Fast Graph Vector Search via Hardware Acceleration and
Delayed-Synchronization Traversal

Wenqi Jiang
Systems Group, ETH Zurich
wengi.jiang@inf.ethz.ch

Torsten Hoefler
SPCL, ETH Zurich
torsten.hoefler@inf.ethz.ch

ABSTRACT

Vector search systems are indispensable in large language model
(LLM) serving, search engines, and recommender systems, where
minimizing online search latency is essential. Among various algo-
rithms, graph-based vector search (GVS) is particularly popular due
to its high search performance and quality. However, reducing GVS
latency by intra-query parallelization remains challenging due to
limitations imposed by both existing hardware architectures (CPUs
and GPUs) and the inherent difficulty of parallelizing graph traver-
sals. To efficiently serve low-latency GVS, we co-design hardware
and algorithm by proposing Falcon and Delayed-Synchronization
Traversal (DST). Falcon is a hardware GVS accelerator that im-
plements efficient GVS operators, pipelines these operators, and
reduces memory accesses by tracking search states with an on-
chip Bloom filter. DST is an efficient graph traversal algorithm that
simultaneously improves search performance and quality by relax-
ing traversal orders to maximize accelerator utilization. Evaluation
across various graphs and datasets shows that Falcon, prototyped
on FPGAs, together with DST, achieves up to 4.3x and 19.5X lower
latency and up to 8.0x and 26.9X improvements in energy efficiency
over CPU- and GPU-based GVS systems.

PVLDB Reference Format:

Wenqi Jiang, Hang Hu, Torsten Hoefler, and Gustavo Alonso. Fast Graph
Vector Search via Hardware Acceleration and Delayed-Synchronization
Traversal. PVLDB, 18(11): 3797 - 3811, 2025.
doi:10.14778/3749646.3749655

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fpgasystems/Falcon-accelerate- graph-vector-search.

1 INTRODUCTION

Vector search is essential in large language model (LLM) serving
systems [16, 37, 62], recommender systems [23, 87], and search
engines [18, 54, 98]. Upon receiving a query vector, a vector search
system retrieves the most similar vectors from a database approxi-
mately, a process known as approximate nearest neighbor (ANN)

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749655

3797

Hang Hu
Systems Group, ETH Zurich
hanghu@student.ethz.ch

Gustavo Alonso
Systems Group, ETH Zurich
alonso@inf.ethz.ch

search. For example, search engines represent web pages as data-
base vectors, and user’s textual queries are encoded as query vec-
tors [18, 40, 54, 55, 98]. Similarly, recommender systems identify
advertisements that are potentially appealing to users by searching
through encoded advertisement vectors [23, 87]. More recently,
LLM systems have also adopted ANN search to improve content
generation quality by retrieving reliable textual knowledge, an ap-
proach known as Retrieval-Augmented Generation (RAG) [16, 37, 62].

Among various ANN search algorithms, graph-based vector
search (GVS) algorithms are particularly popular due to their high
search performance and quality [28, 63, 73], with the latter mea-
sured by recall, the percentage of true nearest neighbors correctly
identified by the search. The key idea of GVS is to construct a prox-
imity graph on database vectors: each vector is a node, and similar
vectors are linked by edges. During a search, the query vector is
compared to a subset of database vectors by iteratively traversing
the graph using best-first-search (BFS), which greedily selects the
best candidate node to evaluate for each search iteration.

Given the rising adoption of ANN search in online systems, an
ideal GVS system should achieve low search latency for real-time
query batches, while being cost- and energy-efficient. However, re-
ducing GVS latency remains challenging due to limitations imposed
by common hardware architectures (CPUs and GPUs) and the inher-
ent difficulty of parallelizing graph traversals. First, CPUs and GPUs
operate on a time-multiplexed basis, executing GVS operations se-
quentially, thus leading to accumulated latency across traversal
iterations. Second, if intra-query parallelization is employed, the
synchronization overhead among CPU cores or GPU streaming
multi-processors [58, 105] is disproportionately high relative to
a single iteration of graph traversal, which typically takes only
microseconds and involves just dozens of distance computations.

While previous research has explored hardware accelerator de-
signs for GVS based on FPGA prototyping [80, 103], these ap-
proaches have three main limitations. Firstly, they only support the
Hierarchical Navigable Small World (HNSW) graph. While HNSW
is widely used today, more efficient graph construction algorithms
are emerging that offer improved recall [28, 70, 72, 73, 81, 107, 111].
Secondly, directly implementing the software-oriented BFS algo-
rithm on these accelerators results in sub-optimal search latency,
because it significantly under-utilizes the accelerators, as we will
further explain in conjunction with the hardware designs. Thirdly,
existing architectures are mainly throughput-oriented and either
do not support [80] or suboptimally support intra-query parallelism
for low-latency search [103].

https://doi.org/10.14778/3749646.3749655
https://github.com/fpgasystems/Falcon-accelerate-graph-vector-search
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749655
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Comparison between Falcon + DST and vector search on existing hardware platforms, including CPUs, GPUs, and prior
FPGA-based accelerators. v and X indicate supported and unsupported features, respectively.

Feature CPU [28,72,73] GPU [34,106] Prior FPGA [80, 103] Falcon + DST (ours)
Minimize Memory Access (§3.2) X X X v
Intra-query Parallelism (§3.3) X X X v

Support Various Graphs (§3.4) v X X v
Hardware-Efficient Traversal Algorithm (§4.3) X X X v

Latency Moderate High Low to Moderate Low
Throughput High Very High High High
Throughput / Bandwidth High High High High
Energy Efficiency Low Low Moderate High

To achieve low-latency GVS while supporting various graphs, we
argue that both algorithm-level and hardware-level optimizations
are essential. To this end, we propose a hardware-algorithm co-
design solution including Falcon, a specialized GVS accelerator, and
delayed-synchronization traversal (DST), an accelerator-optimized
graph traversal algorithm designed to simultaneously improve ac-
celerator search performance and recall. We summarize the advan-
tages of Falcon and DST over existing solutions in Table 1, and
elaborate on the key features of our approach below.

Falcon is an in-memory GVS accelerator with four key features.
Firstly, Falcon involves fast distance computations and sorting units,
and minimizes off-chip memory accesses by using an on-chip Bloom
filter to track visited nodes. Secondly, Falcon supports both intra-
query parallelism, utilizing all compute and memory resources to
process a single query, and across-query parallelism, handling mul-
tiple queries through separate processing pipelines. Thirdly, Falcon
supports general GVS, allowing it to leverage emerging algorithms
offering better recall and performance. Finally, Falcon functions as
a networked service with an integrated TCP/IP stack, thus reduc-
ing end-to-end service latency by bypassing the accelerator’s host
server from the communication path.

Delayed-synchronization traversal (DST) relaxes the greedy graph
traversal order to improve accelerator utilization. The design of the
algorithm is motivated by two key observations. First, from a sys-
tem performance perspective, the synchronous and greedy nature
of the software-oriented best-first search (BFS) limits the amount
of parallelism the accelerator can exploit and thus leads to signifi-
cant accelerator under-utilization. Second, from a traversal-pattern
perspective, we found that relaxing the order of candidate evalua-
tions does not compromise recall. Building on these observations
and drawing inspiration from label-correcting algorithms for par-
allel shortest path computation on graphs [14, 75], DST relaxes
synchronizations that enforce the greedy traversal order, thereby
increasing the amount of parallel workloads that Falcon can handle.
Consequently, DST both reduces search latency by improving accel-
erator utilization and improves recall by allowing the exploration
of search paths that the greedy BFS would otherwise overlook.

We prototype Falcon on FPGAs and evaluate it on various vector
search benchmarks across different types of graphs. In combination
with DST, Falcon achieves up to 4.3X and 19.5X lower online search
latency and up to 8.0x and 26.9X better energy efficiency compared
to CPU and GPU-based GVS systems, respectively. Besides, the

3798

proposed DST algorithm outperforms the classic BFS by 1.7~2.9%
in terms of latency on Falcon and simultaneously improves recall.
The paper makes the following contributions:

We identify the hardware primitives essential for efficient GVS,
design Falcon, a specialized GVS accelerator, prototype it on
FPGAs, and expose it as a networked service.

We analyze the graph traversal patterns of best-first search and
propose DST, an accelerator-optimized graph traversal algorithm
that reduces GVS latency by relaxing traversal order.

We evaluate Falcon and DST across diverse graphs and datasets,
demonstrating their high performance and energy efficiency.

2 BACKGROUND AND MOTIVATION

In this section, we define the vector search problem (§2.1), introduce
GVS algorithms (§2.2), discuss the limitations of existing processors
for online GVS (§2.3), and motivate the need for an algorithm-
hardware co-design solution for low-latency GVS (§2.4).

2.1 Vector Search: Problem Definition

A k nearest neighbor (kNN) search takes a d-dimensional query
vector q as input and retrieves the k most similar vectors from
a database Y containing d-dimensional vectors, based on metrics
such as L2 distances, dot product, or cosine similarity.

Real-world vector search systems typically adopt approximate
nearest neighbor (ANN) search instead of exact kNN search to boost
search performance (latency and throughput) by avoiding exhaus-
tive scans of all database vectors. The quality of an ANN search is
measured by the recall at k (R@k). Let NN (q) be the set of true k
nearest neighbors to a query q and ANN(q) be the set of k results
returned by the ANN search, recall at k measures the proportion of
the true k nearest neighbors that are successfully retrieved by the

. _ JANNk(q)NNNk(9)|
ANN search: R@k = TINNC@T

2.2 Graph-based Vector Search

Graph-based vector search (GVS) is among the most popular ANN
search methods, renowned for its high search performance and
quality [28, 29, 70, 72, 73, 107, 111]. It involves constructing a prox-
imity graph G(V, E), where V represents the set of nodes, each
is a database vector, and E represents the set of edges between
nodes, with each edge indicating high similarity between the two
connected nodes. Some notable examples of graph construction
algorithms include HNSW[73], NSG[28], and DiskANN [44].

Algorithm 1 Best-First Search (BFS)

Require: graph G, entry node p, query vector g, maximum result
queue size [, number of results to return k (k < [)
Ensure: k approximate nearest neighbors of query ¢
1: C — {p},R « {p}, Visited — {p}
2: while C # 0 and MIN(C.dist) < Max(R.dist) do
3 ¢ « ExTRACT-MIN(C) > pop the nearest candidate
for all neighbors n of ¢ do
if n ¢ Visited then
dist « CompPUTE-Di1sT(q, n)
Visited.add(n), C.add(n, dist), R.add(n, dist)
R.resize(l)
9: return SORT(R)[: k]

4
5
6:
7
8 > keep only the closest [elements

> return the first k elements

2.2.1 Best-First Search (BFS) for Query Processing. Once the graph
is constructed, query vectors can traverse the graph to find their
nearest neighbors. While various graph construction algorithms
exist [28, 70, 72, 73, 107, 111], the traversal on those constructed
graphs all converges to the classic best-first search (BFS) algorithm.

