
Lighter-X: An Efficient and Plug-and-play Strategy for
Graph-based Recommendation through Decoupled Propagation

Yanping Zheng

Renmin University of China

zhengyanping@ruc.edu.cn

Zhewei Wei
∗

Renmin University of China

zhewei@ruc.edu.cn

Frank de Hoog

Data 61, CSIRO

Frank.Dehoog@data61.csiro.au

Xu Chen

Hongteng Xu

Renmin University of China

xu.chen@ruc.edu.cn

hongtengxu@ruc.edu.cn

Yuhang Ye

Jiadeng Huang

Huawei Poisson Lab

yuhang.ye@huawei.com

huangjiadeng96@sina.com

ABSTRACT
Graph Neural Networks (GNNs) have demonstrated remarkable

effectiveness in recommendation systems. However, conventional

graph-based recommenders, such as LightGCN, require maintain-

ing embeddings of size 𝑑 for each node, resulting in a parameter

complexity ofO(𝑛×𝑑), where𝑛 represents the total number of users

and items. This scaling pattern poses significant challenges for de-

ployment on large-scale graphs encountered in real-world applica-

tions. To address this scalability limitation, we propose Lighter-X,
an efficient and modular framework that can be seamlessly inte-

grated with existing GNN-based recommender architectures. Our

approach substantially reduces both parameter size and compu-

tational complexity while preserving the theoretical guarantees

and empirical performance of the base models, thereby enabling

practical deployment at scale. Specifically, we analyze the original

structure and inherent redundancy in their parameters, identifying

opportunities for optimization. Based on this insight, we propose

an efficient compression scheme for the sparse adjacency structure

and high-dimensional embedding matrices, achieving a parameter

complexity of O(ℎ × 𝑑), where ℎ ≪ 𝑛. Furthermore, the model is

optimized through a decoupled framework, reducing computational

complexity during the training process and enhancing scalability.

Extensive experiments demonstrate that Lighter-X achieves com-

parable performance to baseline models with significantly fewer

parameters. In particular, on large-scale interaction graphs with

millions of edges, we are able to attain even better results with only

1% of the parameter over LightGCN.

PVLDB Reference Format:
Yanping Zheng, Zhewei Wei, Frank de Hoog, Xu Chen, Hongteng Xu,

Yuhang Ye, and Jiadeng Huang. Lighter-X: An Efficient and Plug-and-play

Strategy for Graph-based Recommendation through Decoupled

Propagation. PVLDB, 18(11): 3721 - 3729, 2025.

doi:10.14778/3749646.3749649

∗
Zhewei Wei is the corresponding author. The work was partially done at Gaoling

School of Artificial Intelligence, Beijing Key Laboratory of Research on Large Models

and Intelligent Governance, MOE Key Lab of Data Engineering and Knowledge En-

gineering, Engineering Research Center of Next-Generation Intelligent Search and

Recommendation, MOE, and Pazhou Laboratory (Huangpu), Guangzhou, Guangdong

510555, China.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

LightGCN JGCF LightGCL LighterGCN LighterJGCF LighterGCL

32 64 128
Embedding Size d

0.155

0.160

0.165

0.170

0.175

0.180

0.185

R
ec

al
l@

10
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

9992 165771 894431
0.00
0.02
0.04
0.06

Dataset Size n

R
ec

al
l@

10

Figure 1: Performance vs. Training Parameters: Circle sizes
represent parameter counts. Baseline models’ parameters
scale proportionally with embedding size (𝑑) and dataset
size (𝑛), while Lighter-X achieves higher accuracy with more
compact parameter sizes.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zheng-yp/Lighter-X.

1 INTRODUCTION
Recent studies have shown that recommender systems based on

Graph Neural Networks (GNNs) outperform traditional collabora-

tive filtering methods [31]. Since much of the data in recommender

systems can be naturally represented as graphs, GNNs leverage

their powerful representation learning capabilities to capture com-

plex relationships, thereby enhancing recommendation accuracy.

For example, modeling user-item interactions as a bipartite graph

allows for better exploitation of collaborative filtering information

through neighbor convolution. By stacking more convolutional lay-

ers, the users and items with longer distances can be associated and

share similar propagated gradients in the optimization process [7].

Despite effectiveness, graph-based recommender models usually

contain a large number of parameters and need complex convo-

lutional operations, which hinders their application in real-world

scenarios [1, 15]. This problem necessitates the studies of more

efficient graph-based recommender models.

LightGCN [9] simplifies traditional graph-based models by re-

taining only the essential neighbor aggregation operation. However,

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.

doi:10.14778/3749646.3749649

3721

https://doi.org/10.14778/3749646.3749649
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/zheng-yp/Lighter-X
https://doi.org/10.14778/3749646.3749649
https://www.acm.org/publications/policies/artifact-review-and-badging-current

it still contains a large number of training parameters, expressed

as 𝑛 × 𝑑 , where 𝑛 is the total number of users and items, and 𝑑 is

the embedding size. As shown in Figure 1, LightGCN’s parameter

count grows dramatically with both embedding dimension 𝑑 and

dataset size 𝑛. Specifically, the left panel examines Recall@10 for

varying embedding dimensions 𝑑 on the MovieLens-1M dataset.

Overall, increasing 𝑑 leads to improved performance, but Light-

GCN [9] requires significantly more parameters. The right shows

results for models with fixed embedding dimensions across three

datasets of increasing size: MovieLens-1M (𝑛=9,992), MovieLens-

20M (𝑛=165,771), and Alimama (𝑛=894,431). Similarly, LightGCN’s

parameter scales proportionally with dataset size 𝑛.

Recent works have introduced polynomial-based filters [8] and

Graph Contrastive Learning (GCL) [3, 34] to improve recommen-

dation accuracy. However, these approaches rely on LightGCN [9]

as their backbone network, thereby inheriting its scalability limi-

tations when applied to large-scale datasets, as shown in Figure 1.

Notably, JGCF [8] encountered an out-of-memory (OOM) error

on the Alimama dataset. This raises an important question: How
can we design a lighter, more parameter-efficient framework
while maintaining model performance?

In this paper, we propose Lighter-X, a plug-and-play frame-

work that can be seamlessly integrated into existing graph-based

recommendation models to significantly reduce parameter cost.

Motivated by the observation of inherent parameter redundancy

in such models, we introduce a compression mechanism for both

sparse graph structures and embedding matrices. As shown in Fig-

ure 1, Lighter-X models maintain stable model sizes regardless of

embedding dimension 𝑑 or dataset size 𝑛, achieving parameter ef-

ficiency and competitive performance. Our contributions can be

summarized as follows:

• We introduce Lighter-X, which reduces parameter complexity to

O(ℎ × 𝑑), where ℎ ≪ 𝑛 corresponds to dataset sparsity.

