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ABSTRACT
To fulfill the potential great value of unstructured documents, it is

critical to extract structural data (e.g., attributes) from them, which

can benefit various applications such as analytical SQL queries

and decision-making. Multiple strategies, such as pre-trained lan-

guage models (PLMs), can be employed for this task. However,

these methods often struggle to achieve high-quality results, partic-

ularly when dealing with attribute extraction that requires intricate

reasoning or semantic comprehension. Recently, large language

models (LLMs) have proven to be effective in extracting attributes

but incur substantial costs caused by token consumption, making

them impractical for large-scale document set.

To best trade off quality and cost, we present Doctopus, a sys-
tem designed for accurate attribute extraction from unstructured

documents with a user-specified cost constraint. Overall, Doctopus
combines LLMs with non-LLM strategies to achieve a good trade-

off. First, the system employs an index-based approach to efficiently

identify and process only relevant text chunks, thereby reducing the

LLM cost. Afterwards, it further estimates the quality of multiple

strategies for each attribute. Finally, based on the cost and esti-

mated quality, Doctopus dynamically selects the optimal strategies

through budget-aware optimization.We have built a comprehensive

benchmark including 4 document sets with various characteristics

and manually labeled ground truth using 1000 human hours. Ex-

tensive experiments on the benchmark show that compared with

state-of-the-art baselines, Doctopus can improve the quality by 11%

given the same cost constraint.
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1 Introduction
Modern corporations host a large amount of unstructured data,

comprising 80%-90% of all data. To gain valuable insights, many

applications often have to convert collections of unstructured docu-

ments into structured relational tables and then run analytical SQL

queries or machine learning predictions. However, the complex-

ity and diversity of documents pose significant challenges in the

process of extracting the attribute values of these tables.
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Figure 1: An Example of Attribute Extraction.

Existing Solutions. In Figure 1, a user aims to extract attributes

from documents w.r.t. a set of painters, such as their personal in-

formation and artistic Genre, which can be solved with different

extraction approaches such as open information extraction (Ope-

nIE) [18], pre-trained language models (PLMs) [31], code generation

(Codegen) [6], and LLMs. OpenIE extracts triplets (represented as

subject, relation, object) from unstructured documents, which are

then converted into structural tables where subjects represent rows,

relations represent columns, and objects correspond to cell values.

Codegen is an automated data extraction strategy that leverages
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LLMs to generate extraction codes for documents. However, their ef-

fectiveness varies significantly w.r.t. different application scenarios.

For example, code generation via LLMs is better than PLMs at ex-

tracting the Lifespan attribute, as it requires logical reasoning (i.e.,
Lifespan equals to the death_dateminus birth_date) – a better

fit to the LLM-generated code than the PLMs which often suffer

from restricted reasoning abilities. However, for the Genre attribute,
the code might mistakenly identify Realistic as the value, as seen
in the text: “Brull’s early work is realistic, but later he focused on

symbolism.” PLMs instead tend to perform well in this scenario due

to their semantic comprehension abilities. In conclusion, no single

approach above is consistently superior.

LLMs, on the other hand, excel in converting unstructured data

into structured formats [6], thus generally delivering high-quality

results. However, it is prohibitively expensive if feeding every entire

document into the LLMs, because the commercial LLM services

charge by the number of tokens. Unfortunately, real applications

typically have cost budget constraint, and thereby it is not practical

to always use expensive LLMs to extract attributes. In this work, our

objective is therefore to solve an important problem, namely given

a budget constraint, producing an execution plan that optimizes the

overall extraction quality.

We solve this problem based on two key ideas: (1) designing

an efficient index (or retrieval strategy) to avoid feeding the entire

document to LLMs; and (2) applying different strategies appropriate

to different cases, i.e., when extracting different attributes from

different documents. The key observations supporting the ideas are

(1) feeding only attributes-relevant chunks of text can significantly

reduce the LLM cost without sacrificing quality much; (2) the cost-

effective extraction approaches (e.g., Codegen) could be as good

as or even better than expensive LLMs in some cases, such as

extracting the value of Lifespan.

Challenges. To achieve this, we face several major challenges. First,

since our goal is to maximize the overall extraction quality consid-

ering different strategies, it is critical to estimate the quality of each

strategy in different scenarios. To this end, the most straightfor-

ward way is to incorporate a validation set to evaluate the quality.

However, typically there are only a limited number of validation

examples available in real applications, which tend to be insufficient

to reliably estimate the quality of different strategies over different

documents. On the other hand, obtaining a large number of pseudo
validation examples by applying LLMs to examine a large number

of documents is often not acceptable due to the significant LLM

costs. Therefore, it is challenging to accurately estimate the quality

case by case based on only a small validation set.

Second, when using LLMs, identifying relevant chunks of a given

attribute is also challenging because (1) the representations of the at-

tribute values might vary across different unstructured documents

due to their complicated semantics; For example, the Lifespan
may have various representations in different documents like “His

life was cut short at the age of ...”, “He lived an extraordinary life

spanning ...”, etc.; and (2) the query used to retrieve (𝑖 .𝑒 ., simply

embedding an attribute and its brief description) is often not infor-

mative enough to capture all relevant chunks via the similarities

between the embeddings of a query and a chunk. For example,

using “Genre” and its description to query LLMs may miss relevant

chunks like “He was known for his many oil paints, the majority

of which were exhibited at the Miguel Lerdo de Tejada Library”,

which do not explicitly mention the attribute value “Painting”. This

makes the embeddings of relevant chunks not align well with the

query embedding.

Our Proposal. To address the above challenges, we propose a

novel system, Doctopus, which optimizes extraction accuracy (i.e.,

quality) under the constraint of a cost budget (i.e., number of tokens

consumed by LLMs). The key idea is to make good use of LLM-

based extraction strategies, as well as judiciously incorporating

non-LLM strategies to save cost without sacrificing much quality.

To be specific, Doctopus first builds an index over chunks of doc-

uments and enriches each query to accurately retrieve the relevant

chunks. However, given an attribute to be extracted, Doctopus is
likely to return multiple relevant chunks from a document. If we

only presented the most relevant one to an LLM for extraction, it

would save LLM cost but risk missing the real match, while feeding

all chunks to the LLM is costly. Hence, given all retrieved chunks,

Doctopus instead selects a subset of chunks and presents them to

LLMs as a combination. Each combination corresponds to a possible

LLM-based strategy. Then from all optional strategies, LLM-based

or not, Doctopus selects the most appropriate strategy that best

trades off accuracy and cost. Doctopus conducts the selection at a

fine granularity, i.e. using different strategies with respect to differ-

ent documents to extract an attribute. Consequently, during this

process Doctopus has to estimate the accuracy of optional strate-

gies at the individual document level. This approach thus consists of

three main components: index-based attribution extraction, quality
estimation for different strategies, and strategy selection with budget
constraint.
Attribute Extraction via Index. Doctopus first segments each docu-

ment into semantically coherent chunks and encodes them into

embedding vectors to well capture their semantics. Then, we index

these chunks of documents for retrieval, and only feed relevant

chunks to LLMs. This strategy, inspired by retrieval augmented gen-

eration (RAG), effectively avoids unnecessary LLM costs incurred

on irrelevant text chunks.

Moreover, to address the challenge that a query is often not infor-

mative enough to accurately retrieve relevant chunks, we leverage

LLMs as well as a validation set to generate attribute-related ref-

erence sentences to enrich the query. After summarizing these

references, Doctopus embeds and concatenates them as the final

query embedding to retrieve relevant chunks, increasing the likeli-

hood of discovering chunks containing the attribute value.

Quality Estimation for Different Strategies. Doctopus represents

the quality of each strategy as the product of two probabilities: (1)

the probability of accurately identifying whether or not the input

text of a strategy has an attribute, 𝑖 .𝑒 ., the containment probability;

(2) if so, the probability of accurately extracting it, 𝑖 .𝑒 ., extraction

probability. Estimating the containment probability is particularly

challenging due to the varied semantics across different inputs,

such as different chunks or the whole documents. Consequently,

the overall probability calculated from a limited number of vali-

dation examples often are significantly off from the real accuracy

on each individual input. As for extraction probability, we observe

that it tends to be stable over different inputs, as long as these
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inputs indeed contain the target attribute. Therefore, it could be

estimated by the average calculated from the validation examples.

