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ABSTRACT

Processing long-running read-write transactions on graphs is an
open challenge, primarily due to the need for serializability to
maintain basic structural consistency of graphs. We identify that
a fundamental impediment to a solution arises from the homo-
geneous database-wide notion of transaction isolation developed
for relations, which fails to capture the heterogeneous consistency
semantics on graphs. We propose Ddi, a notion of �ne-grained iso-
lation for graph transactions that advocates per-operation isolation
allocation. It extracts concurrency for graph transactions that tradi-
tional isolation cannot, by assigning one or multiple isolation levels
to each traversal operation, while maintaining graph consistency
as serializability does. We develop formal semantics for Ddi and
prove the consistency guarantees of its transaction schedules. We
also develop DD-OCC, an optimistic concurrency control protocol for
Ddi isolation, and implement it on a state-of-the-art graph storage.
Experiments over LDBC graphs con�rm the e�ectiveness of Ddi.
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1 INTRODUCTION

Graph transactions are more ubiquitous than they may initially
seem. To maintain even the most basic structural consistency of
graphs, e.g., no dangling edge [21, 30], an edge insertion is already
a read-write transaction that involves reading vertices for consis-
tency checking prior to updating edge records. As a result, running
updates on graphs concurrently demands transaction isolation to
prevent potential violation of consistency requirements of graphs.

As an example, removing isolated vertices while processing con-
current edge insertions would have already needed serializability
as the lowest isolation level to eliminate the possibility of inserting
edges attached to an isolated vertex that is removed concurrently, a
classic “write skew” anomaly that yields dangling edges in graphs.

Previous work. In light of this, there has been growing interest in
developing transactional graph systems [15, 20, 21, 28, 30, 49] for ef-
�ciently updating graphs while o�ering serializability to maintain

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749654

the structural consistency of graphs. They develop highly engi-
neered data structures that allow �exible trade-o�s between graph
scan performance and update e�ciency.With these, they then adapt
relational concurrency control protocols to the structures, naturally
migrating isolation guarantees from relations to graphs.

Limitation. Due to the imperative of serializability for maintaining
the most basic structural consistency of graphs, current transac-
tional graph systems all choose to maintain serializability for their
targeted workloads. This signi�cantly increases the chance of con-
�icts between transactions on graphs, in particular for transactions
that involve long-running graph traversals. Indeed, under serializ-
ability, any edge insertion or deletion in the traversed area of long-
running transactions would cause a prohibited read-write con�ict.

Example 1: Consider a graph ă where each vertex Ĭ is associated
with an importance score ĩĬ determined by its neighbor vertices, e.g.,
aggregated from scores of its ġ-hop neighbors via a GNNmodel [32]
or personalized PageRank [35]. Consider transaction ĐĈ (ī, Ĭ) that
�rst updates ĩī by aggregating importance scores of vertices in its
neighborhood and then inserts an edge (ī, Ĭ) if ĩī is greater than
a threshold. Then ĐĈ is a long-running transaction as it involves
graph traversal to compute the GNN score ĩī . On the other hand,
ă may be concurrently updated by short transactionsĐď that insert
or delete an edge or a vertex. To preventă from being corrupted by
dangling or duplicated edges [21, 30], one needs serializability (Sr)
to executeĐĈ andĐď . However, under Sr, whenĐď operates on vertex
or edge within ġ-hop of ī,ĐĈ may consistently block concurrentĐď
for extended period of time under lock-based concurrency control,
or be hardly able to commit under optimistic concurrency control
due to excessive con�icts with Đď transactions. 2

As a result, existing transaction graph systems often overlook
long-running read-write transactions; when such transactions oc-
cur, they either give up on transactional semantics or degrade to
a serial execution. Sortledton [21], a state-of-the-art transactional
graph system, only supports read-only long-running transactions,
by querying a separately maintained graph snapshot.

This is also observed by a recent case study [17], jointly reported
by industry and academia peers, concluding that current systems
simply “presume that long running read-write transactions are rare
and choose to not support them due to the signi�cant challenges
in doing so e�ciently”. This is despite evidence showing that such
transactions are becoming increasingly prevalent in real-world
workloads [17, 34, 41], largely attributed to the �exibility of graph
models and query languages, which are adept at expressing complex
business logic through graph traversals, analytics and updates.

Present work. We aim to tackle the open challenge of supporting
long running transactions on graphs. Unlike previous research that
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predominantly concentrates on data structures that facilitate e�-
cient short updates, we argue that a fundamental impediment to
a complete solution for graph transactions arises from the direct
application of transaction isolation for RDBMS to graphs.

Isolation is used to assure the consistency of databases in pres-
ence of concurrent transactions. In the relational world, a database
is consistent if it satis�es any possible integrity constraints and
application-dependent constraints [38], e.g., database triggers [24].
Such worst-case interpretation of consistency is inherently homo-
geneous, assuming that every database value is equally important.

Hence, transaction isolation and associated concurrency control
techniques are all built on the practice that isolation is a global,
database-wide con�guration that protects all data values in a data-
base1. This however is an overkill for graphs due to the consistency
heterogeneity on graphs. For instance, while graph structures need
serializability to protect, property values, e.g., the aggregate score
ĩī of ĐĈ in Example 1, often need not. Even an edge insertion may
have varying implications in di�erent places of the graph.

Data-driven isolation (Ddi). In light of this, we propose data-

driven isolation (Ddi) for transactions on graphs. It advocates a
�ne-grained isolation allocation that assigns di�erent isolation lev-
els to di�erent transaction operations. For instance, it can run the
traversal operation (GNN computation of ĩī ) ofĐĈ in Example 1with
read committed or a mix of snapshot isolation and serializability,
while executing the subsequent edge insertion (ī, Ĭ) with serializ-
ability. By doing so, it extracts concurrency for cases where current
practice cannot, while still maintaining the consistency of graphs.

To realize this idea, it however demands a fundamentally new
understanding of transaction isolation. For example, the decades
old foundation of transaction isolation is built on database-wide
isolation allocation, as for instance we often refer to a system as
serializable. The implication of mixing isolation of read-write trans-
actions on consistency is unclear. For instance, while serializability
is a global constraint over the execution trace of entire transaction
workload, other lower isolation levels are local to individual trans-
actions; moreover, a write transaction under read committed can
overwrite already committed writes governed by snapshot isolation.
This is made more challenging when di�erent operations of the
same transaction have di�erent isolation levels.

To deal with the challenge, we develop Ddi with the following.

Ddi isolation allocation. We present a simple consistency model
that concisely captures application-speci�cally consistency require-
ments on graphs. Given any consistency abstraction, we deduce an
Ddi isolation speci�cation that assigns isolation levels to transac-
tion operations, such that concurrent transaction execution is guar-
anteed to comply with any application requirements (e.g., no dan-
gling or duplicated edges) modeled by the consistency abstraction.

Formal guarantees of Ddi. Critical to Ddi is its formal semantics
that give us the exact de�nition of when a transaction execution
is valid under a given Ddi isolation speci�cation. Although the
foundation of transaction isolation has been well understood in

1Strictly speaking, an isolation level has connection-wide scope and is in e�ect for
all transactions within a database connection, unless, rarely, a transaction statement
contains an isolation hint. Normally, it is set as a global con�guration for the database
and we often refer to database system as a e.g., serializable system.

textbooks for several decades, it is built on database-wide global
isolation practice, and thus o�ers little help for Ddi.

To this end, we develop the formal semantics of Ddi isolation
based on an implementation-independent notion of transaction
schedules for multi-version (MVCC) storage. As the main result, we
formally prove that concurrent transaction execution permitted by a
Ddi isolation speci�cation strictly maintains consistency semantics
that Ddi observes when deducing its isolation allocation. We also
study fundamental properties of Ddi isolation under this semantics,
including its expressiveness, consistency and concurrency.

Ddi concurrency control protocol.We show that existing concurrency
control can be readily extended to capitalize on Ddi, by developing
DD-OCC as an proof-of-concept optimistic concurrency control pro-
tocol for Ddi. We also prove its correctness: all DD-OCC transaction
execution schedules conform to Ddi isolation speci�cation.

System GDDI. Built on Sortledton [21], the state-of-the-art trans-
actional graph storage, we develop system GDDI that implements
DD-OCC and puts Ddi isolation into action. To make better use of
the �ne-grained isolation of Ddi, GDDI further implements isola-
tion partition, a method that “partitions” a large traversal opera-
tion of long-running transactions into multiple smaller logical sub-
operations, and assigns themwith di�erent isolation levels. In doing
so, GDDI is able to run a long-running traversal operation with
multiple isolation levels according to traversed vertices and edges.

Using LDBC benchmark and public graphs, we experimentally
validated the bene�ts of Ddi isolation, by comparing system GDDI

with current systems over varying workloads, including those with
and without long-running transactions. Results verify that GDDI
is able to deal with long-running transactions that existing systems
struggle with, while being comparable or better for traditional
short-transaction only workloads that existing systems are built for,
thanks to unique properties of Ddi and low overhead of DD-OCC.

