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ABSTRACT
The rapid advancements of generative artificial intelligence (GenAI)

have recently led to renewed attention towards approximate nearest

neighbor (ANN) search and vector databases (VectorDB). Among

various ANN methodologies, vector quantization techniques like

product quantization (PQ) arewidely used to generate space-efficient

representations for large-scale dense vectors. However, the code-

books generated by PQ often reach several gigabytes in size, mak-

ing them impractical for web-scale, high-dimensional vectors in

resource-constrained environments like mobile devices.

In this study, we propose SegPQ, a simple yet effective frame-

work for losslessly compressing codebooks generated by any PQ

variants, enabling efficient in-memory vector search on devices

with limited memory. SegPQ represents the raw PQ codewords as

a trained error-bounded piecewise linear approximation model (𝜖-

PLA) and pre-computed low-bit residuals. We theoretically demon-

strate that, with high probability, the number of bits per compressed

codeword is 1.721 + ⌈log
2
𝜖OPT⌉, where 𝜖OPT is the optimal error

parameter that can be determined by data characteristics. To ac-

celerate query execution, we further design SIMD-aware query

processing algorithms on compressed codebooks to fully exploit

the hardware parallelism offered by modern architectures. Exten-

sive experimental studies on real datasets showcase that, for 1
billion vectors, SegPQ reduces PQ codebook memory consump-

tion by up to 4.7× (approx. 851 MB) while incurring only 3.3%
additional query processing overhead caused by decompression.
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Figure 1: Illustration of SegPQ’s design considerations: ❶

compact for resource-constrained devices, ❷ compatible with
any PQ variants, and ❸ neglectable computation overhead.

1 INTRODUCTION
A defining attribute of large language models (LLMs) is their un-

precedented scale, which poses significant challenges for deploy-

ment in resource-constrained environments [14, 56, 58, 72]. Recent

advancements [3, 15, 27, 69], however, have facilitated LLM services

on devices with limited resources, such as laptops, smartphones

and embedded devices [46, 54, 55]. Nonetheless, these newly pro-

posed systems often come with heavy optimization and complex

workflow, with their actual performance to be verified. In this con-

text, vector databases (VectorDBs) and retrieval-augmented gen-

eration (RAG) [5, 30, 59] offer promising solutions for enhancing

LLM applications on resource-limited devices. By integrating ex-

ternal knowledge through approximate nearest neighbor (ANN)

search, this vector-based infrastructure enables efficient retrieval

with minimal memory overhead, allowing LLMs to access private

or domain-specific knowledge bases without significantly increas-

ing model size. In contrast to the large-scale nature of LLMs, ANN

engines are designed as small and fast as possible [33, 45]. As LLMs

are difficult to condense, refining their already-small integration

technologies brings new perspectives, to unlock the potential of

on-device AI innovations.

Taking the open-domain question answering (OpenQA) task [34,

35] as an example, external knowledge bases such asWikipedia [76]

are often utilized to enhance generation quality. However, by adopt-

ing popular embedding models like Cohere [17], vector databases

built on Wikipedia data can reach hundreds of gigabytes in size,
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Vector ID Dim1 Dim2 Dim3 Dim4
1 0.141 0.253 0.737 0.848
2 0.337 0.621 0.125 0.332
3 0.852 0.147 0.349 0.453
… … … … …
N 0.994 0.175 0.664 0.816

Vector ID C1 C2
1 0 254
2 41 12
3 113 41
… … …
N 112 254

Vector ID C1HEX C2HEX (C1⊕C2)DEC

1 00 FE 254
2 29 0C 10,508
3 71 29 28,969
… … … …
N 70 FE 28,926

subspace 1 subspace 2

PQ(2, 8)

Dense Vectors. PQ Codebook. Concatenated PQ Codebook.

Binary 
Concatenate

Sort ID (C1⊕C2)DEC

1 254
2 371
3 482
… …
N 28,969

Reordered Codebook.

Reorder Fit 𝝐-PLA

Segment 
ID

Starting 
Point Slope Intercept

1 1 114.1 255.1
2 1,712 217.5 187.9
… … … …
L 𝒔𝑳 𝜶𝑳 𝜷𝑳

Sort ID Residual
1 1
2 -2
3 1
… …
N 13

Residual Array.Segment Table.

(a) Product Quantization (b) SegPQ Framework

𝟏𝟏𝟒. 𝟏 × 𝟏 − 𝟏 + 𝟐𝟓𝟓. 𝟏 − 𝟐𝟓𝟒
𝟏𝟏𝟒. 𝟏 × 𝟐 − 𝟏 + 𝟐𝟓𝟓. 𝟏 − 𝟑𝟕𝟏
𝟏𝟏𝟒. 𝟏 × 𝟑 − 𝟏 + 𝟐𝟓𝟓. 𝟏 − 𝟒𝟖𝟐

…

𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍 ≤ 𝝐
𝜶𝑳 × 𝑵 − 𝒔𝑳 + 𝜷𝑳 − 28,969

𝝐 = 𝟏𝟔

❶ ❷

❸ ❹

Figure 2: Running examples of (a) the classic product quantization (PQ) workflow and (b) our SegPQ framework. In (a), a
PQ(2, 8) codebook is constructed on 𝑁 4-D dense vectors. PQ(2, 8) means that the sub-space partition number is 2 and each
sub-space will be clustered into 2

8 = 256 parts using 𝑘-means. In (b), SegPQ first projects each codeword into an integer key
using binary concatenation, and then the codebook is reordered to fit an optimal PLA model with error constraint 𝜖. Finally,
SegPQ computes the differences between PLA predictions and true codewords as residuals, which are materialized together
with all line segments as the compressed codebook.

making them impractical for deployment and use on personal de-

vices. To reduce their sizes, memory-efficient ANN indexes like

Locality-Sensitive Hashing [1, 18, 38], Proximity Graph [49, 50],

and Vector Quantization [10, 26, 28, 77] have been explored. Among

these, Product Quantization (PQ) stands out as a simple yet effective

way, widely supported by mainstream VectorDBs such as Faiss [22],

Milvus [52], and Pinecone [61]. PQ reduces memory usage by divid-

ing high-dimensional vectors into subspaces, then independently

compressing each subspace through clustering. As illustrated in

Figure 2(a), PQ partitions a high-dimensional vector into𝑚 equal-

sized subspaces, applies 𝑘-means clustering [48] to find 𝑘 centroids

for each subspace, and approximates each vector by concatenat-

ing the indices of its closest centroids across all subspaces. By PQ,

representing each dense vector requires only𝑚 · ⌈log
2
𝑘⌉ bits.

Example 1.1 (Product Quantization). Figure 2(a) illustrates a toy
example of generating a PQ(𝑚 = 2, 𝑏 = 8) codebook on𝑁 4-D dense

vectors. Each partitioned sub-space of 4/𝑚 = 2 dimensions will be

clustered into 2
𝑏 = 256 clusters, and each sub-vector is approxi-

mated by its closest 𝑘-means centroid. For instance, after applying

PQ, a dense vector x = [0.141, 0.253, 0.737, 0.848] will be encoded
as a codeword [0, 254] where 0 and 254 stands for the cluster ID, i.e.,
the 0-th and 254-th cluster in two partitioned sub-spaces. By using

PQ(2, 8), each 4-D dense vector (4 FP32, 128 bits) can be compressed

into 2 unsigned bytes (16 bits), achieving an 8× space reduction.

Notably, to ensure that the generated codewords are byte-aligned,

𝑏 is typically fixed to 8. Therefore, we interchangeably use PQ𝑚×𝑏
and PQ(𝑚,𝑏), such as PQ16, PQ32, PQ64, etc.

Though achieving a significant compression ratio compared to

raw dense vectors, the resulting PQ codebooks, in practical settings

(e.g.,𝑚 = 8, 𝑘 = 256), still necessitate 8 GiB for 1 billion vectors.

Given a typical idle RAM (≤4 GiB) [67], as illustrated in Figure 1,

this size is still not small enough, thus preventing the deployment

of RAG services to resource-constrained devices, such as the latest

iPhone or personal laptop. A recent work DeltaPQ [75] first at-

tempts to reduce PQ codebook size by identifying and compressing

redundancies in codewords using delta encoding [78]. However,

such a method introduces non-negligible compression and decom-

pression overhead, making it hard to scale to web-scale vector sets.

Motivated by this, we pose the following research question: “Can
we further compress the vector quantization codebook without com-
promising its effectiveness in resource-constrained environments?”
Specifically, as summarized in Figure 1, our design objectives are

threefold: ❶ Memory Efficiency: Compress the codebook gener-

ated by PQ to fit in resource-constrained environments; ❷ Gener-
ality:Maintain lossless compression and compatibility to any PQ

variants to ensure retrival quality and seamless integration with

existing ANN engines; and ❸ Query Efficiency: Ensure efficient

construction and query processing of the compressed codebook,

with no significant extra overhead.