BFS traverses a graph by greedily evaluating the best candidate
node in each search iteration. As illustrated in Algorithm 1, BFS
begins by adding the typically fixed entry node p to the candidate
queue C, which stores nodes for potential exploration; the result
queue R, which holds the nearest neighbors found so far; and the
visited set Visited, which tracks nodes that have already been vis-
ited. It then searches on the graph iteratively as long as there is at
least one candidate that is reasonably close to the query gq. Here,
reasonably close means that the minimum distance from the can-
didates in C to q is less than the maximum distance of the nodes
currently in R. The algorithm then pops and evaluates the best can-
didate ¢ by visiting all of its neighbors. Each neighbor that has not
been visited is added to the visited set, the candidate queue, and the
result queue, ensuring that no node is processed more than once.
Following the exploration of neighbors, R is adjusted to maintain
only the closest [elements.

The maximum size of the result queue [(k < [) controls the
trade-off between search performance and quality. A larger [in-
creases the threshold distance for considering a candidate, thereby
expanding the number of candidate nodes evaluated during the
search. Although visiting more nodes increases the likelihood of
finding the nearest neighbors, it also leads to higher search latency.

2.3 Limitations of Existing Processors for GVS

Existing GVS systems have been mostly CPU-based, and recent
research has explored their deployments on GPUs and FPGAs. All
these systems adopt the classic BFS algorithm. However, current
solutions remain sub-optimal for latency-sensitive online GVS.

2.3.1 Search on CPU. CPUs have several limitations in online GVS
systems. Firstly, CPUs operate on a time-multiplexing basis, execut-
ing GVS operators such as fetching, computing, and insertion se-
quentially, with only limited timeline overlaps due to data prefetch-
ing. This sequential processing leads to cumulative search latency
for each operator. Secondly, software implementations typically
employ a byte array to track visited nodes for each query [28, 73],

3799

resulting in additional read and write operations per visited node.
Thirdly, CPUs struggle with random memory accesses to fetch vec-
tors, which are typically less than 1 KB, and to update the visited
arrays (one byte per read or write).

2.3.2 High-throughput GVS on GPUs. GPUs are known for their
massive parallelism, featuring thousands of cores [22]. Thus, GPUs
are well-suited for high-throughput GVS applications, as evidenced
by recent studies [34, 106]. However, GPUs exhibit two shortcom-
ings for online GVS. Firstly, GPUs show much higher GVS latency
than CPUs as shown in our evaluation, because the limited amount
of workload per search iteration makes it infeasible to effectively
parallelize one query across multiple streaming multi-processors.
Secondly, the scale of graphs that GPUs can efficiently serve is con-
strained by memory capacity. GPUs typically use high-bandwidth
memory (HBM), which offers high bandwidth but several times
less capacity compared to DDR memory given the same cost [4].
Although utilizing CPU-side memory is a potential option, search
performance remains a concern: the throughput of fast CPU-GPU
interconnects like the NVLink in NVIDIA Grace Hopper [7] is still
an order of magnitude lower than that of GPU memory.

2.3.3 Specialized GVS Accelerators. Two recent studies [80, 103]
implemented HNSW, a popular GVS algorithm, on FPGAs. Peng
et al.[80] presented the first FPGA-based implementation, while
Zeng et al.[103] further optimized the design by introducing data
prefetching and enabling multi-FPGA search.

However, they are still not optimal for online GVS for the
following reasons. Firstly, supporting only one type of graph
(HNSW) may be inadequate given the rapid emergence of ef-
ficient GVS algorithms [28, 70, 72, 73, 107, 111]. For example,
NSG [28], given longer graph construction time, can achieve better
performance-recall trade-offs than HNSW. Specializing the accel-
erator for HNSW [80, 103] restricts the accelerator’s flexibility in
supporting various types of graphs: HNSW has a unique multi-level
architecture, while the vast majority of graphs in GVS do not incor-
porate a leveled structure. Secondly, applying the software-friendly
BFS on the accelerators leads to sub-optimal search performance.
This is because BFS can cause significant under-utilization of the
accelerators, as we will specify in §4.3. Thirdly, although Zeng et
al. [103] supports intra-query parallelism, an improvement over
Peng et al. [80], the parallel strategy remains suboptimal. Specifi-
cally, the method of partitioning the graph into several sub-graphs
and searching all sub-graphs in parallel [103] leads to significantly
more nodes being visited per query compared to traversing a single,
larger graph, as we will explain further in §3.3.

2.4 Motivation: Algorithm-Hardware Co-Design

In this paper, we aim to achieve low-latency, energy-efficient, and gen-
eral GVS. Given the insufficient hardware support (§2.3) and the in-
herent difficulty of parallelizing BFS (§2.2), we argue that achieving
this goal requires both algorithm-level and hardware-level optimiza-
tions. In the following sections, we present a hardware-algorithm
co-design solution, which includes Falcon (§3), a hardware accel-
erator for GVS, and delayed-synchronization traversal (DST) (§4),
an accelerator-optimized graph traversal algorithm that simultane-
ously improves search performance and recall.

Query Processing Pipeline (QPP A)

| [
IDs | 1

o
o8
5

5

Bloom Filter

| Candidate Queue | I Fetch Vectors I

Control Logic
BFC Unit

Result Queue I

{ Compute Dist. I

Memory Controller

TCP/IP Network Stack

=
L=

k=
f=U

Query Processing Pipeline (QPP B)

Query Processing Pipeline (QPP N)

Chan. 0

Chan. 1

Chan. 2

Chan.3

Chan. M

. N
Query Processing Pipeline (#-Chan. 0
-2 | Fetch Neighbor IDs
|8 :
S 4 .
& < 9 | Candidate Queue %
s
x c
1 :
£\> H Result Queue o
@ =
z
I}
: g
o
S=1 || |= zZ| ==
= £ i £
= =) =}
© © (3}
B |& :
= =
b, . b,

(a) Across-query Parallelism

(b) Intra-query Parallelism

Figure 1: Falcon overview. It has two architecture variants supporting across-query and intra-query parallelisms.

3 FALCON FOR GVS ACCELERATION

We present Falcon, a low-latency GVS accelerator that we prototype
on FPGAs but also applicable to ASICs (§3.1). Falcon consists of
various high-performance hardware processing elements (§3.2). It
has two variants supporting across-query and intra-query paral-
lelisms, optimized for processing batches of queries and individual
queries, respectively (§3.3). The accelerator is directly accessible as
a networked service and supports various types of graphs (§3.4).

3.1 Design Overview

Accelerator components. Figure 1 shows Falcon, a spatial
dataflow accelerator for GVS. Each query processing pipeline (QPP)
handles one query at a time, containing both control logics and
Bloom-fetch-compute (BFC) units. Falcon is composed of various
processing elements (PEs) interconnected via FIFOs, including sys-
tolic priority queues for storing candidate nodes and search results,
Bloom filters to avoid revisiting nodes, and compute PEs for efficient
distance calculations between query and database vectors.
Parallel modes. Falcon has two variants that support across-
query parallelism and intra-query parallelism, as shown in Fig-
ure 1(a) and (b), respectively. Across-query parallelism processes
different queries across QPPs, while intra-query parallelism min-
imizes per-query latency by utilizing all compute and memory
resources (multiple BFC units) to process one query at a time.
Differences compared to existing accelerators. Falcon dis-
tinguishes itself from previous GVS accelerators [80, 103] in four
aspects, as summarized in Table 1. Firstly, Falcon utilizes on-chip
Bloom filters to manage the list of visited nodes, thereby minimiz-
ing memory accesses (§3.2). Secondly, Falcon’s intra-query parallel
design utilizes all compute and memory resources to traverse a sin-
gle graph rather than partitioned sub-graphs (§3.3). Thirdly, Falcon
supports various GVS algorithms, rather than being limited to a
specific one such as HNSW, allowing it to benefit from emerging al-
gorithms that offer improved search quality and performance (§3.4).
Finally, Falcon employs the proposed accelerator-optimized traver-
sal algorithm that significantly reduces vector search latency (§4).

3.2 Hardware Processing Elements

We now introduce the main types of PEs in the order of their
appearance in Algorithm 1.

3800

3.2.1 Priority Queues. We adopt the systolic priority queue archi-
tecture [41, 60] for the candidate and result queues in Algorithm 1.
A systolic priority queue is a register array of s elements intercon-
nected by s — 1 compare-swap units. It enables high-throughput
input ingestion of one insertion per two clock cycles by comparing
and swapping neighboring elements in parallel in alternating odd
and even cycles. The queue can be sorted in s — 1 cycles.

3.2.2 Bloom Filters. Once the candidate queue pops a candidate to
be explored, the next step is to check whether each of the candidate’s
neighbors is already visited.

Previous software and specialized hardware implementations
either maintain a visited array or a hash table, but neither is ideal
for Falcon. For example, software-based implementations [28, 73]
maintain an array with a length as the number of nodes in the graph.
Node IDs are used as the array addresses to access the visited tags.
However, this approach leads to extra memory accesses, requiring
one read operation per check and one extra write operation to
update the array for unvisited nodes. Zeng et al. [103] developed
on-chip hash tables as part of the accelerators to track the visited
nodes to avoid off-chip memory accesses. Each entry of the hash
table stores up to four visited node IDs. However, given the limited
on-chip SRAM, it is unlikely to instantiate large hash tables, and
thus collisions would appear during the search. A collision would
not only lead to redundant node visits, but those visited nodes will
be inserted into the candidate and result queues repetitively, thus
eventually degrading recall.

Falcon, in contrast to existing solutions, adopts on-chip Bloom
filters to track visited nodes. A Bloom filter is a space-efficient
probabilistic data structure designed to test whether an element is a
member of a set, e.g., determining whether a node has been visited
based on its ID. A Bloom filter uses multiple (k) hash functions
to map each input to several positions in a b-bit array. To check
if a node has been visited, the same hash functions are used to
check the status of these specific positions: if any of the bits are
not set, the node is definitely not visited; if all are set, the node is
highly likely visited (but not guaranteed, a scenario known as false
positive). Given m inserted elements, the false positive rates can be

m h
calculated by (1 - e_}T) [15].
Compared to hash tables, Bloom filters are significantly more space
efficient for identifying visited nodes. For example, instantiating a

hash table with 1K slots for 4-byte node IDs requires 32Kbit SRAM.
Using a chaining strategy to resolve hash collisions [74], where
collided elements are moved to DRAM, the collision probability for
a new incoming node ID is as high as 63.2% when 1K nodes have
already been visited. In contrast, using the same amount of SRAM,
a Bloom filter can provide 32K slots. With an equivalent number of
nodes visited, the false positive rate for a new node ID is only 3.0%
and 0.07% using a single hash function and three hash functions,
respectively. As we will show in our experiments, the very few false
positives, meaning that an unvisited node is reported as visited, will
not visibly degrade recall. This is because a well-constructed graph
typically offers multiple paths from the query vector to the nearest
neighbors, mitigating the effects of these very few false positives.

