9

la
te

n
cy

(s
)

1.9x2.2x

(b) High Contention

400 600 800 1000 1200
Number of Clients

100

200

300

400

500

L
a

te
n

cy
(m

s)

(c) Low Contention

Average

p50

Average

p50

400 600 800 1000 1200
Number of Clients

300

400

500

600

700

800

L
a

te
n

cy
(m

s)

(d) High Contention

Average

p50

Average

p50

400 600 800 1000 1200
Number of Clients

5
6
7
8
9

10
11

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (e) Low Contention

400 600 800 1000 1200
Number of Clients

2.4

2.6

2.8

3.0

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (f) High Contention

Figure 8: Overall performance (TPC-C).

400 600 800 1000 1200
Number of Clients

1.5

2.0

2.5

3.0

3.5

4.0

p
9

9
9

la
te

n
cy

(s
)

1.9x2.2x

(b) High Contention

Spanner TAPIR GPAC R4 Bonspiel

400 600 800 1000 1200
Number of Clients

1.2

1.4

1.6

1.8

2.0

S
R

p
9

9
9

la
te

n
cy

(s
) (a) Low Contention

400 600 800 1000 1200
Number of Clients

1.6

1.7

1.8

1.9

S
R

p
9

9
9

la
te

n
cy

(s
) (b) High Contention

400 600 800 1000 1200
Number of Clients

100

200

300

400

S
R

L
a

te
n

cy
(m

s)

(c) Low Contention

Average

p50

Average

p50

400 600 800 1000 1200
Number of Clients

300

400

500

600

700

800

S
R

L
a

te
n

cy
(m

s)

(d) High Contention

Average

p50

Average

p50

400 600 800 1000 1200
Number of Clients

2.5

5.0

7.5

10.0

S
R

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (e) Low Contention

400 600 800 1000 1200
Number of Clients

2.0

2.5

3.0

S
R

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (f) High Contention

Figure 9: SR transaction performance (TPC-C).

400 600 800 1000 1200
Number of Clients

1.5

2.0

2.5

3.0

3.5

4.0

p
9

9
9

la
te

n
cy

(s
)

1.9x2.2x

(b) High Contention

Spanner TAPIR GPAC R4 Bonspiel

400 600 800 1000 1200
Number of Clients

68
72
76
80
84
88
92
96

M
R

A
b

o
rt

R
a

te
(%

) (a) Low Contention

0

2

4

6

8

M
R

A
b

o
rt

N
u

m
(K

)

400 600 800 1000 1200
Number of Clients

86

88

90

92

94

96

S
R

A
b

o
rt

R
a

te
(%

)

(b) Low Contention

0.2

0.4

0.6

0.8

1.0

S
R

A
b

o
rt

N
u

m
(M

)

400 600 800 1000 1200
Number of Clients

86

88

90

92

94

96

T
o

ta
l

A
b

o
rt

R
a

te
(%

) (c) Low Contention

0.2

0.4

0.6

0.8

1.0

1.2

T
o

ta
l

A
b

o
rt

N
u

m
(M

)

400 600 800 1000 1200
Number of Clients

90

92

94

96

98

100

M
R

A
b

o
rt

R
a

te
(%

) (d) High Contention

0

2

4

6

8

M
R

A
b

o
rt

N
u

m
(K

)

400 600 800 1000 1200
Number of Clients

97

98

99

S
R

A
b

o
rt

R
a

te
(%

)

(e) High Contention

0.4

0.6

0.8

1.0

1.2

1.4

S
R

A
b

o
rt

N
u

m
(M

)

400 600 800 1000 1200
Number of Clients

97

98

99

T
o

ta
l

A
b

o
rt

R
a

te
(%

) (f) High Contention

0.4

0.6

0.8

1.0

1.2

1.4

T
o

ta
l

A
b

o
rt

N
u

m
(M

)

Figure 10: Abort analysis (TPC-C).

p50 p90 p99 p999 p9999
Tail Percentage

0

1

2

3

4

L
a

te
n

cy
(s

)

(b) High Contention

Spanner TAPIR GPAC R4 Bonspiel

p50 p90 p99 p999 p9999
Tail Percentage

0

1

2

3

4

L
a

te
n

cy
(s

)

(a) Low Contention

p50 p90 p99 p999 p9999
Tail Percentage

0

1

2

3

4

L
a

te
n

cy
(s

)

(b) High Contention

Figure 11: Various tail latency results (TPC-C).

the abort rate of SR transactions and the overall abort rate. Impor-

tantly, the SR abort rate remains well-controlled and comparable to

other systems, thanks to Bonspiel’s enforcement of the SR Wound-

Free principle – Bonspiel does not unconditionally prioritize MR

transactions; once an SR transaction has successfully validated

its read-write set, it is guaranteed not to be aborted by any other

transaction. Additionally, because MR transactions represent only a

small fraction of realistic workloads, prioritizing them has a limited

impact on the abort rate of SR transactions or the overall abort rate.