To achieve these objectives, in this study, we introduce SegPQ,

a lossless and data-driven PQ codebook compression scheme. Fig-

ure 2(b) illustrates theworkflow of SegPQ. Unlike existing dictionary-

based or entropy-based compression algorithms [78], SegPQ identi-

fies compression opportunities by carefully investigating the dis-

tribution characteristics of PQ codewords and demonstrates that a

compact piecewise linear model (PLA) can well approximate the

original codebook with controllable errors. Inspired by the recent

studies on learned data indexing [11, 23, 24, 32], we represent the

raw PQ codebook by a small set of error-bounded line segments

and an array of pre-computed low-bit residuals (i.e., the differ-

ences between PLA predictions and true codewords). With such a

compressed codebook, an arbitrary codeword can be losslessly re-

covered from the PLA model output and the pre-computed residual

value (i.e., codewords=segments+error). Moreover, SegPQ enables

direct query processing on compressed codebooks and fully exploits

SIMD parallelism on modern computing architectures for enhanced

codebook traversal efficiency.
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In summary, our technical contributions are threefold.

❶ Problem Exploration. This work targets the growing demand

for deploying large-scale vector retrieval services on resource-

constrained devices, driven by privacy concerns and the need for

AI-powered applications in environments with unstable network

connectivity. We share a novel perspective on compressing generic

PQ codebooks by directly modeling the distribution of codewords.

❷ Theoretical Insights. SegPQ is a principled approach where

the simple idea delivers non-trivial results. Our analysis reveals

that SegPQ achieves an encoding efficacy of 1.721 + ⌈log
2
𝜖OPT⌉

bits per compressed PQ codeword, where 𝜖OPT is the optimal PLA

error parameter determined by data distribution. This extends prior

theoretical work [23] on learned indexing to learned compression,

achieving near-optimal performance relative to the information-

theoretic lower bound [66].

❸ Empirical Performance. Extensive benchmarks on six real-

world ANN datasets demonstrate that SegPQ reduces PQ codebook

memory usage by up to 4.7× (down to≈851MB for 1 billion vectors)

while incurring only a 3.3% increase in computational overhead.

To further validate its real-world applicability, we integrate SegPQ

into an OpenQA pipeline based on Llama3.2-3B and a Wikipedia-

based vector database. The results show that SegPQ reduces the

total memory footprint of the RAG system from 7.25 GiB to 4.62
GiB while improving generation quality by 1.12×.

The remainder of this paper is structured as follows. Section 2

introduces the basis of product quantization and formulates the

codebook compression problem. Section 3 presents our SegPQ

framework, detailing the compression and decompression algo-

rithms. Section 4 theoretically analyzes the compression efficacy of

SegPQ. Section 5 presents the experimental evaluation and results.

Section 6 reviews and discusses related works. Finally, Section 7

concludes the paper and highlights future directions.

2 PRELIMINARIES
In this section, we overview the general PQ framework and formu-

late the lossless codebook compression problem.

2.1 Product Quantization
Product Quantization (PQ) is a simple yet effective approach to

compress high-dimensional dense vectors into compact discrete

forms for efficient ANN search [26, 28, 77].

For a dense vector x ∈ R𝑑 , let x = [x1, x2, · · · , x𝑚] denote the
concatenation of𝑚 sub-vectors of equal sizes. W.l.o.g., we assume

that 𝑑 is divisible by𝑚, implying that each x𝑖 ∈ R𝑑/𝑚 . Given 𝑁

vectors X = {x1, · · · , x𝑁 }, PQ learns an encoding scheme𝐶 (·) that
projects x ∈ R𝑑 onto a codeword formed by concatenating𝑚 sub-

codes 𝐶 (x) = [𝑐1 (x1), · · · , 𝑐𝑚 (x𝑚)], where 𝑐𝑖 : R𝑑/𝑚 ↦→ Σ𝑖 and Σ𝑖
is a discrete set of unique clustering IDs. Let decoder 𝐷 (·) represent
the process of recovering the original vector from 𝐶 (x). PQ aims

to minimize the following quantization error on X:

min

𝑐1,· · · ,𝑐𝑚
1

𝑁

∑︁𝑁

𝑖=1
∥x𝑖 − 𝐷 (𝐶 (x𝑖 ))∥2

s.t. 𝐶 (x) ∈ Σ1 × · · · × Σ𝑚,
(1)

where ∥ · ∥ is the Euclidean distance to depict the reconstruction

distortion for each vector x𝑖 .

Table 1: Summary of major notations.
Notation Explanation

𝑚 the partition number foe each dense vector

𝑏 the number of bits required to encode a cluster ID

x1, · · · , x𝑚 𝑚 partitioned sub-vectors of x ∈ R𝑑

𝐶 ( ·), 𝐷 ( ·) the PQ encoder function and decoder function

q𝑖 the PQ codeword representation of vector x𝑖
Q the PQ codebook of a vector database X
𝜖 the maximum error constraint of a PLA model

(𝑠, 𝛼, 𝛽 ) breakpoint, slope, and intercept of a line segment

When𝑚 = 1, minimizing Eq. (1) is equivalent to the classical

𝑘-means problem, and Lloyd’s heuristics can be applied to find a

local optimum efficiently [48]. For𝑚 > 1, PQ adopts 𝑘-means to

assign x𝑖 to its nearest centroid in the 𝑖-th sub-space, corresponding
to the 𝑖-th encoder function 𝑐𝑖 (·). Then, the decoder function 𝐷 (·)
concatenates the𝑚 clustering centroids to reconstruct the original

dense vector x. Since PQ constructs codewords from the Cartesian

product Σ1 × · · · × Σ𝑚 , it can efficiently represent an exponentially

large set of vectors using only𝑚 · ⌈log
2
𝑘⌉ bits per codeword. We

use PQ(𝑚,𝑏) (𝑏 = ⌈log
2
𝑘⌉) to represent a PQ quantizer with 𝑚

sub-spaces and 𝑘 clusters per sub-space. To ensure byte alignment,

𝑏 is typically set to 8, making each codeword’s total bit-width a

multiple of 8. Thus, when the context is clear, we interchangeably

use PQ8 ×𝑚 (e.g., PQ64 = PQ(8, 8)).

For query processing, given a query vector y ∈ R𝑑 , the Euclidean
distance ∥y − x∥ for x ∈ X can be approximated by either sym-

metric distance computation SDC(y, x) = ∥𝐷 (𝐶 (y)) − 𝐷 (𝐶 (x))∥
or asymmetric distance computation ADC(y, x) = ∥y − 𝐷 (𝐶 (x))∥.
Both SDC and ADC can be efficiently processed by pre-computing

a distance lookup table of size 𝑂 (𝑘2) [28]. In practice, SDC is gen-

erally less accurate but more efficient than ADC due to the greater

loss of information in the query vector.

Other Vector Quantizers. Beyond PQ, various other vector quan-

tization techniques have been explored to enhance accuracy and

reconstruction quality. Optimized PQ (OPQ) refines PQ by apply-

ing data-driven orthogonal transformations to subspaces, improv-

ing quantization accuracy [26]. Additive Quantization (AQ) repre-

sents vectors as linear combinations of full-dimensional codewords,

achieving better reconstruction at the cost of increased compu-

tation [7]. Residual Quantization (RQ) employs a hierarchical en-

coding scheme, iteratively quantizing residual errors to minimize

reconstruction loss [51]. As discussed in Sections 3.2 and 4.1, our

proposed codebook compression framework is not restricted to a

specific quantization method and can be applied to a broad range

of vector quantizers.

2.2 Lossless Codebook Compression
When dealing with web-scale vector databases, the PQ codebook

size can escalate to dozens of gigabytes, hindering the deployment

on devices with constrained memory budgets. Motivated by this

challenge, we formulate the problem of PQ codebook compression.

Definition 2.1 (Lossless Codebook Compression). Let Q denote the

codebook of 𝑁 codewords q1, · · · , q𝑁 , learned by a PQ quantizer

with parameters𝑚 and 𝑘 . The problem of lossless codebook com-
pression is to find a compact representation Q𝑐

that can efficiently

support operations: ❶ Random Access, denoted by AT(Q𝑐 , 𝑖), which
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returns q𝑖 given an index 𝑖; and ❷ Complete Decoding, denoted by

DC(Q𝑐 ), which returns the entire raw codebook Q.

The compression ratio 𝑟 is defined as the relative ratio between

the memory footprints of Q and Q𝑐
. Ideally, 𝑟 should be as large

as possible. However, according to the information-theoretic lower
bound [66, 74], encoding 𝑁 monotone elements drawn from a uni-

verse of size 𝑈 requires at least 𝑁 · ⌈log
2

(𝑈 +𝑁
𝑁

)
⌉ ≈ 𝑁 · log

2

𝑈 +𝑁
𝑁

bits. Thus, the design principle of the compressed codebook Q𝑐

is to try to match the information-theoretic lower bound while

incurring acceptable additional overheads.

3 METHODOLOGIES
In this section, we first overview the SegPQ framework and then

elaborate on the compression and decompression algorithm details.

3.1 SegPQ Framework Overview
The core idea of SegPQ is based on the observation that an arbitrary

PQ codebook Q can be reorganized in a way that allows it to be

well-fitted by even simple machine learning models. Specifically,

we adopt error-bounded piecewise linear approximation (𝜖-PLA) to

model Q. By precomputing and materializing all residuals (i.e., the
difference between the prediction and the true codeword), SegPQ

ensures lossless recovery of the original codewords.

The SegPQ compression process, illustrated in Figure 2(b), con-

sists of five key steps:

❶ Projection. For a PQ codebook Q = {q1, · · · , q𝑁 }, we construct
a bijection to map each q to a 1-D integer sorting key, meanwhile

enabling the reverse recovery from the given sorting key to q.
❷ Reordering. Let K denote the set of projected 1-D sorting keys.

We then sort K in ascending order and reorder the corresponding

codewords in Q accordingly.