To precisely estimate the containment probability of different in-

puts, we propose to train a generic model that produces a specific

probability with respect to any given input. Our key insight here

is that the DistilBERT model [28], a lightweight model broadly

adopted in information retrieval tasks [10, 14, 22, 32], is able to

precisely estimate this probability after fine-tuning with a small

number of training examples. We develop data augmentation tech-

niques like sentence reordering/removal and chunk combination,

to automatically produce sufficient training examples to fine-tune

the DistilBERT model.

Strategy Selection with Budget Constraint. Based on the cost and es-

timated accuracy of each strategy, the problem of selecting the most

appropriate extraction strategy can be formulated as an NP-hard

optimization problem (i.e., Group Knapsack Problem): selecting the

best strategy for each attribute to optimize the overall extraction

accuracy within a budget constraint. To address this, Doctopus em-

ploys the classical dynamic programming algorithm that effectively

rations the given budget across attributes, eliminates redundant

computations, and optimizes the overall quality.

In summary, we make the following contributions.

(1) We propose Doctopus, a structured table extraction framework

that optimizes the extraction accuracy under a user-specified cost

constraint. To the best of our knowledge, this is the first budget-

aware optimization framework for LLM-powered table extraction.

(2)We introduce an indexingmechanism that reduces retrieval costs

by segmenting documents into chunks. We further leverage LLMs

to generate reference sentences, enhancing query informativeness.

(Section 4)

(3) We develop a quality estimation mechanism that evaluates each

extraction strategy based on two key metrics: the probability of

the containment and the probability of successful extraction. This

allows Doctopus to select the most effective strategy for each at-

tribute while taking into account cost constraints. (Section 5)

(4) We present a dynamic programming algorithm that effectively

allocates resources across multiple extraction strategies, achieving

the optimal trade-off between cost and accuracy. (Section 6)

(5)We build a comprehensive benchmark with 4 real-world datasets,

labeled by 20 graduate students with≈1000 human hours. Extensive

experiments over the benchmark demonstrate that compared with

state-of-the-art baselines, Doctopus can improve the quality by

11% given the same cost constraint. Further, in comparison to state-

of-the-art baselines, Doctopus can save the cost by 2.7× when

achieving the same level of accuracy. (Section 7)

2 Problem Definition
Given a set of documents D = {𝑑1, 𝑑2, ..., 𝑑𝑛} and a set of user-

specified attributes A = {𝑎1, 𝑎2, ..., 𝑎𝑚}, we aim to produce a table

𝑇 with 𝑛 tuples and𝑚 attributes, where each tuple 𝑟𝑖 ∈ 𝑇, 𝑖 ∈ [1, 𝑛]
is extracted from 𝑑𝑖 based on the attribute set A. The random

variable representing the value of the 𝑗-th attribute of 𝑟𝑖 is denoted

as 𝑟𝑖 𝑗 , 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚], while 𝑣𝑖 𝑗 denotes the attribute extracted
from 𝑟𝑖 𝑗 .

Example 1. As shown in Figure 1, given a set of documents associ-
ated with some artists, a user wants to extract a table with attributes

A = {𝑁𝑎𝑚𝑒, 𝐵𝑖𝑟𝑡ℎ𝑝𝑙𝑎𝑐𝑒, 𝐿𝑖 𝑓 𝑒𝑠𝑝𝑎𝑛,𝐺𝑒𝑛𝑟𝑒, 𝐹𝑖𝑒𝑙𝑑}. From 𝑑1 in the
example, we can extract 𝑟11 = Brull, 𝑟12 = Spain and 𝑟1=[Brull,
Spain, 49, Portrait, Painting].

Next, we formally define quality and cost.
Quality. In this paper, we use accuracy to measure the extraction

quality. Formally, we use 𝑣∗
𝑖 𝑗
to denote the ground truth value of

the 𝑗−th attribute in 𝑟𝑖 . Then, the overall accuracy is represented

as follows:

𝐴𝑐𝑐 =

∑𝑛
𝑖=1

∑𝑚
𝑗=1 1{𝑣𝑖 𝑗=𝑣∗𝑖 𝑗 }

𝑚 × 𝑛
(1)

where 1{ ·} denotes an indicator function that returns

1 if its argument is true; 0, otherwise. For example,

1{"John Smith"="John M. Smith"} = 1 and 1{"Canada"="Italy"} = 0.

Note that 1{𝑣𝑖 𝑗=𝑣∗𝑖 𝑗 } in Equation 1 represents whether the extracted

attribute value 𝑣𝑖 𝑗 and the ground truth 𝑣∗
𝑖 𝑗
refer to the same entity.

If so, 𝑟𝑖 𝑗 is considered to be extracted correctly.

The overall accuracy defined above requires the ground truth

𝑣∗
𝑖 𝑗
. However, Doctopus has to estimate the accuracy in the process

of optimizing the extraction strategies where ground truth is not

available. Therefore, we propose to use expected accuracy tomeasure

the extraction quality as follows.

E[1{𝑣𝑖 𝑗=𝑣∗𝑖 𝑗 } ] = 𝑃 (𝑣𝑖 𝑗 = 𝑣∗𝑖 𝑗 ) ·1+𝑃 (𝑣𝑖 𝑗 ≠ 𝑣∗𝑖 𝑗 ) ·0 = 𝑃 (𝑣𝑖 𝑗 = 𝑣∗𝑖 𝑗 ) (2)

where 𝑃 (𝑣𝑖 𝑗 = 𝑣∗
𝑖 𝑗
) denotes the probability of extracting the specific

attribute 𝑟𝑖 𝑗 correctly from a document. We will discuss how to

compute the probability in Section 5. Therefore, this accuracy can be

computed as the expected number of correctly extracted attributes

out of all attributes:

𝐴𝑐𝑐 =

∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝑃 (𝑣𝑖 𝑗 = 𝑣∗

𝑖 𝑗
)

𝑚 × 𝑛
(3)

Cost. In this paper, we regard non-LLM strategies as cost-free since

they are typically not computation intensive. For LLM-based strate-

gies, the cost is calculated based on the total number of input/output

tokens. As discussed above, different strategies present different in-

put chunks to LLMs. We thus use 𝑐𝑠
𝑖 𝑗
to denote the number of input

tokens that strategy 𝑠 consumes to extract attribute 𝑎 𝑗 from𝑑𝑖 . Note

that we omit the number of output tokens when computing the

cost because it is rather small (only the attribute value) compared

to the number of input tokens in this data extraction setting.

Our Problem. We use S𝑖 𝑗 to denote the set of candidate strate-

gies that can be used to extract the value of 𝑟𝑖 𝑗 . To be specific,

S𝑖 𝑗 = {OpenIE(𝑑𝑖 ), Codegen(𝑑𝑖 ), PLM(𝑑𝑖 ), LLM(𝑡1), LLM(𝑡2), ...}.
Each strategy 𝑠 ∈ S𝑖 𝑗 consists of the extraction approach and the

input 𝑡 . Thus, when we use non-LLM strategies, the input is directly

𝑑𝑖 , while for LLM-based strategies, the input can be different com-

binations of the retrieved chunks. We use 𝑣𝑠
𝑖 𝑗
to denote the value

extracted by the strategy 𝑠 ∈ S𝑖 𝑗 . Then we use a mapping function

𝑓 : {𝑟𝑖 𝑗 }𝑛𝑖=1,
𝑚
𝑗=1

→ S𝑖 𝑗 , such that for every 𝑟𝑖 𝑗 ∈ {𝑟𝑖 𝑗 }𝑛𝑖=1,
𝑚
𝑗=1

, there

exists 𝑠 ∈ S𝑖 𝑗 satisfying 𝑓 (𝑟𝑖 𝑗 ) = 𝑠 , which indicates that 𝑟𝑖 𝑗 is ex-

tracted by the strategy 𝑠 . Our goal is to maximize accuracy under a

budget constraint. Formally, we have:
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𝑓 ∗ = argmax

𝑓 ∈F={ 𝑓 | 𝑓 :{𝑟𝑖 𝑗 }→S𝑖 𝑗 }

∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗

𝑖 𝑗
)

𝑚 × 𝑛

𝑠.𝑡 .