4.1.2 Other Tail Latency Metric. Next, we report the performance

of Bonspiel in terms of additional tail latency metrics: p50, p90, p99,

p999, and p9999. As shown in Figure 11, Bonspiel delivers the lowest

tail latency across varying tail percentages, with improvements

becoming more pronounced as the tail percentage increases. This

is because more stringent tail percentages report the latency of

MR transactions that suffer from higher abort rates and penalties.

These transactions particularly benefit more from Bonspiel’s MR-

transaction-friendly design.

4.1.3 Varying MR Transaction Ratio. TPC-C has fixed theMR trans-

action ratio at around 10% to 15%. Therefore, we use the YCSB

workload in this experiment to study the performance of Bonspiel

under different MR transaction ratios. The ratio of read to write

operations in each transaction is 50:50 (i.e., YCSB-A). Figure 12

presents the results, showing that Bonspiel consistently delivers

the best tail latency, average latency, and system throughput across

all cases. Interestingly, Bonspiel demonstrates significant improve-

ment over the other systems even when the workload consists of

100% MR transactions. In the absence of SR transactions, none of

the three GDCC properties (MR Abort-Free, SR Wound-Free, and

MR Wait-Minimal) are relevant. Consequently, the improvement is

contributed by (1) Bonspiel’s geo-aware access method selection,

which effectively reduces the execution phase latency of MR trans-

actions, and (2) the multi-priority optimization in GDCC (Section

3.1.5), which balances the abort rate among MR transactions.

4.2 Ablation Study
After demonstrating that Bonspiel outperforms other geo-distributed

databases across various settings, and given that we have already

shown in Section 1 that the use of the atomic commit protocol is

not the primary factor in tail latency, we now present an ablation

study to examine the effectiveness of its two major components:

GDCC and GAMS.

Figure 13 illustrates results of the ablation study. We compare the

performance of Bonspiel under three scenarios: when only GDCC

is enabled (GDCC-only), with GAMS disabled; when only GAMS is

enabled (GAMS-only), with GDCC disabled; and when both GDCC

and GAMS are disabled (w/o both), which is essentially equivalent

to R4’s performance. Our findings indicate that both GDCC and

GAMS significantly enhance the system’s tail latency when used

individually, demonstrating their individual effectiveness.

The inclusion of GDCC has a positive effect on average latency

under low contention (Figure 13c) but minimal impact under high

contention (Figure 13d). Under low contention, average latency im-

proves due to the decreased latency of MR transactions. In contrast,

3850

400 600 800 1000 1200
Number of Clients

1.5

2.0

2.5

3.0

3.5

4.0

p
9

9
9

la
te

n
cy

(s
)

1.9x2.2x

(b) High Contention

Spanner TAPIR GPAC R4 Bonspiel

0
0.

1
0.

25 0.
5

0.
75 1

MR Transaction Ratio

2

3

4

5

6

p
9

9
9

L
a

te
n

cy
(s

)

(a) Low Contention

0
0.

1
0.

25 0.
5

0.
75 1

MR Transaction Ratio

2

4

6

8

10

p
9

9
9

L
a

te
n

cy
(s

)

(b) High Contention

0
0.

1
0.

25 0.
5

0.
75 1

MR Transaction Ratio

200
300
400
500
600
700

A
ve

ra
g

e
la

te
n

cy
(m

s) (c) Low Contention

0
0.

1
0.

25 0.
5

0.
75 1

MR Transaction Ratio

1000

2000

3000

4000

5000

A
ve

ra
g

e
la

te
n

cy
(m

s) (d) High Contention

0
0.

1
0.

25 0.
5

0.
75 1

MR Transaction Ratio

100

200

300

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (e) Low Contention

0
0.

1
0.

