
HAWK: A Workload-driven Hierarchical Deadlock Detection
Approach in Distributed Database System

Rongrong Zhang

East China Normal University

rrzhang@stu.ecnu.edu.cn

Zhiwei Ye

China Mobile Cloud Center

yezhiwei@cmss.chinamobile.com

Jun-Peng Zhu

East China Normal University

zjp.dase@stu.ecnu.edu.cn

Peng Cai

East China Normal University

pcai@dase.ecnu.edu.cn

Xuan Zhou

East China Normal University

xzhou@dase.ecnu.edu.cn

Dunbo Cai

China Mobile Cloud Center

caidunbo@cmss.chinamobile.com

Ling Qian

China Mobile Cloud Center

qianling@cmss.chinamobile.com

ABSTRACT
Distributed databases are widely used in various fields, such as

financial services and e-commerce. These businesses generally ex-

hibit characteristics of large-scale and rapid growth. However, these

business systems often suffer from deadlocks that prevent them

from operating normally for extended periods. Traditional dead-

lock detection methods face challenges in scalability and efficiency,

especially as the number of nodes increases. Therefore, deadlock

detection has always been a research area in distributed databases.

In this paper, we introduce an efficient deadlock detection al-

gorithm called HAWK, leveraging a Hierarchical Approach based

onWorKload modeling. Our algorithm addresses these issues by

constructing a dynamic hierarchical detection tree that adapts to

transaction patterns, significantly reducing time complexity and

communication overhead. HAWK first models the workload and

generates a predicted access graph (PAG), transforming the problem

of partitioning detection task in the basic hierarchical detection

into partition detection zone (DZ) in the PAG by a graph-cutting

algorithm. Then, leveraging the properties of strongly connected

components (SCCs) and deadlock cycles, the SCC-cut algorithm

naturally partitions the system-wide deadlock detection into multi-

ple non-intersecting detection zones, thereby enhancing detection

efficiency. We used the greedy SCC-cut algorithm to perform a

more fine-grained partitioning of the complex PAG. Finally, by peri-

odically sampling and updating the hierarchical structure, the algo-

rithm remains responsive to dynamic workload variations, ensuring

efficient detection. Our approach outperforms both centralized and

distributed methods, offering a more efficient and adaptive solution.

Extensive experimental results demonstrate the effectiveness of the

HAWK algorithm, showing significant reductions in the duration

of the deadlock and improved system throughput.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748224

PVLDB Reference Format:
Rongrong Zhang, Zhiwei Ye, Jun-Peng Zhu, Peng Cai, Xuan Zhou, Dunbo

Cai, and Ling Qian. HAWK: A Workload-driven Hierarchical Deadlock

Detection Approach in Distributed Database System. PVLDB, 18(10):

3682-3694, 2025.

doi:10.14778/3748191.3748224

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/rrzhang23/HAWK_txn.

1 INTRODUCTION
The two-phase locking (2PL) [9] protocol ensures isolation and

consistency during the execution of concurrent transactions. Due

to its flexibility and stability, 2PL has been widely integrated into

many open-source and commercial database systems, such as Ora-

cle [12], Spanner [3], MySQL [33], and Postgres [1]. Despite these

advantages, 2PL can lead to performance decreases due to dead-

lock problems. Although deadlock detection and resolution are

well-defined problems with extensive research in standalone sys-

tems, they have recently received increased attention in distributed

systems [5, 21, 38, 44].

Existing deadlock detection algorithms can be classified into

three types: centralized, distributed, and hierarchical. The mod-

ern distributed database (e.g., OceanBase [45]) can be deployed on

more than a thousand nodes to provide extremely high-throughput

performance, according to the TPC-C performance report [2]. Al-

though both centralized and distributed perform well in small-

scale clusters, their detection efficiency significantly declines in

large-scale clusters (e.g., more than 100 nodes), especially when

employing a multiple out-degree transaction model. Specifically,

(1) centralized detection algorithms suffer from single-point bot-

tlenecks in both network and computation at the detection node.

(2) Although studies have shown that deadlock cycle length tends

to be skewed [4, 6, 27], with most cycles being of length two, cy-

cles involving many nodes can still occur. Distributed detection

algorithms rely on serial message passing, which can take a large

number of rounds to detect such deadlocks.

3682

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748224
https://doi.org/10.14778/3748191.3748224
https://github.com/rrzhang23/HAWK_txn
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Ba
nd

w
id

th
 u

sa
ge

Network rounds

Centralized

Distributed

Hierarchical

Figure 1: Performance trade-off between three deadlock de-
tection algorithms.

As a compromise, to better adapt to large-scale clusters, hierar-

chical detection algorithms [23, 30, 36] were proposed to reduce the

load on a single node in centralized detection and reduce the net-

work overhead of distributed detection algorithms. The hierarchical

detection algorithm partitions the centralized detection process into

multiple detection zones (DZs), first detects deadlocks within the

DZs, and then constructs a hierarchical detection tree to detect

deadlocks across DZs. Figure 1 illustrates the trade-offs among the

three algorithms in terms of the single node’s bandwidth and the

number of message transmission rounds. Existing hierarchical al-

gorithms still face several challenges: (a) they provide a detection

process based on a hierarchical tree, but lack an effective method

for constructing the tree. The assumption of static partitioning is

almost nonexistent, as node failures, scaling in or out, and changes

in application access patterns all contribute to the dynamic nature

of the workload, resulting in: (b) the fixed hierarchical tree struc-

ture does not align with the workload partitioning pattern, causing

many deadlocks to be detected only at the root node, degenerating

the algorithm into a centralized one, and (c) the static hierarchical

tree cannot adapt to workload changes and fails to align with the

workload partitioning pattern at runtime dynamically.