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑠𝑖 𝑗 ≤ 𝐵, 𝑠 = 𝑓 (𝑟𝑖 𝑗 )
(4)

where 𝐵 denotes the budget constraint on the total number of to-

kens consumed. The above equation aims to generate the optimal

execution plan 𝑓 ∗ that judiciously selects the most appropriate strat-

egy for each attribute value to be extracted, in order to maximize

quality within budget constraints.

Next, we overview the Doctopus framework that addresses this

problem.

3 Doctopus Framework
Given a document collection D, a set of user-specified attributes

A and a cost constraint 𝐵, Doctopus selects an extraction strategy

that maximizes the extraction accuracy, where the options include

both index-based LLM strategies and non-LLM strategies.

As shown in Figure 2, Doctopus first builds the index (line 1), that
is, dividing each document into chunks, embedding these chunks

into vectors, and then indexing the vectors for later chunk retrieval

(Section 3.1). Then, given a user-specified attribute setA, Doctopus
samples a small subset of documents to build a validation set (line 2)

for subsequent reference generation and quality estimation (Sec-

tion 3.1). The reason for generating references is that an attribute

itself as a query is not informative enough to accurately retrieve

the relevant chunks. We then enrich the query using these refer-

ences. At a high level, we collect references by (1) analyzing the

documents in the validation set (line 4); and (2) directly generating

via LLMs (line 5), followed by combining them to produce the final

query embedding (line 6) to retrieve relevant chunks and form the

candidate strategies (line 9).

Subsequently, in Section 3.2, we estimate the quality of each

strategy (line 10) as the product of the containment probability and

the extraction probability. Finally, based on the cost of each strategy,

Doctopus selects the most appropriate strategy to extract each

specific attribute over different documents (line 11 - 15), achieving

an optimal balance between accuracy and cost by solving Equation 4

(Section 6).

Next, we illustrate the above steps in more detail.

3.1 Attribute Extraction via Index
The key of this component is to leverage an index to accurately and

efficiently identify the chunks that potentially contain the attribute

and then only feed these chunks to LLMs to avoid unnecessary

cost.

Index Building. As shown in the upper left corner of Figure 2,

Doctopus starts by automatically dividing each document into se-

mantically coherent chunks using existing NLP tools, which ensures

that each attribute is likely to be extracted from a single chunk. Af-

terwards, these chunks are encoded into fixed-length embeddings

using E5Model [30]. These embeddings are then organized into

a high-dimensional vector index known as Product Quantization

Algorithm 1: Doctopus Framework

Input: Document set D, attribute set A, cost budget 𝐵.

Output: The extracted table 𝑇 .

1 I = Index_Building(D);

2 D𝑣 = Validation_Set_Construction(D);

3 for each 𝑎 𝑗 ∈ A do
// Attribute Enrichment

4 𝑒𝑉
𝑗
= Reference(𝑎 𝑗 ,D𝑣 );

5 𝑒𝐿
𝑗
= Reference(𝑎 𝑗 , 𝐿𝐿𝑀𝑠);

6 𝑒 𝑗 = 𝑒𝑉
𝑗
⊕ 𝑒𝐿

𝑗
;

// Quality Estimation

7 for each 𝑎 𝑗 ∈ A do
8 for each 𝑑𝑖 ∈ D do
9 S𝑖 𝑗 = Strategy_Gen(𝑑𝑖 , 𝑎 𝑗 , 𝑒 𝑗 , I);

10 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
) = Quality_Estimation(D𝑣 , 𝑎 𝑗 , S𝑖 𝑗 );

// Accuracy Optimization with Budget Constraint

11 𝑓 ∗ = Optimal_Execution_Plan(|D|, |A|, 𝐵, S𝑖 𝑗 );
12 for each 𝑑𝑖 ∈ D do
13 for each 𝑎 𝑗 ∈ A do
14 𝑟𝑖 𝑗 = Extract(𝑑𝑖 , 𝑎 𝑗 , 𝑓

∗ (𝑟𝑖 𝑗 ));

15 return 𝑇 ;

(PQ) [12], which facilitates the rapid retrieval of chunks by consid-

ering the semantic similarity between attributes and chunks. More

details of the implementation are introduced in Section 4.

Remark.We choose PQ rather than other alternatives like Hierar-

chical Navigable Small World (HNSW) because of its lower mem-

ory consumption and faster index construction, which suits large-

scale document processing. Although HNSW could potentially offer

faster query response, the memory overhead would limit its scal-

ability, especially when processing millions of documents. This

trade-off between memory and accuracy makes PQ a more practi-

cal choice w.r.t. our specific requirements.

Attribute Enrichment based Retrieval. However, in addition to

the semantic representation of the chunks, an accurate retrieval

also depends on whether the query (i.e., the attribute) is infor-

mative enough. For example, suppose that we aim to extract the

attribute Genre from documents. We can simply embed "Genre"
as the search key to retrieve chunks using the index, which may

not yield high-quality results because the relevant chunks may not

explicitly mention the attribute as discussed in Section 1. Hence,

the embeddings of sentences in relevant chunks are not necessarily

similar to that of the attribute. Although the user can provide a

description about the attribute as a search key, it can be regarded

as a tedious prompt engineering task.

To address this, we propose to enrich the query from two per-

spectives. On the one hand, our aim is to identify the patterns of
the reference sentences where the attributes can be extracted, and we

enrich the query with these patterns as search key to achieve more

accurate retrieval. This identification can be achieved by analyzing

a validation set of documents built by humans or LLMs. However,

purely considering the references obtained from the validation
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Figure 2: Overall Framework of Doctopus.

set may not generalize well to all documents. To address this, on

the other hand, we leverage the strong generalization ability of

LLMs to directly generate diverse references. Afterwards, putting

the above two types of references together, we judiciously select

some representative references, embed and concatenate them as

the final query embedding to retrieve relevant chunks and form the

candidate strategies. More details will be discussed in Section 4.

3.2 Quality Estimation for Multiple Strategies
In this part, we discuss how to estimate the quality of both LLM-

based and non-LLM strategies when extracting different attributes

from different documents based on a validation set – essential

for solving Equation 4. As discussed in Section 1, the extraction

accuracy of each strategy is determined by two key factors: (1)

whether the input of each strategy contains the ground truth and

(2) whether the strategy is capable of extracting the value correctly

given that the input contains the ground truth.

Formally, we use containment probability 𝑃 (𝑎 ∈ 𝑡) to denote

the likelihood that attribute 𝑎 is present in the input text 𝑡 . Recap

that for non-LLM strategies, since they do not need to consider

the token consumption (i.e., the cost), they can take the entire

document as input. For the LLM-based strategy, since we aim to save

cost, we only feed relevant chunks into LLMs (i.e., 𝑡 corresponds

to a combination of several chunks). On the other hand, we use

extraction probability 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑎 ∈ 𝑡) to denote the likelihood

that the attribute value can be extracted correctly, given that the

input 𝑡 includes the attribute 𝑎. Thus, as shown in Figure 2, the

overall quality can be represented as their product.

Then, we have to compute the two types of probability. For con-

tainment probability, we fine-tune the DistilBERT model based on

the validation set. To be specific, given 𝑎, for each 𝑑 ∈ D𝑣 , we have

identified the chunk(s) containing 𝑎. Therefore, 𝑎 together with the

chunks can serve as positive training examples. Naturally, other

chunks that do not contain 𝑎 correspond to negative examples.

However, since the size of the validation set is small, training ex-

amples, especially positive ones, are often not sufficient. Therefore,

we propose to augment the training examples by combining more

chunks to existing chunks, reordering sentences, and randomly

removing sentences.

For the extraction probability, as observed in Section 7, it is rela-

tively stable for the same attribute on different inputs as long as

the input chunks contain the attribute. Thus, we compute it by

applying each extraction approach over the documents in D𝑣 , com-

paring the extraction results with the ground truth, and deriving

the probability using statistical methods rather than relying on a

model to predict the probabilities with respect to different inputs.

In Section 5, we will introduce in detail how to compute these

probabilities and derive an accurate quality estimation.