• Employing the Lighter-X framework, we improve existing rec-

ommender models and construct LighterGCN, LighterJGCF and

LighterGCL. Theoretical analysis shows that proposed models

preserve the key properties of base models while significantly

reducing parameter counts and computational complexity.

• We conduct extensive experiments on several datasets and demon-

strated that the proposed method achieves comparable or even

better results with significantly fewer parameters, leading to

substantially faster training times.

2 BACKGROUND AND PRELIMINARY
A recommender system typically consists of a user set𝑈 , an item set

𝐼 , and a user-item interaction matrix R ∈ {0, 1} |𝑈 |× |𝐼 | , where R𝑢𝑖 =
1 indicates an interaction between user 𝑢 and item 𝑖 . Graph-based

recommender models represent these interactions as a bipartite

graph 𝐺 = (𝑉 , 𝐸), where the node set 𝑉 = 𝑈 ∪ 𝐼 includes all users

and items, and the edge set 𝐸 = {(𝑢, 𝑖) | R𝑢𝑖 = 1, 𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 }. The
goal is to estimate user 𝑢’s preference for item 𝑖 ∈ 𝐼 using their

learned representation 𝒆𝑢 and 𝒆𝑖 , formulated as 𝒚̂𝑢,𝑖 = 𝒆⊤𝑢 𝒆𝑖 .

2.1 Decoupled GNNs
GNNs are powerful tools formodeling graph data and have achieved

impressive performance across various graph-related tasks. How-

ever, applying conventional GNNs such like GCN [11] to large-scale

graphs is challenging due to the limitations of full-batch training.

To improve scalability without compromising accuracy, several

methods, including SGC [29], PPRGo [2], and AGP [24], decoupled

feature propagation from the training process. In general, feature

propagation is computed as:

Z =

𝐿∑︁
ℓ=0

𝑤ℓZ(ℓ) =
𝐿∑︁
ℓ=0

𝑤ℓPℓX, (1)

where 𝐿 is the number of layers, P = D− 1

2AD− 1

2 is the normalized

adjacency matrix, and𝑤ℓ denotes the importance of the ℓ-th layer.

Each Z(ℓ)
s recursively defined as Z(ℓ) = PZ(ℓ−1)

, with the ini-

tial representation Z(0) = X, the input feature matrix (e.g., user

attributes such as age, gender, or occupation). Typically, the fea-

ture propagation matrix Z can be precomputed and then used as

input to a downstream model like a Multilayer Perceptron (MLP).

In recommendation tasks, the goal is to learn node embeddings

rather than prediction scores. With a single-layer MLP, the final

embedding matrix is computed as E = ZW, where W is the MLP

weight matrix.

2.2 Graph-based Recommender Models
Graph-based recommender models learn powerful node embed-

dings by leveraging collaborative signals from high-order neigh-

bors. NGCF [25] is built on the standard GCN [11] architecture.

LightGCN [9] simplifies NGCF by removing the weight matrices

and the activation function in each layer. Formally, the embedding

calculation in LightGCN can be represented by:

E =
1

𝐿 + 1

𝐿∑︁
ℓ=0

E(ℓ) =
1

𝐿 + 1

𝐿∑︁
ℓ=0

PℓE(0) , (2)

where 𝐿 is the number of layers, E(ℓ)
is the embedding matrix at

layer ℓ , and E(0) is the initial embedding matrix, randomly initial-

ized and used as the only learnable parameter. Each layer-wise

embedding is computed recursively as E(ℓ) = PE(ℓ−1) = PℓE(0)
.

The repeated application of the propagation matrix P allows the

model to capture multi-hop neighborhood information. Recent

extensions introduce polynomial graph filters [8] and graph con-

trastive learning [3, 30, 34] to further boost performance.

Polynomial graph filters. Some works attribute the success of

graph collaborative filtering to its effective implementation of low-

pass filtering, and introduce polynomials to enable more flexible

frequency responses [8, 16]. JGCF [8] utilizes Jacobi polynomial

bases, denoted as J𝑎,𝑏
ℓ

(𝑥), to approximate graph signal filters, facili-

tating efficient frequency decomposition and signal filtration. The

ℓ-th order Jacobi basis J𝑎,𝑏
ℓ

(𝑥) is parameterized by 𝑎, 𝑏 > −1, which
control the filter’s response characteristics. This formulation en-

ables separate modeling of low- and mid-frequency signals, whose

effects are combined to form the final embeddings:

E = concat(E𝑙𝑜𝑤 , E𝑚𝑖𝑑), E𝑙𝑜𝑤 =
1

𝐿 + 1

𝐿∑︁
ℓ=0

J𝑎,𝑏
ℓ

(P)E(0) . (3)

Themid-frequency component is calculated as E𝑚𝑖𝑑 = tanh(𝛽E(0)−
E𝑙𝑜𝑤)), where 𝛽 is a weighting factor controlling the balance be-

tween low- and high-frequency information.

3722

Graph contrastive learning. To address the issue of sparse infor-

mation in recommender systems, recent studies have introduced

contrastive learning to enhance performance [3, 30, 34]. The core

idea is to modify the original graph structure to generate aug-

mented representations. LightGCL [3] employs Singular Value De-

composition (SVD) to guide data augmentation. Specifically, SVD

is applied to the interaction matrix R, yielding R = UQV⊤
, where

U ∈ R |𝑈 |× |𝑈 |
and V ∈ R |𝐼 |× |𝐼 |

are orthogonal matrices, and Q is a

diagonal matrix of singular values. Since principal components cor-

respond to top-𝑘 singular values, LightGCL uses them to construct

a perturbed interaction matrix R̂. The perturbed adjacency matrix

Â = [[0, R̂], [R̂⊤, 0]], which is then used in Equation 2 to compute

the perturbed embedding:

Ê =

𝐿∑︁
ℓ=0

Ê(ℓ) , Ê(ℓ) = P̂ · E(ℓ−1) , (4)

where P̂ = D̂− 1

2 ÂD̂− 1

2 is the perturbed propagation matrix, Ê(ℓ)

refers to the perturbed embedding at layer ℓ , and Ê(0) = E(0) .
Scalable methods. To improve the scalability of graph-based rec-

ommendation systems, several approaches have been proposed to

balance efficiency and memory use. XGCN [19] is a library designed

for GNN-based recommendations, incorporating optimized imple-

mentations and scaling strategies to process large datasets with low

memory overhead. LTGNN [35] enhances propagation efficiency

by adopting an implicit modeling approach inspired by PPNP and

integrating a variance-reduced neighbor sampling strategy to fur-

ther improve scalability and efficiency. GraphHash [32] focuses

on parameter reduction by employing modularity-based bipartite

graph clustering to compress the embedding table. This approach is

orthogonal to our work, as Lighter-X improves parameter efficiency

by optimizing the model’s computational structure.