In this paper, we present HAWK, a hierarchical approach based
on workload modeling, to detect deadlocks in large-scale clusters

and dynamic workloads. First, different from the basic hierarchi-

cal algorithm, HAWK models the workload as a graph, referred

to as the predicted access graph (PAG). The output of modeling

is a set of DZs, which are generated by performing partitioning

nodes in PAG using the graph-cut algorithm, where each DZ po-

tentially involves deadlock cycles. The biggest difference between

hierarchical algorithms and centralized algorithms is that hierarchi-

cal algorithms partition detection tasks on wait-for graph (WFG).

Through modeling, we can partition nodes before WFG is gener-

ated, thereby transforming partition detection tasks into partition

DZ by applying graph-cutting algorithms on PAG.

The PAG is a set consisting of database nodes (vertices) and inter-

node resource request dependencies (edges). TheWFG, on the other

hand, is a set of transactions and resource request dependencies.

Since we are concerned with distributed deadlock detection, we

define the local WFG of a node as a compressed graph, Cprs(WFG).

Through reasoning, we demonstrate that, under constant workload,

Cprs(WFG) is exactly a subgraph of the PAG. In other words, if a

distributed deadlock exists within Cprs(WFG), it will also exist in

the PAG. Thus, detecting distributed deadlocks in the WFG can be

transformed into detecting them in the PAG.

Second, we provide a specificmethod for partitioning DZs, which

uses an SCC-cut graph-cut algorithm. This algorithm identifies the

strongly connected components (SCCs) of a graph. The properties

of SCC ensure that no cycle can span across two different SCCs,

so each SCC naturally corresponds to a detection zone. Although

partitioning detection zones improves the efficiency of deadlock

detection algorithms in large-scale systems, not all PAGs can be

partitioned into multiple uniform and sufficiently small DZs using

a simple SCC-cut algorithm. The multiple out-degree model can

lead to a more complex workload, causing the PAG itself to be a

single large SCC, which leads the hierarchical detection algorithm

to degrade into a centralized detection approach. To address this

issue, we propose an optimized, fine-grained SCC-cut algorithm,

which aims to decompose a single large SCC into as many smaller

SCCs as possible while using a threshold ST to prevent overly

fragmented cutting results.

Third, the DZs obtained from the fine-grained SCC-cut algo-

rithm not only have the potential for deadlocks within them, but

deadlocks may also exist between them. Therefore, simply perform-

ing deadlock detection within each DZ is insufficient. We design a

dynamically constructed hierarchical tree to guide the hierarchical

detection process based on the graph-cut results. The hierarchical

algorithm detects deadlocks from the bottom up along the hierarchi-

cal tree, detecting deadlocks within each zone and then across zones

until reaching the root node. A well-structured hierarchical tree

ensures that most deadlocks are detected near the leaf nodes. How-

ever, changes in workload can lead to inefficiencies in detection,

increasing the detection load on the root node. Therefore, the tree

structure must be adjusted to adapt to the workload changes. We

determine the timing of tree reconstruction based on the proportion

of deadlocks detected at the root and lower layers.

Summarizing, the major contributions of our work are:

• Efficient workload modeling, through careful reasoning, ef-

fectively transforms the task of partition detection in WFG

into partition DZs in PAG.

• Accurate detection zone partitioning based on the graph-cut

algorithm to improve the accuracy of partition detection

zones for the basic hierarchical algorithm.

• Dynamic hierarchical tree construction enhances the flexi-

bility of the hierarchical detection algorithm, enabling it to

better adapt to changing workloads.

• Targeted optimization strategies improve the efficiency of

subgraph transmission and reduce the false positive rate in

deadlock resolution during the detection process.

The remainder of this paper is organized as follows. We provide

our motivation in Section 2, and then present the core ideas of our

work in Section 3. In Section 4, we detail the optimizations made

to the deadlock detection algorithm implementation. We show the

experiments in Section 5, introduce related work in Section 6, and

conclude the paper in Section 7.

2 MOTIVATION
In this section, we first provide the definition and terminology of

the wait-for graph (WFG). Then, we present the price of centralized

3683

4 32 64 96 128

0

150

300

450

600

D
et

ec
tio

n
Ti

m
e

(m
s)

Number of nodes

 centralized
 hierarchical

Figure 2: Illustration of deadlock detection on partitioned
workloads.

algorithms in a cluster with over a hundred nodes. Finally, we

use examples to demonstrate how the basic hierarchical detection

algorithm operates and highlight its limitations.

2.1 Wait-for Graph
Deadlocks are accurately described using a directed graph called the

wait-for graph (WFG). TheWFG is represented as𝐺 = (𝑉 , 𝐸), where
𝑉 is the set of vertices and 𝐸 is the set of edges. Each edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸
represents a transaction 𝑇𝑖 waiting for a resource currently held

by another transaction 𝑇𝑗 . The relationship is shown as 𝑇𝑖
𝐷−→ 𝑇𝑗

where𝐷 is the resource held by𝑇𝑗 , abbreviated as𝑇𝑖 → 𝑇𝑗 . An edge

(𝑣𝑖 , 𝑣 𝑗) is added into the wait-for graph when the transaction 𝑇𝑖 is

blocked by the transaction 𝑇𝑗 , meaning that 𝑇𝑗 holds the data item

requested by 𝑇𝑖 . An edge is removed from the wait-for graph only

when transaction 𝑇𝑗 no longer holds the data items required by

transaction 𝑇𝑖 . A path in the graph is denoted as 𝑃 = (𝑉 ′, 𝐸′) ⊆ 𝐺 ,

where 𝑉 ′ = {𝑣0, 𝑣1, ..., 𝑣𝑘 } and 𝐸′ = {(𝑣0, 𝑣1), ..., (𝑣𝑘−1, 𝑣𝑘)}. The
path forms a cycle 𝐶 if there is an edge from 𝑣𝑘 to 𝑣0. This cycle

indicates a deadlock among certain transactions in the system. We

simply denote this cycle by 𝐶 = (𝑣0, 𝑣1, 𝑣𝑘 , 𝑣𝑘+1 ≡ 𝑣0).