25 0.
5

0.
75 1

MR Transaction Ratio

0

5

10

15

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (f) High Contention

Figure 12: Performance with varying MR transaction ratios (YCSB-A).

w/o both

GDCC only

GAMS only

Bonspiel
1

2

3

4

p
9

9
9

la
te

n
cy

(s
)

1.7x

1.4x

2.1x

(a) Low Contention

w/o both

GDCC only

GAMS only

Bonspiel
1

2

3

p
9

9
9

la
te

n
cy

(s
)

1.6x

1.2x

1.9x

(b) High Contention

w/o both

GDCC only

GAMS only

Bonspiel
200

300

400

A
ve

ra
g

e
la

te
n

cy
(m

s) (c) Low Contention

w/o both

GDCC only

GAMS only

Bonspiel
400

500

600

700

A
ve

ra
g

e
la

te
n

cy
(m

s) (d) High Contention

w/o both

GDCC only

GAMS only

Bonspiel
6

7

8

9

10

11

12

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (e) Low Contention

w/o both

GDCC only

GAMS only

Bonspiel
2.0

2.5

3.0

T
h

ro
u

g
h

p
u

t
(K

T
P

S
) (f) High Contention

Figure 13: Ablation study (TPC-C).

during high contention, average latency remains unchanged, de-

spite the reduction in MR transaction latency. This occurs because

the latency of SR transactions slightly increases as a result of prior-

itizing MR transactions. The small increase in latency for many SR

transactions offsets the significant improvement in latency from

the fewer MR transactions, leading to limited overall improvement

in average latency.

4.3 More Results
For space reasons, we have included the results of additional exper-

iments in [5]. These encompass:

• A detailed evaluation of GDCC: (i) comparisons with other con-

currency control schemes (Sundial [90], NO-WAIT, WAIT-DIE,

WOUND-WAIT, Polaris), showing GDCC achieves the best bal-

ance; (ii) analysis of the wait time of MR transactions for SR lock

releases, indicating that 99% of MR transactions are wait-free;

and (iii) a detailed breakdown of GDCC’s key components: (a)

priority scheme, (b) conditional waiting, and (c) early visible

write, demonstrating their synergy.

• A detailed evaluation of GAMS: (i) comparisons with always RL

and always RN, showing that GAMS is able to select the best-

performing access method in all cases; (ii) positive results under

unstable network, and (iii) the empirical choice of the priority

boosting threshold.

• Further results from TPC-C and YCSB, including results using a

set up with 3 partitions and 2-way replication (3P2R) and results

of varying the number of partitions under full replication. Those

results show that Bonspiel consistently outperforms the others in

terms of tail latency while maintaining top-tier average latency

and system throughput.

5 RELATEDWORK
The community has long pursued a general geo-distributed data-

base that offers low tail latency, low average latency, high through-

put, and high availability, without imposing any workload limita-

tions. However, apart from Spanner [22], TAPIR [91], GPAC [54],

and the recent R4 [40], most advancements have focused on solu-

tions that entail certain compromises. For instance, many systems

sacrifice strong consistency [9, 13, 17, 20, 25, 43, 48, 49, 73, 76, 81, 82].

Deterministic databases [29, 33, 59, 60, 60, 68, 77] achieve strong

consistency and performance by minimizing coordination over-

head and avoiding aborts induced by serializability. However, these

databases require prior knowledge of the read-write sets and void

SQL workloads with non-deterministic elements (e.g., branches

or DATE). Recent deterministic databases [41, 42, 50] have lifted

these workload restrictions but have reintroduced serializability-

induced aborts, which are a primary contributor to high latency in

geo-distributed environments. Additionally, they rely on batching.

While batching may enhance throughput, it is unacceptable in geo-

distributed settings, as it further prolongs tail latency, which is al-

ready very high. Other non-deterministic geo-distributed databases

also enhance performance by limiting their supported workloads

[7, 23, 58, 83, 85, 92, 94]. For example, Carousel [83] and Natto [85]

only support 2FI transactions. In contrast, Bonspiel accommodates

general SQL workloads while maintaining strong consistency and

high performance.

Low tail latency is a concern not only for geo-distributed databases

but for any system in general. Numerous studies have aimed to

reduce tail latency through core scheduling [16, 18, 36, 47, 62, 66,

67, 74, 85], queue management [26], and caching [11]. These ap-

proaches are orthogonal to Bonspiel.