Simplifiedmethods. Recently, some works have been proposed to

optimize and simplify graph-based recommendation models. Light-

GODE [36] reduces training cost by modeling graph convolution as

differential equations, removing graph operations during training

and reintroducing them only for validation. However, its structure

remains similar to LightGCN, with no reduction in parameters. An-

other line of work, such as SVD-GCN [15], reduce parameters via

truncated SVD for low-rank embedding approximation. While effec-

tive, SVD incurs high time and memory costs on large-scale graphs,

limiting scalability. In contrast, the proposed Lighter-X achieves

both computational simplification and parameter compression.

3 INVESTIGATION OF GRAPH-BASED
RECOMMENDATION MODELS

In this section, we analyze the connection between LightGCN [9]

and decoupled GNN models, highlighting the reasons behind the

large parameter sizes in graph-based recommendation models, us-

ing LightGCN as a representative example. We then demonstrate

through experimental observations that this large parameter matrix

is largely redundant.

Origins for Large Parameter Counts. LightGCN [9] simplifies

NGCF [25] by removing feature transformations and nonlinear

activations, relying solely on linear neighborhood aggregation to

capture collaborative signals. It can be viewed as a simplified form

of a decoupled GNN. While LightGCN is not fully decoupled, since

LastFM

25% 50% 75% 100%

MovieLens-1M

25% 50% 75% 100%

Figure 2: Parameter matrix updates during training.

0 1000 2000 3000 4000 5000
k

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

LastFM

0 2500 5000 7500 1000012500150001750020000
k

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

MovieLens-1M

Figure 3: Percentage of parameter updatedmore than𝑘 times.
it still aggregates node representations at each layer, it behaves

equivalently to a decoupled GNN in terms of parameterization and

embedding learning. This equivalence can be demonstrated by set-

ting𝑤ℓ = 1/(𝐿 + 1) in Equation 1 and letting X = I, where I is the
𝑛 × 𝑛 identity matrix. Under these settings, Equation 1 becomes

Z = 1/(𝐿 + 1)∑𝐿
ℓ=0 P

ℓ I. Substituting this into the embedding com-

putation yields E = ZW = 1/(𝐿 + 1)∑𝐿
ℓ=0 P

ℓ IW , which matches

Equation 2, where E(0) corresponds to the parameter matrix W in

decoupled GNNs. This equivalence is further supported by empiri-

cal results presented in our technical report. Observation 1 aligns

perfectly with the statement in recommender systems that the
IDs of users and items are used as input features. In these

systems, users and items lack intrinsic features beyond their IDs,

which effectively results in a one-hot encoded input. This setup

is analogous to a scenario in decoupled GNNs where an identity

matrix serves as the feature matrix.

Observation 1. In terms of embedding learning and model pa-
rameters, LightGCN can be seen as a specialized form of decoupled
GNN, where the input feature matrix is set to an identity matrix.

According to the mathematical formulation, the dimensions of

the parameter matrix W are determined by the feature dimensions.

When X is an identity matrix, the feature dimension becomes 𝑛,

resulting in a parameter size of 𝑛 × 𝑑 for LightGCN [9]. JGCF [8]

and LightGCL [3] employ polynomial-based filters and GCL, respec-

tively, to improve model performance. Due to their adherence to

LightGCN’s embedding learning framework, their large parameter

sizes can be attributed to the same factors outlined previously.

Redundancy in Parameter Matrices. Considering that the pa-
rameter matrix in LightGCN [9] and its variants scales with𝑛×𝑑 , we
conducted experiments on the LastFM and MovieLens-1M datasets

to examine its necessity and potential redundancy. Specifically, we

tracked parameter update frequencies during training to assess uti-

lization. As shown in Figure 2, only a small portion of the parameter

3723

𝐙(ℓ) = 𝑓(𝐏ℓ)𝐗 𝐙 =෍𝑤ℓ𝐙
(ℓ) 𝐄 = 𝑔(𝐙)

𝒆௨

𝒆௜

𝒆௝

𝑦ො௨௜

𝑦ො௨௝

𝐿୆୔ୖ

Graph Feature Propagation Model Training

users items

Figure 4: An overview of the proposed Lighter-X framework.

matrix continues to update during the later stages of training. This

effect is particularly evident on the LastFM dataset, where many

parameters become static in the early phases, indicating redun-

dancy. To further investigate this, Figure 3 shows the percentage of

parameters updated more than 𝑘 times. On MovieLens-1M, most

parameters are updated infrequently, and the trend is even more

pronounced in the LastFM dataset, where fewer than 20% of the

parameters are updated more than 2,500 times out of a possible

5,000. These findings suggest that the parameter matrix W, also

referred to as E(0) , in LightGCN is highly redundant. Since many

graph-based recommender models adopt similar parameter settings,

this highlights a broader need for parameter optimization.

Observation 2. Parameter matrices in models like LightGCN
exhibit significant redundancies, demonstrating that the training
parameter matrix is inherently sparse.

To address this, we propose a foundational assumption: W =

Ws +Wv, whereWs consists of static parameters andWv contains

the learnable, varying components. Correlating the results from Fig-

ures 2 and 3, it becomes evident that Wv should be a sparse matrix.

The redundancy observed in the parameter matrix suggests that a

large portion ofW remains effectively unchanged during training

and does not significantly contribute to the learning process. Our

empirical results confirm that only a small subset of parameters in

Wv are meaningfully updated, highlighting a clear opportunity for

reducing model size and improving efficiency.

4 THE LIGHTER-X METHOD
In this section, we introduce the Lighter-X framework and demon-

strate its universal applicability by applying it to various represen-

tative models. As discussed in Section 3, LightGCN uses an identity

matrix of dimension 𝑛 × 𝑛 as the feature matrix X, which neces-

sitates a weight matrix W of size 𝑛 × 𝑑 . This setup results in a

substantial number of parameters. To tackle this issue, we propose

using a low-rank matrix X∈R𝑛×ℎ
as the input feature matrix. This

adjustment results in a weight matrixW of size ℎ × 𝑑 according

to the standard computation, where ℎ ≪ 𝑛 . Given this context,
what constitutes an optimal low-rank matrix X?

In recommender systems, data is typically large-scale but in-

herently sparse. As discussed in Section 3, this sparsity extends

to the training parameters of the models. Building on this charac-

teristic, our approach leverages compressed sensing to efficiently

derive low-rank matrices, which is essential for managing large

data volumes with reduced computational overhead. This method

provides a robust alternative to traditional techniques such as SVD.

Although popular for achieving low-rank approximations, SVD is

challenged by significant computational demands in large graph

scenarios [5]. To achieve the restricted isometry property (RIP)

in the optimal regime for compressed sensing, we utilize random

matrices, a common technique for rapid dimensionality reduction.