2.2 The Price of Centralized Algorithm
In distributed systems, each node 𝑁𝑖 maintains a local transaction
wait-for graph (LWFG), denoted as𝐺𝑖 , which can only detect cycles

in the local. To detect deadlock cycles that cross nodes, it is neces-

sary to construct a global wait-for graph (GWFG). In a system com-

prising N nodes, the GWFG is represented as 𝐺𝑔𝑙𝑜𝑏𝑎𝑙 =
⋃𝑁

𝑖=1𝐺𝑖 .

This centralized deadlock detection approach is widely used in

commercial databases such as TiDB [24], Greenplum [29] and

MySQL [33]. The algorithm merges LWFGs from multiple nodes

into a GWFG and subsequently identifies cycles within the GWFG

to detect global deadlocks. This algorithm effectively detects dead-

locks with a few nodes, but its efficiency declines as the number of

nodes increases. We demonstrate this with example 2.1 in Figure 2.

Example 2.1. In the sales business scenario like TPC-C, work-

loads are usually partitioned according to warehouses to improve

the efficiency of ordering and payment transactions [17, 22]. Sup-

pose that the workload is well partitioned, and we can group the

database nodes according to the partitioned workloads. This means

that the transaction on a node accesses only the resources within

the same node group without cross-group resource requests. The

detection zones in the hierarchical algorithm can perfectly match

the workload partition (i.e., in such a TPC-C type workload, PAG

can be well cut into multiple DZs in the algorithm we proposed in

Section 3).

We ran this experiment on 128 nodes, each workload partition

running on 4 nodes. The centralized algorithm only uses a single

detection node, while the hierarchical algorithm has one detection

node per partition. The results are shown in Figure 2. The cen-

tralized detection algorithm does not maintain constant detection

efficiency as the hierarchical algorithm does due to workload parti-

tioning, as there are network and computational bottlenecks for a

single detection node.

N0 N1 N2 N3

N0 N2

N0 L0

L1

L2

L10 L11

Figure 3: A basic hierarchical detection tree. The tree has
three levels, 𝐿0, 𝐿1 and 𝐿2. Nodes are partitioned into two
DZs, with detecting nodes 𝐿10 = 𝑁0 and 𝐿11 = 𝑁2. 𝑁0 is also
responsible for detecting on a global scope at level 𝐿0.

2.3 Basic Hierarchical Deadlock Detection
To address the performance degradation of centralized deadlock

detection in systems with a large number of nodes, Özsu et al.

introduced a hierarchical detection algorithm [36]. It utilizes the

divide-and-conquer approach, partitioning the nodes into multiple

detection zones (DZs), with one node in each zone designated to

perform deadlock detection independently on WFG 𝐺𝑧𝑜𝑛𝑒 . Each

zone prunes its detected Gzone before merging them all into a single

GWFG for the final global deadlock detection due to the possibility

of cross-zone transaction dependencies. If the number of nodes

in a DZ remains too large, the DZ can be further partitioned. The

entire detection process can be modeled using a tree structure,

referred to as the hierarchical detection tree. The leaves represent

individual database nodes, intermediate levels correspond to the

detection nodes within each zone, and the root node is responsible

for system-wide deadlock detection. Figure 3 shows the partitioning

of DZs by node number and the construction of a complete binary

tree responsible for the entire detection process.

N0 N1 N2 N3

cycle:C1,C2N0 N2

N1 N3

C1

C2

(a) (b) (d)

L0

L10 L11

N0 N2 N1 N3

cycle:C1 cycle:C2

L0

L10 L11

N0 N2

N1 N3

C1

C2

(c)

Figure 4: Two different DZ partitioning methods and the
corresponding hierarchical detection tree.

2.4 Challenges of Hierarchical Detection
In Figure 4, four transactions {𝑇0,𝑇1,𝑇2,𝑇3} are given, each running

on a node 𝑁𝑖 , and they are deadlocked due to resource dependen-

cies. The vertices of the WFG are {𝑁0, 𝑁1, 𝑁2, 𝑁3} , and edges are

3684

{(𝑁0, 𝑁2), (𝑁2, 𝑁0), (𝑁1, 𝑁0), (𝑁1, 𝑁3), (𝑁3, 𝑁1)}. There are two cy-
cles present in this graph:𝐶1 = (𝑁0, 𝑁2, 𝑁0) and𝐶2 = (𝑁1, 𝑁3, 𝑁1).

Example 2.2. We first partition the nodes using the complete

binary tree construction method of basic hierarchical detection

algorithm, as shown in Figure 4(a). The nodes are partitioned into

two zones: {𝑁0, 𝑁1} and {𝑁2, 𝑁3}, and the constructed hierarchical
tree is shown in Figure 4(b). While this method partitions nodes

into multiple zones and performs deadlock detection independently

within each zone, it is not the optimal solution. As shown in Figure

4(b), the detection nodes at level 𝐿1 can not detect the existing

deadlocks. Deadlocks 𝐶1 an 𝐶2 can only be detected at the level 𝐿0.