❸Model Fitting.With amonotonic sequenceK and a pre-specified

error parameter 𝜖 , we fit an 𝜖-PLA model 𝑓 (𝑖) such that | ⌊𝑓 (𝑖)⌋ −
K[𝑖] | ≤ 𝜖 . Conceptually, 𝑓 (𝑖) maps an arbitrary index 𝑖 to its cor-

responding value K[𝑖], which approximates the inverse cumulative
distribution function (ICDF) of K .
❹ Index Construction. For 𝑖 ∈ {1, · · · , 𝑁 }, we compute the

residual for each codeword q𝑖 as 𝛿𝑖 = ⌊𝑓 (𝑖)⌋ − K[𝑖]. Since 𝛿𝑖 ∈
[−𝜖, 𝜖], each residual requires ⌈1 + log

2
𝜖⌉ bits for encoding. Let

Δ = {𝛿1, · · · , 𝛿𝑁 } denote the residual array. The compressed code-

book is a tuple Q𝑐 = (𝑓 ,Δ) of learned PLA model 𝑓 (·) and the

residual array Δ.
❺ Query Processing. Given a compressed codebook Q𝑐 = (𝑓 ,Δ),
each codeword q𝑖 is reconstructed as K[𝑖] = ⌊𝑓 (𝑖)⌋ + Δ[𝑖], consid-
ering that the projection from Q to K is a bijection according to

Step ❶. Since this recovery process is lossless, the subsequent ANN

query processing remains unchanged.

3.2 Lossless Learned Compression
We then introduce how SegPQ constructs the compressed codebook

in detail. The pseudo-code is given in Algorithm 1.

3.2.1 Codebook Projection. Directly learning a codeword com-

posed of𝑚 sub-codes is challenging. Instead, during the prepro-

cessing steps (Step ❶ and Step ❷), we define a mapping function

M : N𝑚 ↦→ N that projects a codeword q into a integer sorting key

Algorithm 1: SegPQ Codebook Compression

Input: the original PQ codebook Q
Output: the compressed codebook Q𝑐

1 K ← {BinCat(q) |q ∈ Q} // Project to 1-D key

2 𝑠𝑜𝑟𝑡 (K) // Reorder by sorting key

3 𝜖OPT ←
√︃

2𝐶 ·ln 2· (𝑚 log
2
𝑘+2𝐹 )

𝑁
// Configure by Theorem 4.5

4 𝑓 ← OptPLA(𝑋 = {1, · · · , 𝑁 }, 𝑌 = K, 𝜖OPT ) // Fit PLA
5 Δ← {⌊ 𝑓 (𝑖 ) ⌋ − Q[𝑖 ] |𝑖 ∈ {1, · · · , 𝑁 }} // Compute residuals

6 return (𝑓 .𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠,Δ) // Return segments and residuals

𝑘 . To ensure lossless recovery,M is required to be a bijection. In
SegPQ, we choose the following binary concatenation operation

BinCat(·) as the mapping function.

Definition 3.1 (Binary Concatenation). Given a PQ codeword q =

{q1, q2, · · · , q𝑚}, the binary concatenation operation is defined as

BinCat(q) = dec(bin(q1) ⊕ · · · ⊕ bin(q𝑚)), (2)

where bin(·) retrieves the binary representation of q𝑖 , ⊕ denotes

the concatenation of two binary strings, and dec(·) converts the
concatenated binary string to its corresponding decimal value.

Example 3.2 (Binary Concatenation Example). In Figure 2, each

PQ codeword is composed of two 8-bit sub-codes (i.e., four hexa-

decimal digits). For codeword q1 = [00hex, FEhex], BinCat(q1) =
dec(00FEhex) = 254; similarly, for codeword q2 = [29hex, 0Chex],
BinCat(q2) = dec(290Chex) = 10508.

It is easy to verify that BinCat(·) is a bijection, as each bi-

nary string corresponds to a unique integer. The recovery process

is equally simple: the binary representation of a projected code-

word bin(BinCat(q)) can be evenly partitioned into 𝑚 parts to

reconstruct the original𝑚 sub-codes. Since the projected key set

K = {BinCat(q) |q ∈ Q} is logically equivalent to the original code-
bookQ, the problem of compressingQ reduces to finding a succinct

representation of K .
Not limited to PQ, the BinCat(·) projection is applicable to code-

words learned by a wide range of vector quantizers, such as Op-

timized Product Quantization (OPQ) [26], Additive Quantization

(AQ) [7], and Residual Quantization (RQ) [51]. Since the aforemen-

tioned vector quantizers all employ 𝑘-means to learn the codebook,

the resulting codewords in real-world applications often exhibit a

near-uniform distribution (see Section 4.1 for details). Leveraging

this property, the theoretical results derived in this paper are ap-

plicable to a broad range of vector quantizers beyond PQ, making

our SegPQ a generalizable framework that supports various quanti-

zation methods as plugable components. As demonstrated in our

experiment study (Section5), SegPQ+X consistently compresses

codebooks generated by various quantizers, where X can be PQ,

OPQ, AQ, and RQ.

3.2.2 Reordering and Model Fitting. To prepare the training data,

the original codewords inQ are sorted based on their corresponding

binary concatenation valuesK in increasing order. With the sorted

set K , SegPQ learns a projection function 𝑓 : I ↦→ K satisfying a

pre-specified error constraint 𝜖 , where I = {1, 2, · · · , |K |} is the
index set. Such mapping 𝑓 together with residuals (i.e., ⌊𝑓 (𝑖)⌋ −
K[𝑖]) can serve as a compressed and lossless representation of Q,
enabling query processing directly on the compressed data.
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Figure 3: Illustration of an 𝜖-PLA model.
Intuitively, learning 𝑓 is equivalent to learning the inverse cu-

mulative distribution function (ICDF, a.k.a. the quantile function)

of K . Inspired by recent learned index studies like RMI [32] and

PGM-Index [24], to balance the model expressivity and inference

efficiency, simple machine learning models like piecewise linear

functions [12, 24] are trained to approximate the mapping 𝑓 with

controllable error. An error-bounded piecewise linear approxima-

tion (𝜖-PLA) is illustrated in Figure 3 and defined as follows.

Definition 3.3 (𝜖-PLA). Given a set of points in Cartesian space

{(𝑖,K[𝑖])}𝑖=1,· · · ,𝑁 ⊆ I × K , an 𝜖-PLA is defined as a piecewise

linear function of 𝐿 line segments,

𝑓 (𝑖) =


𝛼1 · (𝑖 − 𝑠1) + 𝛽1 if 𝑠1 ≤ 𝑖 < 𝑠2
𝛼2 · (𝑖 − 𝑠2) + 𝛽2 if 𝑠2 ≤ 𝑖 < 𝑠3
· · · · · ·

𝛼𝐿 · (𝑖 − 𝑠𝐿) + 𝛽𝐿 if 𝑠𝐿 ≤ 𝑖

(3)

such that |K [𝑖] − ⌊𝑓 (𝑖)⌋ | ≤ 𝜖 holds for ∀𝑖 = 1, · · · , 𝑁 . Each segment

in 𝑓 is a tuple (𝑠 𝑗 , 𝛼 𝑗 , 𝛽 𝑗 ), where 𝑠 𝑗 is the starting index, 𝛼 𝑗 is the
slope, and 𝛽 𝑗 is the intercept.

The rationale for choosing 𝜖-PLA is twofold. ❶ Unlike deep

learning models that require heavy runtimes such as Pytorch [63]

and Tensorflow [70], 𝜖-PLA offers both space and time efficiency in

training and inference. ❷ By making reasonable statistical assump-

tions, we can derive a quantitative relationship between the model

complexity (i.e., the required number of segments) and the error

bound, which is essential for subsequent optimal parameter config-

uration. In contrast, for deep learning models, establishing such a

relationship is often intractable due to the inherent complexity and

black-box nature.

For implementation, we adopt the online algorithm [57] to con-

struct an optimal 𝜖-PLA such that the required number of line

segments is minimized to satisfy the given error constraint 𝜖 . No-

tably, although the optimal 𝜖-PLA algorithm minimizes 𝐿 under a

given error constraint, it remains unknown how large 𝐿 should be.

In Section 4, we provide the first theoretical analysis to estimate 𝐿,

enabling a precise characterization of SegPQ’s space overhead and

compression ratio.

Example 3.4 (SegPQ Compression). Continuing to Example 3.2,

SegPQ reorders the original codewords based on their binary con-

catenation values (Step ❸ in Figure 2). Then, a piecewise linear

model 𝑓 (·) with error constraint 16 is fitted to depict the relation-

ship between the sorting ID and the binary concatenation value

(Step ❹ in Figure 2). For instance, the 1-st segment, with a slope

114.1 and an intercept 255.1, covers codewords (reordered) with

ID from 1 to 1,711. The predicted key for the 3-rd codeword 482 is

𝑓 (3) = ⌊114.1 × (3 − 1) + 255.1⌋ = 483. Thus, the residual for this

codeword can be precomputed as 𝛿3 = 483 − 482 = 1. Finally, the

trained 𝜖-PLA model and precomputed residuals are materialized

as the lossless compressed representation of the original codebook.