Falcon implements Bloom filters in the following manner. Both
the number of hash functions and the size of the Bloom filters are
configurable. Currently, Falcon uses three Murmur2 hashes [5] per
filter. These hash functions are computed in parallel, and each hash
function pipeline can yield a hash code every clock cycle. The size
of the bitmap is set to 256Kbit, which translates to low false positive
rates — only one in 600K for 1K visited nodes.

3.2.3 Fetching Vectors. Upon identifying nodes to visit, the next
step is reading the vectors for each node.

Falcon optimizes bandwidth utilization by pipelining vector
fetches. Rather than waiting for the first vector to return before
issuing a second read, each fetch unit pipelines up to 64 read re-
quests (configurable), thus improving read throughput by hiding
the latency associated with memory and the memory controller.
The data width of the FIFO connecting a fetch unit to the memory
controller is set to 64 bytes.

3.24 Distance Computations. Each vector fetch unit is connected
to a compute PE that calculates L2 distances, dot product, or cosine
similarity between queries and database vectors. A compute PE
instantiates multiple multipliers and adders and pipelines different
compute stages, such that the compute throughput can match the
maximum read throughput of a vector fetch unit.

3.3 Intra-query and Across-query Parallelism

While across-query parallelism for batched queries can be straight-
forwardly implemented by instantiating multiple query processing
pipelines (QPP) on the accelerator, there are two design choices
for intra-query parallelism, which aim to minimize latency for in-
dividual queries. One option involves adopting the architecture
of across-query parallelism by partitioning the dataset into mul-
tiple subsets, querying each subset with an individual QPP, and
aggregating the results, as Zeng et al. [103] described.
Alternatively, our choice is to speed up the traversal of a sin-
gle graph by instantiating multiple BFC units in a single QPP to
utilize all the compute and memory resources for a single query
(Figure 1(b)). This decision stems from the observation that travers-
ing several sub-graphs significantly increases the total amount of
workload per query compared to traversing a single graph. Figure 2
shows that, to achieve a recall of R@10 = 90% on the SPACEV
natural language embedding dataset [9], the total number of visited
nodes per query when using eight subgraphs is 4.2x of that for a
single graph. Thus, the maximum speedup (assuming perfect load

3801

—&— Full graph —#— 4 sub-graphs
2 sub-graphs —— 8 sub-graphs

e

1 1 1
2000 4000 6000
Total workload (visited nodes)

R@10 (%)
® © ©
o o u
[

Figure 2: Traversing one graph versus several sub-graphs.

balancing) that eight partitions and eight QPPs can achieve is only
1.9x that of traversing a single graph with one QPP.

When traversing a single graph using intra-query parallelism,
Falcon leverages its direct message-passing mechanism via FIFOs to
enable low-overhead, fine-grained task dispatching among different
BFC units. This is a significant architectural advantage compared
to CPUs and GPUs, where synchronization overhead among CPU
cores or GPU streaming processors [58, 105] is too high compared to
a single iteration of graph traversal, which only takes microseconds
typically involving dozens of distance computations.

3.4 Accelerator-as-a-Service Implementation

Falcon is implemented with a total of 6.6K lines of code, including
3.6K lines of High-Level Synthesis (HLS) code for the accelerator
kernel, developed using Vitis 2022.1, and 3K lines of C++ code for
the CPU host and client programs. We instantiate and evaluate
Falcon on AMD Alveo U250 FPGAs, but the architecture is portable
to arbitrary FPGA platforms. Falcon operates as a networked service
through a TCP/IP stack and supports various types of graphs.

3.4.1 Network Stack Integration. Vector search systems are typ-
ically wrapped as services for real-time LLM serving or recom-
mender systems. To minimize service latency, we integrate a TCP/IP
network stack [38] into Falcon, as shown in Figure 1. This integra-
tion allows Falcon to function as a networked accelerator service in
data centers [27, 83], facilitating direct communication with clients.
This approach differs from common setups where the accelerator
operates as a PCle-based operator offloading engine, which involves
additional latency including CPU handling requests from the net-
work, accelerator kernel invocation, and data copying between the
CPU and the accelerator. Compared to CPU and GPU-based services,
Falcon can partially overlap communication and query latency: for
a batch of queries, it begins processing the first query upon its
arrival rather than waiting for the entire batch to be received.

3.4.2 Supporting Various Graphs. Falcon supports arbitrary graphs
by representing them with a unified graph format, accommodat-
ing common graph elements including nodes, edges, entry nodes,
and degrees. This approach is naturally compatible with the vast
majority of graphs [28, 72, 107, 111], except for HNSW [73] that
has a unique multiple-layer structure. The upper layers of HNSW
are designed to identify a high-quality entry point into the base
layer, which contains all the database vectors — thus the base layer
is comparable to the entire graph in other GVS algorithms [28, 72].
Instead of customizing the accelerator for this case, we prioritize
the Falcon’s versatility by initiating searches from a fixed entry
point on the base layer of HNSW, which is the same (and only) entry
point used at the top level. We found that this approach, without

For intra-query parallelism, the workloads of these steps are parallelized across multiple BFC units

r Al
S1: Fetch neighbor IDs S2: Bloom filter S3: Fetch vectors S4: Compute distances S5: Insert to queues S6: Sort queues
(a) Best-First Search (BFS): evaluate one optimal candidate at a time 2% PEs are under-utilized most of the time Finish 3rd cand.
1
PE A I I
PEB ok HE.. H| bottleneck steps: 2, ok
PEC 21 /'/v- -, .. m| 1S3,54 7 [3] 71
PE D 1 [| | 3 | |
PEE 1 [Preined s il z | | | |emE— :
sub-steps
« o Improved utilization, but still not
multi-cand.(mc)=4 = fully-utilized due to synchronizations Finish 5th cand.
1
PEA | 1 | 2 | 3 | a | sort once F's T 6 [7 [8 | I
PEB [1 [2 [3 [2 | before sync e | [5 [6 [[
PEC [1 [2 [3 [4 | Al [5 [6 [
PED [1 [2 [3 [4 | | [5 [
REIE | 1 | 2 [3 [4 [1-a] [5 e
(c) Delayed-Synchronization Traversal (DST): multiple candidate groups in the pipeline; each group contains at least one candidate
multi-group(mg)=2 Launch a new group after sync the 1st os Minimized vector search latency by
— — group: delay the sync of the 2nd group " maximizing accelerator utilization Finish 7th cand.
1st group 2nd group, multi-cand.(mc)=2 |
———— g g g !
PEA [1 [2 | 3 [4 | % 5 6 u>,- 7 8 5 9 10
PEB | 1 [2 [3 [4 | &1 [5 [6 KX [7 [8 [31 |
PEC [1 [2 [3 1] 4 I 6 [7]
PED [1 [2 [3] [4 [m ..] 6 [7. [
PEE I 1 [2 [12] 3] 4 [34 [nm 1] 6 [56 | 7 [«

X
Insertion time can shrink as the insertion throughput is higher than fetch and computation =—-"——""

Figure 3: The proposed Delayed-Synchronization Traversal (DST) reduces vector search latency by maximizing accelerator
utilization. It delays synchronizations and allows multiple candidates to be evaluated simultaneously in the processing pipeline.

starting from the optimal entry node at the base layer for each and insertions can partially overlap because these PEs pipeline
query, does not lead to recall degrades (Figure 7), although more the execution of sub-steps, where each sub-step involves one of
hops might be necessary to reach the nearest neighbors, a finding the neighbors of the candidate being evaluated. Between search
also supported by existing research [66, 92]. iterations, an implicit synchronization between all of the PEs ensures

that the queues are sorted, such that the best candidate can be
popped for evaluation in the next iteration.

Unfortunately, directly implementing the software-oriented BFS
algorithm on a parallel GVS accelerator like Falcon can lead to
sub-optimal search performance due to under-utilization of the
accelerator. As shown in Figure 3(a), only a fraction of the PEs are
utilized simultaneously because of the inherently greedy nature of
BFS, which processes only one candidate at a time, offering little
opportunity for parallelization.

3.4.3 Memory Management. To leverage multiple memory chan-
nels, we partition the data — including links and vectors — evenly
across all channels in a round-robin fashion based on node IDs.
This contrasts with the approach of splitting a single vector across
multiple channels, which provides limited bandwidth benefits when
fetching a vector due to the random access latency incurred by each
channel. The number of BFC units is set equal to the number of
memory channels, as each compute unit in a BFC is designed to
fully utilize the maximum bandwidth of a single memory channel.

4.2 Goal: Improving Accelerator Performance
through Traversal Algorithm Redesign

A natural idea to optimize accelerator performance is to maximize
accelerator utilization by minimizing PE idleness. Given the imbal-
anced workloads across different search steps, this approach does
not necessitate all PEs to be always active but rather focuses on
keeping those PEs involved in bottleneck steps consistently busy.
In the context of GVS, the bottleneck steps usually include fetching
neighbor vectors (S3) and calculating their distances relative to the

4 DELAYED-SYNCHRONIZATION TRAVERSAL

Realizing the inefficiencies of BFS on Falcon (§4.1), we investigate
its graph traversal patterns (§4.2) and propose DST, an accelerator-
optimized traversal algorithm applicable for both intra- and across-
query parallelisms (§4.3).

4.1 Inefficiency of BFS on Accelerators

Figure 3(a) visualizes the timeline of BFS on Falcon, where each

unique color represents one of the six search steps (51~S6), and query vectors (S4).

each PE handles a specific step, except for the priority queues that

manage two steps, including distance insertions and sorting (S5 4.2.1 Algorithm-specific Observations. Given the critical role of
and S6). Some steps must wait for the previous step to complete: accelerator utilization in search performance, we ask: Is it necessary
sorting only begins after all distances are inserted into the queues. to strictly follow the BFS traversal order and synchronization pattern
Other steps like filtering, fetching vectors, computing distances, to achieve high search quality?

3802

Distance Distance Distance

g, Best-First Search
c o
g3
25 ok g e e R RN K 358 *
8= : : : ; ;
] 22 Multi-Candidate Search (mc=4)
g3
25 W g e * * *
8= : : : ; ;
ot QE)‘ 2 Delayed-Synchronization Traversal (mc=2, mg=2)
g3
25 e e * * *
8= : : . ; ;

0 500 1000 1500 2000 2500

Traversal procedure (number of visited nodes)
(a) HNSW graph on Deep1M dataset

le5

Py Best-First Search
% 2.5
o
S * R *
S

0.0 TeS T T T T T T T T
> Multi-Candidate Search (mc=4)
8 2.5
[op
o w5 gk ek *
S

0.0 Te5 T T T T T T T T
> Delayed-Synchronization Traversal (mc=2, mg=2)
8 2.5
o
9 0.0 B *

' 0 250 500 750 1000 1250 1500 1750 2000

Traversal procedure (number of visited nodes)
(b) NSG graph on SIFT1M dataset

Figure 4: Traversal convergence of BFS, MCS, and DST across graphs (HNSW and NSG) and datasets (Deep and SIFT). Each grey
cross is an evaluated candidate, each colored dot a visited neighbor node, and each dark star one of the ten nearest neighbors.