Organization. We present the Ddi isolation allocation scheme in
Section 3.2. We then develop formal foundations of Ddi in Section 4,
based onwhichwe design DD-OCC protocol and prove its correctness
in Section 5. We describe system GDDI in Section 6 and experimen-
tally evaluate its performance in Section 7.We describe related work
below, present preliminaries in Section 2 and conclude in Section 8.

Related Work. We categorize related work below.

Transactional graph storage. There has been a host of work on trans-
actional graph storage [15, 20, 21, 28, 30, 49]. They focuses on e�-
cient concurrent graph data structures that balance scan and update
performance. They target concurrent single edge insertions and
deletions under serializability [21, 30]. As remarked in [17, 21], long-
running transactions are an open challenge. Hence they either re-
strict their transaction to read-only and lower their isolation guaran-
tees to snapshot isolation [21, 30] when long-running transactions
are present, or simply give up on isolation guarantees e.g., Neo4j’s
Graph Data Science library [6] and MemGraph’s MAGE library [5].

In contrast to prior attempts, we aim to support a complete mix of
all types of graph transactions, including long-running read-write
ones that are left open due to their the signi�cant challenges [17]. In
addition, our techniques are based on a fundamentally new theory
of �ne-grained isolation rather than data structure optimizations.
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Figure 1: Graph ă for running examples

Long-running transactions. Thanks to the rapid development of
graph model and associated query languages [11, 23] and analytical
libraries [5, 6], developers can now easily design transactions that
span large parts of graphs for e.g., real-time fraud detection via
GNN classi�cation [27, 42, 43], personalized recommendation [47]
and community detection [31] over dynamic graphs. They demand
in-place updates for real-time actions, which naturally demands
transactional semantics, giving rise to long-running transactions
similar toĐĈ of Example 1. Despite their increasing popularity, they
remain underserved due to signi�cant challenge in currency control
[17, 21]. Moreover, as we will see in Section 7, even a very small frac-
tion of such long-running transactions would signi�cantly change
the characteristics of existing transactional workloads on graphs.

While there has been little support by transactional graph sys-
tem, long-running transactions have been recognized and stud-
ied since long time ago [39], often dubbed as long-lived transac-
tions (LLTs) [22]. A typical solution, e.g., Sagas [22], is to split the
transaction into a sequence of smaller mini-transactions, which
can then be executed separately, reducing resource occupation of
LLTs [22, 37]. However, the mini-transactions are still executed
with the same database-wide isolation as the original transaction
does. In contrast, Ddi deals with the situation by seeking for �ne-
grained per-operation isolation allocation, to extract concurrency
without comprising graph consistency. This said, we envisage that
Sagas can potentially be incorporated in GDDI to help break down
large traversals for isolation partition to work.

Mixing isolation. While we often refer to a database system as a e.g.,
serializable system [13, 21, 38], and treat isolation levels as a prop-
erty of databases, modern relational database systems in theory
support per-transaction isolation allocation via e.g., isolation hint
in SQL statement [4]. However, the precise semantics of mixing iso-
lation levels across transactions are rarely discussed. It has been a
gray area in these systems without a universally agreed semantics.

As far as we know, there have been only two attempts to make
sense of mixed isolation levels: mixing-correctness [9, 44] and
serializability preserving [25]. However, they both focus on per-
transaction level isolation, which is a special case of per-operation
isolation that Ddi advocates. More importantly, we show in Sec-
tion 4.3 that mixing-correctness is in fact ill-de�ned and is too weak
to maintain graph consistency while serializability preserving is
rather restrictive and admits much lower concurrency than Ddi

does, even Ddi reduces to per-transaction isolation.

2 TRANSACTION ISOLATION ON GRAPHS

Graphs. We consider labeled undirected graphs with data values.
Speci�cally, a graphă is a quadruple (V, E, Ĉ, Ā), where (a)V and
E ¦ V ×V are multisets of vertices and edges, respectively, (b) Ĉ
assigns a label Ĉ(Ĭ) (resp. Ĉ(ě)) for each Ĭ ∈ V (resp. ě ∈ E), and (c)
Ā attaches a data valueĀ (Ĭ) (resp.Ā (ě)) to each Ĭ (resp. edge ě). We
assume Ĉ(E) = Ĉ(V) ×Ĉ(V) when Ĉ(E) is not explicitly speci�ed.

Table 1: Transaction operations over graph ă (V, E, Ĉ, Ā)

op De�nition RS(R) / WS(W)

Atomic Operations

RV (Ĭ)
read and return Ĉ (Ĭ) and Ā (Ĭ) if Ĭ ∈ V ,
or return nil otherwise

{v}

RE (ī, Ĭ) return True if (ī, Ĭ) ∈ E; or False otherwise { (ī, Ĭ) }

RN (Ĭ) return the set of direct neighbors of Ĭ
{Ĭ}∪{ī | (Ĭ,ī ) ∈ E}
∪{ (Ĭ,ī ) |ī ∈ V}

WV (Ĭ) add Ĭ to or remove Ĭ from V , or update Ā (Ĭ) {Ĭ}, or{Ā (Ĭ) }

WE (ī, Ĭ)
add (ī, Ĭ) to E, remove (ī, Ĭ) from E
or update value Ā (ī, Ĭ)

{ (ī, Ĭ) }

Compound (traversal) Operation

RN (Ĭ, ℓ )
call RN (Ĭ) and return N(Ĭ, ℓ ) : the set of
direct neighbors of vertex Ĭ with label ℓ

the RS of RN (Ĭ)

RN (ď, ℓ )
given a set ď of vertices and label ℓ as input,
read and return ∪Ĭ∈ďN(Ĭ, ℓ )

∪Ĭ∈ďRS(RN (Ĭ, ℓ ) )

TRġ (Ĭ)
traverseă from Ĭ up to ġ hops via ġ-times
recursive calls to RN (ī ) , starting from Ĭ

union of RS of
all calls to RN

TRġ (Ĭ, ℓ )
traverseă from vertex Ĭ up to ġ hops via
recursive calls to RN (ī, ℓ ) , starting from Ĭ

union of RS of
all calls to RN (Ĭ, ℓ )

Update Operation∗ (application-dependent)

insert(ī, Ĭ) (resp. insert(Ĭ)) insert an edge (ī, Ĭ) (resp. vertex Ĭ) ină

delete(ī, Ĭ) (resp. delete(Ĭ)) remove edge (ī, Ĭ) (resp. vertex Ĭ) fromă
∗Implementation varies depending on consistency guarantees the system upholds.

Each vertex is indexed by a vertex ID and an edge ě ∈ E is
indexed by the vertex IDs of ī and Ĭ if ě = (ī, Ĭ). We refer to the
vertices and edges of ă , i.e.,V ∪ E, as the data items of ă .

Example 2: Figure 1 (solid lines) depicts the graphă of Example 1.
Vertices have types determined by their labels, e.g., user. The value
Ā (Ĭ1) of user vertex Ĭ1 is its user ID uid1 and score (e.g., PageRank)
ĩ; similarly Ā (Ĭ5) is warehouse wh and stock snum. 2

Transaction model. We model the basics of graph transactions.

Atomic operations. A transactionĐ over graphă (V, E, Ĉ, Ā) is com-
posed of atomic operations (op

1
, . . . , opĤ), where each opğ is one

of the 5 atomic operations in Table 1. Intuitively, each opğ either
accesses setV or E (i.e., read operations RV, RE and RN ), or changes
their elements (i.e., write operations WV and WE).

Update operations. We shall remark that WE (ī, Ĭ) is an atomic opera-
tion that adds (ī, Ĭ) to set E or changes its value. However, WE (ī, Ĭ)
does not necessarily express an edge insertion, which in most cases
is not atomic and involvesmore than one atomic operations, depend-
ing on the consistency guarantees that the system upholds. When
their implementation with atomic operations is irrelevant, we sim-
ply write insert(ī, Ĭ) and insert(Ĭ) for edge insertion and vertex
insertion, respectively; the same for deletion. To distinguish them
from WE and WĒ , we refer to them as update operations in Table 1.

Access sets. The access set, also referred to as the read-set RS(R) of
a read operation R or the write-set WS(W) of a write operation W, is
the set of vertices and edges appeared in the operation (see Table 1
for details). Two operations are in con�ict, or called con�icting, if
their access sets overlap and one of them is a write, i.e., WV or WE.

Graph transactions. A graph transaction Đ over ă is a pair (C,T),
where C ¦ V and T is a sequence of atomic operations op

1
, . . . ,

opĤ , such that for each ğ ∈ [1, Ĥ], for each input Ĭ of opğ , either Ĭ
is from C or there exists a read operation opĠ in T with Ġ < ğ and
Ĭ ∈ RS(opĠ ). Intuitively, the input parameter of each operation in
the transaction can only be speci�ed by the input vertices in C or
be retrieved by an earlier operation in the transaction.
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The read-set of transaction Đ , denoted by RS(Đ ), is the union of
the read-sets of all reads inĐ ; similarly for its write-set WS(Đ ). Two
transactions are in con�ict if their read or write sets overlap.