3.3 Accuracy Optimization with Budget
Constraint

Once we have a method to estimate the quality of each extraction

strategy, the next step is to choose the most appropriate strategy

w.r.t. each attribute under the given budget constraint, i.e., solving

Equation 4. The most straightforward way is to iterate through all

possible strategies and identify the best one, with a complexity of
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𝑂 ( |S𝑖 𝑗 |𝑛×𝑚). To address this, we first show that it is an NP-hard

problem by mapping it to the classical Knapsack problem. We then

propose a dynamic programming algorithm to solve Equation 4,

which processes each attribute 𝑎 𝑗 ∈ A with different strategies and

records the accuracy that each strategy achieves on the attribute.

Each strategy computes the budget consumed by the corresponding

extraction, which in turn determines how much budget is available

for the remaining extractions. Thus, it is able to effectively ration

the given budget and optimally allocate them for incoming attribute

extractions. Once the optimal execution plan is identified, a back-

tracking process reconstructs the best combination of strategies. By

breaking the problem into subproblems and reusing their solutions,

the algorithm eliminates redundant computations and significantly

improves efficiency. After determining the most suitable strategy

for each attribute, Doctopus processes the documents iteratively,

extracts the specified attributes with the corresponding strategies

and then outputs the final result.

4 Attribute Enrichment based Retrieval
This section presents techniques to enrich each attribute using

references related to those attributes, aiming to improve the re-

trieval of relevant chunks. To achieve both high quality and diver-

sity, Doctopus obtains references in two ways. First, Doctopus gets
some references from a validation set. Second, Doctopus uses LLMs

to generate some references based solely on the information of the

attribute to enhance diversity. The two types of references are then

embedded into vectors which are combined to establish the final

search key for chunk retrieval.

Reference Generation via a Validation Set. First, as discussed
in Section 3, we sample a small subset of documents denoted by

D𝑣 ⊂ D and construct the validation set with the assistance of

LLMs or humans. This validation set will also be utilized for quality

estimation (Section 5).

Human Involvement. To ensure the quality of the validation set, the

most straightforward method is to ask human experts to manually

extract each attribute value along with its corresponding reference.

However, this can be quite costly. Thus, in practice, we feed docu-

ments fromD𝑣 and the attributes associated with their descriptions

as prompts into LLMs. Subsequently, we ask LLMs to thoroughly

analyze each document 𝑑𝑖 , extract the value of each attribute 𝑎 𝑗 ,

and output the corresponding reference denoted by 𝑟𝑒
𝑗
𝑖
. The refer-

ences for 𝑎 𝑗 obtained from D𝑣 form the set 𝑅
𝑗

𝑉
with |𝑅 𝑗

𝑉
| = |D𝑣 |.

Finally, due to the inherent limitations of the LLMs themselves,

they may introduce bias. To avoid this, we ask humans to check

and verify the incorrect results.

Automatic LLM-based Construction. As discussed above, although

humans are only employed to verify the results, manually review-

ing each document remains laborious. Consequently, since LLMs

typically are proficient in extracting attribute values and references

with high quality, we opt to directly utilize the results processed by

LLMs as the validation set and references, as demonstrated in our

experiment (Section 7).

Token complexity analysis. For each dataset, we sample a ratio 𝑟 of

documents and process them with LLMs. Assuming an average

document length of 𝐿 tokens, this incurs 𝑟 × |D| × 𝐿 tokens.

Cluster to Remove Redundancy. For a particular attribute, there

must exist redundant references in |D𝑣 |. Therefore, using all of

them for retrieval tends to introduce too many candidate chunks.

Hence, we group them into several clusters using the 𝑘-means

algorithm. Then, we select the centers of these clusters as represen-

tatives and concatenate them as 𝑒𝑉
𝑗
.

Reference Generation via LLMs. However, solely relying on the

references obtained from the validation set might not generalize

to accurately retrieve all documents. Therefore, we employ LLMs

to generate references using the attribute information as prompts,

aiming to improve the diversity of the references. Although the

generated references are related to the attribute, their text rep-

resentations do not necessarily exist in any document of D. We

thus propose a generation-then-selection strategy that begins by

instructing LLMs to generate references. Subsequently, we choose

the 𝑘 references most relevant to the document collection, and

embed and concatenate them as 𝑒𝐿
𝑗
.

Direct generation. Specifically, for each attribute 𝑎 𝑗 , we initially

utilize LLMs to produce ℎ potential values for 𝑎 𝑗 . Subsequently, for

every value, LLMs create ℎ references. Collectively, the references

related to 𝑎 𝑗 form the set 𝑅
𝑗

𝑀
, with a cardinality of |𝑅 𝑗

𝑀
| = ℎ2. Next,

we select 𝑘 highly relevant references from them.

Token complexity analysis. For each attribute 𝑎 𝑗 , LLMs generate ℎ2

candidate references. With an average reference length of 𝑅 tokens,

this consumes |A| × ℎ2 × 𝑅 tokens.

Reference selection. First, we compute a relevance score for each

reference in 𝑅
𝑗

𝑀
. A higher score indicates a higher relevance to the

document set. To be specific, for each reference 𝑟𝑒 ∈ 𝑅
𝑗

𝑀
, within

each document, we find the most similar chunk based on the co-

sine similarity of their embeddings. The relevance score for 𝑟𝑒 is

calculated by summing up the similarities of all documents within

the set D. Then, we select the 𝑘 references with the highest scores.

Finally, we concatenate 𝑒 𝑗 = 𝑒𝑉
𝑗
⊕ 𝑒𝐿

𝑗
as the search key. After-

wards, based on the index I, Doctopus uses a threshold to prune

the chunks that are irrelevant to the attribute to avoid unneces-

sary costs. To be specific, given 𝑒 𝑗 and the embedding 𝑒𝑚𝑏 (𝑐ℎ) of
a chunk 𝑐ℎ in 𝑑𝑖 , if 𝑑𝑖𝑠𝑡 (𝑒𝑚𝑏 (𝑐ℎ), 𝑒 𝑗 ) > 𝜏 , we discard the chunk ,

where 𝑑𝑖𝑠𝑡 () represents the normalized Euclidean distance calcu-

lated using the product quantization index I.
Automatically Setting the 𝜏 . The threshold 𝜏 is also important

for good retrieval. A large threshold returns irrelevant chunks,

increasing the extraction cost, while a small threshold might miss

relevant chunks, thus sacrificing the quality. Therefore, Doctopus
uses the validation set to automatically identify an appropriate

threshold (see Section 7 for details).

5 Quality Estimation
In this section, we illustrate how to estimate the accuracy, i.e.,

Equation 1, for different strategies. As discussed in Section 3.2, the

accuracy is determined by containment probability and extraction

probability. Next, we introduce in details how the accuracy is es-

timated based on the two probabilities and then discuss how to

compute these probabilities.
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To be specific, we cover the case that the ground truth is NULL,
i.e., an attribute does not exist in a document (𝑣∗

𝑖 𝑗
= NULL). Thus,

accuracy 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
) can be expressed as:

𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 ) = 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑣
∗
𝑖 𝑗 ≠ NULL) · 𝑃 (𝑣∗𝑖 𝑗 ≠ NULL)

+ 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑣
∗
𝑖 𝑗 = NULL) · 𝑃 (𝑣∗𝑖 𝑗 = NULL)

(5)

where 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑣∗
𝑖 𝑗

= NULL) denotes the probability of correctly

extracting the attribute when it exists in the document, which can

be expanded further as follows.

𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑣
∗
𝑖 𝑗 = NULL) = 𝑃 (𝑎 ∈ 𝑡) · 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑎 ∈ 𝑡, 𝑣∗𝑖 𝑗 = NULL)

+ 𝑃 (𝑎 ∉ 𝑡) · 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑎 ∉ 𝑡, 𝑣∗𝑖 𝑗 = NULL)
(6)

Similarly, 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑣∗
𝑖 𝑗

≠ NULL) can be expressed as:

𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑣
∗
𝑖 𝑗 ≠ NULL) = 𝑃 (𝑎 ∈ 𝑡) · 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑎 ∈ 𝑡, 𝑣∗𝑖 𝑗 ≠ NULL)

+ 𝑃 (𝑎 ∉ 𝑡) · 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑎 ∉ 𝑡, 𝑣∗𝑖 𝑗 ≠ NULL)
(7)

Obviously, 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑎 ∉ 𝑡, 𝑣∗

𝑖 𝑗
≠ NULL) = 0 because it is

impossible to extract the correct value when it does not exist in the

input text 𝑡 . In addition, 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑎 ∈ 𝑡, 𝑣∗

𝑖 𝑗
= NULL) = 0 because

𝑣∗
𝑖 𝑗

= NULL and 𝑎 ∈ 𝑡 are in conflict. Putting Equation 5, 6 and 7

together, we have:

𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 ) = 𝑃 (𝑎 ∈ 𝑡) · 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑎 ∈ 𝑡, 𝑣∗𝑖 𝑗 ≠ NULL) · 𝑃 (𝑣∗𝑖 𝑗 ≠ NULL)
+ 𝑃 (𝑎 ∉ 𝑡) · 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 |𝑎 ∉ 𝑡, 𝑣∗𝑖 𝑗 = NULL) · 𝑃 (𝑣∗𝑖 𝑗 = NULL)

(8)

In Equation 8, 𝑃 (𝑎 ∈ 𝑡) and 𝑃 (𝑎 ∈ 𝑡) refer to the containment

probability, 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑎 ∈ 𝑡, 𝑣∗

𝑖 𝑗
≠ NULL) and 𝑃 (𝑣𝑠

𝑖 𝑗
= 𝑣∗

𝑖 𝑗
|𝑎 ∉

𝑡, 𝑣∗
𝑖 𝑗

= NULL) correspond to the extraction probability, and the

remaining terms can be considered as the prior probability of the

existence of the attribute in D. Next, we discuss how to compute

them.

Prior probability. 𝑃 (𝑣∗
𝑖 𝑗

≠ NULL) and 𝑃 (𝑣∗
𝑖 𝑗

= NULL) can be easily

estimated based on the validation set. Specifically, we denote the

total number of NULL values of the attribute 𝑎 𝑗 in D𝑣 as 𝑁 𝑗 , and

𝑃 (𝑣∗
𝑖 𝑗

= NULL) = 𝑁 𝑗

|D𝑣 | . Then, 𝑃 (𝑣
∗
𝑖 𝑗

≠ NULL) = 1 − 𝑃 (𝑣∗
𝑖 𝑗

= NULL).

Containment Probability Estimation. The key idea is to fine-

tune a pre-trained language model to predict 𝑃 (𝑎 ∈ 𝑡) and 𝑃 (𝑎 ∉ 𝑡).
Next, we first introduce the model construction process, employing

the documents in the validation set as training data. We then aug-

ment the training set to overcome the problem that the validation

set tends to be relatively small.

Model Fine-tuning. We fine-tune the lightweight DistilBERT model

as follows: the attribute and its corresponding chunk 𝑡 are concate-

nated and fed into the model. The model then produces a probability

score, i.e., 𝑃 (𝑎 ∈ 𝑡), through a linear layer followed by a sigmoid

activation. The training process employs the binary cross-entropy

loss, defined as:

L = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log𝑝𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 )] , (9)

where 𝑦𝑖 ∈ {0, 1} denotes the ground-truth label (1 if 𝑡 contains 𝑎,

0 otherwise) and 𝑝𝑖 is the predicted probability. Then, we use the

fine-tuned model to predict the containment probability.

Training Data Augmentation. The training dataset obtained by D𝑣

may not sufficient enough, especially the positive examples. To

enhance the amount and diversity of the training dataset, we apply

three different data augmentation techniques:

(i) Chunk Combination: Increase positive examples by combining

the attribute chunk with irrelevant chunks.

(ii) Sentence Reordering: Shuffle sentences within chunks to cre-

ate varied contexts while keeping the semantic meaning. Sentences

before the attribute may be moved after it.

(iii) Random Sentence Deletion: Randomly delete sentences from

training examples, but not from the attribute chunk in positive

examples.

After fine-tuning the model, the input text, concatenated with

the attribute information, is fed into the model, which then predicts

the containment probability 𝑃 (𝑎 ∈ 𝑡).
Extraction Probability Estimation. Then, we have to estimate

the extraction probability for different strategies, i.e., the probability

that each strategy can accurately extract an attribute given 𝑃 (𝑎 ∈ 𝑡)
or 𝑃 (𝑎 ∉ 𝑡).

Specifically, we split the training set of the DistilBERT model

into two parts for each attribute 𝑎 𝑗 : 𝐻
+
𝑗
comprising chunks that

contain the attribute and 𝐻−
𝑗

comprising chunks without the

ground truth value. Then, we feed the chunks to LLM to ex-

tract the values of the specified attribute and then compare these

extracted values to the ground truth in the validation set. For

each attribute 𝑎 𝑗 and strategy 𝑠 , we compute the average accu-

racy, i.e., 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑎 ∈ 𝑡, 𝑣∗

𝑖 𝑗
≠ NULL) =

∑|𝐻+ |
𝑖=1

1{𝑣𝑠
𝑖 𝑗

=𝑣∗
𝑖 𝑗

}

|𝐻+ | and

𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
|𝑎 ∉ 𝑡, 𝑣∗

𝑖 𝑗
= NULL) =

∑|𝐻− |
𝑖=1

1{𝑣𝑠
𝑖 𝑗

=NULL}

|𝐻 − | ) as the extraction

probability. Note that 1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
} can be calculated through vari-

ous methods, such as exact match, text F1 score, entity matching

model, BertScore, BLEU or employing LLMs. To be specific, when

using the exact match, 1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
} = 1 if the extracted value 𝑣𝑠

𝑖 𝑗

exactly matches the ground truth 𝑣∗
𝑖 𝑗
. If the text F1 score is used,

1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
} = 1 if the text F1 score between the extracted value 𝑣𝑠

𝑖 𝑗

and the ground truth 𝑣∗
𝑖 𝑗
is greater than 0.5. Furthermore, an en-

tity match model, such as DITTO [20] as well as BertSocre and

BLEU, can also compute the probability. Finally, LLM can directly

determine whether 1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
} equals to 1. We perform experiments

using these alternate methods (refer to Section 7.9.2). For non-LLM

strategies, Doctopus estimate their extraction probability in a simi-

lar way. The key difference is that non-LLM strategies take each

entire document in D𝑣 as input instead of text chunks.

6 Budget-aware Accuracy Optimization

Based on our problem definition (Section 2), given a specific docu-

ment 𝑑𝑖 and an attribute 𝑎 𝑗 , we have a set 𝑆𝑖 𝑗 of candidate strategies.

In this section, we first discuss how to generate the candidate set

(Section 6.1), followed by choosing the most appropriate strategy

w.r.t. each extraction. We first prove the hardness of the problem
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and then propose a dynamic programming algorithm to solve it

(Section 6.2).

6.1 Candidate Strategies Generation
In Section 4, we first use embedding 𝑒 𝑗 to retrieve 𝑙 chunks relevant

to 𝑎 𝑗 . Obviously, there exist 2
𝑙
possible combinations of chunks

as the input of an LLM, corresponding to 2
𝑙
different strategies.

Enumerating all these strategies is prohibitively expensive. To re-

duce the search space, we propose a pruning method to reduce the

number of candidates. Please refer to [1] for details.

6.2 Dynamic Programming Algorithm
Problem Complexity. After determining the set of strategies S𝑖 𝑗
for each 𝑟𝑖 𝑗 , we estimate the quality of each strategy inS𝑖 𝑗 using the
method discussed in Section 5. Then, we need to solve Equation 4 to

find the optimal execution plan to maximize the extraction accuracy.

Due to limited space, the proof showing that solving Equation 4 is

NP-hard has been included in our technique report [1]. We then

solve this problem with a dynamic programming algorithm.

Dynamic Programming Algorithm. We use the classical DP

algorithm to address the Knapsack problem. The key idea is to iter-

atively allocate the budget to attributes while tracking the optimal

accuracy at each budget level. Note that during the quality estima-

tion phase, the accuracy 𝑃 (𝑣𝑠
𝑖 𝑗

= 𝑣∗
𝑖 𝑗
) and cost 𝑐𝑠

𝑖 𝑗
of each strategy

𝑠 for the 𝑗-th attribute in the 𝑖-th document are precomputed and

serve as inputs to the DP algorithm.