6 CONCLUSION
This paper presents Bonspiel, a fully SQL-compliant geo-distributed

database with low tail and average latency as well as high system

throughput. As state-of-the-art protocols can now perform atomic

commit in 1 WAN RTT, Bonspiel focuses on geo-aware concur-

rency control and access method selection. Experimental results

demonstrate that Bonspiel achieves up to 2.2× improvement in tail

latency without any compromise.

ACKNOWLEDGMENTS
This work is partially supported by Hong Kong General Research

Fund (14208023), Hong Kong AoE/P-404/18, the Center for Percep-

tual and Interactive Intelligence (CPII) Ltd under InnoHK supported

by the Innovation and Technology Commission, Alibaba Cloud

(Innovative Research Program and Research Intern Program) and

Google Cloud Platform (Research Credits Program).

3851

REFERENCES
[1] 2010. TPC-C BENCHMARK Revision 5.11.

[2] 2024. Cockroach DB: transaction priority. https://www.cockroachlabs.com/

docs/v21.2/transactions#transaction-priorities.

[3] 2024. Oracle: Berkeley DB C++ API Reference. https://docs.oracle.com/database/

bdb181/html/api_reference/CXX/txnset_priority.html.

[4] 2024. SQL Server: SET DEADLOCK_PRIORITY. https://learn.microsoft.com/en-

us/sql/t-sql/statements/set-deadlock-priority-transact-sql?view=sql-server-

ver15.

[5] [Online]. Technical Report for Bonspiel. https://github.com/Bonspiel-Project/

Bonspiel.git

[6] Divyakant Agrawal and Amr El Abbadi. 1990. Locks with constrained sharing. In

Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems. 85–93.

[7] Marcos K Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos

Karamanolis. 2007. Sinfonia: a new paradigm for building scalable distributed

systems. ACM SIGOPS Operating Systems Review 41, 6 (2007), 159–174.

[8] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

2011. Megastore: Providing scalable, highly available storage for interactive

services. (2011).

[9] Valter Balegas, Nuno Preguiça, Sérgio Duarte, Carla Ferreira, and Rodrigo Ro-

drigues. 2018. IPA: Invariant-preserving applications for weakly-consistent

replicated databases. arXiv preprint arXiv:1802.08474 (2018).
[10] Catalonia-Spain Barcelona. 2008. Mencius: building efficient replicated state

machines for WANs. In 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 08).

[11] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-

Balter. 2018. {RobinHood}: Tail Latency Aware Caching–Dynamic Reallocation

from {Cache-Rich} to {Cache-Poor}. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 195–212.

[12] Philip A. Bernstein, David W. Shipman, and Wing S. Wong. 1979. Formal aspects

of serializability in database concurrency control. IEEE Transactions on Software
Engineering 3 (1979), 203–216.

[13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.

{TAO}: Facebook’s distributed data store for the social graph. In 2013 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 13). 49–60.

[14] Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei Zhao, Dengcheng He,

Mengshi Sun, Yingqiang Zhang, ShengWang, XueqiangWu, et al. 2022. PolarDB-

X: An Elastic Distributed Relational Database for Cloud-Native Applications.

In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE,
2859–2872.

[15] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characteriz-

ing, Modeling, and Benchmarking RocksDB Key-ValueWorkloads at Facebook. In

18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara,
CA, USA, February 24-27, 2020, Sam H. Noh and Brent Welch (Eds.). USENIX

Association, 209–223.

[16] Michael J Carey, Rajiv Jauhari, and Miron Livny. 1989. Priority in DBMS resource
scheduling. Technical Report. University of Wisconsin-Madison Department of

Computer Sciences.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.

Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[18] Xusheng Chen, Haoze Song, Jianyu Jiang, Chaoyi Ruan, Cheng Li, Sen Wang,

Gong Zhang, Reynold Cheng, and Heming Cui. 2021. Achieving low tail-latency

and high scalability for serializable transactions in edge computing. In EuroSys ’21:
Sixteenth European Conference on Computer Systems, Online Event, United King-
dom, April 26-28, 2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and

Cristian Cadar (Eds.). ACM, 210–227. https://doi.org/10.1145/3447786.3456238

[19] Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C Arpaci-Dusseau,

Remzi H Arpaci-Dusseau, and Jiwu Shu. 2022. Plor: General Transactions with

Predictable, Low Tail Latency. In Proceedings of the 2022 International Conference
on Management of Data. 19–33.

[20] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,

Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana

Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proceedings of the
VLDB Endowment 1, 2 (2008), 1277–1288.

[21] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[22] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.

ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[23] James A Cowling and Barbara Liskov. 2012. Granola: Low-Overhead Distributed

Transaction Coordination. In USENIX Annual Technical Conference, Vol. 12.
[24] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010. Schism:

a Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1 (2010), 48–57. https://doi.org/10.14778/1920841.1920853

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.

ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[26] Diego Didona and Willy Zwaenepoel. 2019. Size-aware sharding for improving

tail latencies in in-memory key-value stores. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 79–94.

[27] Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu

Perrin, and Pierre Sutra. 2020. State-machine replication for planet-scale systems.

In Proceedings of the Fifteenth European Conference on Computer Systems. 1–15.
[28] Jose M Faleiro, Daniel J Abadi, and Joseph MHellerstein. 2017. High performance

transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017).

[29] Hua Fan and Wojciech Golab. 2019. Ocean vista: gossip-based visibility control

for speedy geo-distributed transactions. Proceedings of the VLDB Endowment 12,
11 (2019), 1471–1484.

[30] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.

2013. Controlled lock violation. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. 85–96.

[31] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing locks as early

as you can: Reducing contention of hotspots by violating two-phase locking. In

Proceedings of the 2021 International Conference on Management of Data. 658–670.
[32] Ramesh Gupta, Jayant Haritsa, and Krithi Ramamritham. 1997. Revisiting commit

processing in distributed database systems. In Proceedings of the 1997 ACM
SIGMOD international conference on Management of data. 486–497.

[33] Joshua Hildred, Michael Abebe, and Khuzaima Daudjee. 2023. Caerus: Low-

Latency Distributed Transactions for Geo-Replicated Systems. Proceedings of the
VLDB Endowment 17, 3 (2023), 469–482.

[34] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.

Opportunities for optimism in contended main-memory multicore transactions.

(2020).

[35] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: a scalable approach to logging. Proc. VLDB Endow.
3, 1–2 (Sept. 2010), 681–692. https://doi.org/10.14778/1920841.1920928

[36] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-

ières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for

{𝜇second-scale} Tail Latency. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). 345–360.

[37] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete.

2013. MDCC: Multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems. 113–126.

[38] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-

huni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Carlin, Mihai

Amarandei-Stavila, et al. 2015. BwE: Flexible, hierarchical bandwidth allocation

for WAN distributed computing. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication. 1–14.

[39] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for

concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[40] Ziliang Lai, Fan Cui, Hua Fan, Eric Lo,Wenchao Zhou, and Feifei Li. 2024. Occam’s

Razor for Distributed Protocols. In Proceedings of the 2024 ACM Symposium on
Cloud Computing. 618–636. https://doi.org/10.1145/3698038.3698514

[41] Ziliang Lai, Hua Fan, Wenchao Zhou, Zhanfeng Ma, Xiang Peng, Feifei Li, and

Eric Lo. 2023. Knock Out 2PC with Practicality Intact: a High-performance

and General Distributed Transaction Protocol. arXiv preprint arXiv:2302.12517
(2023).

[42] Ziliang Lai, Chris Liu, and Eric Lo. 2023. When private blockchain meets deter-

ministic database. Proceedings of the ACM on Management of Data 1, 1 (2023),
1–28.

[43] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-

tured storage system. ACM SIGOPS operating systems review 44, 2 (2010), 35–40.

[44] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (2001), 51–58.

[45] Leslie Lamport. 2005. Generalized consensus and Paxos. (2005).

[46] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19 (2006), 79–103.

[47] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. En-

abling low tail latency on multicore key-value stores. Proceedings of the VLDB
Endowment 13, 7 (2020), 1091–1104.

[48] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

2011. Don’t settle for eventual: Scalable causal consistency for wide-area storage

with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 401–416.

3852

https://www.cockroachlabs.com/docs/v21.2/transactions#transaction-priorities
https://www.cockroachlabs.com/docs/v21.2/transactions#transaction-priorities
https://docs.oracle.com/database/bdb181/html/api_reference/CXX/txnset_priority.html
https://docs.oracle.com/database/bdb181/html/api_reference/CXX/txnset_priority.html
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-deadlock-priority-transact-sql?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-deadlock-priority-transact-sql?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-deadlock-priority-transact-sql?view=sql-server-ver15
https://github.com/Bonspiel-Project/Bonspiel.git
https://github.com/Bonspiel-Project/Bonspiel.git
https://doi.org/10.1145/3447786.3456238
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/1920841.1920928
https://doi.org/10.1145/3698038.3698514

[49] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

2013. Stronger semantics for low-latency geo-replicated storage. In 10th USENIX
Symposium on Networked Systems Design and Implementation.