Compared to centralized detection, this hierarchical tree construc-

tion does not reduce the network transmission or the computation

of detecting deadlocks at the node of 𝐿0.

The Example 2.2 reveals a significant issue with the basic hierar-

chical detection algorithm:

Issue 1: The fixed grouping method, based on node number order,
does not align with the deadlock cycles in the WFG. More specifically,
it does not match the workload patterns.

Workload assumptions and properties. In this work, our

assumption is that the nodes participating in deadlock scenarios

demonstrate behavior patterns that correlate with the observed

workload distribution. By partitioning the accessing graph observed

in the workloads, the nodes are grouped into different DZs, and

deadlock detection can be effectively performed in each zone.

Example 2.3. An optimized example is illustrated in Figures

4(c) and 4(d). Assuming the locations of the cycles are known

in advance, the nodes can be partitioned into the following DZs:

𝑧𝑜𝑛𝑒1 = {𝑁0, 𝑁2} and 𝑧𝑜𝑛𝑒2 = {𝑁1, 𝑁3}. With this construction of

the hierarchical tree, deadlocks 𝐶1 and 𝐶2 can be detected directly

at level 𝐿1. After pruning by the detection nodes at 𝐿10 and 𝐿11 the

root node at 𝐿0 no longer needs to process the remaining graph,

including subgraph transmission and cycle detection.

Another issue with the Example 2.3 is exposed:
Issue 2: It relies on the unrealistic assumption that exact deadlock

information can be obtained before the detection process begins.

Workloads are rarely statically partitioned and unchanging. For

instance, during e-commerce promotion events, warehouses in

certain regions may experience being out of stock, causing new

orders to be temporarily redirected to remote warehouses. On

the other hand, when a database node fails or undergoes expan-

sion/contraction due to application demands, it triggers data migra-

tion within the shard and alters the existing partitioning scheme. In

addition, in some applications, a large fraction of transactions are

cross-partitioned due to the lack of an effective static partitioning

strategy. The dynamic workloadmakes it challenging for a statically

constructed hierarchical detection tree to sustain high detection

efficiency over time.

Issue 3: A statically constructed hierarchical detection tree cannot
effectively adapt to dynamic workload variations.

To address these issues, we need an efficient and adaptive method

for constructing the hierarchical tree. The goal is to detect as many

deadlocks as possible according to the workload access pattern,

enabling quick detection and resolution, while ensuring the con-

structed hierarchical tree adapts to dynamic workloads.

3 EFFICIENT DEADLOCK DETECTION
In this section, we propose HAWK, an efficient and dynamic hi-

erarchical deadlock detection algorithm. The key to hierarchical

detection is partitioning nodes into multiple DZs, where each DZ

contains a𝑊𝐹𝐺𝑧𝑜𝑛𝑒 with deadlocks. We first provide the workflow,

followed by the implementation of each step.

3.1 Workflow
The workflow of HAWK includes the following: First, we sample

the workload through a short-term cross-node transaction access

pattern and generate a graph PAG as input in Section 3.2. The

output is a set of DZs, we cut the PAG by applying the graph-

cutting algorithm SCC-cut in Section 3.3 and fine-grained SCC-cut

in Section 3.4 to obtain it. Then, based on the obtained DZs, we

construct a hierarchical detection tree in Section 3.5.1, and deadlock

detection follows the hierarchical detection tree from bottom to

top. Finally, we calculate the ratio of deadlocks detected at the

root node and other detection nodes to determine whether the tree

structure needs reconstruction to adapt to changing workloads in

Section 3.5.2.

ID Name Cnt
1 tea 100
2

phone 503

30
4 pen 80
5

milk 200

Item

N2

Par
N1

N3

N2

N4

N5

N1

N3

N4
BEGIN
UPDATE item SET cnt=cnt-10
 WHERE name=milk OR name=pen
COMMIT
BEGIN
UPDATE item set cnt=cnt-2
 WHERE name=tea
COMMIT T2

T1

BEGIN
UPDATE item SET cnt=cnt-3 WHERE name=pen
UPDATE item SET cnt=cnt-1 WHERE name=camera
COMMIT T4

BEGIN
UPDATE item SET cnt=cnt-1 WHERE name=phone
UPDATE item SET cnt=cnt-2 WHERE name=pen
COMMIT T3

BEGIN
UPDATE item SET cnt=cnt-1 WHERE name=camera
UPDATE item SET cnt=cnt-2 WHERE name=phone
COMMIT T5

N5

Zone2

Zone1

camera

Figure 5: Generation of the PAG. Each node 𝑁𝑖 processes a
transaction 𝑇𝑖 . After all the first statements are executed,
𝑇3,𝑇4 and 𝑇5 execute their second statements, resulting in a
distributed deadlock. According to the transaction access
pattern, the PAG can be partitioned into two DZs.

3.2 Workload Modeling
We aim to partition the nodes involved in potential deadlocks into

detection zones by analyzing the workload’s access patterns rather

than relying on the lagging WFG. Specifically, we first model the

workload as a graph PAG.

We use an example to introduce the PAG representation. Al-

though our example only uses a single table, our approach works

with any schema and is independent of the complexity of the SQL

statements in the workload. Modeling the workload has been vali-

dated as feasible by several studies [17, 37].