As illustrated in Algorithm 2, we have a total of 𝑛 × 𝑚 at-

tributes to extract. Then, we define a table 𝑑𝑝 where 𝑑𝑝 [𝑔] [𝑏], 𝑔 ∈
[0, 𝑛 ×𝑚], 𝑏 ∈ [0, 𝐵] represents the maximum accuracy that can be

achieved by considering the first 𝑔 attributes with budget 𝑏 (line 1),

and define 𝑠𝑒𝑙 [𝑔] [𝑏] as the strategy 𝑠 selected for the 𝑔−th attribute

under budget 𝑏 (line 2). We iterate all the 𝑛 ×𝑚 attributes and map

the current 𝑔−th attribute back to the corresponding document 𝑑𝑖
and attribute 𝑎 𝑗 by computing 𝑖 = ⌊(𝑔 − 1)/𝑚⌋ + 1 and 𝑗 = (𝑔 − 1)
mod 𝑚 + 1 (line 4). Then, we define the state transition formula as

below:

𝑑𝑝 [𝑔] [𝑏] = max

𝑠∈S𝑖 𝑗

{𝑑𝑝 [𝑔 − 1] [𝑏 − 𝑐𝑠𝑖 𝑗 ] + 𝑃 (𝑣𝑠𝑖 𝑗 = 𝑣∗𝑖 𝑗 ) if 𝑏 ≥ 𝑐𝑠𝑖 𝑗 }

(10)

Specifically, for each level of budget 𝑏 from 0 to 𝐵, we iterate over

all strategies 𝑠 in the set of strategies S𝑖 𝑗 and check whether the

cost 𝑐𝑠
𝑖 𝑗
of selecting strategy 𝑠 is within the current budget 𝑏 (line 7).

If so, the accuracy currently achieved by choosing the strategy 𝑠

for 𝑟𝑖 𝑗 is calculated as 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑝 [𝑔 − 1] [𝑏 − 𝑐𝑠
𝑖 𝑗
] + 𝑃 (𝑣𝑠

𝑖 𝑗
= 𝑣∗

𝑖 𝑗
),

where 𝑑𝑝 [𝑔 − 1] [𝑏 − 𝑐𝑠
𝑖 𝑗
] represents the maximum accuracy that

can be achieved for the first 𝑔− 1 attributes using the budget 𝑏 −𝑐𝑠
𝑖 𝑗

(line 8). If 𝑣𝑎𝑙𝑢𝑒 exceeds current 𝑑𝑝 [𝑔] [𝑏], the algorithm updates

𝑑𝑝 [𝑔] [𝑏] to the new maximum accuracy (line 10) and records the

selected strategy 𝑠𝑒𝑙 [𝑔] [𝑏] for the 𝑔−th attribute (line 11).

Optimal Execution Plan Generation. After obtaining the com-

plete 𝑑𝑝 table, the optimal execution plan is contracted as follows:

Starting with the total budget 𝐵 and the 𝑛 ×𝑚−th attribute, we

map the current 𝑔−th attribute back to the corresponding docu-

ment 𝑑𝑖 and the attribute 𝑎 𝑗 (line 14). If a strategy 𝑠 is selected for

extracting 𝑟𝑖 𝑗 , it is added to the final execution plan 𝑓 ∗ (line 15),

and the remaining budget 𝑏 is reduced by the corresponding cost

𝑐
𝑠𝑒𝑙 [𝑔] [𝑏 ]
𝑖 𝑗

(line 16). The step continues until all attributes have been

processed. Finally, the algorithm returns the optimal execution plan

𝑓 ∗ (line 17), which maximizes accuracy under the budget 𝐵.

Algorithm 2: Optimal_Execution_Plan

Input: Number of documents 𝑛, number of attributes𝑚,

total budget 𝐵, the set of candidate strategies S𝑖 𝑗 .
Output: 𝑓 ∗ : {𝑟𝑖 𝑗 }𝑛𝑖=1,

𝑚
𝑗=1

→ S𝑖 𝑗
1 𝑑𝑝 [] [] = 0;

2 𝑠𝑒𝑙 [] [] = −1;
3 for 𝑔 = 1 to 𝑛 ×𝑚 do
4 (𝑖, 𝑗) = Get_Index(𝑔,𝑚);
5 for 𝑏 = 0 to 𝐵 do
6 for each 𝑠 ∈ S𝑖, 𝑗 do
7 if 𝑏 ≥ 𝑐𝑠

𝑖 𝑗
then

8 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑝 [𝑔 − 1] [𝑏 − 𝑐𝑠
𝑖 𝑗
] + 𝑃 (𝑣𝑠

𝑖 𝑗
= 𝑣∗

𝑖 𝑗
);

9 if 𝑣𝑎𝑙𝑢𝑒 > 𝑑𝑝 [𝑔] [𝑏] then
10 𝑑𝑝 [𝑔] [𝑏] = 𝑣𝑎𝑙𝑢𝑒;

11 𝑠𝑒𝑙 [𝑔] [𝑏] = 𝑠;

12 𝑏 = 𝐵;

13 for 𝑔 = 𝑛 ×𝑚 to 1 do
14 (𝑖, 𝑗) = Get_Index(𝑔,𝑚);
15 𝑓 ∗ (𝑟𝑖 𝑗 ) = 𝑠𝑒𝑙 [𝑔] [𝑏];
16 𝑏 = 𝑏 − 𝑐

𝑠𝑒𝑙 [𝑔] [𝑏 ]
𝑖 𝑗

;

17 return 𝑓 ∗;

Time Complexity Analysis. The time complexity of Algorithm 2

is determined by three nested loops in the first computation phase

(lines 3–11). For each document and each attribute within a docu-

ment (𝑛 ×𝑚 iterations), the algorithm processes each budget level

from 0 to 𝐵 and iterates over all the strategies in S𝑖 𝑗 . This results
in a total complexity of O(𝑛𝑚𝐵 |S𝑖 𝑗 |) for the first phase. The sec-
ond phase (lines 13–16) has a linear complexity of O(𝑛𝑚) as it
iterates all attributes. Therefore, the overall time complexity of the

algorithm is O(𝑛𝑚𝐵 |S𝑖 𝑗 |).
Token Complexity Analysis. The token complexity of Algo-

rithm 2 is the sum of tokens consumed by selected strategies, i.e.,∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝑐

𝑠
𝑖 𝑗
, where 𝑐𝑠

𝑖 𝑗
denotes the token cost of strategy 𝑠 for

attribute 𝑎 𝑗 in document 𝑑𝑖 . Our dynamic programming algorithm

ensures that this sum does not exceed the user-specified budget 𝐵.

7 Experiment
In this section, we first outline our experimental setup. Then,

we conduct extensive experiments to compare Doctopus with 8

baseline methods on 4 datasets to answer the following questions.

• Q1: How does Doctopus compare against other baselines in

accuracy and cost?

• Q2: How do different attribute enrichment methods affect the

performance of Doctopus?
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• Q3: How do different extraction approaches affect the perfor-

mance of Doctopus?
• Q4: How does Doctopus perform with different LLMs?

• Q5: How does Doctopus perform in computing the containment

probability?

• Q6: How is the efficiency of Doctopus compared with other

baselines?

• Q7: How stable is the extraction probability for all strategies?

• Q8: Other ablation studies.

7.1 Experimental Settings

Table 1: Statistics of Datasets.

Dataset #-Docs #-Attrs Avg. #-Tokens NULL (%)
Law [11] 600 9 5926 10.8%

Wikiart [2] 1000 8 714 12.8%

Financial [3] 1500 8 258 15.2%

Sports [4] 100 10 1645 17.1%

Datasets. We develop four benchmark datasets with 3,200 doc-

uments across various domains to evaluate our system. Dataset

statistics are in Table 1.

Law includes 600 documents from 3,000 Federal Court of Australia

case reports (2006-2009). Each document averages 5,926 tokens and

9 attributes.

Wikiart includes 1,000 documents describing the biographies of

various artists. Each document averages 714 tokens and 8 attributes.

Financial includes 1,500 documents that provide details about var-

ious companies. On average, each document comprises 258 tokens

and 8 attributes.

Sports consists of 100 Wikipedia pages about NBA players. We

transform each webpage into a document that includes only text.

Each document typically includes 1,645 tokens and provides infor-

mation on 10 attributes.

Ground Truth Creation. For each dataset, we initially identify the

key attributes with the help of human experts. Following this, we

employ LLMs to scan all documents and extract these attributes.

Ultimately, the extracted attributes are verified by 20 graduate

students using approximately 1,000 hours.

Baselines.We compare Doctopus with various baselines.