To answer this question, we examine the traversal patterns of
GVS. To address this question, we analyze the traversal patterns of
GVS. The upper section of Figure 4 illustrates the BFS traversal pro-
cess for a sample query on the DeeplM dataset [12] using HNSW
(Figure 4a) and on the SIFT1M dataset [8] using NSG (Figure 4b).
Each grey cross represents an evaluated candidate node, colored
dots denote its neighbor nodes, and black stars mark the ten nearest
neighbors. Notably, while the node distances to the query decrease
at the beginning of the traversal, most subsequent candidates main-
tain similar distances rather than showing a monotonically decreas-
ing trend — an observation consistent across queries, datasets (SIFT,
Deep, and SPACEV), and graphs (HNSW and NSG), although not
all data are visualized due to space limits.

This observation suggests that traversals in GVS do not have
to adhere to a strictly greedy approach — relaxing the tra-
versal order of different candidate nodes should result in
comparable search quality, assuming the same or a similar set
of candidates is evaluated.

4.2.2 Naive Solution: MCS. Leveraging the intuition above, one
straightforward way to improve accelerator utilization is increasing
the number of candidates evaluated per iteration, a strategy we term
multi-candidate search (MCS). As illustrated in Figure 3(b), each
iteration evaluates mc = 4 candidates instead of just the closest one,
because the second to the fourth best candidates per iteration may
also be close to the query and could be on the search path of BFS.

However, the PE utilization is not yet optimal due to the implicit
synchronization operations required between iterations, where the
candidate queue must be sorted before evaluating the next mc near-
est candidates. While increasingmc could push PE utilization rates
towards 100%, this approach can potentially degrade end-to-end
search performance as we will show in the evaluation, because eval-
uating many candidates per iteration means potentially processing
irrelevant candidates.

4.3 Low-latency GVS via DST

To maximize accelerator utilization with minimal overhead (the
number of extra nodes visited), we propose Delayed-Synchronization
Traversal (DST), a parallel, low latency graph traversal algorithm
for GVS. The key idea of DST is to allow on-the-fly processing
of multiple groups of candidates within the query processing

3803

pipeline by delaying synchronizations between search iter-
ations, thereby improving the utilization of compute units
and memory bandwidth. Here, each candidate group can contain
one or multiple candidate nodes.

4.3.1 DST Procedure. Figure 3(c) demonstrates how DST enhances
accelerator utilization. In this example, there are two candidate
groups (mg = 2), each with two candidates (mc = 2), thus allow-
ing four candidates to be processed simultaneously in the pipeline,
mirroring the MCS setup (mc = 4) in Figure 3(b). Unlike MCS, DST
introduces delayed synchronization: as the evaluation of the candi-
date group containing the 5th and 6th candidates begins, only the
first group, containing the 1st and 2nd candidates, has been fully
evaluated — the delayed synchronization sorts the existing results,
while the synchronization of the second group (with 3rd and 4th
candidates) is deferred. This strategy ensures that the processing
pipeline remains filled and that the bottleneck-step PEs for fetching
vectors and computing distances are fully utilized, thereby avoid-
ing the periods of idleness around synchronizations as shown in
Figure 3(a) and (b). When applying DST to intra-query parallelism,
steps S2~S4 can be parallelized across multiple BFC units, unlike
across-query parallelism, which utilizes one BFC unit per QPP.
Algorithm 2 details the procedure of DST from the accelerator
controller’s perspective. DST starts by evaluating the entry node as
the first candidate group. As soon as a candidate group is evaluated,
DST tries to fill the accelerator pipeline by launching the evaluation
of additional candidate groups, where both the number of groups
in the pipeline (mg) and the number of candidates per group (mc)
can be set by the user. DST terminates when there are no active
groups in the pipeline and there are no more valid candidates.

4.3.2 Performance Benefits. DST achieves significantly higher
throughput than BFS and MCS in terms of the number of can-
didates processed per unit of time. Figure 3 marks the count of
processed candidates by the end of the timeline on the right side.
In this example, BFS completes only three candidates, meaning
that the results for the 3rd candidate have been inserted into the
candidate queue. MCS shows improved throughput, managing to
finish processing five candidates in the same time frame. DST, given
an equivalent number of candidates in the pipeline as MCS (four),
achieves the highest throughput by completing seven candidates

Algorithm 2 Delayed-Synchronization Traversal (DST)

Require: graph G, entry node p, query vector g, result queue size
I, number of candidate groups mg, number of candidates per
group mc, number of results k (k < I)

Ensure: k approximate nearest neighbors of query ¢

1: C«— {p},R « {p}, Visited — {p}
2: LAuNcH-EvAL-NoN-Brock({p}), GroupCnt « 1
3: while GroupCnt > 0 or MIN(C.dist) < Max(R.dist) do
stop if no active groups and qualified candidates
if EARLIEST-EvAL-DONE then > check task status
GroupCnt < GroupCnt — 1
while GroupCnt < mg do
threshold «— Max(R.dist)
Group < EXTRACT-MIN(C, mc, threshold)
if S1ze(Group) > 0 then
LauncH-EvaL-NoN-Brock(Group)
GroupCnt « GroupCnt + 1

>

4
5
6: > fill the pipeline
7
8
9

10:
11:

12: return SOrT(R)|: k] > return the first k elements

by the end of the timeline. Notably, DST fully utilizes the critical
PEs for vector fetching and distance computations, thanks to the
delayed-synchronization mechanism.

4.3.3 Search Quality. Given the algorithmic relaxations in DST
compared to BFS, one might immediately question: Will the re-
ordered traversal in DST degrade recall? Contrary to this concern,
DST can actually improve recall while lowering search latency as
our experiments will demonstrate (Figure 7) for the following rea-
sons. On one hand, BFS traverses the graph in a greedy manner,
striving to avoid visiting nodes that are not sufficiently close to
the query. On the other, DST, by delaying synchronizations and
allowing multiple candidates to be processed in the pipeline, relaxes
the threshold for node evaluation. Considering that the termination
condition remains consistent with BFS (when there is no qualified
candidate left), DST likely evaluates the high-quality candidates on
the search path of BFS and additionally explores other potentially
relevant candidates. Thus, the evaluation of these extra sub-optimal
candidates (a) does not prevent the evaluation of better candidates
close to the queries and (b) may uncover extra paths leading to the
nearest neighbors, thereby potentially improving recall.

Figure 4 compares the search convergence of BFS, MCS, and
DST. All of them find the nearest neighbors in this example, with
DST and MCS visiting more nodes than BFS. This trend remains
consistent across various datasets (SIFT, Deep, and SPACEV) and
graph structures (HNSW and NSG), though Figure 4 only visualized
a subset of experiments due to space constraints.

4.3.4 Parameter Configuration. DST introduces two additional run-
time configurable parameters compared to BFS: the number of can-
didate groups in the pipeline (mg) and candidates per group (mc).
The optimal configuration depends on several factors, including
vector dimensionalities, data distributions, and degrees (number
of neighbors per node). We found it challenging to determine the
optimal parameters by performance modeling due to (a) the signifi-
cant variance in node degrees and (b) the unpredictable proportion
of visited nodes as traversal progresses. Thus, to ensure optimal

3804

search performance, it is advisable to perform an empirical parame-
ter search using a set of sample queries before system deployment.
Typically, this process only takes minutes, as the search space is
relatively small, with both mg and mc usually not exceeding ten
according to our experiments.

5 EVALUATION

Our evaluation aims to answer the following questions:
e How does Falcon’s search performance and energy efficiency
compare to that of CPUs and GPUs? § 5.2

How much speedup and recall improvement can DST achieve
on Falcon over BFS? § 5.3

Where is the performance cross-over point between intra-query

and across-query parallelism? § 5.4

5.1 Experimental Setup

Baseline systems. For CPUs, we evaluate two popular graphs,
namely HNSW [72] and NSG [28], using their official implementa-
tions. For GPUs, we evaluate GGNN [34], an approximate version of
HNSW optimized for GPU architectures. Additionally, we evaluate
the inverted-file (IVF) index [86], a clustering-based index, using
the Faiss library [2] for both CPUs and GPUs. As the previous FPGA
GVS implementations [80, 103] are not open-sourced, we mainly
compare their traversal strategies with DST based on Falcon in §5.3.

Hardware. We use server-class hardware manufactured in simi-
lar generations of technology (12~16 nm), where the CPU and GPU
hold advantages over the FPGA in terms of bandwidth. We develop
Falcon using Vitis HLS 2022.1, instantiate it on the AMD Alveo
U250 FPGA (16 nm) with 64 GB of DDR4 memory (four channels x
16 GB, 77 GB/s in total), and set the accelerator frequency to 200
MHz. We use a CPU server with 48 cores of Intel Xeon Platinum
8259CL operating at 2.5 GHz and 384 GB DDR4 memory (12 chan-
nels, 256 GB/s). GPU evaluations are performed on NVIDIA V100
with 16 GB HBM2 memory (900 GB/s). Both the CPU and GPU
servers are equipped with Mellanox ConnectX-4 NICs, providing
network bandwidth equivalent to the FPGA at 100 Gbps.

Datasets. We use the SIFT [8], Deep [12], and SPACEV [9]
datasets, containing 128, 96, and 100-dimensional vectors, respec-
tively, thus covering both vision features (SIFT and Deep) and text
embeddings (SPACEV). We evaluate their subsets of the first ten
million vectors, such that the constructed graphs can fit within the
GPU and FPGA memory.

Algorithm settings. Unless specified otherwise, we set the
maximum degree of the graphs to 64, balancing between graph
size and search quality. We set the candidate queue size as 64,
which ensures at least 90% recall for ten nearest neighbors across
datasets. Falcon uses the best-performing DST parameters unless
otherwise specified. For IVF indexes, we set the number of IVF lists
as 4096, approximately the square root of the number of vectors as
a common practice.

5.2 End-to-end Performance and Efficiency

We compare Falcon with baseline systems on the six combinations
between datasets and graphs. The software recall of these experi-
ments is noted in Figure 5: NSG consistently achieves better recall
than HNSW. Falcon always achieves better recall than software

Falcon (Across-query)
Dataset: SIFT10M, Graph: HNSW, R@10=95.57%

Falcon (Intra-query)

CPU (Graph)
Dataset: Deep10M, Graph: HNSW, R@10=94.11%

CPU (IVF) GPU (Graph) GPU (IVF)

10 Dataset: SPACEV10M, Graph: HNSW, R@10=90.53%

_ 10t _ 10t .
(%) %) (%)
E £ E
g 10 3 10° 3 100
c c c
[7] [19
= g g
L 5 5
1 _ _
10 1 4 16 10 1 4 16 10 1 4 16
Batch sizes Batch sizes Batch sizes
Falcon (Across-query) Falcon (Intra-query) CPU (Graph) CPU (IVF) GPU (IVF)

10t Dataset: SIFT10M, Graph: NSG, R@10=97.70% 10 Dataset: Deepl0M, Graph: NSG, R@10=96.71% 10t Dataset: SPACEV10M, Graph: NSG, R@10=94.83%
m m m
£ £ £
g 10 g 100 3 100
= c f=
[I3 CD
= bt =1
L s 5

1 _ -
10 1 16 10 1 16 10 1 16

4 .
Batch sizes

4
Batch sizes

4 .
Batch sizes

Figure 5: End-to-end GVS latency distribution of CPU, GPU, and Falcon across various graphs (rows) and datasets (columns).
The error bar shows the range within which 95% of query latencies fall; CPU latency with IVF may surpass the y-axis limit.