Time Complexity. Reordering the key set (Line 2) takes time

𝑂 (𝑁 log𝑁 ) by invoking a standard sorting algorithm. Configuring

𝜖OPT in Line 3 can be done in constant time. Additionally, Line 4

fits an optimal 𝜖-PLA in a single pass over the data (i.e., 𝑂 (𝑁 ))
by adopting the online algorithm [57]. Therefore, the total time

complexity of Algorithm 1 is 𝑂 (𝑁 log𝑁 + 𝑁 ) = 𝑂 (𝑁 log𝑁 ).

3.2.3 Discussion of Missing Details. We then discuss some missing

details of SegPQ’s codebook compression.

Limitation of BinCat Projection. In Step ❶, we employ BinCat
to map PQ codewords to integer sorting keys. For high-bit-width

codebooks (e.g., PQ128/PQ256), BinCat generates excessively large

value spaces, impairing learned PLA efficacy. This aligns with infor-

mation theory: expanding the value range (for fixed dataset sizes)

increases entropy, thereby making compression much more chal-

lenging. In this work, we prioritize practical resource-constrained

scenarios (e.g., PQ32/PQ64) while supporting higher bit-widths via

partial compression by only compressing the upper 64 bits while

leaving the remaining bits unchanged. Experiments demonstrate

that, this partial compression solution achieves 1.43× (for PQ128)

and 1.18× (for PQ256) compression ratios, outperforming other

baselines.

Codeword Reordering. To fit an optimal 𝜖-PLA model, a key step

of SegPQ’s compression is to reorder all codewords based on their

binary concatenation values. This sorting operation inevitably mod-

ifies the original vector ID assignments. In our work, we assume a

generic scenario where the original vector IDs can be safely updated

to their new sorting indexes.

Example 3.5 (RAG with SegPQ). In a RAG-powered open-domain

question answering (OpenQA) system, an external knowledge data-

base can be represented as a set of tuples (𝑖𝑑, 𝑑, 𝑒𝑑 ), where 𝑖𝑑 is

the original document ID, 𝑑 is the raw document from an exter-

nal knowledge base (e.g., Wikipedia) to be retrieved, and 𝑒𝑑 is the

learned embedding of 𝑑 . After training a PQ quantizer, we can com-

pute the PQ codeword for each embedding 𝑒𝑑 as 𝑐𝑑 and reorder the

entire database based on the binary concatenation value of 𝑐𝑑 (𝑖𝑑

will be reset in this step). Regarding physical storage, the original

documents to be retrieved are usually stored on disk and possibly

managed by some external index like B+-tree for fast access. For

embedding vectors, only SegPQ’s compressed codewords are kept

in memory, enabling efficient in-memory 𝑘NN query processing

on resource-constrained devices. Since the documents on disk have

already been reordered, we can correctly retrieve them based on

the vector search result.

Connection and Difference to Learned Index. Let K denote a

list of sorted keys and let I = {1, 2, · · · , |K |} be the corresponding
index set. The indexing problem aim to find a mapping 𝑔 : K ↦→ I
with controllable error 𝜖 , ensuring the exact location of any 𝑘 ∈ K
can be found correctly. Finding 𝑔 is equivalent to fitting the CDF

of K . Conversely, the compression problem is to fit 𝑓 : I ↦→ K
within error constraint 𝜖 , such that the original data K[𝑖] can be

losslessly recovered. Fitting 𝑓 is equivalent to learning the inverse

CDF (a.k.a., the quantile function) of K .
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Algorithm 2: SegPQ Codebook Decompression

1 Function AT(Q𝑐 = (𝑆𝑒𝑔𝑠,Δ) , 𝑖):
2 ℓ∗ ← minimum ℓ ∈ {1, · · · , |𝑆𝑒𝑔𝑠 | } s.t. 𝑆𝑒𝑔𝑠 [ℓ ] .𝑠 ≥ 𝑖

3 q∗ ← ⌊𝑆𝑒𝑔𝑠 [ℓ∗ ] .𝛼 × (𝑖 − 𝑆𝑒𝑔𝑠 [ℓ∗ ] .𝑠 ) + 𝑆𝑒𝑔𝑠 [ℓ∗ ] .𝛽 ⌋
4 return Split(q∗ + Δ[𝑖 ] )
5 // Traverse the whole codebook Q𝑐

6 Function DC(Q𝑐 = (𝑆𝑒𝑔𝑠,Δ)):
7 Q← []
8 // The loop can be optimized using SIMD

9 for 𝑖 ∈ {1, 2, · · · , |𝑆𝑒𝑔𝑠 | } do
10 for 𝑗 ∈ {1, 2, · · · , 𝑆𝑒𝑔𝑠 [𝑖 ] .𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 } do
11 q∗ ← ⌊𝑆𝑒𝑔𝑠 [𝑖 ] .𝛼 × 𝑗 + 𝑆𝑒𝑔𝑠 [𝑖 ] .𝛽 ⌋
12 Q.𝑎𝑑𝑑 (Split(q∗ + Δ[𝑆𝑒𝑔𝑠 [𝑖 ] .𝑠 + 𝑗 ] ) )

13 return Q

Error Parameter. Intuitively, the value of error constraint 𝜖 can
be neither too large nor too small. A large 𝜖 reduces the required

segment count but increases the bits per residual; conversely, a small

𝜖 saves bits per residual at the cost of introducing more segments

to meet the error constraint. Our theoretical analysis in Section 4

reveals that the relationship between compression ratio and 𝜖 is

convex, implying the existence of a global optima. An analytical

optimal solution for 𝜖 , as used in Line 3 of Algorithm 1, is derived

to maximize SegPQ’s compression efficacy.

Dynamic Updates. Similar to learned indexes, SegPQ’s reliance on

machine learning models makes efficient updates non-trivial, partic-

ularly given that SegPQ leverages sorted codeword indices as model

inputs. To handle this, one can employ the gap array design com-

monly used by updatable learned indexes such as ALEX [21]. Specif-

ically, we introduce “gaps” in the data, allowing new codewords to

fill these gaps without immediate reconstruction. If inserting new

codewords violates the original error bound 𝜖 , the affected segment

is split into two smaller segments to maintain accuracy. However,

this approach requires reserving space for future insertions, leading

to extra storage overhead. Additionally, a large number of inser-

tions within a localized range could quickly exhaust available gaps,

necessitating a complete model re-training. In this work, we focus

on edge-side, infrequently updated vector databases (Example 3.5).

In such applications, updates can be handled server-side, where

compressed codebooks are periodically rebuilt and distributed to

edge devices.

3.3 Querying Compressed Codebooks
Due to the bijective nature of BinCat-based projection and error-

bounded property of 𝜖-PLA, the 𝑖-th PQ codeword can be losslessly

reconstructed by simply adding the PLA prediction to the 𝑖-th

residual. The following running example illustrates the SegPQ’s

decompression process.

Example 3.6 (SegPQ Decompression). Continuing to Example 3.4,

for the 1-st and 2-nd codewords 𝐶1 and 𝐶2, the corresponding

PLA predictions are ⌊𝑓 (1)⌋ = ⌊114.1 × (1 − 1) + 255.1⌋ = 255

and ⌊𝑓 (2)⌋ = ⌊114.1 × (2 − 1) + 255.1⌋ = 369. The corresponding

residuals are 1 and −2. Thus, 𝐶1 and 𝐶2 can be losslessly recovered

by 𝐶1 = Split(bin(255 − 1)) = Split(00FEhex) = [0, 254] and 𝐶2 =

Split(bin(369 + 2)) = Split(0173hex) = [1, 115].
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__m256i pred = FMA(A, I, B)
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(b) Strategy 2: Segment-level Parallelism

Segments 𝑺𝒆𝒈𝒔[𝒊] Residuals 𝚫[𝒊]

Figure 4: Illustration of SIMD-aware traversal: (a) Index-level
parallelism, and (b) Segment-level parallelism. FMA(A, I,
B)=A×I+B and (𝑠𝑖 , 𝛼𝑖 , 𝛽𝑖 ) refers to the 𝑖-th segment 𝑆𝑒𝑔𝑠 [𝑖].

Since SegPQ’s decompression is lossless, the ANN query process-

ing procedure remains unchanged on the decompressed codewords,

where either SDC or ADC can be directly invoked. In this section,

we introduce two SegPQ decompression utilities: a random access

decoder and an SIMD-aware full traversal decoder.

3.3.1 Random Access. The pseudo-code is given in Lines 1–4 of

Algorithm 2. Specifically, Line 2 searches for the corresponding line

segment given an index 𝑖 . Line 3 computes the approximate key

predicted by the linear function. Finally, the corresponding residual

Δ[𝑖] is added to reconstruct the original codeword.

The segment search operation in Line 3 dominates the total

decompressing cost, which takes 𝑂 (log
2
𝐿) time by adopting a

standard binary search implementation (e.g., std::lower_bound in

C++), where 𝐿 is the number of line segments. To speed up random

access, one could build an in-memory index like B+-tree on the

segment breakpoints. However, we do not incorporate auxiliary

index structures, as they introduce extra storage and computation

overhead. Moreover, random access is not frequently used in PQ-

based ANN processing.

3.3.2 SIMD-Aware Traversal. In practice, every codeword must be

accessed to find the nearest neighbors to a query vector, using either

ADC or SDC as discussed in Section 2. Therefore, traversing the

entire codebook ismore prevalent than random access. To accelerate

full traversal, we leverage the hardware parallelism offered by single
instruction multiple data (SIMD), a feature available onmost modern

CPUs
1
. SIMD enables vectorized computation, allowing multiple

arithmetic operations to be executed within a single instruction

cycle. For example, a 256-bit SIMD register can process 8 single-

precision floating-point values in parallel, while a 512-bit register

can handle up to 16.