Even under significant compression, the original signal can be

accurately reconstructed from a small number of observations, pro-

vided the signal retains sparse characteristics. This reconstruction

is achieved through optimization algorithms [6]. In other words, the

compressed matrix can preserve the essential features of the data,

making compressed sensing a promising approach for accelerating

convolutional operations by effectively reducing dimensionality

early in the network.

Optimizing sparse data in graph structures. To optimize the

sparse data in graph structures, we construct an efficient input

featurematrixX = P·S using cost-effective random sampling, where

S ∈ R𝑛×ℎ
is a random matrix designed to satisfy the RIP condition.

Specifically, S can be either a Gaussian or Bernoulli random matrix,

both of which are widely used in compressed sensing due to their

simplicity, generality, and ability to satisfy the RIP condition [4,

13, 33]. The dimensions of S are chosen to meet the following

requirement:

ℎ = 𝑐 · 𝑟 log(𝑛/𝑟), (5)

where 𝑟 represents the sparsity level and 𝑐 is a customizable con-

stant. Traditional methods maintain graph propagation precision

by generating an ID-specific one-hot vector for each node, which

leads to inefficient resource usage, as this approach requires 𝑛 en-

tries for 𝑛 signals. In contrast, by utilizing compressed sensing and

random sampling, as described in Equation 5, our method scales

with log(𝑛), significantly reducing resource consumption while

preserving essential features.

Optimizing sparse trainable parameters. Following a similar

strategy used for sparse graph structures, we replace the sparse

parameter matrix discussed in Section 3 with a trainable matrix

W′
, initialized from a Gaussian distribution. Since the random pro-

jection matrix S′ is also sampled from a Gaussian distribution [33],

their product S′W′
satisfies the distributional properties required

in compressed sensing [4]. Importantly, the dimensionality of learn-

able weight W′
is ℎ × 𝑑 , independent of the number of nodes 𝑛 ,

which contributes to improved scalability. Therefore, the model

can bypass the traditional reconstruction step and instead rely on

end-to-end training to learn effective representations.

Decoupled framework for graph-based recommendation. The
coupled model structure is another important factor limiting the

scalability of traditional GCN [11] and LightGCN [9]. Specifically,

these models typically require convolutional operations to be per-

formed on the entire graph, which is computationally expensive

and difficult to scale to large graphs. A series of studies has im-

proved GCN scalability by decoupling feature propagation from

the training process, allowing computationally intensive convo-

lution operations to be precomputed [2, 24, 29]. Extending this

idea, our introduction of low-rank random matrices enables the

decoupling of Lighter-X, allowing the costly and time-consuming

feature propagation operations to be executed only once during

the pre-computation phase. Figure 4 illustrates the final Lighter-

X framework, where 𝑓 (·) is the propagation function responsible

for spreading information across nodes, and 𝑔(·) is the learning

3724

Algorithm 1 Training Algorithm for LighterGCN

1: Input: User-item interaction matrix R, adjacency matrix A,
degree matrix D, number of GNN layers 𝐿, random matrix

dimension coefficients 𝑐

2: Output: Predicted score matrix Ŷ, learned embeddings E
3: # Preprocessing
4: Compute normalized adjacency matrix P = D− 1

2AD− 1

2

5: Generate feature matrix X = GenFeat(R, 𝑐)
6: Compute feature propagation matrix Z =

∑𝐿
ℓ=0𝑤ℓPℓX

7: # Training
8: for each mini-batch with 𝐵 user-item pairs (𝑢, 𝑖, 𝑖−) do
9: Z𝐵 = rows of Z indexed by {𝑢, 𝑖, 𝑖−}
10: Get embeddings for nodes in batch E𝐵 = 𝑀𝐿𝑃 (Z𝐵)
11: LBPR = − log

[
sigmoid

(
𝒆⊤𝑢 𝒆𝑖 − 𝒆⊤𝑢 𝒆𝑖−

)]
12: Update MLP’s parameters using gradient descent

13: end for
14: # Inference
15: Get embeddings for all nodes E = 𝑀𝐿𝑃 (Z)
16: E𝑈 = rows of E indexed by {1, . . . , |𝑈 |}
17: E𝐼 = rows of E indexed by {|𝑈 | + 1, . . . , |𝑈 | + |𝐼 |}
18: Predict score matrix Ŷ = E𝑈 E⊤

𝐼

function, typically implemented as an MLP trained for downstream

tasks. In the feature propagation stage, we complete the convolu-

tion related operation and obtain the feature propagation matrix Z.
The subsequent neural network takes Z as input and is trained to

generate the final user and item embeddings. This training process

is guided by the Bayesian Personalized Ranking (BPR) loss.

4.1 LighterGCN
We begin by applying the proposed Lighter-X framework to ex-

tend LightGCN [9], which we call LighterGCN. This is particu-

larly relevant, since LightGCN serves as an foundational back-

bone for many GNN-based recommendation models. Specifically,

LighterGCN adopts a low-rank approximation and decoupling

framework to optimize the embedding process. Formally, LighterGCN

learns embeddings using the following equation:

E = 𝑀𝐿𝑃 (Z) = 𝑀𝐿𝑃 (
𝐿∑︁
ℓ=0

𝑤ℓZ(ℓ)), Z(ℓ) = PℓX, (6)

where X is the random sampling result with rank ℎ, which is much

smaller than the number of nodes 𝑛. Based on this low-rank input

feature matrix X, LighterGCN performs graph convolutional opera-

tions to compute the feature propagation matrix Z. Finally, an MLP

is trained to produce the final embedding E. As a result, LighterGCN
reduces the number of parameters from 𝑂 (𝑛𝑑) to 𝑂 (ℎ𝑑), where
ℎ ≪ 𝑛, thereby simplifying computation and improving learning

efficiency. By precomputing feature propagation using the intro-

duced low-rank random matrix, LighterGCN not only maintains

the expressive power of the original LightGCN but also achieves

greater scalability and efficiency.

Learning Algorithm. The LighterGCN method, summarized in

Algorithm 1, consists of three main stages: preprocessing, training,

and inference. During preprocessing (Lines 4–6), we first compute

the normalized adjacency matrix, as is standard in many existing

methods. We then generate feature matrices using a randomized

approach and construct the feature propagation matrix following

the LightGCN formulation, using the low-rank feature matrix as

input. This shared propagation mechanism enables LighterGCN

to effectively preserve the strengths of LightGCN. In the training

phase (Lines 8–12), we sample mini-batches of user-item pairs and

learn embeddings using an MLP. Importantly, no graph-related op-

erations are required during training, which significantly improves

efficiency. Since each row of the feature propagation matrix is inde-

pendent, computations are restricted to the relevant nodes in each

mini-batch, avoiding redundant full-graph convolutions and further

enhancing scalability. Finally, during inference (Lines 15–18), we

compute predicted user-item relevance scores by multiplying the

learned embeddings. To facilitate understanding and comparison

of computational stages, we present an overview of the training

pipeline. Further details are available in the technical report.