[50] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical

deterministic OLTP database. Proceedings of the VLDB Endowment 13, 12 (2020),
2047–2060.

[51] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-based commit

and replication in distributed OLTP databases. (2021).

[52] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and

Amr El Abbadi. 2013. Low-latency multi-datacenter databases using replicated

commit. Proceedings of the VLDB Endowment 6, 9 (2013), 661–672.
[53] Hatem A Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and

Amr El Abbadi. 2014. Maat: Effective and scalable coordination of distributed

transactions in the cloud. Proceedings of the VLDB Endowment 7, 5 (2014), 329–
340.

[54] Sujaya Maiyya, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2019.

Unifying consensus and atomic commitment for effective cloud datamanagement.

Proceedings of the VLDB Endowment 12, 5 (2019), 611–623.
[55] Puya Memarzia, Huaxin Zhang, Kelvin Ho, Ronen Grosman, and Jiang Wang.

2024. GaussDB-Global: A Geographically Distributed Database System. In 2024
IEEE 40th International Conference on Data Engineering (ICDE). IEEE, 5111–5118.

[56] C Mohan, Bruce Lindsay, and Ron Obermarck. 1986. Transaction management in

the R* distributed database management system. ACM Transactions on Database
Systems (TODS) 11, 4 (1986), 378–396.

[57] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There is more

consensus in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 358–372.

[58] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting

more concurrency from distributed transactions. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14). 479–494.

[59] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating

Concurrency Control and Consensus for Commits under Conflicts.. In OSDI.
517–532.

[60] Cuong DT Nguyen, Johann K Miller, and Daniel J Abadi. 2023. Detock: High

Performance Multi-region Transactions at Scale. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–27.

[61] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consen-

sus algorithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14). 305–319.

[62] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-

ishnan. 2019. Shenango: Achieving high {CPU} efficiency for latency-sensitive

datacenter workloads. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 361–378.

[63] Stacy Patterson, Aaron J Elmore, Faisal Nawab, Divyakant Agrawal, and Amr El

Abbadi. 2012. Serializability, not serial: Concurrency control and availability in

multi-datacenter datastores. arXiv preprint arXiv:1208.0270 (2012).
[64] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic

database partitioning in shared-nothing, parallel OLTP systems. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data. ACM,

Scottsdale Arizona USA, 61–72. https://doi.org/10.1145/2213836.2213844

[65] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended

OLTP Workloads Using Fast Dynamic Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. ACM, Portland

OR USA, 527–542. https://doi.org/10.1145/3318464.3389764

[66] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos: Achieving

low tail latency for microsecond-scale networked tasks. In Proceedings of the
26th Symposium on Operating Systems Principles. 325–341.

[67] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.

Arachne:{Core-Aware} thread management. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 145–160.

[68] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,

geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019).
[69] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis. 1978. System level

concurrency control for distributed database systems. ACM Transactions on
Database Systems (TODS) 3, 2 (1978), 178–198.

[70] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,

and Michael Stonebraker. 2016. Clay: fine-grained adaptive partitioning for

general database schemas. Proc. VLDB Endow. 10, 4 (Nov. 2016), 445–456. https:

//doi.org/10.14778/3025111.3025125

[71] Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, Srihari Radhakrishnan,

Mahesh Balakrishnan, and Zhong Shao. 2019. Wormspace: a modular foundation

for simple, verifiable distributed systems. In Proceedings of the ACM Symposium
on Cloud Computing. 299–311.

[72] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric

Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, et al.

2013. F1: A distributed SQL database that scales. (2013).

[73] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. 2011. Trans-

actional storage for geo-replicated systems. In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles. 385–400.
[74] P. Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:

Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection. In

12th USENIX Symposium on Networked Systems Design and Implementation, NSDI
15, Oakland, CA, USA, May 4-6, 2015. USENIX Association, 513–527. https:

//www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh

[75] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.

Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1493–1509.

[76] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J

Spreitzer, and Carl H Hauser. 1995. Managing update conflicts in Bayou, a weakly

connected replicated storage system. ACM SIGOPS Operating Systems Review 29,

5 (1995), 172–182.