Depending on how SIMD parallelism is applied, we consider

two strategies, as illustrated in Figure 4: ❶ index-level paral-
lelism, where multiple indexes are processed simultaneously for

1
Customer-grade CPUs like Intel© Core™ and AMD© Ryzen™ typically provide 256-

bit SIMD registers (i.e., AVX2), while enterprise CPUs like Intel© Xeon™ are equipped

with wider 512-bit SIMD registers (i.e., AVX512). Besides SIMD parallelism on X86

platforms, we also plan to release an ARM-based version in the future.
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Figure 5: Illustration of the memory re-layout for segment-
level parallelism (i.e., Strategy ❷ in Section 3.3). W.l.o.g., we
assume that four segments are processed simultaneously for
each index starting from 0.
each segment, and ❷ segment-level parallelism, where multiple

segments are processed simultaneously for each index. Strategy ❷

is generally more efficient because, within the same segment, once

𝑓 (𝑖) = 𝛼 · 𝑖 + 𝛽 is computed, the next prediction 𝑓 (𝑖 + 1) can be

derived incrementally as 𝑓 (𝑖 + 1) = 𝑓 (𝑖) + 𝛼 , eliminating redun-

dant multiplications. Due to page limits, we put the code snippets

for SIMD-aware codebook traversal in our technical report [68].

As no segment search operation is required, traversing the entire

codebook requires an amortized time of 𝑂 (1) per codeword.

3.3.3 Details of Memory Re-layout. However, as shown in Fig-

ure 4(b), the residual array access pattern for Strategy ❷ is non-

contiguous, resulting in additional overhead due to the more cache

misses when loading data from memory to SIMD registers. To im-

prove spatial locality, we reorganize the residual array’s memory

layout based on the actual memory access order of Strategy ❷, such

that the memory access latency can be well hidden.

To improve the cache utilization, as illustrated in Figure 5, the

basic idea is to align the memory layout with the actual access or-

der of residual array Δ. Let Δ𝑖 , · · · ,Δ𝑖+3 denote the corresponding
sub-arrays of residuals for segment 𝑖, · · · , 𝑖 + 3. In segment-level

parallelism, at each time, we process multiple segments for the same

index starting from 0. Thus, the actual access order to [Δ𝑖 , · · · ,Δ𝑖+3]
should be Δ𝑖 [0], · · · ,Δ𝑖+3 [0], Δ𝑖 [1], · · · ,Δ𝑖+3 [1], · · · ,Δ𝑖 [s], · · · ,
Δ𝑖+3 [s], where 𝑠 = min{|Δ𝑖 |, · · · , |Δ𝑖+3 |}. By reorganizing themem-

ory layout of Δ in such an order, the latency of loading residuals

frommemory into SIMD register can be significantly reduced, given

that modern CPUs prefetch consecutive data of a cache-line size

(typically 64 bytes on mainstream architectures) with a single mem-

ory loading instruction. Notably, as the size of each sub-array |Δ𝑖 |
differs for each segment, there are inevitably some residuals left.

These remaining residuals are materialized and processed sequen-

tially after finalizing all indexes 0, · · · , 𝑠 .

4 THEORETICAL ANALYSIS
In this section, we theoretically answer the question: How much
space can our SegPQ framework reduce, and at what cost? The road-
map of our theoretical results is given below.

❶ Assumption 1 introduces our core assumptions on the distri-

bution of PQ codewords, based on which Lemma 4.2 derives the

variance of the codeword gap distribution;

❷ Theorem 4.3 presents our central theoretical results regarding

the expected line segment coverage;

❸ Based on Theorem 4.3, we further derive the space overhead and

compression ratio of SegPQ in Corollary 4.4;

❹ Theorem 4.5 derives the optimal error parameter 𝜖OPT in a closed

form, and Corollary 4.6 gives the corresponding bits per compressed

codeword as 1.721 + ⌈log
2
𝜖OPT⌉;

❺ Finally, Theorem 4.7 generalizes the results of Theorem 4.3 by

relaxing the uniformity assumption, extending our methodology

to arbitrary distributions.

4.1 Expected Segment Coverage
As discussed in Section 3.2, the total storage overhead of SegPQ

depends on the number of line segments required to satisfy the

error constraint 𝜖 . We begin with the first theorem showing the

expected number of codewords covered by each line segment.

Assumption 1 (Codeword Distribution). Considering a PQ
quantizer of parameters𝑚 (sub-space number) and 𝑘 (cluster number),
let q𝑖 denote the quantized codeword for an arbitrary dense vector
x𝑖 . Then, the binary concatenation BinCat(q𝑖 ) follows a uniform
distribution𝑈 (0, 𝑘𝑚).

Assumption 1 is reasonably made for most real-world applica-

tions. The reason is that, embedding vectors used in vector databases

are typically produced by well-trained deep learning models (e.g.,

BERT, Transformer-based models), which tend to exhibit an approx-

imately isotropic distribution in high-dimensional space [20]. On

these vectors, mainstream vector quantization techniques (e.g., PQ,

OPQ, AQ) adopt 𝑘-means clustering, which generates clusters of

approximately equal sizes, finally leading to a near-uniform code-

word distribution after binary concatenation. Section 5.2 reports

the distributions of BinCat(q) on real-world datasets to validate

this assumption.

Let 𝑥1, · · · , 𝑥𝑁 be 𝑁 i.i.d. random samples drawn from a uniform

distribution 𝑈 (0, 𝑘𝑚). We then define an important data feature

named codeword gap and derive its mean and variance in Lemma 4.2.

Notably, in the subsequent analysis, we interchangeably use 𝑥𝑖 and

BinCat(q𝑖 ) if the context is clear.
Definition 4.1 (Gap). Given 𝑋 = {𝑥1, · · · , 𝑥𝑁 }, the 𝑖-th gap for

𝑖 ∈ {2, · · · , 𝑁 } is defined as a random variable 𝑔𝑖 = 𝑥 (𝑖 ) − 𝑥 (𝑖−1)
where 𝑥 (𝑖 ) and 𝑥 (𝑖−1) denote the 𝑖-th and (𝑖 − 1)-th order statistics

of 𝑋 , respectively (i.e., the 𝑖-th and (𝑖 − 1)-th smallest values of 𝑋 ).

Lemma 4.2 (Gap Distribution Characteristics). Under As-
sumption 1, for an arbitrary 𝑖 ∈ 2, · · · , 𝑁 , the mean and variance of
gap 𝑔𝑖 are given by,

E[𝑔𝑖 ] =
𝑘𝑚

𝑁 + 1 ,

Var[𝑔𝑖 ] =
(𝑘𝑚)2 · 𝑁

(𝑁 + 1)2 · (𝑁 + 2)
= Θ

(
𝑘2𝑚

𝑁 2

)
,

(4)

where𝑚 is the partition number, 𝑘 is the 𝑘-means cluster number,
and 𝑁 is the total number of vectors.

Proof. Consider 𝑈1, · · · ,𝑈𝑁 are 𝑁 i.i.d. random variables on

range [0, 1] and 𝑈 (1) , · · · ,𝑈 (𝑁 ) are the corresponding order sta-

tistics. According to [19], 𝑈 (𝑖 ) − 𝑈 (𝑖−1) ∼ Beta(1, 𝑁 ). Under As-
sumption 1, 𝑔𝑖 = 𝑥 (𝑖 ) −𝑥 (𝑖−1) = 𝑘𝑚 · (𝑈 (𝑖 ) −𝑈 (𝑖−1) ), meaning that

𝑔𝑖 also follows a beta distribution 𝑔𝑖 ∼ 𝑘𝑚 · Beta(1, 𝑁 ). Thus, the
results in Eq. (4) can be easily obtained. □
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Since E[𝑔𝑖 ] and Var[𝑔𝑖 ] are independent of 𝑖 , we use E[𝑔] and
Var[𝑔] to denote the mean and variance for an arbitrary 𝑔𝑖 . Based

on Lemma 4.2, we then analyze the expected line segment coverage.

Theorem 4.3 (Expected Segment Coverage). Given a set of
sorted values 𝑋 ∗ = {𝑥 (1) , · · · , 𝑥 (𝑁 ) } and an error parameter satisfy-
ing 𝜖 ≫

√︁
Var[𝑔], the expected number of values in 𝑋 ∗ covered by a

line segment ℓ (𝑖) = E[𝑔] · (𝑖 − 1) is,

E
[
min

{
𝑖 ∈ N+ | |ℓ (𝑖) − 𝑥 (𝑖 ) | > 𝜖

}]
= Θ

(
𝜖2 · 𝑁 2

𝑘2𝑚

)
. (5)

Proof. We first obtain the result that the expected segment

coverage is
𝜖2

Var[𝑔] by extending the theoretical results in [23]. Then,
by combining Lemma 4.2, we have the result stated in Theorem 4.3.

Please refer to our technical report [68] for detailed proof. □

4.2 Memory Footprint Analysis
Intuitively, Theorem 4.3 supports the rationale behind SegPQ. Con-

sidering a vector set of 1 million, we construct a PQ(4, 4) codebook,

where the gap variance is measured as 0.477. By allocating 6 bits per

residual (i.e., 𝜖 = 2
6−1 = 32), the expected segment coverage can

be computed as 1,024 using Eq. (5) (note that 32 ≫
√
0.477 = 0.69

satisfies the condition 𝜖 ≫
√︁
Var[𝑔] required by Theorem 4.3).