4.2 Lighter-X in Polynomial-based Graph Filters
As mentioned in Section 2.2, polynomial-based graph collaborative

filtering is formally equivalent to applying different polynomial

bases to compute the aggregation weights for each convolutional

layer, such as Jacobi polynomial bases used in JGCF [8]. Under the

Lighter-X framework, we can naturally incorporate polynomial-

based methods by aggregating the propagation matrix Z using

different polynomial bases. This approach leverages the representa-

tional power of varied bases while allowing the aggregations to be

precomputed, thereby reducing computational complexity.

LighterJGCF. We use a low-rank random matrix as input features

and precompute polynomial features at each level. The precom-

puted results are then fed into an MLP to learn the final embeddings

of users and items. Specifically, we utilize the low-rank feature ma-

trix X and the decoupled framework introduced in Section 4 to

reformulate Equation 3 into the following form:

E𝑙𝑜𝑤 = 𝑀𝐿𝑃 (Z) = 𝑀𝐿𝑃 (
𝐿∑︁
ℓ=0

𝑤ℓZ(ℓ)), Z(ℓ) = J𝑎,𝑏
ℓ

(P)X. (7)

Similarly, we obtain E𝑚𝑖𝑑 = 𝑡𝑎𝑛ℎ(𝛽𝑀𝐿𝑃 (X) − E𝑙𝑜𝑤). Taking a

single-layer MLP as an example, the dimensionality of the model

parametermatrix isℎ×𝑑 , which is much smaller than that of original

JGCF model (𝑛 ×𝑑). In addition, the polynomial basis functions can

be precomputed to accelerate the graph convolution process.

4.3 Lighter-X in GCL for Recommendation
The core of GCL for recommendation, as discussed in Section 2.2,

involves generating a perturbed adjacency matrix Â through vari-

ous data augmentation techniques. This matrix is then substituted

into the embedding formula to derive the perturbed embedding. For

example, LightGCL [3] uses truncated SVD to obtain Â. Within the

Lighter-X framework, we adopt the same precomputation approach

to obtain the perturbed propagation matrix Ẑ and its corresponding

embedding matrix. This strategy enables the simultaneous precom-

putation of both the perturbed and standard propagation matrices,

thereby improving computational efficiency.

LighterGCL. Since LightGCN underlies the embedding learning in

LightGCL, its parameter size is 𝑛 ×𝑑 , identical to that of LightGCN.

To reduce this scale, LighterGCL adopts LighterGCN as its backbone,

producing embeddings Ewith a parameter size ofℎ×𝑑 , whereℎ ≪ 𝑛,

3725

Table 1: The comparison of time complexity between baseline and proposed models. 𝑛,𝑚, |𝑈 | and |𝐼 | represent the number of
nodes, edges, users and items, respectively. 𝐵 represents the batch size, 𝑛𝐵 denotes the number of nodes in a batch, 𝐿 is the
number of layers in the model, 𝑑 refers to the embedding size, ℎ is the dimension of the feature matrix, and 𝑞 is the required
rank. 𝑇 denotes the number of iterations in training and is equal to𝑚/𝐵.

Stage Computation LightGCN JGCF LightGCL LighterGCN LighterJGCF LighterGCL

Pre-processing
Normalization 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚)

SVD - - 𝑂 (𝑞𝑚) - - 𝑂 (𝑞𝑚)
Graph

Convolution

- - - 𝑂 (2𝑚𝐿ℎ) 𝑂 (2𝑚𝐿ℎ) 𝑂 (2𝑚𝐿ℎ +
2𝑞𝑛𝐿ℎ)

Training One Batch

𝑡conv: Graph

Convolution

𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑+2𝑞𝑛𝐿𝑑) 𝑂 (3𝐵ℎ𝑑) 𝑂 (3𝐵ℎ𝑑) 𝑂 (3𝐵ℎ𝑑+𝑛𝐵ℎ𝑑)

𝑡
bpr

: BPR Loss 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑)
𝑡
ssl
: InfoNCE

Loss

- - 𝑂 (𝐵𝑑 + 𝐵𝑛𝐵𝑑) - - 𝑂 (𝐵𝑑 + 𝐵𝑛𝐵𝑑)

Total (𝑡conv + 𝑡
bpr

+ 𝑡
ssl
)𝑇

Inference
Graph

Convolution

𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑) 𝑂 (𝑛ℎ𝑑) 𝑂 (𝑛ℎ𝑑) 𝑂 (𝑛ℎ𝑑)

Calculate

Scores

𝑂 (|𝑈 | |𝐼 |𝑑) 𝑂 (|𝑈 | |𝐼 |𝑑) 𝑂 (|𝑈 | |𝐼 |𝑑) 𝑂 (|𝑈 | |𝐼 |𝑑) 𝑂 (|𝑈 | |𝐼 |𝑑) 𝑂 (|𝑈 | |𝐼 |𝑑)

Table 2: The statistics of datasets.

Dataset #User #Item #Interaction Sparsity
LastFM 1,892 17,632 92,834 99.72%

MovieLens-1M 6,040 3,952 1,000,209 95.81%

MovieLens-20M 138,493 27,278 20,000,263 99.47%

Yelp-2018 31,668 38,048 1,561,406 99.87%

significantly reducing model complexity compared to LightGCL. To

further improve efficiency and scalability, LighterGCL precomputes

the perturbation component Ẑ using the low-rank input matrix X.
This strategy eliminates the need to compute perturbations during

training, which is often a major bottleneck in graph contrastive

learning. Specifically, the perturbed representations Ẑ(ℓ)
at each

layer are computed in advance using the perturbed adjacencymatrix

P̂ and the input features X. The final perturbed embeddings are

obtained by aggregating the precomputed Ẑ(ℓ)
and passing the

result through an MLP for training:

Ê = 𝑀𝐿𝑃 (Ẑ) = 𝑀𝐿𝑃 (
𝐿∑︁
ℓ=0

𝑤ℓ Ẑ(ℓ)), Ẑ(ℓ) = P̂ · Pℓ−1X. (8)

where Ẑ(0) = X. As a result, the repetitive perturbation generation

required in conventional approaches is circumvented by leverag-

ing the low-rank feature matrix and the decoupling framework in

LighterGCL. This substantially reduces both the time and space

complexity, making LighterGCLmore suitable for large-scale graph-

based recommendation scenarios.

4.4 Analysis
GNN-based recommendation models typically incur significant

computational costs due to the need to repeatedly perform convo-

lution operations on the entire graph during training. In contrast,

we decouple the costly feature propagation from the training pro-

cess, enabling models to precompute these convolution operations.