Falcon (Across-query) CPU (Graph) GPU (Graph)
. Falcon (Intra-query) CPU (IVF) GPU (IVF)
10
Ly0¢ Fl - Bf - BT B - - B
I < [l <] =<
102 = = =
<2 T - - P -
[4s) B - - == -
O 102 1] I] 1]
=
g I " I
10 § B M -
4 I = = 1 =<
S 190 = = =
SIFT-HNSW SIFT-NSG Deep-HNSW Deep-NSG SPACEV-HNSW SPACEV-NSG

R@10=95.6% R@10=97.7% R@10=94.1% R@10=96.7% R@10=90.5% R@10=94.8%

Figure 6: GVS throughput across processors, without latency
constraints, is strongly related to memory bandwidth.

because DST explores more search paths per query than BFS, as we
will analyze in §5.3.

5.2.1 End-to-end Online Search Latency. For online search, we treat
all systems as a service where both the client and the server are
connected to the same network switch. The network transmission
time between CPU servers and between CPUs and FPGAs are sim-
ilar — around 50us given a batch size of one, only a tiny fraction
of the end-to-end query latency. Figure 5 shows the distributions
of vector search latency for various batch sizes across six graph-
dataset combinations. We set the IVF-based index parameters for
each scenario to achieve at least the same recall as GVS.

Falcon consistently outperforms all baselines in median latency,
achieving speedups of up to 4.3x over CPU with graphs, 19.5X over
GPU with graphs, 102.1x over CPU with IVF, and 6.5 over GPU
with IVF. Falcon achieves the lowest search latency among the com-
pared systems, with its intra-query and across-query parallel modes
preferable for different batch sizes as we will discuss in §5.4. For
CPUs, GVS outperforms the IVF index as the latter requires more
database vectors to scan to achieve comparable recall [29, 63]. As
batch sizes increase, CPU GVS latency becomes closer to that of
Falcon, mainly benefiting from the CPU server’s 3.3 higher band-
width than the FPGA, whose bandwidth is saturated at a batch size
of four. On GPUs, the embarrassingly parallel scan pattern of IVF
results in better latency than GVS. Despite their high bandwidth
and numerous cores, GPUs struggle to efficiently handle queries

3805

with small batch sizes due to the GPU’s throughput-oriented archi-
tecture, which prioritizes parallel processing of many queries but
results in high latency for individual queries.

5.2.2 Throughput without Latency Constraints. Figure 6 presents
search throughput in queries-per-second (QPS) without latency
constraints by setting the batch size as 10K.

Unsurprisingly, when latency constraints are removed, GVS
throughput primarily becomes a competition of memory bandwidth.
For both CPUs and GPUs, graph-based indexes outperform IVF,
which necessitates scanning more database vectors to reach the
same recall [29, 63]. For GVS, the GPU exhibits superior throughput
thanks to its 12X memory bandwidth over the FPGA, as shown
in the upper half of Figure 6. Upon normalization by bandwidth
(Figure 6 lower), the performance of Falcon and GPUs becomes com-
parable, with GPUs showing a slight edge for SIFT. This is because
the GPU adopts the greedy BFS algorithm, whereas Falcon uses
DST that trades off additional nodes to visit for reduced latency,
as we will analyze in §5.3. The CPU performs the worst in QPS
per unit bandwidth due to additional memory accesses required to
check and update the visit status array.

5.2.3 Energy Efficiency. We measure the power consumption (in
Watt) of CPU, GPU, and Falcon using Intel RAPL, NVIDIA System
Management Interface, and AMD’s Vitis Analyzer. The energy con-
sumption per query batch (in Joule) is calculated by multiplying
power with batch latency.

Falcon is energy efficient, achieving up to 8.0, 26.9X, 231.1X, and
5.5% better energy efficiency than CPU graph, GPU graph, CPU IVF,
and GPU IVF, respectively. For online GVS with batch sizes up to
16, the power consumption of CPU, GPU, and Falcon ranges from
136.9~209.2W, 183.4~324.2W, and 55.2~62.3W, respectively. Con-
sidering energy consumption per batch, Falcon achieves 2.2~8.0x
and 11.9~26.9X better energy efficiency than CPUs and GPUs. For
offline GVS without latency constraints (using batch size of 10K),
Falcon still achieves 1.9~3.9% energy efficiency over CPUs, but
is outperformed by GPUs by 5.3~11.1X, indicating that GPUs re-
main the preferred option for scenarios requiring high-throughput
thanks to their superior memory bandwidth.

(a) Speedup over BFS (Intra-query)

(b) Speedup over BFS (Across-query)

(c) Normalized avg #hops per search

— —) 3
SRRl 200 207 227 231 23 sg! 182 195 192 184 1.76 5 £ 1 100 108 RliciRli2a SRlE2at R I
c= c= c—
C g2 134 222 244 258 2.62 251 20 8 a2 1.84 169 | 1.55 1.43 15 S = 2 1.07 123 1.39 154 170 1.86 2.01
3 # 3 ’ #* 3 -2
WESEIEWEN 001 233 247 241 220 202 <23 1.62 xS 3 114 138 162 185 232 256
© & -15 O T o
€ 'g)_ PREICEN 204 228 231 2.07 | hikl SR € g 4 10 E Q4 121 153 184 247 279 3.12
o1 -1
1 2 34 5 6 7 10 1 2 3 4 5 6 7 1 4 5 6 7
max #groups in the pipeline (mg) max #groups in the pipeline (mg) max #groups in the pipeline (mg)
(d) Compute efficiency over BFS (Intra-query) (e) Compute efficiency over BFS (Across-query) (f) Recall R@10 DeeplOM, HNSW
_g- E 1 1.00 1.65 2.10 249 2.86 3.18 5 E IERNES NN 211 242 254 258 2.5 ‘D'g 1 94.11 94.26 94.40 94.55 94.63 94.75 94.86 o5
~ 4 c c = "
0o 2 143 B 4.39 487 CEAREN 221 255 261 264 266 20 o 294239453 9474 95.15 95.33 95.45
3 # 3 ' # 2 -95.0
PSSRl 5768 4.57 | 5.03 5.11 x g ERRNCN 2.48 261 265 268 2.69 x % 3 94.36 94.73 95.31 95.50 95.64 95.79
© | -15
N 2 © © |
1S (TR RPN 420 498 511 5.17 1S g PPN 256 264 268 270 2.72 € g)_ PIRYWERCIE-EY 05,31 95.54 95.72 95.89 95.91 945
-1.0

1 2
max #

1 2 3 4 5 6 7
max #groups in the pipeline (mg)

3 4 5 6 7
groups in the pipeline (mg)

1

2 3 4 5 6 7
max #groups in the pipeline (mg)

Figure 7: The speedup, number of evaluated nodes, compute efficiency, and recall given various traversal configurations (HNSW
on the Deep10M dataset). The x- and y-axes represent DST parameters mg and mc, where BFS corresponds to mg = 1 and mc = 1.

SIFTIOM —A— DeeplOM —¢- SPACEV1OM
Across-query parallel, Graph: HNSW Across-query parallel, Graph: NSG
204" 47
o i x*‘ i *\‘sﬂ
52 2
o >
wnoop- 1 i 0- 1 I
Intra-query parallel, Graph: HNSW Intra-query parallel, Graph: NSG
awn 4- 4-
=t % ——i
§u 2 21
o >
no -y i 00— U !
16 32 64 16 32 64

max degree per node max degree per node

Figure 8: DST consistently outperforms BFS across various
datasets, graph configurations, and parallel modes.

5.3 DST Efficiency on Accelerators

5.3.1 Performance Benefits. We now discuss the speedup achieved
with different DST parameters and the maximum speedup across
various experimental setups.

The impact of DST configurations on performance. We
evaluate the impact of the numbers of candidate groups in the
pipeline (mg) and candidates per group (mc) on DST performance.
Figure 7 (a) and (b) shows the throughput speedup achieved by
DST compared to BFS on the Deep10M dataset with HNSW, across
both the intra-query and across-query parallel versions of Falcon.
BFS is equivalent to mg = 1, mc = 1 (upper-left corner), whereas
MCS, evaluating multiple candidates per iteration without delayed
synchronization, is shown in the first column (mg = 1, mec > 1). All
the other setups are considered as DST. Note that previous FPGA
designs [80, 103] adopts BFS, with Zeng et al. [103] implementing
a prefetching strategy on BFS that, at best (zero miss rate), matches
the performance of MCS with mc = 2.

The optimal configuration for DST varies across use cases, with
intra-query parallelism typically requiring higher parameter values
than across-query parallelism. As shown Figure 7, the optimal pa-
rameters are mg = 6, mc = 2 for intra-query parallelism (Figure 7
(a)) and mg = 4, mc = 1 for across-query parallelism (Figure 7 (b)).
This is because the intra-query version parallelizes the distance
computations, thus achieving a higher throughput of workload
processing per query, leading to a higher throughput of processing
nodes and thus necessitating a greater workload intensity to fully

3806

utilize the accelerator. However, higher mg = 6 and mc = 2 also
lead to a greater amount of query-wise workloads as more hops
are needed before the search terminates, as shown in Figure 7 (c).
Thus, the maximum speedup is determined by the balance between
accelerator utilization and the number of extra hops per query. Fig-
ures 7 (d) and (e) show the compute efficiency—measured as the
number of nodes evaluated per unit time—under different DST con-
figurations. As mg and mc increase, compute efficiency improves
but eventually plateaus. For instance, in Figure 7 (d), setting mg = 5
and mc = 3 yields a 5.03% improvement over BFS. However, fur-
ther increasing parallelism to mg = 7 and mc = 4 results in only a
marginal gain, reaching 5.23% over BFS.

Maximum speedup in various experimental setups. Fig-
ure 8 shows the speedup of DST over BFS across various settings,
including parallel modes, datasets, and graph types, and the maxi-
mum degrees of each graph.

DST consistently outperforms BFS across all setups, achieving
speedups from 1.7~2.9x. DST is particularly advantageous in intra-
query parallelism: with a maximum degree size of 64, it achieves
speedups of 2.5~2.9x over BFS for intra-query parallelism, com-
pared to 1.7~2.5% for across-query parallelism. This is because
intra-query parallelism utilizes more BFC units for a single query
and thus benefits more from increased workloads in the pipeline
when adopting DST. This reason is that lower node degrees reduce
the time required to fetch neighbors and compute distances when
applying BFS, leading to significant accelerator under-utilization,
as we explained in Figure 3.