Therefore, representing 1 million vectors requires approximately

1,000 segments along with an array of 1 million 6-bit residuals. The

compression ratio 𝑟 can be roughly computed as,

𝑟 =
16 Bit × 106

(16 + 32 × 2) Bit × 103 + 6 Bit × 106
≈ 2.6,

which is a significant memory reduction.

We then formally analyze thememory footprint and compression

ratio of SegPQ based on Theorem 4.3.

Corollary 4.4 (SegPQ Space Cost). Considering a PQ quantizer
of parameters𝑚 and 𝑘 , Q is the corresponding codebook of size 𝑁 ×𝑚
for 𝑁 dense vectors. Then, SegPQ uses in total

𝑀 (𝜖) = 𝑁 · ⌈1 + log
2
𝜖⌉︸             ︷︷             ︸

residuals

+𝐿(𝜖) · (𝑚 · ⌈log
2
𝑘⌉ + 2𝐹 )︸                           ︷︷                           ︸

segments

(6)

bits to compress the codebook Q without any loss of information,
where 𝜖 is the error parameter, 𝐹 is the number of bits to represent a
floating number (typically 32), and 𝐿(𝜖) is the number of required line
segments, which is essentially a monotonically decreasing function

of 𝜖 . The compression ratio between SegPQ’s compressed codebook
and the raw codebook Q, denoted by 𝑟 (𝜖), can be then derived as,

𝑟 (𝜖) =
𝑚 · ⌈log

2
𝑘⌉

⌈1 + log
2
𝜖⌉ + 𝐿(𝜖) · (𝑚 · ⌈log

2
𝑘⌉ + 2𝐹 )/𝑁 . (7)

According to Theorem 4.3, in expectation
2
, by setting the slope

of a line segment to E[𝑔], the number of line segments 𝐿(𝜖) can be

derived as follows,

𝐿(𝜖) ∝ 𝑘2𝑚

𝑁 · 𝜖2
. (8)

2
The conclusion is drawn hastily as 1/E[𝑍 ] ≠ E[1/𝑍 ] for an arbitrary random

variable 𝑍 . However, we can still attain the result 𝐿 (𝜖 ) ∝ 𝑁 /𝜖2 by following the

procedures discussed in [23].

In practice, the optimal piecewise linear fitting technique [24, 57] is
adopted in SegPQ to learn segments where the number of segments

is guaranteed to be minimized under the error constraint 𝜖 . Thus,

𝐿(𝜖) = 𝑂 (𝑘2𝑚/𝑁𝜖2).
We then discuss how to configure 𝜖 to minimize the space over-

head described in Eq. (6). In practice, we can collect a small set of

probe data to fit 𝐿̃(𝜖) = 𝐶/𝜖2 as an estimation for 𝐿(𝜖). For exam-

ple, on the SIFT dataset, 𝐿̃(𝜖) ≈ 1.84 × 1010 · 1/𝜖2. Further details
on fitting 𝐿̃ are provided in Section 5.2. By taking 𝐿̃(𝜖) = 𝐶/𝜖2
into Eq. (6), we can then derive an optimal error constraint 𝜖 that

minimizes the space cost𝑀 (𝜖).

Theorem 4.5 (Optimal Parameter Setting). The SegPQ space
overhead𝑀 (𝜖) given in Corollary 4.4 is minimized by setting

𝜖OPT =

√︂
2𝐶 · ln 2 · (𝑚 log

2
𝑘 + 2𝐹 )

𝑁
, (9)

and the corresponding residual bits 𝑏OPT = ⌈1 + log
2
𝜖OPT⌉.

Proof. Taking 𝐿̃(𝜖) = 𝐶/𝜖2 into𝑀 (𝜖) (i.e., Eq. (6)), we have,

𝑀 (𝜖) = 𝑁 · ⌈1 + log
2
𝜖⌉ +

𝐶 · (𝑚 · ⌈log
2
𝑘⌉ + 2𝐹 )

𝜖2
. (10)

By setting the derivative of Eq. (10) to zero, we obtain the optimal

solution given in Eq. (9). For detailed proofs, please refer to our

technical report [68] due to space limitations. □

Corollary 4.6 (Optimal Bits Per Codeword). By setting 𝜖OPT

as shown in Eq. (9), the optimal number of bits required to compress
each PQ codeword is given by,

𝑀 (𝜖OPT)
𝑁

= ⌈1 + log
2
𝜖OPT⌉ + 1

2 ln 2

≈ 1.721 + ⌈log
2
𝜖OPT⌉ .

(11)

By further expanding Eq. (11), the optimal bits per compressed

codeword can be derived as log
2

𝑘𝑚

𝑁
+𝑂 (log

2

𝑘𝑚

𝑁
), nearly matching

the information-theoretical lower bound [66].

4.3 Discussion on Non-Uniform Codebooks
While Section 4.1 discusses the practical validity of the approx-

imately uniform distribution assumption for PQ codewords, the

theoretical behavior of SegPQ under non-uniform distributions

remains an interesting question. Fortunately, we show that even

without the uniformity assumption, SegPQ maintains comparable

asymptotic performance, as demonstrated by a generalized bound

analogous to Theorem 4.3.

Theorem 4.7 (Segment Coverage for Non-Uniform Cases).

Given a set of sorted values 𝑋 ∗ and an error threshold 𝜖 , assume that:
A1: 𝑋 ∗ is the realization of the order statistics of 𝑛 i.i.d. samples

𝐾1, · · · , 𝐾𝑖 drawing from an arbitrary distribution D with
maximum range as 𝜌 .

A2: The inverse cumulative function 𝐹−1 (·) exists for D, and for ar-
bitrary 𝑖 ∈ {1, · · · , |I|} where |I| = 𝑜 (𝑛), there exists a constant
𝛾 such that | 𝑛𝜌 · 𝐹

−1 ( 𝑖𝑛 ) − 𝑖 | ≤ 𝛾 .

A3: For arbitrary 𝑖 ∈ {1, · · · , |I|}, the density function 𝑓 (·) of D
is continuous and non-zero at 𝐹−1 ( 𝑖𝑛 ). Moreover, there exists a
constant 𝜉 such that 𝑓 (𝐹−1 ( 𝑖𝑛 )) ≥ 1/𝜉 .
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Under assumptions A1, A2, and A3, when 𝑛 is sufficiently large, the
expected coverage of a line segment ℓ (𝑥) = 𝜌

𝑛+1 · 𝑥 is given by:

𝑁 2 · (𝜖 − 𝜌 · 𝛾/𝑛)2

𝜉 · 𝜌3/2
∝ Θ(𝜖2 · 𝑁 2). (12)

Proof. We develop a new theoretical framework to analyze the

statistical behavior of 𝜖-PLA that does not rely on the gap model

used by PGM-Index [23, 24]. Due to space constraints, please refer

to our technical report [68] for detailed proofs. □

According to Theorem 4.7, by ignoring the constant terms, the

asymptotic behavior of Eq. (12) remains unchanged compared to

the uniform cases as discussed in Theorem 4.3. This suggests that

although our method was originally designed under a uniformity

assumption, it naturally generalizes to non-uniform distributions.

5 EXPERIMENTAL STUDY
In this section, we report the experimental results to demonstrate

the effectiveness and efficiency of SegPQ. All compared methods

are implemented in C++ and compiled by g++ 11. All experiments

are conducted on a Linux server with an AMD EPYC 7413 CPU and

512 GB of main memory.

5.1 Datasets and Setups
5.1.1 Benchmark Datasets. We adopt six large-scale datasets that

are commonly evaluated in ANN and VectorDB studies. Audio
is a set of 128-D audio features extracted from YouTube video

frames [80]. SIFT and GIST are sets of 128-D/960-D SIFT/GIST

image descriptors [28, 29]. Deep1B is a billion-scale dataset of

pre-trained embeddings from a deep neural network [8], where

each embedding vector is reduced to 96-D by PCA. MSMARCO is

a widely used dataset in retrieval tasks [9], whileWiki is derived
from Wikipedia passages. BothMSMARCO andWiki are embed-

ded to 384-D dense vectors using Cohere-embed-light-v3.0 [17].

As discussed in Section 5.3.1, PQ32 is adopted by default. Table 2

summarizes the statistics of the benchmark datasets.

5.1.2 VectorQuantization Methods. We adopt four different vector
quantizers to construct the codebook: ❶ PQ, the classic product
quantization [28]; ❷ OPQ, the optimized product quantization

that minimizes the vector quantization distortions w.r.t. space par-

titioning and quantization codebooks [26]; ❸ AQ, the additive

quantization that encodes dense vectors by the sum of multiple

codebooks [7]; ❹ RQ, the residual quantization that iteratively

quantizing residual errors [51]. By default, PQ is used as the quan-

tizer to generate codebooks with varying configurations. For OPQ,

AQ, and RQ, the hyper-parameters are adjusted to ensure the re-

sulting codebook sizes match those of PQ. The vector quantization

implementations are chosen from Facebook’s faiss library [22].