This avoids redundant computations throughout training and sig-

nificantly improves efficiency. Specifically, Lighter-X models only

perform graph convolution during the preprocessing stage, and it

only needs to be performed once. In contrast, baseline methods

must repeat the convolution over the entire graph in each train-
ing batch. As shown in Table 1, we compare preprocessing cost,

per-batch training complexity, total training complexity, and infer-

ence complexity between Lighter-X and baseline models. Due to

space constraints, the detailed derivation is deferred to the technical

report. The results demonstrate that Lighter-X retains the theoret-

ical advantages of its base models while substantially improving

training efficiency across various applications.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets.We conduct experiments on four datasets. (1) LastFM
contains the listening history of users on the Last.fm online music

system. (2)MovieLens-1M and (3)MovieLens-20M containmovie

rating data from the MovieLens website, with each record reflecting

a user’s rating for a particular movie. (4) Yelp2018 is collected from
users’ reviews of merchants on Yelp

1
.

Baselines.We consider three representative models LightGCN [9],

JGCF [8] and LightGCL [3] as important baselines and conduct

a comprehensive comparison of their performance and training

efficiency against Lighter-X. Furthermore, we evaluate our mod-

els against other recommendation systems, including BPR [18],

NeuMF[10], NGCF [25], DGCF [26], RGCF [21], DirectAU [23], LT-

GNN [35], LightGODE [36], and SVD-GCN [15], which also aims

to reduce parameter counts in recommendation models.

5.2 Experiments on Public Datasets
Evaluation Protocols. In this experiment, for each user, we ran-

domly select 80% and 10% of the interactions as the training and

1
https://www.yelp.com/

3726

https://www.yelp.com/

Table 3: Performance comparison at public datasets, with metrics evaluated at @10.

Method LastFM MovieLens-1M MovieLens-20M Yelp2018
Recall NDCG #Params Recall NDCG #Params Recall NDCG #Params Recall NDCG #Params

Standard
Models

BPR 0.1699 0.1632 2.50M 0.1658 0.2583 1.25M 0.1757 0.2207 21.15M 0.0452 0.0355 4.46M
NeuMF 0.1633 0.1556 2.50M 0.1416 0.2239 1.25M 0.1645 0.1965 21.15M 0.0313 0.0235 4.46M
NGCF 0.1809 0.1772 2.53M 0.1462 0.2413 1.28M 0.2027 0.2636 21.18M 0.0459 0.0364 4.49M
DGCF 0.1876 0.1802 2.50M 0.1783 0.2700 1.25M OOM OOM 21.15M 0.0527 0.0419 4.46M
RGCF 0.1959 0.1904 2.50M 0.1909 0.2774 1.25M OOM OOM 21.15M 0.0633 0.0503 4.46M

DirectAU 0.1771 0.1657 2.50M 0.1569 0.2087 1.25M 0.1098 0.1363 21.15M 0.0557 0.0435 4.46M
LTGNN 0.1924 0.1789 2.50M 0.1780 0.2752 1.25M 0.1303 0.1743 21.15M 0.0430 0.0333 4.46M

LightGODE 0.2037 0.1965 2.50M 0.1546 0.1978 1.25M 0.1843 0.2293 21.15M 0.0585 0.0468 4.46M
SVD-GCN 0.1688 0.162 0.02M 0.1598 0.2484 0.02M - - - 0.0508 0.0402 0.01M

Base
Models

LightGCN 0.1952 0.1878 2.50M 0.1688 0.2650 1.25M 0.2129 0.2730 21.15M 0.0560 0.0450 4.46M
JGCF 0.2054 0.1971 2.50M 0.1863 0.2823 1.25M 0.2185 0.2804 21.15M 0.0687 0.0556 4.46M

LightGCL 0.2050 0.2018 2.50M 0.1592 0.2539 1.25M 0.1172 0.1578 21.15M 0.0617 0.0496 4.46M

Lighter-X
LighterGCN 0.1946 0.1882 0.40M 0.1818 0.2731 0.19M 0.2108 0.2780 1.70M 0.0566 0.0451 0.17M†

LighterJGCF 0.2095 0.1952 0.40M 0.1883 0.2839 0.19M 0.2268 0.2882 1.70M 0.0694 0.0538 0.17M†

LighterGCL 0.2059 0.2021 0.40M 0.1753 0.2642 0.19M 0.1688 0.2217 1.70M 0.0627 0.0497 0.17M†

†
The workshop version contained minor typographical errors, which have been corrected in this revised submission.

(a) LightGCN (b) JGCF (c) LightGCL (d) LighterGCN (e) LighterJGCF (f) LighterGCL

(a) (b) (c) (d) (e) (f)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ti
m

e
(s

)

LastFM

(a) (b) (c) (d) (e) (f)
0
2
4
6
8

10
12
14

Ti
m

e
(s

)

MovieLens-1M

(a) (b) (c) (d) (e) (f)
0

500

1000

1500

2000

2500

3000
Ti

m
e

(s
)

MovieLens-20M

(a) (b) (c) (d) (e) (f)
0

5

10

15

20

Ti
m

e
(s

)

Yelp2018

Figure 5: Comparison of training time per epoch.

validation sets, while the others are left for testing. We use Recall

and NDCG as the evaluation metrics and have the recommender

models generate a ranked list of 10 or 20 items to compare against

the ground truth. Due to space limitation, we focus on Recall@10

and NDCG@10 in the main paper, while the other results are pro-

vided in the technical report.

Effectiveness. The overall performance of our framework com-

pared to different base models is presented in Table 3. We can see,

our framework can achieve comparable or even better performances

than the base model across all the evaluation metrics and datasets.

These results are encouraging, given that our framework uses sig-

nificantly fewer parameters. This suggests that many parameters

in traditional graph-based recommender models may be redundant

and contribute little to performance improvement. Usually, rec-

ommender systems must process large volumes of real-time data,

which demands high training efficiency. The above experiments

demonstrate that our lightweight framework is well-suited to meet

this requirement. Finally, our framework serves as an efficient plug-

and-play strategy, which makes it more flexible and practical in

real-world scenarios.

Efficiency. In the above experiments, we demonstrate the effec-

tiveness of our framework. A more significant advantage of our

framework is its efficiency. In this experiment, we analyze the time

cost of our framework in the training phase. To evaluate the cost,

we compare our framework with different base models for training

one epoch. As shown in Figure 5, our framework can greatly re-

duce the time cost as compared with the base model. For example,

on the MovieLens-20M dataset, the training time of Lighter-X is

about 1/6 of the base model’s. This result verifies the potential of

our framework for efficient model training, which is crucial for

practical recommender systems.

Performance comparison with other models.We also compare

the proposed Lighter-X method against other leading recommenda-

tion algorithms on these public datasets. Among all the baselines,

JGCF [8] performs the best. The proposed LighterJGCF achieves

superior performance across most datasets with significantly fewer

parameters. Although SVD-GCN [15] also reduces the scale of pa-

rameters, it leads to substantial performance degradation. Moreover,

computing SVD efficiently on large-scale graphs remains a chal-

lenging and unresolved issue. For example, on the MovieLens-20M

dataset, SVD-GCN [15] fails due to its inability to complete the SVD

computation.