Traversals and long-running transactions. Long-running graph trans-
actions are often induced by compound operations that build atop
atomic operations, particularly RN . They follow a two-stage “traverse-
and-aggregate” pattern, like ĐĈ of Example 1: it �rst traverses ă
starting from a vertex Ĭ via e.g., BFS (Breadth-First Search), up to
ġ rounds; it then invokes an analytical algorithm, oftentimes an
aggregation function, e.g., PageRank or a GNN model, to aggregate
over the data values of all vertices read by the traversal.

We simply refer to such compound operations as a traversal op-
eration, denoted by TRġ (Ĭ), where Ĭ is the start vertex called origin;
its output is the set of all vertices within ġ-hops from Ĭ (see Table 1).

Example 3: An instantiation of ĐĈ of Example 1 over graph ă

in Fig. 1 (with dotted lines) is ĐĈ (Ĭ1, Ĭ4) = ({Ĭ1, Ĭ4},T), where T
is (Ĭ∗ := RN (Ĭ4, stock), ď := TR3 (Ĭ1, user), WV (Ĭ1), insert(Ĭ1, Ĭ4),

WV (Ĭ∗)) . Intuitively,Đĩ (Ĭ1, Ĭ4) seeks to sell pid1 (Ĭ4) to user uid1 (Ĭ1).
It �rst checks the in-stock number (snum) of pid1 via RN (Ĭ4, stock)

to assure su�cient stock. It then traverses 3-hop neighbor users
of Ĭ1 via TR3 (Ĭ1, user), computes the aggregate score ĩī of Ĭ1 over
the traversed subgraph and updates it via WV (Ĭ1), “sells” Ĭ4 to Ĭ1 via
insert(Ĭ1, Ĭ4), and decreases snum of pid1 by 1 via WV (Ĭ∗). Here
insert(Ĭ1, Ĭ4) is a transaction that inserts edge (Ĭ1, Ĭ4); we will
discuss its transactional implementation shortly. 2

Isolation of graph transactions. To understand the choice of
serializability for graph transactions, we need to start with consis-
tency of graphs. A consistency constraint over graphă is a logic
sentence over vertices and edges of ă that we need to maintain
invariant when we update ă (via update operations in Table 1).

Example 4:We illustrate some common consistency constraints
over graphă of Fig. 1. (a) A functional dependency overă is voucher
→ user, which states that a voucher can be connected to at most one
user, i.e., no double allocation. (b) A duplicated edge constraint over
ă is to require that no two user-product edges could connect the
same pair of user and product vertices, i.e., no double charging. (c)
A dangling edge constraint asserts that if for instance (Ĭ1, Ĭ4) ∈ E of
ă , then Ĭ1 ∈ V and Ĭ4 ∈ V . (d) A value constraint over ă is snum
g 0, which states that product stock cannot be negative. 2

The transactional implementation of insert depends on the
consistency constraints of concern. To avoid dangling or duplicated
edges, edge insertion insert(Ĭ1, Ĭ4) ofĐĈ in Example 3 would need
already be a read-write transaction that checks if (Ĭ1, Ĭ4) is not in E
and if both Ĭ1 and Ĭ4 are inV , before adding (Ĭ1, Ĭ4) to E, written as:

Đ
(1)

ins
(Ĭ1, Ĭ4) = ({Ĭ1, Ĭ4}, (RV (Ĭ1), RV (Ĭ4), RE (Ĭ1, Ĭ4), WE (Ĭ1, Ĭ4))) .

If we further consider functional dependency voucher→ user,

then insert(Ĭ1, Ĭ4) would need even more steps, as Đ (2)
ins
(Ĭ1, Ĭ4):

({Ĭ1, Ĭ4}, (RV (Ĭ1), RV (Ĭ4), RE (Ĭ1, Ĭ4), RN (Ĭ4, user), WE (Ĭ1, Ĭ4))),

where RN (Ĭ4, user) checks if Ĭ4 is linked to another user already.

Why serializability? Transactional graph systems thus would
have already needed serializability for concurrent edge insertions
to maintain consistency. Otherwise, a “write-skew” anomaly could

allow the system to insert two edges (Ĭ1, Ĭ4) and (Ĭ2, Ĭ4) concur-

rently via Đ (2)
ins

, breaking functional dependency voucher→ user.

3 RETHINKING ISOLATION FOR GRAPHS

In this section, we propose a method that alleviates the severe toll
of serializability for long-running transactions on graphs. Our ap-
proach maintains essential isolation to protect against concurrency
anomalies that could compromise consistency, but is able to extract
more concurrency that is not possible with existing approaches.

The underpinning proposition is that we do not need serializabil-
ity everywhere due to the heterogeneous nature of consistency on
graphs; accordingly, the common practice of a system-wide isolation
level is overkill for graphs. Instead, we advocate for a �ne-grained
isolation allocation scheme that assigns tailored isolation levels to
di�erent transaction operations based on the data they touch.

To elaborate on this, we present a consistency model that cap-
tures heterogeneous consistency semantics on graphs (Section 3.1)
and outline our �ne-grained isolation allocation scheme (Section 3.2).

3.1 Consistency: Vertices are Not Equal

We present a consistency model that captures the heterogeneity of
consistency for graphs and graph transactions.

Consistency on graphs is about constraints over vertices and
edges that must not violate in any case, to prevent graphs from
being corrupted by concurrent updates. Formally, a consistency
constraint č over graphă (V, E, Ĉ, Ā) is a �rst-order logic sentence
whose variables represent vertices and edges in V and E, with
predicates for (a) equality and adjacency/association testing over
vertices and edges [40], and (b) logical operators over labels Ĉ(V)
and valuesĀ (V) [33]. Here adjacency test is a predicate E(ī, Ĭ) that
tells if two verticesī and Ĭ are adjacent in the graph, and association
predicate decides if a vertex is an endpoint of an edge. Adjacency
predicate can be expressed via association and vice versa [40].

Example 5: Functional dependency voucher→ user of Example 4
can be expressed as č (Įī , ĮĬ, Įĭ) = ∀Įī , ĮĬ, ĮĭV(Įī ) ' V(ĮĬ) '
V(Įĭ) ' Ĉ(Įī ) = voucher ' Ĉ(ĮĬ) = user ' Ĉ(Įĭ) = user '

(E(Įī , ĮĬ) ' E(Įī , Įĭ) → ĮĬ = Įĭ), where V(Įī ) is a predicate
stating Įī is a vertex inV; similarly for E(Įī , ĮĬ). 2

Rather than enumerating all consistency constraints via logic
sentences like č (Įī , ĮĬ, Įĭ) in Example 5, we de�ne graph consis-

tency rules, a concise abstraction that abstracts away the semantics
(predicates) of č . Speci�cally, č (Į1, . . . , Ā (ĮĤ), . . . ) is modeled by a
consistency rule ¨(Ĉ1, . . . , Ā (Ĉģ), . . . ) (Ĉğ ¦ L(V)∪L(E)), where
Ā (Ĉ) denotes the value for all data items with label Ĉ, if there exist
a injective mapping Ĝ that can map each of Įğ/Ā (Įğ ) to one of
Ĉğ/Ā (Ĉğ ). Here č is called an Ĥ-ary constraint and ¨ is anģ-ary.

Example 6: Recall the example consistency constraints of Exam-
ple 4. From Example 5, we know that consistency (a) is modeled by
rule ¨ė (voucher, user, user). Along the same lines, consistency
(b) is modeled by rule ¨Ę (product, product, user, user). The no
dangling edge of consistency (c) can be modeled by rule ¨ę (Ĉ(V),

Ĉ(E)). Finally, (d) is modeled by 1-ary rule ¨Ě (Ā (snum)). 2

3.2 Isolation: Con�icts are Not Equal

We next show how the consistency model helps decide isolation.
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Ddi isolation allocation scheme. Given a set � of transactions
and a set � of graph consistency rules overă ,Ddi allocates isolation
levels to the operations of transactions in � as follows.

Step (1): Isolating write operations.Ddi �rst assigns an isolation level
to each atomic write operation op

W
according to consistency rules.

Speci�cally, an operation op matches Ĉğ of ¨(Ĉ1, . . . , ĈĤ) for some
ğ ∈ [1, Ĥ] if op operates on data item Į with label from Ĉğ . op on Į

can be matched to Ĉğ or Ā (Ĉğ ) but that on Ā (Į) can only map to
Ā (Ĉğ ). A transaction Đ matches ¨ if each Ĉğ of ¨ is matched by an
operation of Đ . We say that write operation op

W
of transaction Đ is

covered by ¨ if (a) Đ matches ¨ and (b) op
W
matches some Ĉğ of ¨.

If op
W
is covered by a multi-ary (resp. 1-ary) consistency rule,

then Ddi assigns op
W
with serializability (resp. snapshot isolation).

Otherwise, it is set to read committed. Note that op
W
can be covered

by multiple rules and thus has multiple isolation levels assigned. In
such cases, Ddi picks the highest isolation level for op

W
.

Step (2): Isolation propagation. Ddi then propagates the isolation of
each write operation op

W
to each read operation op

R
that precedes

them in the same transaction if op
W
depends on op

R
. Here op

1

depends on op
2
if (a) they are in the same transaction and (b) op

1

reads a vertex or edge returned or written by op
2
, or op

1
reads a

vertex or edge returned or written by op
3
and op

3
depends on op

2
.