(1) Lotus [24] utilizes semantic operators powered by LLMs, like

sem_map and sem_extract, to extract attributes from unstruc-

tured documents.

(2) Palimpzest (PZ) [21] offers the convert operator to extract at-
tributes from unstructured documents through the use of LLMs.

We employ the same LLM with us for PZ for a fair comparison.

(3) Evaporate [6] is a code generation method that first samples

several documents and prompts LLMs to generate various can-

didate extraction codes. Then it leverages the weak supervision

technique to aggregate the results of multiple codes. Since we

only use LLMs to generate codes relying on several documents

and apply the codes to the rest, the LLMs costs can be neglected.

(4) OpenIE6 [18] employs the iterative grid labeling technique to

extract triples (subject, relation, object) from unstructured docu-

ments. The extracted triples are then organized into structured

tables by mapping subjects to rows, relations to columns, and

objects to cell values.

(5) DebertaV3 [13] is a pre-trained language model commonly

used in QA tasks to extract information that is relevant to a

user query from a provided document context, which can be

utilized to extract attribute values. We incorporate this PLM-

based method as one of our non-LLM strategies.

(6) FrugalGPT [8] selects an execution order of different ap-

proaches based on their predicted accuracy and cost to answer

NL tasks. To compare with it, we regard the NL task as extract-

ing attributes and incorporate the same extraction approaches

for a fair comparison.

(7) LLM-Extract still utilizes our budget-aware accuracy optimiza-

tion framework but excludes non-LLM strategies.

(8) Doctopus is our full-fledged solution, which incorporates

OpenIE6, Evaporate, DebertaV3 and GPT-4o as our extraction
approaches.

Evaluation Metrics. We evaluate accuracy, cost, and efficiency

across all datasets. For accuracy, we use Equation 1 for overall

accuracy. As mentioned in Section 5, 1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
} has multiple cal-

culation methods. We use the text F1 score from [6] for 1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
}

and report overall accuracy. Additional experiments using various

accuracy methods are discussed in Section 7.9.2. For cost, we count

the total number of tokens input to the LLM (GPT-4o) through the

OpenAI API. For efficiency, we report the average time of different

extraction methods per document.

Hyper-parameter Setting. We sample 10% of each dataset as the

validation set. We use LLM to extract attributes, and humans verify

any inaccuracies. The same validation set is used for FrugalGPT.
We generate references using the validation set and LLMs, selecting

5 references each. For fine-tuning the DebertaV3 model, we set

the batch size as 32 and the learning rate as 3𝑒 − 5 with a linearly

decreasing learning rate schedule. Notably, the chunk size affects

both accuracy and efficiency. While utilizing smaller chunks can

reduce the number of LLM input tokens, it might also lose relevant

contextual information, thereby sacrificing the accuracy of attribute

extraction. Furthermore, a smaller chunk size could produce more

chunks, which potentially hurts the retrieval efficiency. On the

other hand, employing larger chunks could include more related

information, thereby enhancing the extraction accuracy. Nonethe-

less, this may lead to increased token consumption. Therefore, it’s

important to set the chunk size automatically to achieve an optimal

trade-off between accuracy and efficiency across all datasets.We

use the SemanticChunker [5] in LangChain to set the chunk size.

We set the threshold 𝜏 automatically. Specifically, for each doc-

ument 𝑑𝑖 ∈ D𝑣 , Doctopus first uses a small 𝜏 to obtain a set of

chunks 𝐻 𝑖
𝑗
using 𝑒 𝑗 . Then, all elements in 𝐻 𝑖

𝑗
are combined and

form the set of 𝐻 𝑗 , which represents all the retrieved chunks in D𝑣

using the small 𝜏 . Since D𝑣 has been analyzed by LLMs or humans,

we can partition 𝐻 𝑗 into two distinct subsets: 𝐻−
𝑗
, which includes

chunks that do not contain the attribute and are therefore consid-

ered irrelevant to the query, and 𝐻+
𝑗
= 𝐻 𝑗 \𝐻−

𝑗
, which comprises

relevant chunks. The maximum Euclidean distance between the

chunk embeddings 𝑒𝑚𝑏 (𝑐ℎ) in 𝐻+
𝑗
and the embedding 𝑒 𝑗 serves as

the threshold, i.e., 𝜏 = max{𝑑𝑖𝑠𝑡 (𝑒𝑚𝑏 (𝑐ℎ), 𝑒 𝑗 ) |𝑐ℎ ∈ 𝐻+
𝑗
}. Intuitively,
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this 𝜏 threshold will exclude irrelevant chunks. We summarize the

steps where LLMs are used in Doctopus and make the correspond-

ing prompts available. Please refer to our GitHub repository.

Remark. When multiple attributes are mentioned in the same or

adjacent chunks, we will merge these chunks and input them into

the LLMs to extract them concurrently. Besides, estimating joint

extraction quality for correlated attributes could further optimize

cost-accuracy trade-offs. Future work will extend our quality esti-

mation framework to account for attribute combinations.

7.2 Comparison with Baselines (Q1)
Figure 3 illustrates the comparison of Doctopus with baselines

on accuracy (Y-axes) across different cost constraints (X-axes).

Doctopus offers the best accuracy-cost balance, and Doctopus leads
in accuracy under these constraints. Specifically, Doctopus, PZ, and
Lotus excel across all datasets. Lotus and PZ, despite high accu-

racy, incur substantial costs by processing entire documents with

LLMs. Meanwhile, Doctopus matches PZ and Lotus in accuracy

but at a lower cost. On the Law dataset, Doctopus, PZ, and Lotus
achieve approximately 75% accuracy. However, PZ and Lotus pro-
cess 3.8 million and 5.8 million tokens, respectively, 3.2× and 4.8×
times more than Doctopus. This is due to an efficient method that

targets specific content for LLM processing, cutting costs while

maintaining accuracy. In cases like Lifespan, non-LLM strategies

Evaporate can outperform LLM-based methods by boosting accu-

racy and cutting costs. Lotus uses more tokens as it requires two

operators, sem_map and sem_extract, for processing, doubling LLM
usage per document. Conversely, PZ processes the document once

for simultaneous attribute extraction.

Doctopus outperforms FrugalGPT as it uses a uniform pipeline

for all attributes and documents, reaching a local optimum, while

Doctopus achieves global optimization by considering diverse at-

tributes and documents. On dataset Wikiart, FrugalGPT achieves

77% accuracy, whereas Doctopus reaches 85% with 0.75 million

tokens. Doctopus outperforms LLM-Extract because non-LLM

strategies excel in extracting specific attributes. By integrating

both non-LLM and LLM-based strategies, Doctopus could achieve

higher accuracy on the same budget.

Non-LLM strategies OpenIE6, DebertaV3, and Evaporate are

less accurate than Doctopus. OpenIE6 struggles with adapting to

diverse documents due to its limitation to well-structured sentences.

DebertaV3 underperforms as DebertaV3 finds it challenging to

generalize across varied attributes and documents. The performance

of Evaporate is suboptimal because the generated codes inherently

rely on a limited number of rules, which are often unreliable when

handling complex documents or attributes.

Constructing a validation set is cost-effective and beneficial. For

example, on the Financial dataset, Doctopus uses only 0.05 mil-

lion tokens for validation. With this cost, Doctopus achieves 84%
accuracy, surpassing FrugalGPT’s 78%. Doctopus significantly out-

performs non-LLM strategies Evaporate (52%), DebertaV3 (33%),
and OpenIE6 (20%). This is due to Doctopus’s adaptive strategy,

balancing cost and accuracy.

7.3 Evaluation of Reference (Q2)
We evaluate the attribute enrichment method in Doctopus by

comparing with three baselines.

(1) Ref-Val only generates the reference for each attribute

through the validation set.

(2) Ref-LLM generates the reference directly through LLM.

(3) No-Reference does not incorporate the attribute enrichment

method to enhance retrieval. It just simply encodes the attributes

and a piece of description into embeddings for retrieval.

In Figure 4, Doctopus outperforms No-Reference as embedding

attributes with descriptions lacks adequate information, leading

to missed chunks. Ref-Val underperforms due to relying solely

on validation set references, which fails to generalize and reduces

accuracy. Similarly, Doctopus outperforms Ref-LLM because LLM-

generated reference patterns do not align with the document set,

impacting accuracy.