3685

Example 3.1. Assume we have a database containing a single

stock table with five tuples, and a workload consisting of five trans-

actions, as shown in Figure 5. We focus on cross-node transaction

resource requests, where each vertex in the figure represents a node

rather than an individual transaction. An edge represents a cross-

node resource request. The final resource access graph is shown in

the upper-left corner of the figure.

The PAG is similar to WFG but not the same. There are two main

differences between the two. Firstly, in WFG, the vertices represent

transactions, whereas in PAG, the vertices represent database nodes.

Secondly, the edges represent the waiting relationship between

transactions during execution in WFG, while representing a cross-

node resource requesting in PAG. Even if a cycle exists in a PAG,

it does not necessarily indicate a deadlock, as deadlock detection

requires further verification in the WFG. For instance, edges are

pointing towards each other between nodes 𝑁1 and 𝑁2 in Figure 5,

there is no resource access conflict between 𝑇1 and 𝑇2. Therefore

there is no deadlock. A deadlock only exists when transactions

𝑇3,𝑇4 and 𝑇5 form a cycle in both the PAG and the WFG.

Despite the differences between PAG and WFG, we can still

extract useful information from PAG for deadlock detection. In

real-world scenarios, a single node may run multiple transactions,

leading to a one-to-many relationship between nodes and trans-

actions. Given that local and global deadlocks are independent of

each other, we focus on the impact of inter-node dependencies

that contribute to global deadlock formation. Specifically, we com-

press transactions within a single node and represent them with

a single vertex. This process is referred to as compression, where

𝐶𝑝𝑟𝑠 (𝐺𝑖) = 𝑁𝑖 , and the resulting compressed WFG can be repre-

sented as 𝐶𝑝𝑟𝑠 (𝑊𝐹𝐺). The compressed WFG is a subgraph of the

PAG when the workload remains unchanged. Therefore, the task of

partitioning nodes into DZs according to theWFG can be transformed

into the problem of cutting the graph PAG. To formally support this

transformation, we present several lemmas and their proofs.

Definition 3.1. 𝑁𝑜𝑑𝑒 (𝑇), a vertex in 𝐶𝑝𝑟𝑠 (𝑊𝐹𝐺). The manage-

ment node of a transaction, where a transaction can only be man-

aged by one node.

The edges in𝑊𝐹𝐺 are denoted as (𝑇𝑖 ,𝑇𝑗). The edges in𝐶𝑝𝑟𝑠 (𝑊𝐹𝐺)
are denoted as (𝑁𝑜𝑑𝑒 (𝑇𝑖), 𝑁𝑜𝑑𝑒 (𝑇𝑗)). The edges in 𝑃𝐴𝐺 are de-

noted as (𝑁𝑖 , 𝑁 𝑗).

Lemma 3.2. If there exists an edge (𝑇𝑖 ,𝑇𝑗) inWFG, where𝑁𝑜𝑑𝑒 (𝑇𝑖) ≠
𝑁𝑜𝑑𝑒 (𝑇𝑗), then there is also an edge (𝑁𝑜𝑑𝑒 (𝑇𝑖), 𝑁𝑜𝑑𝑒 (𝑇𝑗)) in the
graph 𝐶𝑝𝑟𝑠 (𝑊𝐹𝐺). That is, (𝑇𝑖 ,𝑇𝑗) ↔ (𝑁𝑜𝑑𝑒 (𝑇𝑖), 𝑁𝑜𝑑𝑒 (𝑇𝑗). And
vice versa.

Proof of Lemma 3.2. Since 𝐶𝑝𝑟𝑠 (𝑊𝐹𝐺) does not affect the de-
pendencies between transactions across nodes, this reasoning holds.

□

Lemma 3.3. If there exists an edge (𝑇𝑖 ,𝑇𝑗) inWFG, where𝑁𝑜𝑑𝑒 (𝑇𝑖) ≠
𝑁𝑜𝑑𝑒 (𝑇𝑗), then there is also an edge (𝑁𝑖 , 𝑁 𝑗) (𝑇𝑖 ∈ 𝑁𝑖 ,𝑇𝑗 ∈ 𝑁 𝑗) in
the graph 𝑃𝐴𝐺 . That is, (𝑇𝑖 ,𝑇𝑗) → (𝑁𝑖 , 𝑁 𝑗).

Proof of Lemma 3.3. If transaction𝑇𝑖 depends on𝑇𝑗 , theremust

have been a request sent from 𝑇𝑖 that was blocked by 𝑇𝑗 before the

dependency formed. □

Lemma 3.4. According to Lemma 3.2 and 3.3, we obtain (𝑇𝑖 ,𝑇𝑗) ↔
(𝑁𝑜𝑑𝑒 (𝑇𝑖), 𝑁𝑜𝑑𝑒 (𝑇𝑗)) → (𝑁𝑖 , 𝑁 𝑗).

Lemma 3.5. If there is an edge (𝑁𝑖 , 𝑁 𝑗) (𝑖 ≠ 𝑗) in 𝑃𝐴𝐺 , we cannot
guarantee the existence of an edge between two transactions 𝑇𝑖 and
𝑇𝑗 , where 𝑇𝑖 ∈ 𝑁𝑖 and 𝑇𝑗 ∈ 𝑁 𝑗 . That is, (𝑁𝑖 , 𝑁 𝑗) ↛ (𝑇𝑖 ,𝑇𝑗) ↔
(𝑁𝑜𝑑𝑒 (𝑇𝑖), 𝑁𝑜𝑑𝑒 (𝑇𝑗)).