Similar to step (1), op
R
can be assigned with multiple isolation

levels propagated from di�erent op
W
and Ddi picks the highest.

Step (3). Ddi assigns the lowest isolation level (Rc by default) to the
remaining operations as they cannot violate consistency.

Remark. Ddi isolation allocation is local. The isolation levels of
operations in Đ do not depend on other transactions. This implies
that Ddi isolation can be determined on-the-�y during execution.

Example 7: Consider ĐĈ of Example 3. Assume that we consider
all consistency semantics of Example 4. Then the implementation

of insert(Ĭ1, Ĭ6) is Đ
(2)

ins
in Section 2. According to Example 6, Ddi

allocates isolation to operations of ĐĈ as follows:

(RV(v1),RV(v4),RE(v1, v4),RN (v4, user),WE(v1, v4))

(v∗ := RN (v4, stock), S := TR3(v1, user),WV(v1), insert(v1, v4),WV(v∗))

Here annotations in purple and brown colors are assigned by step (1)
and step (2), respectively; green isolation is allocated by step (3). 2

The power of Ddi isolation. Below we informally present the
bene�ts of Ddi. We will formalize the statement and give a proof
by developing a precise de�nition of Ddi isolation in Section 4.

Theorem 1 [Informal]: Ddi maintains the consistency of graphs

while enabling more concurrency than uniform isolation allocation. 2

Theorem 1 states that the per-operation isolation allocation of
Ddi upholds all consistency constraints modeled by the consistency
rules, while permitting more transaction schedules than any single
isolation level that also complies with the consistency constraints.

4 FOUNDATIONS OF DDI

Below we give the formal semantics of Ddi isolation (Section 4.1).
We then study its properties and prove Theorem 1 (Sections 4.2-4.3).

4.1 Formal Semantics of Ddi Isolation

We characterize transaction schedules permitted by Ddi isolation.

Ddi speci�cation. A Ddi isolation speci�cation of � is a function
that maps operations of transactions in � to the set of isolation levels
I = {Serializability (Sr), Snapshot Isolation (Si), Read Committed
(Rc)}, according to the Ddi allocation scheme of Section 3.

Transaction schedules. A schedule of a set � of transactions is de-
�ned by a time assignment function ă that associates each operation
op of each Đ ∈ � with a time point which represents its execution
time. Following [25, 29, 46], we focus on optimistic concurrency
control (OCC) based systems given its wide presence. Under OCC, ev-
ery transaction execution is carried out �rst at a local working copy,
where values are retrieved from the global data graph upon request,
and a transaction commits the changes of its operations in the local
copy to the global graph at the end of the transaction execution.

Consequently, ă (op) assigns each op of transaction Đ with time
point at beginning of the execution of op if op is a read operation, or
the end ofĐ if op is a write operation. Note that this is a depart from
the conventional case where a transaction runs under the same iso-
lation level from start to end and thus time assignment for read oper-
ations under snapshot isolation is the start of the entire transaction.

Ddi schedules. A transaction schedule ă conforms to aDdi isolation
speci�cation if it disallows certain transaction con�icts (de�ned
below). A concurrency control protocol is Ddi-compliant if, for any
transactions � and any Ddi speci�cation of �, it always generates
transaction schedules ă for � (i.e., time assignment functions ă for
�) that conform to the Ddi isolation speci�cation of �.

We de�ne the conformance of ă by adopting the notion of Direct
Serialization Graph (DSG) [10], an implementation-independent
notion for describing traditional isolation levels.

Data-driven DSG. The data-drivenDSG (DD-DSG) of a schedule ă
of transactions � w.r.t. a Ddi speci�cation is a graph where vertices
are transactions in � and edges correspond to pairs of transactions.

More speci�cally, for a transaction Đ ∈ � and an isolation level
Ģ ∈ I = {Sr, Si, Rc}, let RSĢ (Đ ) denote the subset of RS(Đ ) that
consists of data items read by Đ via a read operation assigned with
isolation level Ģ in its Ddi speci�cation. Similarly, we de�ne WSĢ (Đ )

as the set of data items of Đ that are written with isolation Ģ .
Then there are three types of edges in DD-DSG. For any Ģ ∈ I:

(1) Đğ
rwĢ
−−→ ĐĠ (Ģ-anti-depend edge). If Đğ reads some data item Į and

ĐĠ is the next writer of Į according to ă , and Į ∈ RSĢ (Đğ ), then an
Ģ-anti-depend edge from Đğ to ĐĠ is in the DD-DSG.

(2) Đğ
wwĢ
−−→ ĐĠ (Ģ-write-depend edge). If Đğ writes data item Į and ĐĠ

is the next writer of Į according to ă , and Į ∈ WSĢ (ĐĠ ), then an
Ģ-write-depend edge from Đğ to ĐĠ is in the DD-DSG.

(3) Đğ
wrĢ
−−→ ĐĠ (Ģ-read-depend edge). If Đğ is the last writer of some Į

before ĐĠ reads Į written by Đğ , and Į ∈ RSĢ (ĐĠ ), then is an Ģ-read-
depend edge from Đğ to ĐĠ is in the DD-DSG of the schedule of �.

Here Đğ is called the source transaction and ĐĠ is the destination.

Remarks. Observe the following about DD-DSG.

(1) Compared to the traditional DSG [10, 25], edges of DD-DSG
are further annotated with an isolation level Ģ from I. As a result,
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Figure 2: Schedules g0 and g1 for Example 8 and Example 9

there can be multiple edges from )8 to )9 of the same type (e.g.,
read/write-depends) but annotated with di�erent isolation levels,

e.g., both )8
wrSr
−−−→ )9 and )8

wrSi
−−−→ )9 can exist in DD-DSG.

(2) The isolation annotation of read/write-depends edge is deter-
mined by Ddi isolation speci�cation of the destination transaction

in the schedule, i.e., )9 in )8
wrĢ
−−→ )9 and )8

wwĢ
−−→ )9 ; in contrast,

the isolation annotation for anti-depends edge is determined by

isolation of the source transaction, i.e., )8 in )8
rwĢ
−−→ )9 .

Example 8: Figure 2 shows two schedules for three transactions.
Along with)! , there are also two concurrent edge insertion transac-

tions. One is )1 =)
(3)

ins
(E2, E4), where )

(3)

ins
(E2, E4) = ({E2, E4}, (E

1

8 :=

RN (E4), insert(E2, E
1

8 ))). It checks the stock number snum of prod-
uct pid1, and allocates a voucher E18 to user uid2 if stock is excessive.

Similarly, )2 =)
(3)

ins
(E<, E4) performs the same for E< .

The DD-DSG of g0 is shown in Fig. 3(a), assuming that E< is
3-hop away from E1. Note that, in schedule g0 , )2 commits after
RN (E<) in )! . Under OCC, all writes take e�ect at the commit time.

For this reason, we have )!
rwRc
−−−→ )2 due to E< , and )2

rwSr
−−−→ )!

due to con�ict on E4. Similarly, con�icts between )1 and )B lead to

)1
rwSr
−−−→ )! and )!

rwRc
−−−→ )1 in the DD-DSG of Fig. 3(a). 2

Ddi conformance. A schedule g of � conforms to a Ddi isolation
speci�cation if the corresponding DD-DSG satis�es both below:

(C1) There exists no directed cycle in DD-DSG that contains an

Sr-anti-depend edge )8
rwSr
−−−→ )9 and )9 commits before )8 .

(C2) For any )8 and )9 of � that are concurrent in g , if )8
wwĢ
−−→ )9 or

)8
wrĢ
−−→ )9 is an edge in DD-DSG, then ; must be Rc.

Example 9: The DD-DSG of g0 , as shown in Fig. 3(a) contains two

cycles: )!
rwRc
−−−→ )2

rwSr
−−−→ )! and )!

rwRc
−−−→ )1

rwSr
−−−→ )! . However, it is

a Ddi schedule and satis�es C1, although the cycle contains a rwSr

edge. In contrast, the traditional DSG for g0 , as shown in Fig. 3(b),
cannot distinguish the two cycles and would disallow it for Sr. In
fact, under Sr, much less concurrency is permitted as shown by Sr

schedule g1 in Fig. 2, of which the DSG is given in Fig. 3(c). 2

This gives a precise de�nition of Ddi schedules, i.e., the exact
class of schedules permitted by a given Ddi isolation speci�cation.

4.2 Correctness Guarantees of Ddi isolation

Consistency guarantee. With the formal de�nition of Ddi sched-
ules in Section 4.1, we now prove Theorem 1. We start with the �rst
part of Theorem 1: Ddi isolation allocation scheme in Section 3.2
always produces a Ddi isolation speci�cation that prevents any vio-
lation of consistency constraints modeled by the consistency rules.

(a) DD-DSG for gė (b) DSG for gė (c) DSG for gĘ

Figure 3: DD-DSG and DSG for g0 and g1

A set � of transactions is well-programmed if the serial execution
of � in any order (i.e., any schedule g that schedules transactions one
after another) will not break any consistency constraints modeled
by data consistency rules of the consistency speci�cation.