5.3.2 Recall Benefits. The rightmost heatmap in Figure 7 shows
the improvements in search quality achieved by DST.

In general, larger numbers of candidates in the processing pipeline
(higher mg and mc) lead to increased recall. This is due to the evalu-
ation of a broader range of candidates. Although some candidates
may not be on the optimal search path, they could still lead to paths
that reach the nearest neighbors.

DST consistently achieves better recall than BFS across all exper-
iments. In Figure 7(f), employing the performance-optimal DST
configurations enhances R@10 from 94.11% to 94.55% and 95.33%
for across-query and intra-query parallelism, respectively. Given

DST speedup DST hops DST speedup DST hops
BFS speedup BFS hops BFS speedup BFS hops
wn X wn 44
:%LE N SIFT10M,HNSW 2.0 ol o SPACEV10M,NSG s o
D05 5 20 B S 3 X 2 S
v 7] 1 S
6 = Slis¥s 85 2 @ [150%
g7 %% N Ed ool $ N, E
£y |® | 55 E5 |4 Nl 2B 5y
S > vxi Z> S > cni z>
Z0 144, 3 10 © 2034 100 ©
4 1 2 4

1 2
#Bloom-fetch-compute (BFC) unit
(a) HNSW on SIFT

#Bloom-fetch-compute (BFC) unit

(b) NSG on SPACEV

Figure 9: DST achieves significantly better performance scal-
ability than BFS given intra-query parallelism.

various experimental setups as in Figure 8, the R@10 improvements
range from 0.14% to 4.93%.

5.4 Across-query and Intra-query Parallelism

5.4.1 Scalability of Intra-query Parallelism. Figure 9 compares the
scalability of DST and BFS given various numbers of Bloom-fetch-
compute (BFC) units across datasets, with all units sharing a com-
mon control unit to form a query processing pipeline (QPP). For
DST, we use mc and mg that achieve the highest performance.

DST demonstrates better performance scalability than BFS. For
example, for HNSW on the SIFT dataset (Figure 9a), the speedup
of DST over BFS increases from 1.78X to 2.44X as the number
of BFC units grows from one to four. BFS, with four BFC units,
achieves only a speedup of 1.41x over the single BFC version. This
limited scalability of BFS stems from its greedy traversal pattern,
which processes only one candidate at a time, resulting in minimal
parallelizable workloads per iteration while the control overhead
associated with the queues remains constant. In contrast, DST ex-
pands the workloads in the pipeline, ensuring that each BFC unit
has sufficient workload to work with. A similar speedup trend of
DST over BFS is observed across various datasets and graphs (e.g.,
Figure 9b), although not all results are shown here.

5.4.2 Performance Trade-offs between Intra-query and Across-query
Parallelism. Figure 5 compares the performance of the two types
of parallelism, where each accelerator contains four BFC units,
configured as either a single QPP for intra-query parallelism or four
QPPs for across-query parallelism.

The optimal choice of parallel mode is related to batch sizes. As
shown in as shown in Figure 5, intra-query parallelism is always
advantageous for a query size of one. However, since the latency
speedup from intra-query parallelism does not scale linearly with
the number of BFC units (Figure 9), across-query parallelism per-
forms better for queries with batch sizes at least equal to the number
of QPPs (four in our case). For batch sizes that fall between these
two scenarios, the preferred parallel mode depends on the dataset,
vector dimensionality, and graph construction parameters.

5.5 Speedup in Recommender and RAG Systems

We also evaluate the end-to-end speedup achieved by deploying
Falcon in recommender and RAG systems. Due to the wide range of
possible model configurations, the proportion of time spent on retrieval
can vary significantly (and consequently, the achievable speedup), as
we demonstrate below.

Recommender Systems. We instantiate two DLRM models of dif-
ferent sizes, as summarized in Table 2. The smaller model (RM-S) is

3807

Table 2: Recommendation model configurations.

Model Embedding Embedding Bot. Layers Top Layers
Table Num Dimension
RM-S 26 64 256,128,64 512,512,256,128,1
RM-L 104 64 512,256,128,64 1024,1024,512,256,1
Retrieval RM-S (rank top 16) Retrieval RM-L (rank top 16)
3 100 g 100
g s0 g s0
2 2
3 o 3 o
1 2 4 8 1 2 a4 8]
Retrieval RM-S (rank top 128) Retrieval RM-L (rank top 128)
9 3 100
g 50 g 50
2 g
8 o 3 o
1 2 4 8 1 2 4 8
Batch Size Batch Size

Figure 10: Latency breakdown of end-to-end recommenda-
tion using a CPU for retrieval and a GPU for inference, across
different model sizes and numbers of candidates to rank.

based on the Criteo TB dataset and includes 26 embedding tables,
while the larger model (RM-L) comprises over 100 tables, aligning
with recent industry-scale recommender systems [36, 47, 48]. We
assume that each recommendation request first performs an ANN
search to identify candidate items, followed by ranking the top 16
or 128 candidates via model inference. We adopt NVIDIA’s infer-
ence implementation [6] and evaluate it on a V100 GPU (same as
the vector search baseline), assuming that the embedding tables
fit in GPU memory. For the ANN search, we use the latency on
the SIFT dataset with HNSW as a reference. Figure 10 shows the
latency breakdown when using a typical CPU-GPU architecture,
where the CPU is responsible for ANN search. Depending on the
model sizes and the number of candidates to rank per request, the
percentage of time spent on retrieval can range from 17.56~68.92%.
Thus, by replacing the CPU with Falcon, the end-to-end speedup
for recommender system ranges from 1.03~1.60X.

RAG Systems. Similar to recommender systems, RAG pipelines
can be built using various LLMs [50, 52]. We evaluate the perfor-
mance of LLaMA models of varying sizes (ranging from 1B to 13B
parameters) across different GPUs (from NVIDIA V100 to B100),
using the Generative LLM Analyzer [13]. As in the recommender
setting, we use the latency of vector search on the SIFT dataset with
HNSW as a reference for retrieval time. We assume the prompt, in-
cluding both the query and retrieved documents, has a total length
of 512 tokens [50]. Prompt computation is done with a batch size
of one, as it already performs token-level batching inherently and
can fully utilize the GPU without request-level batching [79, 109].
The left side of Figure 11 shows the inference latency of prompt
computation given a single GPU, while the right side illustrates
the percentage of time-to-first-token (TTFT) latency spent on CPU-
based retrieval. As GPU capability improves, inference latency de-
creases significantly. For example, for the 1B model, TTFT latency
drops from 7 ms on a V100 to just 0.25 ms on a B100. As a result,
the proportion of retrieval time in the overall TTFT latency in-
creases—from 4.83% to 59.20%. Consequently, the end-to-end TTFT

LLM prefill latency (ms)

Retrieval latency in TTFT (%)
12.39 30.74 Fieivd)
5.54 15.64 38.73
490 15.12

7.00 2.51
£l 16.89 6.06
138 60.46 [hbyl)

-50

|—25

40
20

Model Size
Model Size

1.61

V100 A100

H100
Inference GPU

B100 V100 A100 H100

Inference GPU

B100

Figure 11: RAG latency across inference and retrieval stages.

speedup by deploying Falcon depends on both model size and GPU
backend, and can reach up to 1.60% given advanced GPUs.

6 DISCUSSION

We have shown the performance advantages of Falcon and DST
over CPUs and GPUs through FPGA-prototyping. We now dis-
cuss potential future extensions of the prototype to enable broader
deployments, including adding more functionalities, supporting
larger-scale searches, and achieving even higher efficiency.

Handling insertions and updates. To support data insertions,
deletions, or updates in Falcon, one could refer to the designs of
software vector search systems. They typically manage a primary
index for a dataset snapshot, an incremental (smaller) index for
newly added vectors since the last snapshot, and a bitmap marking
deleted vectors [95]. These two indexes are merged periodically,
e.g., daily, into a new primary index. Falcon can adopt this approach
by focusing on serving the primary index, while the incremental
index remains small enough to be efficiently managed by CPUs.

Scale-out the system. We have not yet scaled out Falcon due
to the limited number of FPGAs available. However, we expect the
scale-out design to be similar to software-based GVS systems [26].
Specifically, the dataset is partitioned into subsets, each associ-
ated with a graph managed by a separate Falcon node. Queries are
then directed to one or several of these partitions, with the results
subsequently aggregated.

Effectiveness on various memory and storage backends.
Although Falcon is evaluated using an FPGA prototype with DDR
memory, DST is applicable to a wide range of memory and storage
backends. This is because its key idea — improving the utilization of
compute units and memory bandwidth — is not tied to any specific
hardware. For instance, SSDs exhibit access latencies that are over
an order of magnitude higher (e.g., 20ps [57]) than DRAM (e.g.,
<100ns [17]). Under the high-latency condition and given the BFS
traversal strategy, compute units often remain idle while waiting for
data, as illustrated in stages S1 and S3 of Figure 3. By contrast, DST’s
aggressive node exploration strategy enables on-the-fly processing
of many nodes, thereby improving compute unit utilization and
reducing overall search latency.

Extensions for alternative hardware. The Falcon architecture
is not specific to the FPGA platform used in our evaluation and
can be applied to other hardware backends, including ASICs and
various systems containing FPGAs. For example, Falcon can be
implemented on FPGA-based data processing units (DPUs) acting
as SmartNICs [1, 3]. In such deployments, the FPGA may access
not only its local device memory, but also host server memory and
potentially remote memory, enabling larger-scale vector search.
ASIC-based instantiation will not only offer higher energy effi-
ciency, but also provide flexibility in memory technology choices.
For instance, integrating HBM into an ASIC-based Falcon design

3808

can deliver both low latency and high throughput that is compara-
ble to GPU-based systems.

7 RELATED WORK

ANN Search Algorithms. Researchers have developed various
ANN search algorithms [24, 30, 42, 46, 71, 77, 88, 93, 100, 108, 110]
and vector data management systems [35, 67, 76, 78, 90, 95, 101].
Many variants of graph construction algorithms for GVS have also
been proposed [11, 28, 29, 70, 72, 73, 81, 97, 107, 111], as GVS can
achieve high recall with low latency. Apart from GVS, other ANN
search indexes offer different trade-offs between indexing cost and
search performance. For example, locality-sensitive hashing (LSH)
and inverted-file (IVF) indexes are indexing techniques that par-
tition the vector space. Locality-sensitive hashing (LSH) [25, 32]
offers theoretical guarantees for ANN search, but empirically does
not perform as well as graph-based algorithms. IVF indexes empiri-
cally outperform LSH, but still require scanning more database vec-
tors than GVS to achieve the same recall [29, 63]. Beyond indexing,
product quantization (PQ) [31, 45] is a widely adopted approach to
compress high-dimensional vectors into compact byte codes. Often
combined with IVF [31, 45] or graph indexes [33, 44], PQ is particu-
larly prevalent in large-scale ANN search, where reducing memory
footprint is crucial, although this lossy compression technique can
degrade recall beyond that caused by the indexes.