Proof of Lemma 3.5. In Figure 5, there exist (𝑁1, 𝑁2) and (𝑁2, 𝑁1),
but (𝑇1,𝑇2) and (𝑇2,𝑇1) do not exist. □

According to Lemma 3.4 and 3.5, we conclude that a dependency

(or edge) in WFG is a sufficient but not necessary condition for

the existence of an edge in the PAG. This leads to 𝐶𝑝𝑟𝑠 (𝑊𝐹𝐺) ⊆
𝑃𝐴𝐺 . The goal of distributed deadlock detection is to search for

cycles in Cprs(WFG), which is a subgraph of PAG. Therefore, the

distributed deadlock detection problem can be summarized as the

task of detecting cycles in the PAG.

3.3 Cut PAG based on SCC-cut Algorithm
To construct an efficient and accurate hierarchical detection tree, the

first step is to partition the leaf nodes into DZs. Assuming there ex-

ists a cut𝐶𝑢𝑡 such that 𝑃𝐴𝐺 = 𝑃𝐴𝐺1∪𝑃𝐴𝐺2∪ ...∪𝑃𝐴𝐺𝑛 , where cy-

cles only exist within each 𝑃𝐴𝐺𝑖 , then the vertex set𝑉𝑒𝑟𝑡𝑒𝑥 (𝑃𝐴𝐺𝑖)
represents the detection zone we aim to identify. From Section 3.2,

we know that although such a 𝐶𝑢𝑡 cannot be obtained from the

WFG as in Example 2.3, the 𝐶𝑢𝑡 obtained by cutting the PAG can

be considered equivalent.

After modeling the PAG, it becomes straightforward to partition

the nodes into multiple detection zones using graph-cutting meth-

ods such as the SCC-cut algorithm. For example, in Figure 5, the

generated PAG is partitioned into two DZs by cut edge (𝑁1, 𝑁4):
𝑧𝑜𝑛𝑒1 = {𝑁1, 𝑁2} and 𝑧𝑜𝑛𝑒2 = {𝑁3, 𝑁4, 𝑁5}. Although 𝑧𝑜𝑛𝑒1 con-

tains a cycle (𝑁1, 𝑁2, 𝑁1) in PAG, except for unnecessary detec-

tions, it does not affect the correctness of the detection results.

Section 3.5.2 provides a solution for fine-tuning the tree structure

when there are no potential deadlock cycles within certain DZs.

The intuition behind our algorithm is that every deadlock cycle

must be contained within a strongly connected component (SCC)

of the graph PAG, where 𝑆𝐶𝐶 (𝑢) represents the 𝑆𝐶𝐶 containing

vertex 𝑢. We partition the PAG by identifying SCCs [44], which

have the following properties, suppose 𝑠𝑐𝑐1 and 𝑠𝑐𝑐2 are two SCCs:

(1) If 𝑠𝑐𝑐1 ∩ 𝑠𝑐𝑐2 ≠ ∅, then 𝑠𝑐𝑐1 == 𝑠𝑐𝑐2.

(2) If there are vertices 𝑢 ∈ 𝑠𝑐𝑐1 and 𝑣 ∈ 𝑠𝑐𝑐2, and there is a

path between𝑢 and 𝑣 such that each can reach the other [28],

then 𝑠𝑐𝑐1 == 𝑠𝑐𝑐2.

(3) If there is a path between 𝑢 and 𝑣 such that each can reach

the other, then 𝑆𝐶𝐶 (𝑢) == 𝑆𝐶𝐶 (𝑣).
These properties show that a cycle cannot span across two differ-

ent SCCs. Therefore, detecting distributed deadlocks within each

SCC is sufficient, and inter-SCC detection is not required. For a

cycle 𝐶 , 𝑆𝐶𝐶 (𝐶) represents the strongly connected components

containing 𝐶 . Algorithms such as Tarjan [43], Kosaraju [40], and

Gabow [20] can be used to identify SCCs.We use Tarjan’s algorithm

to find SCCs. The time complexity of this algorithm is 𝑂 (|𝑉 | + |𝐸 |),
where |𝑉 | is the number of vertices and |𝐸 | is the number of edges

in the graph. Even in a database system with over one hundred

nodes, the time consumption of these algorithms is negligible.

3686

Algorithm 1: GreedySccCutGraph(𝐺)
Input: Directed graph𝐺 , maximum threshold of vertices 𝑆𝑇

Output: 𝑆𝐶𝐶𝑙𝑖𝑠𝑡 [], a list of small 𝑆𝐶𝐶𝑠

1 𝑆𝐶𝐶𝑙𝑖𝑠𝑡 [] ← ∅
2 𝐺𝑆𝐶𝐶 ← StronglyConnectedComponents(G)
3 Function Greedy(𝐺𝑆𝐶𝐶)
4 𝑆𝐶𝐶𝑠 ← MaxCut(𝐺𝑆𝐶𝐶)

5 for 𝑆 ∈ 𝑆𝐶𝐶𝑠 do
6 if Sizeof(S) <= 𝑆𝑇 then
7 𝑆𝐶𝐶𝑙𝑖𝑠𝑡 [] ← 𝑆𝐶𝐶𝑙𝑖𝑠𝑡 [] ∪ 𝑆
8 continue
9 end