6 EVALUATION IN OTHER SCENARIOS
Beyond general recommendation, our proposed method can be

adapted to other recommendation scenarios, including non-bipartite

graphs (e.g., social recommendation) and context-aware recom-

mendation. These settings introduce additional challenges, such as

increased graph sparsity and the need to incorporate contextual

information. In this section, we discuss how our approach can be

extended to effectively address these alternative use cases.

6.1 Non-Bipartite Graphs
Most recommendation systems are based on bipartite graphs, where

interactions occur between two distinct sets, such as users and items.

In contrast, non-bipartite graph recommendation systems model

more complex relationships where entities belong to the same set

3727

https://dcai-workshop.github.io/assets/pdf/accepted_papers/139.pdf

Table 4: The statistics of non-bipartite graph datasets.

Dataset #Node #Edge Density

Pokec 1,632,803 27,560,308 0.0021%

LiveJournal 4,847,571 62,094,395 0.0005%

Table 5: Performance comparison on non-bipartite graph
recommendation, ‘+ SS’ indicates applying SSNet on the base
model. Hit@100 (Hit) and NDCG@300 (NDCG) are reported.

Method Pokec LiveJournal

Hit NDCG # Params Hit NDCG # Params

LightGCN 0.0654 0.0236 104.50M 0.0537 0.0240 310.24M
LightGCN + SS 0.1645 0.0536 104.50M 0.2604 0.0747 310.24M
LighterGCN 0.0754 0.0252 2.93M 0.2624 0.0822 2.20M

LighterGCN + SS 0.1706 0.0552 2.94M 0.2678 0.0831 2.20M

Table 6: The statistics of datasets with context. 𝐹𝑢 , 𝐹𝑖 , 𝐹 (𝑢,𝑖)
represent the number of attributes for user, item and inter-
action, respectively.

Dataset #User #Item #Interaction 𝐹𝑢 𝐹𝑖 𝐹 (𝑢,𝑖)

MovieLens-1M-C 6,040 3,952 1,000,209 3 2 2

Yelp-2018-C 213,171 94,305 3,277,932 8 4 5

Table 7: Performance comparison on context-aware recom-
mendation, with metrics evaluated at @10.

Method MovieLens-1M-C Yelp2018-C

Recall NDCG #Params Recall NDCG #Params

LightGCNC 0.1784 0.2713 1.28M 0.0310 0.0170 39.53M
LighterGCNC 0.1821 0.2834 0.20M 0.0382 0.0213 1.04M

and can have direct connections. This is particularly relevant in sce-

narios like social recommendation, where users interact with each

other [14, 20], or when items have inherent relationships, such as

movies in a cinematic universe [17, 28]. In graph-based recommen-

dation models, user nodes 𝑢 and item nodes 𝑖 are mathematically

equivalent in the message-passing framework. As a result, mod-

els such as LightGCN [9] can be directly applied to non-bipartite

graphs without requiring structural modifications.

Datasets.To evaluate the performance of ourmodel on non-bipartite

graph recommendation, we conducted experiments on two real-

world social network datasets provided by SSNet [20]: Pokec and

LiveJournal
2
. The statistics of these datasets are presented in Ta-

ble 4. Notably, the graphs in these datasets are larger and sparser

compared to the bipartite graph used in Table 2.

Effectiveness. We assess model performance on the candidate

retrieval task, where models are required to recall the positive can-

didate from the entire graph. We adopt Hit@100 and NDCG@300 as

evaluation metrics. As shown in Table 5, LighterGCN consistently

outperforms LightGCN while using only 0.007% to 0.2% of the pa-

rameters, further demonstrating the efficiency and effectiveness of

the proposed method. Additionally, we compare the training times

of the methods, which can be found in the technical report.

2
https://snap.stanford.edu/data/index.html#socnets

6.2 Context-Aware Recommendation
In real-world recommendation scenarios, raw features are often

extremely sparse, spanning hundreds of fields andmillions of dimen-

sions. To handle the high-dimensional and sparse nature of such

contextual features, many studies adopt embedding techniques,

which map categorical variables into low-dimensional dense vec-

tors to compress representations and uncover latent semantic re-

lationships [12, 22, 27]. Therefore, we first encode the multi-field

attributes extracted from user behavior logs (e.g., age, gender, lo-

cation) and item metadata (e.g., price, historical purchase counts)

as one-hot vectors. These vectors are then transformed into dense

embeddings using attribute-specific embedding matrices. We con-

catenate these attribute embeddings with the graph-enhanced em-

beddings E obtained from user and item IDs and the graph structure

(as described in Equations 2 and 6) to form the final embedding.

Building on this methodology, we propose context-aware vari-

ants, namely LightGCNC and LighterGCNC, and evaluate their

performance on the MovieLens-1M-C and Yelp2018-C datasets. De-

tailed model specifications can be found in the technical report.

Dataset details are summarized in Table 6, where MovieLens-1M-

C shares the same interaction data as MovieLens-1M in Table 2.

For all experiments, the attribute embedding size is set to 16, and

other experimental settings follow those described in Section 5.2.

Experimental results in Table 7 show that LighterGCNC outper-

forms LightGCN while using only 0.03%–0.16% of the parameters.

This demonstrates that our method can be naturally extended to

context-aware recommendation scenarios while maintaining strong

performance, further validating its generality.

7 CONCLUSION
In this paper, we address a prevalent issue in existing graph-based

recommendation models: the extensive and redundant volume of

parameters. We propose Lighter-X, an efficient plug-and-play strat-

egy that effectively reduces model parameter count while retaining

the theoretical advantages of the base models. By introducing com-

pressed sensing, we achieve considerable expression capabilities

with more compact parameters, significantly reducing the overall

parameter count. By implementing decoupled propagation, effi-

ciency and scalability of the proposed method are further improved.

Empirical evaluations demonstrate that Lighter-X reduces param-

eter size and improves efficiency while maintaining comparable

performance.

ACKNOWLEDGMENTS
This research was supported in part by National Natural Science

Foundation of China (No. U2241212, No. 92470128), by Beijing Out-

standing Young Scientist Program No.BJJWZYJH012019100020098,

by Huawei-Renmin University joint program on Information Re-

trieval. We also wish to acknowledge the support provided by

the fund for building world-class universities (disciplines) of Ren-

min University of China, by Engineering Research Center of Next-

Generation Intelligent Search and Recommendation, Ministry of Ed-

ucation, by Intelligent Social Governance Interdisciplinary Platform,

Major Innovation & Planning Interdisciplinary Platform for the

“Double-First Class” Initiative, Public Policy and Decision-making

Research Lab, and Public Computing Cloud, Renmin University of

China.