Vector search on modern hardware. Beyond software opti-
mizations [10, 82], researchers have proposed various hardware-
based solutions for vector search. Exact kNN search can be accel-
erated by TPUs [21] or FPGAs [69, 102]. For ANN search, Faiss
is a popular GPU-accelerated library [53], and there are several
other implementations for PQ-based vector search [19, 20, 68, 96]
and GVS [34, 106]. Lee et al. [59] study ASIC designs for IVF-PQ,
and several works [49, 51, 104] implement IVF-PQ on an FPGA,
although their designs are constrained by either the limited HBM
capacity or the speed of the CPU-FPGA interconnect. Several works
propose to push down vector search to storage to improve perfor-
mance by reducing data movements [39, 56, 64, 65, 94, 99]. Besides,
the database vectors can be stored in non-volatile memory [84]
or CXL [43] to scale up GVS, while on-disk GVS must carefully
manage I/O costs [18, 44, 61, 91], similar to other graph processing
workloads [85, 89].

8 CONCLUSION

To meet the surging demands of online GVS, we propose Falcon,
a high-performance GVS accelerator, and DST, an accelerator-
optimized traversal algorithm. Evaluated across various graphs
and datasets, they shows up to 4.3X and 19.5X speedup in online
search latency compared to CPUs and GPUs, while being up to 8.0x
and 26.9x more energy efficient. These compelling results show
the potential for Falcon and DST to become the standard solutions
for GVS acceleration.

ACKNOWLEDGMENTS

We thank AMD for their generous donation of the Heteroge-
neous Accelerated Compute Clusters (HACC) at ETH Zurich
(https://systems.ethz.ch/research/data-processing-on-modern-
hardware/hacc.html), on which the experiments were conducted.

https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html

REFERENCES

(1]

[2

(11]

(12]

[14

[15

[16

(18]

(19]

[20]

(22]

[23]

[24

(25]

[26

[27]

[n.d.]. AMD Alveo SN1000 SmartNIC Accelerator Card. https://www.amd.com/
en/products/accelerators/alveo/sn1000/a-sn1022-p4.html.

[n.d.]. Faiss. https://github.com/facebookresearch/faiss/.

[n.d.]. Intel FPGA SmartNIC N6000-PL Platform. https://www.intel.com/
content/www/us/en/products/details/fpga/platforms/smartnic/n6000- pl-
platform.html.

[n.d.]. The Memory Wall: Past, Present, and Future of DRAM. https:
//semianalysis.com/2024/09/03/the-memory-wall/.

[n.d.]. The MurmurHash family. https://github.com/aappleby/smhasher.
[n.d.]. NVIDIA Deep Learning Recommender Model Implementa-
tion. https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/
Recommendation/DLRM.

[n.d.]. The NVIDIA GH200 Grace Hopper Superchip. https://www.nvidia.com/
en-us/data-center/grace-hopper-superchip.

[n.d.]. SIFT ANNS dataset. http://corpus-texmex.irisa.fr/

[n.d.]. The SPACEV Web Embedding Dataset. https://github.com/microsoft/
SPTAG/tree/main/datasets/SPACEV1B.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2016. Cache
locality is not enough: High-performance nearest neighbor search with product
quantization fast scan. In 42nd International Conference on Very Large Data
Bases, Vol. 9. 12.

Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-based
similarity search for scalable data science. Proceedings of the VLDB Endowment
16, 6 (2023), 1548-1559.

Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale
datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055-2063.

Abhimanyu Bambhaniya, Ritik Raj, Geonhwa Jeong, Souvik Kundu, Sudarshan
Srinivasan, Midhilesh Elavazhagan, Madhu Kumar, and Tushar Krishna. 2024.
Demystifying Platform Requirements for Diverse LLM Inference Use Cases.
arXiv:2406.01698 [cs.AR]

Dimitri P Bertsekas. 1993. A simple and fast label correcting algorithm for
shortest paths. Networks 23, 8 (1993), 703-709.

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422-426.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, et al. 2022. Improving language models by retrieving
from trillions of tokens. In International conference on machine learning. PMLR,
2206-2240.

Kevin K Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
2016. Understanding latency variation in modern DRAM chips: Experimental
characterization, analysis, and optimization. In Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Science. 323-336.

Qi Chen, Bing Zhao, Haidong Wang, Minggin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighbor Search. arXiv preprint arXiv:2111.08566 (2021).
Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, Qiang Wang, and
Wei Zhao. 2019. Vector and line quantization for billion-scale similarity search
on GPUs. Future Generation Computer Systems 99 (2019), 295-307.

Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, and Wei Zhao. 2019.
Robustiq: A robust ann search method for billion-scale similarity search on gpus.
In Proceedings of the 2019 on International Conference on Multimedia Retrieval.
132-140.

Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, and
Sanjiv Kumar. 2022. TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s.
arXiv preprint arXiv:2206.14286 (2022).

Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan, and Brucek
Khailany. 2021. 3.2 the a100 datacenter gpu and ampere architecture. In 2021
IEEE International Solid-State Circuits Conference (ISSCC), Vol. 64. IEEE, 48-50.
Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191-198.

Michele Dallachiesa, Themis Palpanas, and Ihab F Ilyas. 2014. Top-k nearest
neighbor search in uncertain data series. Proceedings of the VLDB Endowment
8,1(2014), 13-24.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004.
Locality-sensitive hashing scheme based on p-stable distributions. In Proceed-
ings of the twentieth annual symposium on Computational geometry. 253-262.
Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and
Niranjan Balasubramanian. 2020. LANNS: a web-scale approximate nearest
neighbor lookup system. Proceedings of the VLDB Endowment (2020).

Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,

3809

[28]

[29]

[30

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug
Burger. 2018. A configurable cloud-scale DNN processor for real-time AL In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1-14.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

Jianyang Gao and Cheng Long. 2023. High-dimensional approximate nearest
neighbor search: with reliable and efficient distance comparison operations.
Proceedings of the ACM on Management of Data 1, 2 (2023), 1-27.

Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor
Search. Proceedings of the ACM on Management of Data 2, 3 (2024), 1-27.
Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36,
4(2013), 744-755

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vidb, Vol. 99. 518-529.

Yutong Gou, Jianyang Gao, Yuexuan Xu, and Cheng Long. 2025. SymphonyQG:
Towards Symphonious Integration of Quantization and Graph for Approximate
Nearest Neighbor Search. Proceedings of the ACM on Management of Data 3, 1
(2025), 1-26.

Fabian Groh, Lukas Ruppert, Patrick Wieschollek, and Hendrik PA Lensch. 2022.
Ggnn: Graph-based gpu nearest neighbor search. IEEE Transactions on Big Data
9,1 (2022), 267-279.

Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, et al. 2022. Manu: A Cloud
Native Vector Database Management System. arXiv preprint arXiv:2206.13843
(2022).

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen,
Gu-Yeon Wei, Hsien-Hsin S Lee, David Brooks, and Carole-Jean Wu. 2020. Deep-
recsys: A system for optimizing end-to-end at-scale neural recommendation
inference. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 982-995.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.
2020. Realm: Retrieval-augmented language model pre-training. arXiv preprint
arXiv:2002.08909 (2020).

Zhenhao He, Dario Korolija, and Gustavo Alonso. 2021. EasyNet: 100 Gbps
Network for HLS. In 2021 31th International Conference on Field Programmable
Logic and Applications (FPL).

Han-Wen Hu, Wei-Chen Wang, Yuan-Hao Chang, Yung-Chun Lee, Bo-Rong
Lin, Huai-Mu Wang, Yen-Po Lin, Yu-Ming Huang, Chong-Ying Lee, Tzu-Hsiang
Su, et al. 2022. ICE: An Intelligent Cognition Engine with 3D NAND-based
In-Memory Computing for Vector Similarity Search Acceleration. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 763~
783.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip
Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2553—
2561.

Muhuan Huang, Kevin Lim, and Jason Cong. 2014. A scalable, high-performance
customized priority queue. In 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 1-4.

Qiang Huang, Yifan Lei, and Anthony KH Tung. 2021. Point-to-Hyperplane
Nearest Neighbor Search Beyond the Unit Hypersphere. In Proceedings of the
2021 International Conference on Management of Data. 777-789.

Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. { CXL-ANNS}:{Software-Hardware } Collaborative
Memory Disaggregation and Computation for {Billion-Scale} Approximate
Nearest Neighbor Search. In 2023 USENIX Annual Technical Conference (USENIX
ATC 23). 585-600.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate
billion-point nearest neighbor search on a single node. Advances in Neural
Information Processing Systems 32 (2019).

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117-128.

Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. 2015. Exact
top-k nearest keyword search in large networks. In Proceedings of the 2015 ACM
SIGMOD international conference on management of data. 393-404.

Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preufier, Kai Zeng, Liang
Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, et al. 2021. Mi-
croRec: efficient recommendation inference by hardware and data structure
solutions. Proceedings of Machine Learning and Systems 3 (2021), 845-859.

 https://www.amd.com/en/products/accelerators/alveo/sn1000/a-sn1022-p4.html
 https://www.amd.com/en/products/accelerators/alveo/sn1000/a-sn1022-p4.html
https://github.com/facebookresearch/faiss /
 https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
 https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
 https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
 https://semianalysis.com/2024/09/03/the-memory-wall/
 https://semianalysis.com/2024/09/03/the-memory-wall/
 https://github.com/aappleby/smhasher
 https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/DLRM
 https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/DLRM
 https://www.nvidia.com/en-us/data-center/grace-hopper-superchip
 https://www.nvidia.com/en-us/data-center/grace-hopper-superchip
http://corpus-texmex.irisa.fr/
 https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
 https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://arxiv.org/abs/2406.01698

(48]

(49]

[51

(52]

(53]

[55]

[56]

[57]

(58]

o
20,

[60

[61

[62

(63

[68

Wengi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong Zhang,
Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, et al. 2021. Fleetrec: Large-
scale recommendation inference on hybrid gpu-fpga clusters. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
3097-3105.

Wengqi Jiang, Shigang Li, Yu Zhu, Johannes de Fine Licht, Zhenhao He, Runbin
Shi, Cedric Renggli, Shuai Zhang, Theodoros Rekatsinas, Torsten Hoefler, et al.
2023. Co-design hardware and algorithm for vector search. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-15.

Wengqi Jiang, Suvinay Subramanian, Cat Graves, Gustavo Alonso, Amir Yazdan-
bakhsh, and Vidushi Dadu. 2025. RAGO: Systematic Performance Optimization
for Retrieval-Augmented Generation Serving. In Proceedings of the 52th Annual
International Symposium on Computer Architecture.

Wengqi Jiang, Marco Zeller, Roger Waleffe, Torsten Hoefler, and Gustavo Alonso.
2025. Chameleon: a heterogeneous and disaggregated accelerator system for
retrieval-augmented language models. Proceedings of the VLDB Endowment 18
(2025).

Wengqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska.
2025. Piperag: Fast retrieval-augmented generation via adaptive pipeline paral-
lelism. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2025).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data (2019).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint arXiv:2004.04906 (2020).
Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39-48.