10 Greedy(S)
11 end
12 Function MaxCut(SCC)
13 𝑚𝑎𝑥_𝑐𝑛𝑡 ← 0

14 𝑆𝐶𝐶𝑠 ← ∅
15 for 𝑒 ∈ 𝑆𝐶𝐶 do
16 𝑐𝑛𝑡, 𝑆𝐶𝐶_𝑠𝑒𝑡 ←

StronglyConnectedComponents(𝑆𝐶𝐶 \ 𝑒)
17 if 𝑚𝑎𝑥_𝑐𝑛𝑡 < 𝑐𝑛𝑡 then
18 𝑚𝑎𝑥_𝑐𝑛𝑡 ← 𝑐𝑛𝑡

19 𝑆𝐶𝐶𝑠 ← 𝑆𝐶𝐶_𝑠𝑒𝑡

20 end
21 end
22 return 𝑆𝐶𝐶𝑠

If the workload is properly partitioned, the cutting results will

create DZs of approximately equal size, with each zone handling

no more than a predetermined threshold of nodes for detection. As

a result, the height of the final hierarchical tree remains relatively

low. For example, in the 128-node system from Example 2.1, a

hierarchical tree with a height of 3 is sufficient to effectively reduce

the deadlock duration to a desired time. At this point, all nodes

will be detected within their respective DZs, e.g., level 𝐿1, and

no deadlocks will be detected at the root node. Nevertheless, we

retain 𝐿0, as it is responsible not only for deadlock detection but

also for workload modeling and synchronization of the deadlock

process(see Section3.5).

3.4 A Fine-grained SCC-cut Algorithm
Although partitioning the detection algorithm into multiple DZs

based on the PAG is sufficient for most pre-partitioned workloads,

some workloads are dynamic and hard to partition. Moreover, the

multiple out-degree transaction models increase the complexity

of access patterns, making it impossible to partition the PAG into

sufficiently small SCCs when applying the basic SCC-cut algorithm.

In extreme cases, the PAG itself becomes a single SCC. As a result,

hierarchical deadlock detection degenerates into a centralized one.

We attempt to use a fine-grained greedy algorithm to remove

certain edges in the PAG so that an oversized 𝑆𝐶𝐶 is split into mul-

tiple sufficiently small 𝑆𝐶𝐶𝑖 . The definition of "sufficiently small"

here is that, given a threshold ST , the graph-cutting process stops

once the number of vertices in the SCC is less than it. While this

approach cannot guarantee that the final height of the constructed

hierarchical detection tree remains low and some deadlock detec-

tion tasks may still fall to the root node, our algorithm minimizes

the network and computational burden on the root node as much

as possible. For a graph with |𝑉 | nodes and |𝐸 | edges, this can be

done in 𝑂 (|𝑉 | + |𝐸 |) time using Tarjan’s algorithm.

Algorithm 1 shows the pseudo-code of the procedure. We begin

by trimming the graph into an ultra-large 𝑆𝐶𝐶 (line 2). The function

Greedy then calls MaxCut to cut 𝑆𝐶𝐶 into zones containing the

most sub-SCCs (line 4). Greedy recursively processes each sub-SCC

created by MaxCut (line 5-11). The function MaxCut attempts to

cut only one edge of 𝑆𝐶𝐶 at a time (line 15-21) and records the

maximum number of sub SCCs generated after each cut (line 17-20).

MaxCut returns the result corresponding to the maximum number

of cuts (line 22). The termination condition for the function Greedy
is that if the number of vertices in any SCC obtained is less than

ST , that SCC is merged into the output, and the recursion ends.

Trimming and updating the graph after removing an edge takes

𝑂 (|𝐸 |) in total since each edge can be removed only once. In the

worst case, i.e., such as in a fully connected graph, only one edge

may be removed per iteration. Since finding SCC takes 𝑂 (|𝑉 | +
|𝐸 |) per iteration, the overall time complexity of this algorithm is

𝑂 (|𝐸 | (|𝑉 | + |𝐸 |)).

Example 3.2. Figure 6 illustrates an example of the Greedy algo-
rithm that aims to reduce the number of vertices in the SCCs after

cutting. The initial graph is a strongly connected component com-

posed of 9 nodes and 14 edges (Figure 6(a)). The function MaxCut
first attempts to cut each edge to maximize the number of resulting

subgraphs in𝐺 \𝑒 . The cuts made by edges 𝑒3 and 𝑒4 have the same

effect, both cutting the graph into up to two distinct sub-SCCs

(the shaded part in Figure 6(b)). We recursively apply this process

until the preset termination condition is reached (in this example,

ST = 2, ensuring that each subgraph is an SCC containing more

than one node). The final result, shown in Figure 6(c), is obtained

by cutting the edges {𝑒3, 𝑒5} and trimming the edges {𝑒4, 𝑒13}.

3.5 Tree Construction and Reconstruction
Compared to the basic SCC-cut algorithm, the fine-grained SCC-cut

algorithm divides nodes into finer partitions, avoiding the degrada-

tion of hierarchical deadlock detection into a centralized one. But it

also introduces cross-DZ detection, as shown in Figure 6, although

the algorithm produces three detection zones: 𝐷𝑍1 = {𝑁1, 𝑁2},
𝐷𝑍2 = {𝑁3, 𝑁6, 𝑁7}, and 𝐷𝑍3 = {𝑁4, 𝑁5, 𝑁8, 𝑁9}, deadlocks may

still exist across zones. For example, a deadlocks may occur along

edges 𝑒2, 𝑒3, 𝑒5 and 𝑒4, crossing 𝐷𝑍1, 𝐷𝑍2 and 𝐷𝑍3. Therefore, fur-

ther cross-DZ deadlock detection is necessary.