Table 2: Summary of evaluation datasets.
Dataset Domain #Vectors #Dims Raw Size

GIST Image 1 M 960 3.7 GB

SIFT Image 1 B 128 123 GB

Deep1B Image 1 B 96 361 GB

Audio Audio 438 M 128 211 GB

MSMARCO Text (en) 113 M 384 170 GB

Wiki Text (multi) 94 M 384 141 GB

(a) Key distribution on SIFT (b) Key distribution on Deep1B
Figure 6: Validation of Assumption 1 that the binary concate-
nations of PQ codewords are near-uniformly distributed.
5.1.3 Compared Baselines. We implement and evaluate seven com-

pression methods: ❶ SegPQ, the full-fledged SegPQ framework

with SIMD-based traversal acceleration (by default, the segment-

level parallelism is enabled); ❷ DeltaPQ [75], the state-of-the-art

PQ codebook compression method based on indexing similar code-

words’ difference; ❸ LZ4 [47], a widely used lossless compressor

for byte stream, and we configure LZ4 to achieve the highest com-

pression ratio (i.e., LZ4 -9); ❹ LZMA [60], the Lempel-Ziv-Markov

chain algorithm, which is another lossless compression scheme

optimized for compression ratio; ❺ BUFF [37], a generic lossless

compressor originally designed for bounded floats. Additionally,

we also compare ❻ Bolt [10], another vector quantizer that trade-
offs space overhead and accuracy, and ❼ PQFS [2], an efficient PQ

codebook traversal algorithm by leveraging cache locality.

Remarks. In this experimental study, we focus on the compres-

sion efficacy of our proposed methods over a wide range of vector

quantization codebooks. We do not choose to compare other ANN

indexes like LSH [1] or HNSW [49] variants as they are orthogonal

to our work and have been intensively evaluated in previous ANN

benchmarks such as [6, 36].

5.2 Validation of Theoretical Results
5.2.1 Binary Codeword Distribution. We first validate Assump-

tion 1 on codeword distribution. Figure 6 shows the histograms

of PQ codewords after binary concatenation (i.e., the projection

step of SegPQ) on various datasets. The results reveal that the pro-

jected codewords exhibit approximate uniform distributions across

multiple datasets. Despite not being perfectly uniform, the subse-

quent evaluations indicate that slight differences in distribution do
not affect the correctness of the theoretical results, aligning with
the results given in Theorem 4.7. To further evaluate the effective-

ness of SegPQ on non-uniform codebooks, we manually construct

two datasets following normal and power-law distributions. The

corresponding results are analyzed in Section 5.3.6.

5.2.2 Average Segment Coverage. We then empirically verify our

core theoretical results on the expected segment coverage (i.e., The-

orem 4.3). To do this, we construct four datasets, each consisting of

10
5
vectors sampled from SIFT, with varying gap variances Var[𝑔].

Figure 7 illustrates the number of line segments 𝐿(𝜖) w.r.t. the er-
ror parameter 𝜖 , where an inverse relationship can be consistently

observed. We then fit 𝐿̃(𝜖) = 𝐶/𝜖2 using the observed points. The

results indicate that 𝐶 ∝ 𝑁Var[𝑔], aligning with Theorem 4.3 and

Corollary 4.4. As the optimal error configuration (i.e., Eq. (9) in

Theorem 4.5) requires 𝐶 as input, by extensive testing, we adopt

𝐶 ≈ 1.734 · 𝑘2𝑚/𝑁 as a robust estimation. Experimental results pre-

sented in Section 5.2.3 demonstrate the effectiveness of the optimal

parameter setting strategy based on this estimation.
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(a) Var[𝑔] = 8.3. (b) Var[𝑔] = 75.0.
Figure 7: The number of required line segments w.r.t. error
constraint 𝜖 on SIFT with different levels of variance. Blue
solid lines refer to the observed results, and red dashed lines
refer to the estimated curve 𝐿̃(𝜖) = 𝐶/𝜖2.

(a) SIFT (b) Deep1B

(c) Audio (d) GIST

(e)Wiki (f) MSMARCO
Figure 8: Compression ratios w.r.t. varying bits for storing
each residual on six datasets.
5.2.3 Effectiveness of Optimal Parameter Setting. Figure 8 shows
the results of compression ratio w.r.t. different bits (𝑏) allocated for

each residual. Note that, maximizing the compression ratio is equiv-

alent to minimizing𝑀 (𝜖) as in Theorem 4.5. The red dashed lines

mark the optimal error bits 𝑏OPT estimated by Theorem 4.5. Our

estimation 𝑏OPT consistently approximates the observed optimum

across all datasets in Figure 8, which validates ❶ the correctness of

our optimal parameter setting strategy as described in Theorem 4.5

and ❷ the effectiveness of constant 𝐶 configured previously.

5.3 SegPQ Evaluation Results
5.3.1 Retrieval Quality and PQ configuration. Although ANN stud-

ies primarily focus on retrieval quality, typically measured by

Recall@𝑥 , SegPQ, as a lossless compression method, its retrieval

performance is entirely determined by the underlying vector quan-

tizer (e.g., PQ, OPQ, AQ). To better guide parameter configuration,

Figure 9 illustrates the relationship between Recall@𝑥 and 𝑥 for

PQ, OPQ, and AQ on SIFT dataset. The results show that AQ and

OPQ achieve relatively high recall even at a 32-bit quantization

width, whereas PQ performs slightly worse. Additionally, increas-

ing the bit width from 64 to 128 yields only marginal improvements

compared to the more significant gain from 32 to 64. Given that

Figure 9: Retrieval quality (measured by Recall@x) of PQ,
OPQ, and AQ on SIFT. Note the logarithmic scale for x-axis.

(a) SIFT: memory v.s. 𝑠 (b) Deep1B: memory v.s. 𝑠
Figure 10: Bits per codeword (BPC) w.r.t. different sample
ratios 𝑠. Solid lines refer to our SegPQwith different error bits
settings, and b=OPT refers to the optimized error parameter
selection strategy using Eq. (9).
SegPQ is designed for resource-constrained scenarios, we set 32

bits as the default quantization width for all quantizers. Results on

other datasets follow a similar trend and are therefore omitted for

brevity.

5.3.2 Memory Footprint. To demonstrate the power of memory

reduction for SegPQ, we report the average bits per codeword

(BPC) by varying different data sizes (controlled by a sample ratio

𝑠 ∈ {0.2, 0.4, 0.6, 0.8} for each dataset). By adopting PQ32, without

compression (i.e., the raw codewords), BPC for SIFT and Deep1B
is 32. The results presented in Figure 10 reveal that our SegPQ

with 𝑏OPT consistently outperforms all compared methods. For the

two billion-scale datasets SIFT and Deep1B, SegPQ with optimal

configuration can robustly compress each codeword to less than
10 bits, which is up to 1.78×, 3.62×, 4.07×, and 4.18× smaller

compared to DeltaPQ, LZMA, LZ4, and the original PQ, respectively.

The reason for SegPQ’s superior performance over the current

SOTA method, DeltaPQ, is that our SegPQ can fully utilize the

information hidden behind codewords’ distribution. With such a

high compression ratio, the PQ codebooks for two billion-scale

vector sets SIFT and Deep1B are reduced to 838 MB and 882 MB,
respectively. Given a typical idle RAM for edge devices (≤2 GiB),
as illustrated in Figure 1, these resulting codebooks can easily fit

into most mainstream mobile and even embedded devices.

5.3.3 Compression Efficiency. Figure 11 reports the scalability of

codebook compression across various datasets. From the results,

LZ4 is the most efficient, processing all billion-scale data within 100

seconds, at the cost of the worst compression ratio (as discussed in

Section 5.3.2). SegPQ is comparable to LZMA and slightly worse

than LZ4, where compressing 1 billion codewords takes 414 sec-
onds. Such a construction cost is acceptable given that training a

PQ32 codebook using faiss takes 12,390 seconds, which is about 30×
larger than SegPQ compression. Overall, SegPQ, LZ4, and LZMA
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(a) Overall comparison (b) SIFT: compression time
Figure 11: Evaluation results on codebook compression time.
Note the logarithm scale in Figure 11a.

(a) Overall comparison (b) SIFT: throughput v.s. 𝑠
Figure 12: Evaluation results on codebook decompression
throughput (unit: million vectors per second).
scale well to billion-scale datasets; in contrast, DeltaPQ, the SOTA

codebook compression technique, takes over 30 min to compress

1 billion vectors and exhibits super-linear growth as data size in-

creases. This inefficiency is because DeltaPQ relies on indexing

differences between codewords, which grows much faster as data

size scales. Notably, the compression time of SegPQ primarily con-

tains two parts: codebook reordering (>95%) and PLA training. For

the overhead of reordering raw vectors stored on disk (or associated

documents in an RAG application), we adopt an external sorting

algorithm from stxxl::sort, which can sort SIFT (123 GB) in 419

seconds on our experiment platform (4×2.5 TB NVMe and 512 GB

main memory). While unneglectable, this is usually a “one-time”

preprocessing cost in practical deployments.

5.3.4 Decompression Efficiency. We then investigate the decom-

pression efficiency of compressed codebooks. Figure 12 reports the

processing throughput (measured in million vectors per second)

w.r.t. different data sizes (controlled by varying sampling ratio).

Among all datasets, SegPQ’s SIMD-aware traversal (i.e., SegPQ-dc

in Figure 12) can decompress 1 billion codewords in 11.65 sec-
onds, which consistently outperforms LZ4, DeltaPQ, and LZMA

by up to 1.75×, 3.03×, and 24.98×, respectively. This performance

gap could be further widened with multi-threading, which we do

not explore here as none of the baselines are optimized for multi-

threaded execution. Besides, while SegPQ-at is as slow as LZMA,

it is the only method that supports efficient random access within

the compressed codebook.