7.4 Evaluation of Strategy Set (Q3)
To demonstrate the effectiveness of different strategies considered

in Doctopus, we compare Doctopus with methods as follows:

(1) Doctopus Without OpenIE (D-W-O): Doctopus excludes

the extraction approach OpenIE6.
(2) Doctopus Without Codegen (D-W-C): Doctopus excludes

the extraction approach Evaporate.
(3) Doctopus Without PLM (D-W-P): Doctopus excludes the

extraction approach DebertaV3.
As shown in Figure 5, Doctopus outperforms all the methods

because Evaporate, OpenIE6 and DebertaV3 are all good at ex-

tracting some specific attributes. For example, Evaporate excels in

using rules for extracting attributes, like computing Lifespan by
subtracting birth_date from death_date. Thus, it is important

to consider all of them into the extraction process and sufficiently

take their advantages like Doctopus.

7.5 Evaluation of Different LLMs (Q4)
Doctopus is evaluated using different LLMs (𝑖 .𝑒 ., GPT-3.5 and GPT-

4omini) against FrugalGPT and PZ. As shown in Figure 6, Doctopus
consistently outperforms FrugalGPT and PZ across various LLMs.

The attribute-enrichment method improves cost-effectiveness with-

out losing accuracy by retrieving the most relevant chunks for

LLMs. Additionally, Doctopus selects the best approach for each

attribute and document, balancing cost and accuracy.

7.6 Accuracy of Containment Model (Q5)
We evaluate the accuracy of our containment probability estima-

tion model (i.e., DistilBERT) with the data augmentation techniques.

We divide the training data of the DistilBERT model into a training

set (90%) and a test set (10%), and use accuracy as the evaluation

metric. We compare our containment probability estimation model

trainedwith the data augmentation techniques (𝑖 .𝑒 ., DistilBERT-DA)

against GPT-4o and the DistilBERT model without using data aug-

mentation (𝑖 .𝑒 ., DistilBERT-base). As shown in Figure 7, DistilBERT-

DA is competitive with GPT-4o and outperforms DistilBERT-base

because it is fine-tuned with our augmented data, which better

captures the relationship between attribute and document content.
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Figure 3: Overall Performance Comparison with Baselines.
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Different Strategy Sets.
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7.7 Evaluation of Overall Runtime (Q6)
Figure 8 illustrates overall runtimes. Evaporate is the most effi-

cient, leveraging the extraction code. DebertaV3 and OpenIE6 are
efficient but less accurate, as they avoid LLMs. Doctopus is more

efficient than PZ and Lotus, which process the entire document via

LLM. Doctopus is superior to FrugalGPT, since FrugalGPT requires
multiple extraction attempts per attribute and document. Finally,

Doctopus surpasses LLM-Extract, with LLM-Extract using LLMs

solely for extraction.

7.8 Evaluation of Extraction Probability (Q7)
We assess that when an attribute is in the input text, extraction

probabilities across documents are stable. We cluster each dataset

into 5 groups based on document summarization embeddings, ran-

domly select 3 attributes per dataset, and apply non-LLM strategies

within each cluster to extract these attributes, recording the accu-

racy. Additionally, we extract attribute-containing chunks using

LLMs and report their accuracy. Figure 9 shows minimal accuracy

variation across different clusters for the same attribute and strat-

egy, supporting our statistical method for computing extraction

probability without document-specific considerations.

7.9 Ablation Study (Q8)
7.9.1 Evaluation of Validation Set. We assess the impact of human

involvement in building the validation set versus using only LLM.

Figure 10 shows VS-LLM, a version of Doctopus using LLM for the

validation set. While Doctopus outperforms VS-LLM due to human-

enhanced quality estimation, VS-LLM also performs well as the LLM

constructs a high-quality set.

7.9.2 Methods of Computing 1{𝑣𝑠
𝑖 𝑗
=𝑣∗

𝑖 𝑗
} . We evaluate the perfor-

mance of Doctopus by calculating Equation 1 with different meth-

ods, namely exact match, entity matching model [20], BertScore,

BLEU and use of LLMs, as described in Section 5. As illustrated in

Figure 11, Doctopus achieves better performance when Equation 1

3705



nationality team draft_year
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

(a) DebertaV3 on Sports
lifespan death_citybirth_country

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

(b) LLM on Wikiart
hearing_yearcase_typejudgment_year

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

(c) OpenIE6 on Law
segment_numtax_policyindustry_type

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

(d) Evaporate on Financial

Document Cluster 1 Document Cluster 2 Document Cluster 3 Document Cluster 4

Figure 9: Evaluation of Extraction Probability.

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

1.2
0

1.4
0

#-Tokens(×1M)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(a) Wikiart

0.0
0
0.0

5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.3

5
0.4

0

#-Tokens(×1M)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

(b) Sports

VS-LLM Doctopus

Figure 10: Evaluation ofValidation Set.

0.1 0.2 0.3 0.4
#-Tokens(×1M)

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(a) Sports

0.2 0.4 0.6 0.8 1.0
#-Tokens(×1M)

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(b) Financial

Exact Match
Text F1

Entity Match
GPT-4o

BLEU
BertScore

Figure 11: Performance of Doctopus Under Different Evalua-
tion Methods.

is calculated using either the GPT-4o or entity matching model.

This is because LLMs and the entity matching model better capture

the semantic relationship between extracted values and the ground

truth, thus estimating the quality of each strategy more precisely

and improving extraction accuracy.

8 Related Work
Structural Data Extraction extracts structured information from

unstructured data, which has been studied for decades. One ap-

proach involves extracting triples by identifying entities and their

relationships from text, shifting from rule-based or statistical meth-

ods [19, 23, 26, 27] to deep learning. For instance, OpenIE6 [18] uses
iterative grid labeling, while MacroIE [33] employs a BERT-based

encoder to learn token span representations and form graphs to

identify triplets. These often struggle with complex documents and

implicit relationships. Alternatively, code generation is used for ex-

traction, such as Evaporate [6] utilizing LLMs to produce code for

extracting attributes from HTML and PDF files, but LLM-generated

code alone is often insufficiently accurate for diverse documents.

PLMs are used for data extraction [7, 13, 16, 25, 31, 35]. For

instance, DebertaV3 [13] employs a QA pre-trained model to ex-

tract information relevant to queries. Text-to-Table [31] uses a
sequence-to-sequence framework to transform text into structured

tables. STable [25] features a permutation-based decoder for flexi-

ble and efficient text-to-table inference. However, these methods

are not effective in extracting information not explicitly stated in

the text, which requires domain-specific knowledge for extraction.

Recent works explore using LLMs for data extraction. Lotus [24]
and PZ [21] prompt LLMs with NL queries to extract specific at-

tributes from unstructured documents, but heavily rely on LLMs,

leading to high computational costs. Other studies [9, 17, 29] use

LLMs for unstructured data analysis without optimizing these costs.

Cost Reduction of LLMs has been recently studied to balance

accuracy and cost of LLMs. Typically, some works consider both

cheap approaches and expensive LLMs to handle NL tasks [8, 15, 34].

For example, FrugalGPT [8] orders various LLM strategies for a

task, optimizing cost by assessing quality and cost. It trains a reward

model to evaluate strategy quality, following the order to decide

on accepting each result based on a reward function. However, for

all tasks, FrugalGPT follows the same order of different strategies

to obtain the result, resulting in suboptimal performance.

9 Conclusion and Future Work
We present Doctopus, a system for cost-effective attribute extrac-

tion from unstructured documents. It uses an index-based approach

to process relevant text chunks. We assess the quality of various

strategies and propose a dynamic programming algorithm to com-

bine LLMs with non-LLM methods, optimizing cost and accuracy.

Real-world experiments verify the cost-effectiveness of Doctopus.
New LLM versions will continually be released, challenging

Doctopus to adapt to LLM life-cycles. The fast evolution of LLMs

requires periodic updates for Doctopus to integrate with the latest

models—such as re-evaluating their quality—to maintain optimal

performance, possibly involving significant effort. We will explore

this promising direction as future work. In addition, Doctopus does
not currently integrate multiple LLMs and assumes each document

attribute has a single value, which may not suit all industrial cases.

Future work could address this by combining various LLMs to

enhance their strengths and enable the extraction of multiple values

per document, thus increasing robustness.
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