Let � be a set of well-programmed transactions and C be a con-
sistency speci�cation of �. Let �C be the isolation speci�cation
generated by the Ddi isolation allocation scheme of Section 3.2 for
� and C. The Theorem below validates the �rst part of Theorem 1.

Theorem 2: For any graph � and schedule g of � that conforms to

�
C , g does not violate any consistency constraint captured by C. 2

See the full version [8] for the proof of Theorem 2.

Fine-grained anomalies. Traditional concurrency anomalies are
restricted to the database-wide uniform isolation assumption, and
thus cannot capture anomalies that may arise for �ne-grained per-
operation isolation allocation. Below we present Dd-anomalies,
which are concurrency anomalies in the context of �ne-grained per-
operation isolation allocation. Using (C1) and (C2), we also show
how they are prevented by Ddi-compliant concurrency control.

Dd-FracturedRead (Dd-FR). Given two data items G and ~ and two
transactions )8 and )9 , a Dd-FR anomaly occurs if )8 writes both
G and ~, )9 reads its update on G but not that on ~, and G,~ ∈

RSSi ()9 ) ∪ RSSr ()9 ). Note that this is an �ne-grained, more expres-
sive variant of the Fractured Read (FR) anomaly [3] we have in
database-wide isolation, which occurs if )8 writes both G and ~ and
)9 reads its update on G but not on~. Indeed, if~ is accessed with Rc
by )9 , then )9 is allowed to commit without seeing the update on ~
from )8 ; however, in contrast to Dd-FR, this will be captured by FR.

Prevention by Ddi. We show that any Ddi-compliant concurrency
control protocol can prevent Dd-FR. Assume that Dd-FR occurs
in a schedule g . Consider the DD-DSG of g . Since the write on G

from )8 is read by )9 and G ∈ RSSi ()9 ) ∪ RSSr ()9 ), there must exist

an edge)8
wrSr/Si
−−−−−→ )9 in DD-DSG. As)9 does not see the write on ~

from)8 ,)8 must commit after)9 starts, i.e.,)8 and)9 are concurrent:

)Ġ start→ read ~ in)Ġ → )ğ commit→ read G in)Ġ → )Ġ commit.

This violates condition (C2) and will be disallowed and prevented.

Dd-Non-repeatableRead (Dd-NR). Given a data item G and a trans-
action ) , a Dd-NR anomaly occurs if ) reads G multiple times but
return di�erent values and G ∈ RSSr () ) ∪ RSSi () ). For instance,
any G ∈ RSRc () ) should be allowed to be read multiple times and
return di�erent values since it is read with Rc in ) . Dd-NR can
permit this valid case while disallowing non-repeatable reads if) is
protected with Sr or Si. The di�erence however cannot be observed
by conventional non-repeatable read anomaly.

Prevention by Ddi. Given a transaction)8 and data itemG ∈ RSSi ()8 )∪

RSSr ()8 ). If there are two reads on G by )8 that return di�erent val-
ues, there must exist another transaction )9 that installs its write
on G between these two reads; the second read on G by)8 thus loads
the value written by )9 . Hence, )8 and )9 are concurrent and there

exists edge)9
wrĢ
−−→ )8 in theDD-DSGwith ; = Sr or Si. This violates

(C2) and thus can be prevented by any Ddi-compliant protocol.
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Dd-WriteSkew (DD-WS). For two transactions)8 and)9 , a Dd-WS

anomaly occurs when )8 and )9 are concurrent and are both trying
to commit their write simultaneously. Formally, this means WS()8 )∩

WS()9 ) = ∅, WS()8 ) ∩ RSSr ()9 ) ≠ ∅ and RSSr ()8 ) ∩ WS()9 ) ≠ ∅.
To see how it di�ers the traditional write skew (WS) anomaly,

consider the following example. Let )8 and )9 be two concurrent
transactions and G,~ are data items they operate on:

◦ )8 writes G and )9 writes ~, i.e., WS()8 ) = {G} and WS()9 ) = {~}.

◦ )8 reads ~ with Si or Rc and )9 reads G with Si or Rc, i.e., ~ ∈
RS()8 ) \ RSSr ()8 ) and G ∈ RS()9 ) \ RSSr ()9 ).

In this case, this is a WS anomaly but not a Dd-WS anomaly. How-
ever this should be a valid schedule that we would like to commit
as reads on G and ~ are not instructed to use Si or Rc rather than Sr.

Prevention by Ddi. Let g be a schedule in whichDd-WS occurs. Then
there must exist data items G,~ and concurrent )8 ,)9 , such that:

◦ G ∈ WS()8 ) \ WS()9 ) and ~ ∈ WS()9 ) \ WS()8 ).

◦ ~ ∈ RSSr ()8 ) and G ∈ RSSr ()9 ).

As )8 does not see the update on ~ from )9 , it will then form a path
from )8 toward )9 in the DD-DSG of g , with one rwSr edge and

multiple (or 0) ww; edges, as)8
rwSr
−−−→ )?

wwĢ
−−→ . . .

wwĢ
−−→ )9 . Meanwhile,

as )9 also does not see the update on G from )8 , there will be a path
of opposite direction from)9 to)8 , with one rwSr edge and multiple

(or 0) ww; edges, as: )9
rwSr
−−−→ )@

wwĢ
−−→ . . .

wwĢ
−−→ )8 . Together, these two

paths then form a cycle:

)8
rwSr
−−−→ )?

wwĢ
−−→ . . .

wwĢ
−−→ )9

rwSr
−−−→ )@

wwĢ
−−→ . . .

wwĢ
−−→ )8

In OCC protocol, if there exists an edge)<
wwĢ
−−→ )= in DD-DSG, then

)= must commit after )< . In this case, as the only non-ww edges in

the cycle are )8
rwSr
−−−→ )? and )9

rwSr
−−−→ )@ , then either )? commits

before)8 or)@ commits before)9 (otherwise,)8 would commit after
)8 ). Therefore, the cycle violates (C1) and g will be disallowed.

4.3 Concurrency Bene�ts of Ddi Isolation

Concurrency. To complete the proof of Theorem 1, we further
show that, for the same set � of transactions, Ddi isolation gives us
higher concurrency than any traditional mono-isolation allocation
could o�er without compromising consistency.

Recall �, C and �
C from above. We say that a single isolation

level ; ∈ I upholds the consistency speci�cation C of transactions �
over � if running transactions in � concurrently under ; maintains
all consistency constraints captured by C.

Lemma 3: The set of schedules conforming to Ddi isolation �
C for �

and C is larger than that of any isolation ; ∈ I that upholds C. 2

Mixing isolation. As a by-product, Ddi isolation gives us a precise
de�nition of mixing per-transaction isolation levels, a special case of
Ddiwhere operations of the same transaction are allocated with the
same isolation. Moreover, below we show that it is provably better
thanmixing-correctness [9, 44] and serializability preserving [25], the
only two attempts to de�ne mixed isolation levels as far as we know.

Ddi vs. mixing-correctness. We �rst recast the notion of mixing-
correctness [9, 44] using our notion of DD-DSG in Section 4.1.

Given a per-transaction isolation speci�cation of a set � of transac-
tions, i.e., each ) ∈ � is assigned uniformly with an isolation level
; ∈ I, a schedule of � is mixing-correct [9, 44] if its DD-DSG does
not contain a cycle and satis�es (C2) after removing the following

types of edges: (a) )8
wrRc
−−−→ )9 ; (b) )8

rwRc
−−−→ )9 and )8

rwSi
−−−→ )9 .

Unfortunately, we show that mixing-correctness is in fact ill-
de�ned and too weak to maintain data consistency. Let � be set of
transactions and �

I be a per-transaction isolation speci�cation of �.

Theorem 4: (1) For any � and per-transaction isolation speci�cation

�
I of �, any Ddi schedule g that conforms to �I is also mixing-correct.

(2) There exists �, �I of � and a 1-ary consistent constraint q such

that (a) q is maintained by any Ddi schedule that conforms to �I, but

(b) there is a mixing-correct schedule of �I that violates q . 2

Ddi vs. serializability-preserving. Serializability-preserving [25] is
another attempt to mix per-transaction isolation, by tightening the
condition of serializability. Recast in DD-DSG, a schedule for a per-
transaction isolation speci�cation is serializability-preserving if (a)

it does not contain an Sr-anti-depend edge )8
rwRc
−−−→ )9 in which )9

commits earlier than )8 and (b) it satis�es condition (C2). We show
below that, unlike mixing-correctness, serializability-preserving
schedules do not violate consistency; however, the notion is rather
restrictive and admits fewer schedules than Ddi does.

Theorem 5: For any � and per-transaction isolation speci�cation

�
I, (1) any serializable-preserving schedule for �I must also be a Ddi

schedule that conforms to �I; and (2) there exist Ddi schedule that

conforms to �I but is not serializability-preserving. 2

See full version [8] for proofs of Lemma 3 and Theorems 4-5.

5 CONCURRENCY CONTROL FOR DDI

In this section, we develop a concurrency control protocol for Ddi.
One can adapt OCC protocols [38] from RDBMS to support graph

transactions, by treating vertices and edges as tuples. However, it
is nontrivial to extend it and support Ddi isolation given its stark
contrast to traditional isolation as shown in Section 4.