An interesting observation is that the throughput of SegPQ

slightly increases as the data size grows. This can be explained as

a larger data size results in fewer average line segments, based on

Theorem 4.3, ultimately requiring less time to access the segments.

5.3.5 ANN Query Efficiency. We further evaluate the overall ANN

query processing efficiencywith SegPQ. As shown in Table 3, SegPQ

achieves a significant space reduction of up to 352% compared to

PQ and OPQ, while incurring only minor increases in index and

Table 3: Evaluation of ANN query processing efficiency on
the Deep1B dataset. The query time refers to the total time
of running 1,000 top-50 queries.

Method Memory
Unit: GiB

Index Time
Unit: sec

Query Time
Unit: sec

PQ32 3.8 1199 60.73

SegPQ+PQ32 0.91 (↓322%) 1299 (↑8.3%) 64.52 (↑6.2%)

OPQ32 3.8 2220 85.95

SegPQ+OPQ32 0.84 (↓352%) 2322 (↑4.6%) 90.04 (↑4.8%)

Bolt 3.0 8344 789.84

BUFF+PQ32 2.4 1441 149.56

DeltaPQ 1.4 3941 132.27

PQFS32 3.8 1635 10.93

Table 4: Evaluation of SegPQ+X on Deep1B, where X repre-
sents different quantization methods (PQ, OPQ, AQ, and RQ).
We evaluate each quantizer under varying bit-width settings
(16, 32, and 64). “OOM” indicates that the quantizer failed to
train the codebook due to out-of-memory (OOM) errors.

Method Memory
Unit: GiB

Index Time
Unit: sec

Query Time
Unit: sec

PQ16 1.9 436 53.92

OPQ16 1.9 691 56.26

RQ16 1.9 65447 94.88

AQ16 1.9 78242 121.52

SegPQ+PQ16 0.23 (↓715%) 494 (↑12.5%) 56.17 (↑4.2%)
SegPQ+OPQ16 0.23 (↓715%) 749 (↑8.4%) 58.51 (↑4.0%)
SegPQ+RQ16 0.23 (↓715%) 65905 (↑0.7%) 100.20 (↑5.6%)
SegPQ+AQ16 0.24 (↓692%) 78351 (↑0.1%) 126.48 (↑4.1%)

PQ32 3.8 543 60.73

OPQ32 3.8 579 85.95

RQ32 3.8 206228 113.41

AQ32 OOM OOM OOM

SegPQ+PQ32 0.91 (↓322%) 672 (↑23.8%) 64.52 (↑6.2%)
SegPQ+OPQ32 0.84 (↓352%) 716 (↑23.6) 90.04 (↑4.8%)
SegPQ+RQ32 0.99 (↓284%) 206401 (↑0.1%) 119.31 (↑5.2%)
SegPQ+AQ32 OOM OOM OOM

PQ64 7.5 1199 115.31

OPQ64 7.5 2220 208.14

RQ64 OOM OOM OOM

AQ64 OOM OOM OOM

SegPQ+PQ64 2.95 (↓154%) 1299 (↑8.3%) 119.81 (↑3.9%)
SegPQ+OPQ64 3.39 (↓121%) 2322 (↑4.6%) 213.14 (↑2.4%)
SegPQ+RQ64 OOM OOM OOM

SegPQ+AQ64 OOM OOM OOM

query costs, limited to 8.3% and 6.2%, respectively. More results on

integrating SegPQ with other vector quantization codebooks are

provided in Section 5.3.7. Among all methods, PQFS demonstrates

the highest query efficiency, as its codebook structure is specifically

designed for fast ANN query processing. However, like standard PQ,

PQFS comes with a high memory overhead. We further compare

SegPQ with other vector compression techniques, including Bolt,

BUFF, and DeltaPQ. The results show that SegPQ achieves the best
trade-off between memory overhead and ANN query efficiency.

5.3.6 Evaluation on Non-Uniform Distributions. We construct two

non-uniform datasets, SIFT-Normal and SIFT-Power, by re-sampling
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from the PQ32 codewords of SIFT. To better adapt to non-uniform

distributions, we introduce a partition-based parameter-tuning ap-

proach. Specifically, we employ PELT [31], an efficient change-point

detection algorithm, to partition the codewords into disjoint chunks

P = 𝑃1, . . . , 𝑃𝑀 . Within each chunk, codewords can be approxi-

mately treated as uniformly distributed, allowing us to allocate

an optimal error threshold 𝜖𝑖 independently for each partition 𝑃𝑖 .

Using this strategy, SegPQ achieves a compression ratio of 6.85 on

SIFT-Normal and 5.73 on SIFT-Power. For comparison, DeltaPQ

achieves compression ratios of 4.67 and 3.98, respectively.

5.3.7 Evaluation on SegPQ+X. We perform supplementary experi-

ments to showcase the query efficiency of SegPQ when integrated

with PQ, OPQ, AQ, and RQ across different quantization bit set-

tings (16/32/64). The results on Deep1B are given in Table 4. In

summary, the results indicate that SegPQ is lightweight, with a

minor impact (typically less than 10%) on both PQ index construc-

tion and ANN query processing efficiency. This is because ❶ our

SegPQ decompression algorithm fully utilizes hardware resources

for acceleration, and ❷ PQ 𝑘NN query processing does not require

decompressing all codewords, meaning that PQ distance computa-

tion can be well pipelined with SegPQ decompression. Besides, such

extra overhead caused by decompression becomes more negligible

when processing a large batch of queries (e.g., 1K in the experi-

ments) as multiple queries can re-use the already decompressed

codes. Results on datasets other than Deep1B are similar and thus

are omitted here due to page limits.

5.4 Summary of Results
Finally, we summarize the major experimental observations. ❶

SegPQ robustly achieves the highest compression ratio among all

baselines and is notably the only method that consumes mem-

ory less than 1 GiB for 1 billion vectors. ❷ The construction of

SegPQ is scalable, and its overhead is negligible (less than 3.4%)
compared to PQ training time. ❸ Querying SegPQ’s compressed

codebook is highly efficient, with a minor effect on the overall ANN

query processing (less than 6%). Especially, when compared to

the SOTA PQ codebook compression method, DeltaPQ [75], our

SegPQ demonstrates superiority in all three dimensions: memory

footprint, construction efficiency, and query efficiency.

6 RELATEDWORK
In this section, we review related works from: ❶ LLMs, RAG and

vector databases, ❷ ANN indexing, and ❸ learned data indexing.

LLMs, RAG and VectorDB. Recent advancements in LLMs [16,

56, 71] have revolutionized NLP tasks, demonstrating transforma-

tive power of Transformer architectures [73] with billion-scale

parameters. In parallel, integral techniques like VectorDB and RAG

with the ANN search engine [5, 25, 30, 59] are investigated to en-

hance LLM’s performance. VectorDB enables efficient storage and

retrieval of high-dimensional data, while ANN facilitates similar-

ity searches. RAG [25] represents a significant advancement by

combining parametric LLMs with non-parametric datastores, lever-

aging the strengths of VectorDB and ANN to provide efficiency,

dynamic knowledge updating, and enhanced explainability. Com-

pared to LLMs, these techniques provide a lightweight alternative

for innovation on resource-constrained devices.

ANN Indexing. Nearest neighbor (NN) problems on high di-

mensional data have been studied for decades [4, 36, 45]. Exact NN

solutions typically include 𝑘d-tree variants [62, 64] and metric tree

variants [13, 79]. These methods are hard to scale to billion-scale

vector databases due to the prohibitive space and time complexities.

To handle web-scale vectors, ANN techniques have been intensively

studied, which can be categorized into locality-sensitive hashing

(LSH) based [1, 18, 38], proximity graph based [49, 50], and vec-

tor quantization based [26, 28, 77] approaches. Among the various

ANN techniques, PQ variants are generally adopted by mainstream

VectorDB products [22, 52, 61] as coarse quantizers and jointly used

with other indexes. Our SegPQ is technically orthogonal to existing

ANN methods and can be seamlessly applied to any PQ variants to

obtain a lossless memory reduction.

Learned Models as Indexes. A recent tendency across ma-

chine learning, database, and system communities is to integrate

machine learning models with conventional data structures to im-

prove space/time efficiency, such as B+-tree [24, 32, 39], R-tree [40],

histogram [42], hash tables [43, 65], and Bloom filters [44, 53],

leading to the concept named learned index. Recent theoretical stud-
ies [23, 39, 41] demonstrate the effectiveness of piecewise linear

models in fitting distributions with controllable error. In our work,

we extend the results in [23] to the case of learned PQ codebook

compression by fully utilizing the distribution information behind

PQ codewords. In our technical report [68], we discuss more details

on the connections to learned indexes.

7 CONCLUSION AND FUTUREWORK
With an outlook to the broader context of edge-AI, this work pro-

poses SegPQ, a novel approach for further lossless compression of

PQ codebooks. We establish simple yet non-trivial theoretical re-

sults to demonstrate SegPQ’s efficacy. Extensive evaluations on

web-scale vector search scenarios demonstrate that SegPQ can re-

duce the raw codebook size to less than 1 GiB while incurring

negligible computational overhead for processing 1 billion vectors.

Our future work aims to embed SegPQ into prevalent VectorDB

engines, facilitating seamless integration of vector search engines

by custom choice, right on edge devices.
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