Ji-Hoon Kim, Yeo-Reum Park, Jaeyoung Do, Soo-Young Ji, and Joo-Young Kim.
2022. Accelerating large-scale graph-based nearest neighbor search on a com-
putational storage platform. IEEE Trans. Comput. 72, 1 (2022), 278-290.
Sungjoon Koh, Changrim Lee, Miryeong Kwon, and Myoungsoo Jung. 2018.
Exploring system challenges of {ultra-low} latency solid state drives. In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 18).
James LaGrone, Ayodunni Aribuki, and Barbara Chapman. 2011. A set of
microbenchmarks for measuring OpenMP task overheads. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA). Citeseer, 1.

Yejin Lee, Hyunji Choi, Sunhong Min, Hyunseung Lee, Sangwon Beak, Dawoon
Jeong, Jae W Lee, and Tae Jun Ham. 2022. ANNA: Specialized Architecture for
Approximate Nearest Neighbor Search. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 169-183.

Charles E Leiserson. 1979. Systolic Priority Queues. Technical Report.
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCI-
ENCE.

Herwig Lejsek, Fridrik Heidar Asmundsson, Bjérn Pér Jénsson, and Laurent
Amsaleg. 2008. NV-Tree: An efficient disk-based index for approximate search in
very large high-dimensional collections. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31, 5 (2008), 869-883.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
téschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive
nlp tasks. Advances in Neural Information Processing Systems 33 (2020), 9459—
9474.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2019. Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475-1488.

Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang, Huawei Li, and Xiaowei Li.
2019. Cognitive {SSD}: A deep learning engine for {In-Storage} data retrieval.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 395-410.
Shengwen Liang, Ying Wang, Ziming Yuan, Cheng Liu, Huawei Li, and Xiaowei
Li. 2022. VStore: in-storage graph based vector search accelerator. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. 997-1002.

Peng-Cheng Lin and Wan-Lei Zhao. 2019. Graph based nearest neighbor search:
Promises and failures. arXiv preprint arXiv:1904.02077 (2019).

Shige Liu, Zhifang Zeng, Li Chen, Adil Ainihaer, Arun Ramasami, Songting
Chen, Yu Xu, Mingxi Wu, and Jianguo Wang. 2025. TigerVector: Support-
ing Vector Search in Graph Databases for Advanced RAGs. arXiv preprint
arXiv:2501.11216 (2025).

Zihan Liu, Wentao Ni, Jingwen Leng, Yu Feng, Cong Guo, Quan Chen, Chao
Li, Minyi Guo, and Yuhao Zhu. 2023. JUNO: Optimizing High-Dimensional
Approximate Nearest Neighbour Search with Sparsity-Aware Algorithm and
Ray-Tracing Core Mapping. arXiv preprint arXiv:2312.01712 (2023).

3810

[69]

[70

(71

[72

[73]

[74

[75

[76

[77

[78

[79

[80]

[81

[82]

[83

[84

[85

[86

[87

(88

[89]

[90

[o1

Alec Lu, Zhenman Fang, Nazanin Farahpour, and Lesley Shannon. 2020. CHIP-
KNN: A configurable and high-performance k-nearest neighbors accelerator on
cloud FPGAs. In 2020 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 139-147.

Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:
hierarchical graph structure based on voronoi diagrams for solving approximate
nearest neighbor search. Proceedings of the VLDB Endowment 15, 2 (2021), 246
258.

Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. Efficient processing
of k nearest neighbor joins using mapreduce. arXiv preprint arXiv:1207.0141
(2012).

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61-68.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824-836.
Dinesh P Mehta and Sartaj Sahni. 2004. Handbook of data structures and appli-
cations. Chapman and Hall/CRC.

Ulrich Meyer and Peter Sanders. 2003. A-stepping: a parallelizable shortest
path algorithm. Journal of Algorithms 49, 1 (2003), 114-152.

Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Thab F
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023.
High-Throughput Vector Similarity Search in Knowledge Graphs. Proceedings
of the ACM on Management of Data 1, 2 (2023), 1-25.

Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.
2020. Progressive top-k nearest neighbors search in large road networks. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1781-1795.

James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of vector database
management systems. arXiv preprint arXiv:2310.14021 (2023).

Pratyush Patel, Esha Choukse, Chaojie Zhang, iﬁigo Goiri, Aashaka Shah, Saeed
Maleki, and Ricardo Bianchini. 2023. Splitwise: Efficient generative llm inference
using phase splitting. arXiv preprint arXiv:2311.18677 (2023).

Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A Weitze,
Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, et al. 2021. Optimizing
fpga-based accelerator design for large-scale molecular similarity search (special
session paper). In 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 1-7.

Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.
Efficient approximate nearest neighbor search in multi-dimensional databases.
Proceedings of the ACM on Management of Data 1, 1 (2023), 1-27.

Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren. 2023. iqan: Fast
and accurate vector search with efficient intra-query parallelism on multi-core
architectures. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming. 313-328.

Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A reconfigurable
fabric for accelerating large-scale datacenter services. ACM SIGARCH Computer
Architecture News 42, 3 (2014), 13-24.

Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest
neighbor search on heterogeneous memory. Advances in Neural Information
Processing Systems 33 (2020), 10672-10684.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. 2015. Chaos: Scale-out graph processing from secondary storage.
In Proceedings of the 25th Symposium on Operating Systems Principles. 410-424.
Josef Sivic and Andrew Zisserman. 2003. Video Google: A text retrieval approach
to object matching in videos. In Computer Vision, IEEE International Conference
on, Vol. 3. IEEE Computer Society, 1470-1470.

Jan Suchal and Pavol Néavrat. 2010. Full text search engine as scalable k-nearest
neighbor recommendation system. In IFIP International Conference on Artificial
Intelligence in Theory and Practice. Springer, 165-173.

Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:
solving c-approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. Proceedings of the VLDB Endowment (2014).

Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You Need: A
Generic {I/O} Optimization for Disk-based Graph Processing. In 2016 USENLX
Annual Technical Conference (USENIX ATC 16). 507-522.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

Mengzhao Wang, Weizhi Xu, Xiaomeng Yi, Songlin Wu, Zhangyang Peng, Xi-
angyu Ke, Yunjun Gao, Xiaoliang Xu, Rentong Guo, and Charles Xie. 2024. Star-
ling: An i/o-efficient disk-resident graph index framework for high-dimensional

[92]

[93

(94]

[95]

[96

[97]

[99

[100]

[101]

vector similarity search on data segment. Proceedings of the ACM on Manage-
ment of Data 2, 1 (2024), 1-27.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. Proceedings of the VLDB Endowment (2021).
Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Muham-
mad Aamir Cheema. 2015. Optimal spatial dominance: an effective search
of nearest neighbor candidates. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. 923-938.

Yitu Wang, Shiyu Li, Qilin Zheng, Linghao Song, Zongwang Li, Andrew Chang,
Hai Li, Yiran Chen, et al. 2023. In-Storage Acceleration of Graph-Traversal-
Based Approximate Nearest Neighbor Search. arXiv preprint arXiv:2312.03141
(2023).

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: a hybrid analytical engine towards
query fusion for structured and unstructured data. Proceedings of the VLDB
Endowment 13, 12 (2020), 3152-3165.

Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik
Lensch. 2016. Efficient large-scale approximate nearest neighbor search on
the gpu. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2027-2035.

Yubao Wu, Ruoming Jin, and Xiang Zhang. 2014. Fast and unified local search
for random walk based k-nearest-neighbor query in large graphs. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of Data. 1139-
1150.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

Weihong Xu, Junwei Chen, Po-Kai Hsu, Jaeyoung Kang, Minxuan Zhou, Sumukh
Pinge, Shimeng Yu, and Tajana Rosing. 2023. Proxima: Near-storage Acceler-
ation for Graph-based Approximate Nearest Neighbor Search in 3D NAND.
arXiv preprint arXiv:2312.04257 (2023).

Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Wei Wang. 2015.
Reverse k nearest neighbors query processing: experiments and analysis. Pro-
ceedings of the VLDB Endowment 8, 5 (2015), 605-616.

Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-
dimensional approximate nearest neighbor search extension. In Proceedings of

3811

[102

[103

[104

[105

[106

[107]

[108]

[109

[110

[111]

the 2020 ACM SIGMOD international conference on management of data. 2241—
2253.

Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong Han, Yuhang Jiang,
Ding Tang, Zilong Wang, Kai Chen, and Chuanxiong Guo. 2022. {FAERY }:
An {FPGA-accelerated} Embedding-based Retrieval System. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). 841-
856.

Shulin Zeng, Zhenhua Zhu, Jun Liu, Haoyu Zhang, Guohao Dai, Zixuan Zhou,
Shuangchen Li, Xuefei Ning, Yuan Xie, Huazhong Yang, et al. 2023. DF-GAS: a
Distributed FPGA-as-a-Service Architecture towards Billion-Scale Graph-based
Approximate Nearest Neighbor Search. (2023).

Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient large-scale approx-
imate nearest neighbor search on OpenCL FPGA. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4924-4932.

Lingqi Zhang, Mohamed Wahib, Haoyu Zhang, and Satoshi Matsuoka. 2020. A
study of single and multi-device synchronization methods in Nvidia GPUs. In
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 483-493.

Weijie Zhao, Shulong Tan, and Ping Li. 2020. Song: Approximate nearest
neighbor search on gpu. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 1033-1044.

Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
efficient index construction and approximate nearest neighbor search in high-
dimensional spaces. Proceedings of the VLDB Endowment 16, 8 (2023), 1979-1991.
Yuxin Zheng, Qi Guo, Anthony KH Tung, and Sai Wu. 2016. Lazylsh: Approx-
imate nearest neighbor search for multiple distance functions with a single
index. In Proceedings of the 2016 International Conference on Management of
Data. 2023-2037.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe
Liu, Xin Jin, and Hao Zhang. 2024. Distserve: Disaggregating prefill and de-
coding for goodput-optimized large language model serving. arXiv preprint
arXiv:2401.09670 (2024).

Huaijie Zhu, Xiaochun Yang, Bin Wang, and Wang-Chien Lee. 2016. Range-
based obstructed nearest neighbor queries. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. 2053-2068.

Chaoji Zuo and Dong Deng. 2023. ARKGraph: All-Range Approximate K-
Nearest-Neighbor Graph. Proceedings of the VLDB Endowment 16, 10 (2023),
2645-2658.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Vector Search: Problem Definition
	2.2 Graph-based Vector Search
	2.3 Limitations of Existing Processors for GVS
	2.4 Motivation: Algorithm-Hardware Co-Design

	3 Falcon for GVS Acceleration
	3.1 Design Overview
	3.2 Hardware Processing Elements
	3.3 Intra-query and Across-query Parallelism
	3.4 Accelerator-as-a-Service Implementation

	4 Delayed-Synchronization Traversal
	4.1 Inefficiency of BFS on Accelerators
	4.2 Goal: Improving Accelerator Performance through Traversal Algorithm Redesign
	4.3 Low-latency GVS via DST

	5 Evaluation
	5.1 Experimental Setup
	5.2 End-to-end Performance and Efficiency
	5.3 DST Efficiency on Accelerators
	5.4 Across-query and Intra-query Parallelism
	5.5 Speedup in Recommender and RAG Systems

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