As a proof of concept, below we present DD-OCC, an OCC protocol
dedicated for Ddi isolation. Its main property is summarized below.

Theorem 6: DD-OCC is Ddi-compliant. 2

Below we present the design of DD-OCC. We defer the proof of
Theorem 6 with DD-OCC in the full version [8]due to space limit.

OCC for Ddi. DD-OCC builds upon TicToc [46], a popular modern
timestamp-based OCC protocol for relational transactions. TicToc
di�ers from classic OCC protocols by lazily computing a timestamp
for each transaction based on its local data items, rather than al-
locating it globally. DD-OCC inherits this design and extends it to
support the per-operation isolation speci�cation in �

I.

Item set encoding. To supportDdi, we extend the data item encoding
of TicToc to additional record data values and isolation speci�ca-
tion. More speci�cally, each data item is encoded as ïitem, data, wts,
rts, iso-levelð in the local working space, where item is a pointer to-
ward the data item in global data graph, which can be a vertex or an
edge, wts and rts are the write and read timestamp of the item when
it is loaded into the local working space from the global data graph,
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ALGORITHM 1: Validation phase in DD-OCC

Data: Read sets RS, write sets WS

# Step 1 - Lock Write Set
1 for w in sorted(WS) do

// lock on the write set, no matter whether it is vertex or edge
2 lock(w.item)

# Step 2 - Compute the Commit Timestamp
3 set both commit_wts and commit_rts to 0
4 for 4 in WS ∪ RS do
5 if 4 in WS then
6 commit_wts← max(commit_wts, e.item.rts +1)

7 commit_rts← max(commit_rts, e.wts)

8 commit_ts← max(commit_rts, commit_wts)

# Step 3 - Validate read set
9 for A in WS ∪ RS do
10 item_commit_rts← commit_rts

11 if r.isolation = Sr then
12 item_commit_rts← commit_ts

13 if r.rts < item_commit_rts then
# Begin atomic section

14 if r.wts ≠ r.item.wts or (r.item.rts f item_commit_rts and
isLocked(r.item) and r.item not in WS ) then

15 abort()

16 r.item.rts← max(item_commit_rts, r.item.rts)
# End atomic section

data stores its value, e.g., !(E) and � (E) of a vertex E . The new �eld,
iso-level ∈ I, stands for the isolation level required for read or write
the item, which is determined in the reading phase below.

Read phase. In the read phase, DD-OCC fetches vertices and edges
from the global data graph to the current transaction’s local working
space, just as TicToc and all OCC protocols do for relations. However,
according to the Ddi isolation speci�cation �

I, the same item can
be loaded multiple times with di�erent isolation levels. If a read
operation loads a data item that already exists in the local working
space, then its iso-level �eld will be updated to the higher one
between the new read operation and its original iso-level �eld.

Validation phase. During validation, DD-OCC decideswhether a trans-
action can commit its changes in the local working space to the
global data graph while assuring that the schedule remains confor-
mant to �

I. It does so in three steps, as shown in Algorithm 1.

Step (1): Lock write set (lines 1-2). Following TicToc, write items in
the global graph are protected by write locks throughout the valida-
tion phase to ensure that concurrent updates to the global database
do not con�ict. All transactions will lock these data items in the
same order, to avoid dead-lock formed between them. Locks will be
released after the commit or abort of the associated transactions.

Step (2): Compute commit timestamp (lines 3-8). Similar to TicToc,
DD-OCC also avoids global transaction timestamp allocation, by local
logical timestamps in the local working spaces. But di�erent from
TicToc, DD-OCC needs two timestamps for each transaction:

◦ commit_wts (line 6): the minimal timestamp that is later than
the latest rts of all the write items in the global graph.

◦ commit_rts (line 7): the minimal timestamp later than or equal
to the latest wts of all read items in the local working space.

Step 3: Validation (lines 9-16). After executing the transaction in its
local working space, DD-OCC decides whether the local changes to
WS can be installed in the global graph by validating each data item A

= ïitem, data,wts, rts, iso-levelð ∈ RS ∪ WS according to its iso-level.

◦ 8B>-;4E4; = Sr: DD-OCC veri�es that if A has not been modi�ed un-
til 2><<8C_CB (lines 12). Hence, A passes the check if A .rts g com-

mit_ts. Otherwise, it checks whether its global wts (A .item.wts)
matches the local one (A .wts), i.e., whether A .wts = A .8C4<.wts

(line 14). If not, this indicates an unseen updated version of A
has been installed in the global graph after A was loaded into
RS, requiring the transaction to be aborted and preventing the
write in WS from being installed. Meanwhile, if A .8C4< is locked,
the transaction will also be aborted as A is being modi�ed by an-
other transaction (line 14). If A passes the check, the global rts of A
(A .item.rts) is also updated to re�ect the read operation (line 16).

◦ iso-level = Si: the validation process is the same as Sr, except
that commit_ts is relaxed to commit_rts (line 10). This is because
it only needs to guarantee that all the reads are from the same
version, which allows more data items to pass the validation.

◦ 8B>-;4E4; = Rc: A always passes the check.

6 PUTTING DDI ISOLATION INTO ACTION

We next develop system GDDI that implements Ddi isolation.

6.1 GDDI: Implementing Ddi on Sortledton

We implement DD-OCC over Sortledton [21], a transactional graph
storage that targets frequent edge insertions and deletions.

Sortledton overview. Sorledton uses an adjacency list based data
structure that stores the adjacent edges of each vertex in a dedicated
container. It adopts a lock-based method to provide hard-coded se-
rializability (Sr) by �rst locking containers that contain the vertices
to be modi�ed or whose neighboring edges are to be modi�ed,
then conducting the modi�cation, and �nally releasing locks upon
commit. It does not support long-running read-write transactions.

Implementing DD-OCC on Sortledton. We next describe our ex-
tension to Sortledton to implement DD-OCC and support general
graph transactions, including long-running read-write transactions.

On version storage. Since Sortledton uses lock-based protocol, to
support DD-OCC we extend its version storage store rts and wts of
each data item of the global graph as properties of the vertices and
edges, where rts can be modi�ed without introducing a new version.

To reduce the need for edge exploration in the validation phase,
for each vertex, two additional timestamps, ne-rts and ne-wts,
are stored to record the timestamps of the latest read and write to
its neighbouring edges, respectively. Speci�cally, for a vertex D and
an arbitrary timestamp CB8 , if ne-rts (resp. ne-wts) is ahead of CB8 ,
then it is guaranteed that rts (resp. wts) of all edges neighboring
D are ahead of CB8 without the need to read them one by one.

On concurrency control. The transaction execution process of Sor-
tledton is re-designed to support DD-OCC for general graph transac-
tions. To �t with the three-phases OCC execution, a local working
space is introduced for each transaction to store all the read data
and temporarily hold the updates to be committed. To support
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Figure 4: Case study of )B and insert over citPatents

DD-OCC, data items are loaded di�erently according to the isolation
levels designated in the input Ddi isolation speci�cation:

◦ 8B>-;4E4; = Sr or Si: chase through the version chain to get the
corresponding version decided by the timestamps;

◦ 8B>-;4E4; = Rc: load the latest version at the head of the chain.

6.2 Breaking Down Large Operations

WhileDdi o�ers per-operation isolation allocation, for long-running
transactions that contain large traversals, it does not help much
when the isolation allocated to the traversal operation is, e.g., Sr,
even if we have Rc for every other operation. In addition, for aggre-
gate-over-traversal transactions, e.g., )! in Example 3, traversal op-
eration would likely be allocated with the lowest isolation Rc in step
(3) of Ddi isolation allocation scheme as shown in e.g., Example 7.
However, defaulting traversals to Rc would potentially give appli-
cation (e.g., aggregation atop traversal) an inaccurate view of the
graph as the traversed subgraph is not protected by su�cient isola-
tion, even though this does not violate any graph consistency rules.

Isolation partition. To deal with this, we again turn to the idea of
�ne-grained isolation thatDdi advocates, by further breaking down
a traversal operation into multiple “partial” traversal operations.
We then assign each partial traversal a dedicated isolation according
to the view quality requirement by the applications.

Given a traversal operation TR: (E), GDDI supports isolation par-
tition scheme of the form ℓ-ℎ-ℓ ′, where ℓ and ℓ ′ are isolation levels
with ℓ stronger than ℓ ′, and ℎ f : . GDDI protects read operations
that traverses vertices and edges that are within ℎ-hope from E by
isolation ℓ and use ℓ ′ for vertices and edges further away from E .

The rationale is simple. The �ne-grained isolation of Ddi can
naturally take advantage of the “distance decaying e�ect” of graph
aggregations, e.g., GNN, personalized PageRank and random walk,
which is often expressed as “all things are related, but near things
are more related than far things” [19]. As a result, transaction
con�icts further away from the origin E of traversal TR: (E) has less
impact than those closer to E . As such, isolation partition enables
GDDI to further exploit �ne-grained isolation for more �exible
trade-o� between transaction performance and traversal accuracy.