3728

https://snap.stanford.edu/data/index.html#socnets

REFERENCES
[1] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and

Prashant J Nair. 2021. Accelerating recommendation system training by leverag-

ing popular choices. In VLDB. 127–140.
[2] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling graph neural networks with approximate pagerank. In KDD. 2464–2473.
[3] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL:

Simple Yet Effective Graph Contrastive Learning for Recommendation. In ICLR.
https://openreview.net/forum?id=FKXVK9dyMM

[4] Thong T Do, Trac D Tran, and Lu Gan. 2008. Fast compressive sampling with

structurally random matrices. In IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 3369–3372.

[5] Xinyu Du, Xingyi Zhang, Sibo Wang, and Zengfeng Huang. 2023. Efficient

Tree-SVD for Subset Node Embedding over Large Dynamic Graphs. PACMMOD
1, 1 (2023), 1–26.

[6] Simon Foucart, Holger Rauhut, Simon Foucart, and Holger Rauhut. 2013. An
invitation to compressive sensing. Springer.

[7] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan

Quan, Jianxin Chang, Depeng Jin, Xiangnan He, et al. 2023. A survey of graph

neural networks for recommender systems: Challenges, methods, and directions.

TORS 1, 1 (2023), 1–51.
[8] Jiayan Guo, Lun Du, Xu Chen, Xiaojun Ma, Qiang Fu, Shi Han, Dongmei Zhang,

and Yan Zhang. 2023. On Manipulating Signals of User-Item Graph: A Jacobi

Polynomial-based Graph Collaborative Filtering. In KDD. 602–613.
[9] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network

for recommendation. In SIGIR. 639–648.
[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[11] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[12] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and

Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-

teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 1754–1763.

[13] Ran Lu. 2019. On the strong restricted isometry property of Bernoulli random

matrices. Journal of Approximation Theory 245 (2019), 1–22.

[14] Yijun Ma, Chaozhuo Li, and Xiao Zhou. 2024. Tail-STEAK: improve friend

recommendation for tail users via self-training enhanced knowledge distillation.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 8895–8903.
[15] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. 2022. SVD-GCN: A

simplified graph convolution paradigm for recommendation. In CIKM. 1625–

1634.

[16] Yifang Qin,Wei Ju, Xiao Luo, Yiyang Gu, andMing Zhang. 2024. PolyCF: Towards

the Optimal Spectral Graph Filters for Collaborative Filtering. arXiv preprint
arXiv:2401.12590 (2024).

[17] Khalil Ur Rahman, Huifang Ma, Ali Arshad, and Azad Khan Baheer. 2022. Movie

Recommender System Based On Heterogeneous Graph Neural Networks. In 2022
8th International Conference on Systems and Informatics (ICSAI). IEEE, 1–7.

[18] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618 (2012).

[19] Xiran Song, Hong Huang, Jianxun Lian, and Hai Jin. 2024. XGCN: a library

for large-scale graph neural network recommendations. Frontiers of Computer

Science 18, 3 (2024), 183343.
[20] Xiran Song, Jianxun Lian, Hong Huang, Mingqi Wu, Hai Jin, and Xing Xie.

2022. Friend recommendations with self-rescaling graph neural networks. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 3909–3919.

[21] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022.

Learning to denoise unreliable interactions for graph collaborative filtering. In

SIGIR. 122–132.
[22] Zhen Tian, Ting Bai, Wayne Xin Zhao, Ji-Rong Wen, and Zhao Cao. 2023. Euler-

Net: Adaptive Feature Interaction Learning via Euler’s Formula for CTR Predic-

tion. In Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 1376–1385.

[23] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,

and Shaoping Ma. 2022. Towards representation alignment and uniformity in

collaborative filtering. In KDD. 1816–1825.
[24] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du,

and Ji-Rong Wen. 2021. Approximate graph propagation. In KDD. 1686–1696.
[25] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In SIGIR. 165–174.
[26] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.

2020. Disentangled graph collaborative filtering. In SIGIR. 1001–1010.
[27] Tianjun Wei and Tommy WS Chow. 2023. FGCR: Fused graph context-aware

recommender system. Knowledge-Based Systems 277 (2023), 110806.
[28] Yuecen Wei, Xingcheng Fu, Qingyun Sun, Hao Peng, Jia Wu, Jinyan Wang, and

Xianxian Li. 2022. Heterogeneous graph neural network for privacy-preserving

recommendation. In 2022 IEEE International Conference on Data Mining (ICDM).
IEEE, 528–537.

[29] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR,

6861–6871.

[30] JiancanWu, XiangWang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and

Xing Xie. 2021. Self-supervised graph learning for recommendation. In SIGIR.
726–735.

[31] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural

networks in recommender systems: a survey. CSUR 55, 5 (2022), 1–37.

[32] Xinyi Wu, Donald Loveland, Runjin Chen, Yozen Liu, Xin Chen, Leonardo Neves,

Ali Jadbabaie, Clark Mingxuan Ju, Neil Shah, and Tong Zhao. 2024. GraphHash:

Graph Clustering Enables Parameter Efficiency in Recommender Systems. arXiv
preprint arXiv:2412.17245 (2024).

[33] Jianbo Yang, Xuejun Liao, Xin Yuan, Patrick Llull, David J Brady, Guillermo

Sapiro, and Lawrence Carin. 2014. Compressive sensing by learning a Gaussian

mixture model from measurements. IEEE Transactions on Image Processing 24, 1

(2014), 106–119.

[34] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive

learning for recommendation. In SIGIR. 1294–1303.
[35] Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu.

2024. Linear-time graph neural networks for scalable recommendations. In

Proceedings of the ACM Web Conference 2024. 3533–3544.
[36] Weizhi Zhang, Liangwei Yang, Zihe Song, Henry Peng Zou, Ke Xu, Liancheng

Fang, and Philip S Yu. 2024. Do We Really Need Graph Convolution During

Training? Light Post-Training Graph-ODE for Efficient Recommendation. In Pro-
ceedings of the 33rd ACM International Conference on Information and Knowledge
Management. 3248–3258.

3729

https://openreview.net/forum?id=FKXVK9dyMM

	Abstract
	1 Introduction
	2 Background and Preliminary
	2.1 Decoupled GNNs
	2.2 Graph-based Recommender Models

	3 Investigation of Graph-Based Recommendation Models
	4 The Lighter-X Method
	4.1 LighterGCN
	4.2 Lighter-X in Polynomial-based Graph Filters
	4.3 Lighter-X in GCL for Recommendation
	4.4 Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments on Public Datasets

	6 Evaluation in Other Scenarios
	6.1 Non-Bipartite Graphs
	6.2 Context-Aware Recommendation

	7 Conclusion
	Acknowledgments
	References