[77] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transactions for parti-

tioned database systems. In Proceedings of the 2012 ACM SIGMOD international
conference on management of data. 1–12.

[78] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy transactions in multicore in-memory databases. In SOSP. 18–32.
[79] Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,

Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions via

Learned Concurrency Control. In 15th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2021, July 14-16, 2021, Angela Demke Brown

and Jay R. Lorch (Eds.). USENIX Association, 198–216. https://www.usenix.org/

conference/osdi21/presentation/wang-jiachen

[80] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Concurrency

Control for Highly Contended Dynamic Workloads on a Thousand Cores. Proc.
VLDB Endow. 10, 2 (2016), 49–60. https://doi.org/10.14778/3015274.3015276

[81] Chenggang Wu, Jose M Faleiro, Yihan Lin, and Joseph M Hellerstein. 2019. Anna:

A kvs for any scale. IEEE Transactions on Knowledge and Data Engineering 33, 2

(2019), 344–358.

[82] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. 2019. Autoscaling

tiered cloud storage in Anna. Proceedings of the VLDB Endowment 12, 6 (2019),
624–638.

[83] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,

Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-latency transaction pro-

cessing for globally-distributed data. In Proceedings of the 2018 International
Conference on Management of Data. 231–243.

[84] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Analysis of

Hundreds of In-memory Key-value Cache Clusters at Twitter. ACM Trans.
Storage 17, 3 (2021), 17:1–17:35. https://doi.org/10.1145/3468521

[85] Linguan Yang, Xinan Yan, and Bernard Wong. 2022. Natto: Providing distributed

transaction prioritization for high-contention workloads. In Proceedings of the
2022 International Conference on Management of Data. 715–729.

[86] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,

Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao, Wenhui Shi, Huafeng Xi, et al.

2022. OceanBase: a 707 million tpmC distributed relational database system.

Proceedings of the VLDB Endowment 15, 12 (2022), 3385–3397.
[87] Chenhao Ye, Wuh-Chwen Hwang, Keren Chen, and Xiangyao Yu. 2023. Polaris:

Enabling Transaction Priority in Optimistic Concurrency Control. Proceedings
of the ACM on Management of Data 1, 1 (2023), 1–24.

[88] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the abyss: An evaluation of concurrency control

with one thousand cores. (2014).

[89] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tictoc:

Time traveling optimistic concurrency control. In SIGMOD. 1629–1642.
[90] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph, and Srinivas

Devadas. 2018. Sundial: harmonizing concurrency control and caching in a dis-

tributed oltp database management system. Proceedings of the VLDB Endowment
11, 10 (2018), 1289–1302.

[91] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent

Replication. In Proceedings of the 25th Symposium on Operating Systems Principles.
263–278.

[92] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and

Jinyang Li. 2013. Transaction chains: achieving serializability with low latency

in geo-distributed storage systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 276–291.

[93] Weixing Zhou, Qi Peng, Zijie Zhang, Yanfeng Zhang, Yang Ren, Sihao Li, Guo

Fu, Yulong Cui, Qiang Li, Caiyi Wu, et al. 2023. GeoGauss: Strongly Consistent

and Light-Coordinated OLTP for Geo-Replicated SQL Database. Proceedings of
the ACM on Management of Data 1, 1 (2023), 1–27.

[94] Qiyu Zhuang, Xinyue Shi, Shuang Liu,Wei Lu, Zhanhao Zhao, Yuxing Chen, Tong

Li, Anqun Pan, and Xiaoyong Du. 2024. GeoTP: Latency-aware Geo-Distributed

Transaction Processing in Database Middlewares (Extended Version). arXiv
preprint arXiv:2412.01213 (2024).

3853

https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1145/3318464.3389764
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
https://www.usenix.org/conference/osdi21/presentation/wang-jiachen
https://www.usenix.org/conference/osdi21/presentation/wang-jiachen
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.1145/3468521

	Abstract
	1 Introduction
	1.1 Wait! What About Tail Latency?
	1.2 What about TPC-C?
	1.3 Where Does the Time Go?
	1.4 Bonspiel

	2 Preliminary
	2.1 Single-Region (SR) Transactions
	2.2 Multi-Region (MR) Transactions

	3 Bonspiel
	3.1 Geo-Distributed Concurrency Control
	3.2 Geo-Aware Access Method Selection (GAMS)

	4 Evaluation
	4.1 System-Level Evaluation
	4.2 Ablation Study
	4.3 More Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