Case study: )! and insert(D, E). Using the LDBC Graphalytics
Benchmark, we implemented )! and insert(D, E) of Example 1
over citPatents (with : = 3 in )!), and evaluated the concurrent
execution of )! and ∈ (D, E) with varying L% percentage of )!
transactions. The results are shown in Fig. 4. Speci�cally, SR, SI and
RC are results of GDDI that allocates the traversal of)! with Sr, Si

and Rc, respectively; GDDI[SR-2-RC] uses an isolation partition;
SR(lock) denotes Sortledton (original lock-based implementation),
and SR(timestamp) is a variant of Sortledton that uses TicToc [46].

GDDI with isolation partition Sr-2-Rc achieves 22.7 times and
61.6% higher throughput than SR(lock) and SR(timestamp), respec-
tively, with aggregate-over-traversal (PPR) accuracy as high as 89%
of that running all transactions uniformly with serializability (Sr).

Figure 4(b) further demonstrates the �exible trade-o� enabled by
the isolation partition of Ddi, where it achieves throughput compa-
rable to Si by partitioning Sr, while having (a) higher view quality
of the traversals measured by the relative accuracy of aggregation
BD and (b) strictly enforced graph consistency as Sr does.

7 EXPERIMENTAL STUDY

Using benchmarks, we evaluated the bene�ts of Ddi isolation. Be-
low we �rst specify the evaluation setup (Section 7.1). We then re-
port the performance of systemGDDIwith varying workloads (Sec-
tion 7.2) and examine the e�ectiveness of Ddi isolation (Section 7.3).

7.1 Experimental setting

Graphs. We used three data graphs provided in the LDBC Grapha-
lytics Benchmark [14]: (a) graph500, a synthetic scale-free graph [26],
(b) LiveJournalwith 4.8M vertices and 34M edges, and (c) citPatents

with 3.8M vertices and 16M edges. By default, we used graph500

of con�guration graph-500-22, with 2.3M vertices and 64M edges.
To study the impact of di�erent types of graphs, we also used con-
�gurations graph-500-21 with 1.2M vertices and 32M edges and
graph-500-23 with 4.6M vertices and 129M edges. In addition to
LDBC benchmark graphs, we additionally tested with DBpedia [7]
as a representative knowledge graph.

Transactions. We consider both short and long transactions.

Topological transactions (T-txn) are short transactions that change
the topology of the graphs by inserting or deleting an edge. These
are exactly the type of transactions supported by prior systems and
are the focus of previous evaluations [21, 30].

Update transactions (U-txn) are short transactions that read edges
and update their properties, without change graph structures. Since
T-txn’s are write-heavy, we consider U-txn transactions that are
read-heavy: each reads 8 edges and update 2, following [18, 45].

Long-running transactions (L-txn). We consider L-txn transactions
that are of pattern similar to )! in Example 1: �rst traverse a sub-
graph �D from a vertex D up to :-hops via TR: (D), aggregates over
�D via aggregate function 5agg, and writes the aggregated score
as D’s data value. We employed two 5agg functions: (i) closeness
centrality (CC), a measurement of the centrality of D in �B [12];
and (ii) personalized PageRank (PPR), as a special case of random
walk [16, 36] that computes PPR score of D in �B . By default we set
: to 2 for traversals TR: (D) and used PPR as 5agg. We randomly gen-
erated vertex labels for both data graphs and traversal operations
in L-txns so that they could complete in reasonable time.

Workloads. We tested varying workloads with these transactions.

Short-transaction-only workloads. These areworkloads targeted and
used by prior system evaluations, and consist of short T-txn trans-
actions only. They can be classi�ed into 4 types, as follows:
◦ ins: construct graph via concurrent edge insertions only.
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Figure 5: Throughput of all systems under varying mixed workloads on LiveJournal

◦ del: remove all edges via concurrent edge deletions only.

◦ low-contention: a mix of random edge insertions and deletions.

◦ high-contention: the same as low-contention workload but with
30% of the transactions involving hotspot edges. By default, we
picked 4 vertices with largest degrees and selected one connect-
ing edge for each vertex as hotspots in each graph.

Mixed workloads. These are workloads that contain long-running
transactions, which are not supported in prior studies. We consider:

◦ Read-intensive mix (U+L): a mix of U-txn and L-txn transactions.

◦ Write-intensive mix (T+L): a mix of T-txn and L-txn transactions.

◦ complete mix (T+U+L): a mix of U-txn, T-txn and L-txn.

By default, transactions are randomly generated, i.e., with ver-
tices randomly sampled from the data graph. Similar to short-
transaction-only workloads, we also varied their contention level
by concentrating transactions to hotspots. Each type of mix work-
load can have di�erent variants by varying the percentages U%,
T% and L% of U-txn, T-txn and L-txn transactions. Unless stated
otherwise, we adopt the write-intensive mix and set L% to 1%.

Systems. We extended the GFE (Graph Framework Evaluation)
driver [2] to evaluate di�erent graph transaction workloads. Specif-
ically, we implemented and evaluated the following systems:

◦ Sortledton [21]: we used its original implementation, which em-
ploys a lock-based concurrency control and supports only edge
insertions and deletions. We further optimized it in two aspects:
(a) We incorporated NO_WAIT [45], which gives it the same
performance improvement for high contention read-intensive
workload as reported in [45]. (b) We extended it to support long-
running L-txn transactions and all types of workloads.

◦ Sortledton_ts: a variant of Sortledton where we replaced the
original lock-based protocol with TicToc [46] ported to graphs;
TicToc is an optimistic timestamp ordering based protocol.

◦ Teseo [30]: we used its implementation from [1], which supports
edge insertions and deletions only. (We tried to extend it for more
transactions but observed the same problem reported also in [21].
Hence we only used it for short-transaction-only workloads.)

◦ LiveGraph [48]: similar to Sortledton and Teseo, it supports edge
insertions and deletions only, with hard-coded Snapshot Isola-
tion (Si) that equals Serializability (Sr) for such workloads.

◦ GDDI: the GDDI system described in Section 6.

Ddi isolation speci�cation. In favor of competitors, which only sup-
port system-wide mono-isolation speci�cation, by default forGDDI
we set the isolation of all operations in short (T-txn and U-txn)
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Figure 6: Throughput for write-intensive mix across graphs

transactions to Serializability (Sr); for traversal operations in long-
running transactions (L-txn), we used isolation partition of Sr-ℎ-Rc,
with ℎ = 1 by default. Note that the conventional system-wide Se-
rializability (Sr) con�guration is a special case of Ddi isolation
where all operations are allocated with Sr; we denote such con�gu-
ration of GDDI by GDDI[Sr]. By Theorem 1 and 2, both GDDI and
GDDI[Sr] strictly prevent dangling edges and duplicated edges,
the consistency model used by previous systems [21, 30, 48].

Con�guration. We uniformly generated transactions of each work-
load across 24 working threads. Aborted transactions were resub-
mitted until they successfully committed or reached the maximum
redo count, which is set to 3. We run our experiments on a dual-
socket machine with 500 GB of memory. Each socket has two AMD
EPYC 7302 16-Core CPUs, each with 256 MB of L3 cache and 16
hardware threads. We compiled the implementation with GCC-10.

7.2 Performance of System GDDI

Overall performance. We start with a complete evaluation of sys-
tem GDDI with varying transaction workloads over all data graphs.

Varying mixed workloads. We �rst compared the throughput of all
systems for varying mixes of di�erent types of transactions.

(1) Read-intensive vs. write-intensive. Varying the percentage of
L-txn transactions (L%), the results ofGDDI, Sortledton, Sortledton_ts,
and LiveGraph over LiveJournal for write-intensive and read-
intensive mix are shown in Figures 5(a) and 5(b), respectively.

(a) GDDI consistently outperforms all other systems in the pres-
ence of L-txn transactions in the workload, and the gaps widen as
L% of L-txn increases. For instance, GDDI improves the through-
put of Sortledton_ts by 87.4% and 128.5% in write-intensive and
read-intensive mix workloads, respectively, when L% = 10%. This
improvementmainly comes from the reduction in compute and redo
time for L-txn by GDDI (see more in breakdown analysis shortly).

(b) Sortledton_ts consistently outperforms Sortledton. The gap in-
creases when more L-txn transactions are present.

(2) Impact of structural updates (T-txn). We also examined the
impact of structural updates, i.e., topological transactions (T-txn).
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To do this, we used the complete mix workload that contains all
types of transactions, and evaluated the throughput of all systems
with varying percentage of T-txn transactions (T%).

The results over LiveJournal are reported in Fig. 5(c). We �nd
that both GDDI and Sortledton_ts bene�t signi�cantly when more
structural updates are present, as their throughput increases with
growing T%. As a result, systems (e.g., GDDI and Sortledton_ts)
that deal with L-txn better would bene�t more from more T-txns.

(3) Impact of read-set size. We further studied the impact of read-
set size of L-txn transactions. We generated write-intensive mix
workloads with L-txn transactions of read-set size varying from less
than 0.5k, 0.5-1k, 1-1.5k, 1.5-2k, 2-2.5k and greater than 2.5k vertices.

The results over LiveJournal are shown in Fig. 5(d). GDDI
consistently has the highest throughput among all systems in all
cases. Moreover, its gap over Sortledton_ts, the 2nd best system,
increases when the read-set size of L-txns increases. The same
applies to the improvement of Sortledton_ts over Sortledton. This
is because L-txns with larger-read set are more costly to abort and
thus have a greater impact on the overall system throughput.

Varying graphs. Using default transaction mix con�gurations, we
calculated the average throughput of all systems over all graphs,
including three real-life graphs and the three variants of graph500.
The results are given in Fig. 6, and tell us the following.

(a) GDDI outperforms Sortledton_ts by 97.5%, 97.3% and 161.7% on
LiveGraph, citPatents and DBpedia, respectively.

(b) GDDI also consistently outperforms all other systems on syn-
thetic graphs graph500 with varying scale factors.

Overhead of Ddi isolation. We also examined the overhead of the
per-operation Ddi isolation. To do this, we compared the perfor-
mance of GDDI with baseline systems for “traditional” workloads
targeted by these baselines, i.e., short-transaction-only workloads
with short T-txn transactions only. We also analyzed the runtime
breakdown of GDDI over write-intensive mix workloads.

Performance for short-transaction-only workloads. Figure 7 shows
the throughput of all systems for existing short-transaction-only
workloads, where GDDI uses a Ddi isolation that assigns Sr to all
operations of all transactions. As such, the di�erence betweenGDDI
(GDDI[Sr]) and Sortledton_ts exactly re�ects the overhead of Ddi.

The results tell us that, for all 4 types of short-transaction-only
workloads, i.e., edge insertions, deletions, low-contention mix and
high-contention mix of deletions and insertions, GDDI[Sr] per-
forms as good as Sortledton_ts. This implies that the per-operation
isolation con�guration in GDDI, which builds atop Sortledton_ts,
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does not bring any perceptible overhead for concurrency control. It
also con�rms that the exceedingly well capability of GDDI in deal-
ing with L-txn transactions as we have seen above does not sacri�ce
its performance for existing workloads with structural updates only.

The unnoticeable overhead is due to the design of DD-OCC (Sec-
tion 5). Compared to Sortledton_ts, whichwe derived from Sortledton

by incorporating TicToc [46], the overhead of DD-OCC includes (a)
extra storage of iso-level for each data item, which is implemented
as uint8_t in C++ and accounts for only ∼2% additional space,
and (b) the per-operation validation to compute timestamps for
read items (lines 10-12 of Algorithm 1). The latter has constant
time complexity that runs at most |RS| times and is asymptotically
subsumed by the validation cost of TicToc in the absence of Ddi.

We also �nd that GDDI[Sr], Sortledton_ts and Sortledton all
perform best acrossworkloads and graphs, except for low-contention
mixes of edge deletions and insertions for which Teseo is better.

Execution time breakdown. To further consolidate our examination
of the concurrency control overhead with Ddi isolation, we carried
out a breakdown analysis of the total transaction execution time of
mixedworkloads with 1.2×109 transactions. Varying the percentage
L% of L-txn transactions, the breakdown results of write-intensive
mix and read-intensive mix are presented in Figures 8(a) and 8(b),
respectively (bar patterns denote systems and color-codes on the
right represent di�erent stages of transaction execution).

(a) Compared to Sortledton_ts, GDDI has no visible overhead in all
stages. The validation for L-txn consumes only ∼0.1% of total time.

(b) Compared to Sortledton_ts, 85.1% and 6.37% of the reduction in
execution time achieved by GDDI comes from redoing and com-
puting L-txns, respectively, when L% = 0.01%. Surprisingly, there
is also a 8.85% reduction in validation of T-txns, as the validation
of Rc vertices/edges in L-txns does not require locks, making it
easier for T-txns to acquire exclusive write locks during validation
to install their updates. Moreover, with more L-txns (i.e., larger L%),
the savings from redoing and validating L-txns also increase.
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Figure 10: Impact of isolation partition for write-int. mix

7.3 E�ectiveness of Ddi Isolation

We next delve into the role of Ddi isolation in system GDDI.

Lock vs OCC for Ddi. We �rst justify the optimistic timestamp
ordering based implementation of Ddi isolation in system GDDI,
by comparingGDDI andGDDI[Sr] with the lock-based Sortledton
over high-contentionwrite-intensive and read-intensivemixedwork-
loads. The results over LiveJournal are reported in Fig. 9.

It is common wisdom that lock-based protocols work better than
OCC-based for high-contention workload, which is also con�rmed
by Fig. 7 where Sortledton (lock) outperforms Sortledton_ts (OCC)
for high-contention short transaction. Interestingly, however, this
no longer holds in presence of even quite few long-running trans-
actions (L-txn). As shown in Fig. 9, Sortledton only performs bet-
ter than GDDI[Sr] and GDDI in high-contention, read-intensive
workloads where L% is below 0.025%. For high-contention write-
intensive workloads,GDDI[Sr] outperforms lock-based Sortledton
by 351% even with L% as low as 0.01%. Furthermore, as L% increases,
GDDI[Sr] improves more over Sortledton in both workloads, and
the gap between GDDI and GDDI[Sr] also widens.

The reason for this is that both types of protocols lock data items
to be written similarly. Therefore, there is not much di�erence when
processing write-intensive transactions, e.g., edge insertions/dele-
tions where all data items are to be written. This is also consistent
with the observation in [45] regarding lock and OCC.

This indicates that even a small number of L-txn transactions
necessitate a fundamental rethink of concurrency control for graph
transactions. It also justi�es the optimistic timestamp ordering
design of DD-OCC to realize Ddi isolation in workloads with L-txn.

Impact of Ddi isolation. Varying the Ddi isolation partition of
traversals in L-txns, we evaluated its impact on (a) the throughput
of GDDI and (b) the accuracy of aggregation Ĝagg over traversals.

Here accuracy ratio of Ĝagg with a Ddi isolation partition is calcu-
lated as the percentage of transactions of which Ĝagg value does not
change up to a threshold of 1% when we partition the isolation of
their traversals. The results for PPR over write-intensive mix with
varying Ddi isolation are shown in Figures 10(a) and 10(b).

We �nd that Ddi isolation partition has a small impact on the ac-
curacy of traversal-aggregation in L-txns, while signi�cantly boost
the transaction throughput of GDDI. For instance, on graph500,
when partition Si traversal into Si-1-Rc, over Ĝagg values of 99% of
transactions remain the same, while this improves the throughput
of GDDI by 71.5%, from 3.78 KTps to 6.48 KTps. In contrast, when
we simply lower Si to Rc entirely, more than half of transactions
have their Ĝagg signi�cantly a�ected and varied over the threshold.
This case shows that Si-1-Rc has the best of both on graph500: it
has the throughput of Rc but retain the accuracy of Ĝagg protected by
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Figure 11: L-txn abort causes (anomalies): varyGDDI isolation

Si. Better still, such bene�ts do not compromise graph consistency
modeled by the Ddi consistency rules according to Theorem 1.

Anomalies breakdown. Finally, we examined the frequency of
di�erent anomalies (recall Section 4.2) caused by L-txns that are pre-
vented byGDDIwith varyingDdi isolation, for both read-intensive
and write-intensive mix workloads over all data graphs. The results
over LiveJournal and graph500 are plotted in Fig. 11.

Over graph500 with the write-intensive mix (L+T) workload,
(1) under Si all L-txn aborts are to prevent Dd-FR anomalies on
vertices, as the version storage for edges naturally provides the Si
guarantee for operations on edges. Among them, 48.8% the aborts
are caused by con�icts with updates that have already been com-
mitted. (2) When the isolation level reaches Sr-1-Si, the causes for
L-txn aborts become more diverse, 23.6% of them for preventing
Dd-WS anomalies, while the rest are for Dd-FR anomalies. Prevent-
ing Dd-FR is the primary cause because Sr is only required within
1-hop (including the end vertices) from the source vertex of traver-
sals, and Dd-WS can only arise from unseen updates within this
region. (3) When the Ddi isolation for traversals further rises to Sr,
the abort ratio also increases as expected. The primary cause for the
aborts are to preventDd-WS caused by con�icts with committed up-
dates on edges due to T-txns. Results on LiveJournal are similar.

The di�erence between thewrite-intensivemix and read-intensive
mix is not obvious when the isolation level is below Sr. However,
they di�ers signi�cantly when traversals are allocated with Sr en-
tirely in L-txns, e.g., 22.5% for the write-intensive mix and 35.9% for
read-intensive mix. We also observe that that the additional aborts
of L-txns from read-intensive mix are most to prevent Dd-WS on
edges when compared to traversals with lower level isolation.

8 DISCUSSION

Limitation. As far as our knowledge con�rms, this is the �rst
attempt that studies operation-level isolation allocation and explic-
itly connects isolation allocation with consistency guarantees. Due
to its infancy, there are naturally limitations. (1) We target long-
running transactions with large read set but small write set. As also
observed in [17], there exist long-running transactions with large
writes. (2) Another limitation is the assumption of distance decaying
aggregation over traversals for isolation partition to take e�ect.

Vision. The overarching goal is to develop a notion of isolation for
heterogeneous datasets where a uniform isolation is an impractical
overkill. Towards this vision, we are currently exploring Ddi for
�ne-grained isolation for relations and other data models.
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