3.5.1 Tree Construction. Sampling information includes not only

cross node resource access, but also the resource utilization rate (e.g.,

network) of each machine. Deadlock detection first runs separately

within each DZ and is the responsibility of the node (detection

node) with the lowest resource utilization rate within the DZ. The

detection node first collects the local WFG of each node to form

a𝑊𝐹𝐺𝑧𝑜𝑛𝑒 and then detects deadlocks within DZ. Then, regard-

ing the example in Figure 6, cross-node deadlocks may still exist,

and deadlock detection requires a second round. The node with

3687

e7

e1
e2

e3 e4

e5 e6

e8 e9 e10 e11

e12 e13 e14

e7

e5 e6

e8 e9 e10 e11

e12 e13 e14

e1

e2

e7

e6

e8 e9 e10 e11

e12 e14

e1

e2

(a) original (b) cut e3 or e4 (c) cut e5 or e13

N2N1

N3 N4 N5

N6 N7 N8 N9

N2N1

N3 N4 N5

N6 N7 N8 N9

N2N1

N3 N4 N5

N6 N7 N8 N9

N2N1

N3 N4 N5

N6 N7 N8 N9

Figure 6: An example of the execution process of the greedy SCC-Cut algorithm.

the lowest resource utilization rate among all detection nodes is

responsible for this round of detection. It collects𝑊𝐹𝐺𝑧𝑜𝑛𝑒 from

each detection node that has resolved deadlocks and pruned to

form𝑊𝐹𝐺𝑔𝑙𝑜𝑏𝑎𝑙 for final detection. This process can be organized

into a tree structure as shown in Figure 7(a), which is referred to

as the hierarchical detection tree, where leaf nodes are transaction

execution nodes. After the detection of the root node is completed,

it immediately sends a signal to the detection nodes within each

DZ for the next detection.

A hierarchical detection tree is constructed to detect deadlocks

across DZs, and the efficiency of the tree is closely related to its

height 𝐻 . A high tree causes cross-DZ deadlocks that require multi-

ple detections to be identified, wasting system resources. The height

of the tree 𝐻 is closely related to the number of branches 𝐵. When

the number of nodes is 𝑁 , the tree height is approximately 𝑙𝑜𝑔𝐵𝑁 .

Therefore, without affecting the efficiency of detection performance,

make 𝐵 as large as possible.

The value of 𝐵 is hard to determine. From another perspective, in

Figure 2, there is a curve between the detection time and the number

of nodes using a centralized algorithm. Therefore, a single node

has an upper detection performance limit under specific system

configurations. In other words, the average detection time 𝑑𝑡 is

related to the number of nodes in the DZ that a single detection

node is responsible for. Taking Figure 2 as an example, assuming

that the expected 𝑑𝑡 does not exceed 50 ms, the maximum size of a

single DZ is determined to be 32, that is, given 𝑁 = 128, the tree

height can be controlled with 3.

(a) (b)
N1 N2 N3 N6 N7 N4 N5 N8 N9

N3 N6 N7

N1 N2 N4 N5 N8 N9

Figure 7: An example of tree structure fine-tuning.

3.5.2 Tree Reconstruction. The hierarchical tree structure can be

dynamically adjusted according to changes in workload. The fre-

quency of changes in workload is difficult to predict, so we cannot

set a fixed period for tree reconstruction. We calculate the ratio 𝛼

of the count of deadlocks detected by the root node 𝑐𝑟 and the total

other detection nodes 𝑐 in the past period (5 seconds in our exper-

iment) to determine whether the tree needs to be reconstructed.

When the workload changes and HAWK is difficult to run efficiently,

most deadlocks are delayed until detected at the root node, resulting

in a significant increase in the ratio of 𝛼 = 𝑐𝑟/𝑐 .
We take 𝛼 > 1 as the condition for tree reconstruction. Once this

condition is met, we resample and reconstruct the tree. When the

tree structure matches the workload pattern, most deadlocks are

detected within DZ, where 𝛼 is significantly less than 1. However,

when the tree structure severely does not match the workload

pattern, most deadlocks can only be detected at the root node,

where 𝛼 is significantly greater than 1. In addition, we also fine-

tune the tree because deadlocks do not always generate within a

certain DZ partitioned by the greedy SCC-cut algorithm. When

almost no detection occurs in a DZ, we raise the level of the DZ in

the tree. Assuming that the number of deadlocks detected during

a certain period (empirically set 15 seconds in our experiment)

in 𝐷𝑍2 = {𝑁3, 𝑁6, 𝑁7} of Figure 6 is 0, we fine tune the tree from
Figure 7(a) to Figure 7(b), as long as the number of nodes responsible

by the upper level nodes is less than 𝐵.

3.6 Correctness
3.6.1 Safety. Transactions that are deadlocked will not be broken

by timeout mechanisms or client access, aside from being aborted

by the detection algorithm. Transactions are only aborted if there

is a cycle in the WFG, ensuring that non-existent deadlocks are not

detected. Each detection cycle is assigned a term and synchronized

across nodes. During each detection, the 𝑡𝑒𝑟𝑚 of the transaction

dependency list is checked, ensuring that no false deadlocks are

detected.

3.6.2 Liveness. Local deadlocks at a node are detected by the cur-

rent node, while deadlocks within a DZ are detected by a node

within that DZ. Global deadlocks are ultimately detected by the

root node. The entire detection process proceeds from the leaf nodes

up to the root of the tree and is executed periodically, ensuring that

deadlocks are detected within a finite amount of time.

4 OPTIMIZATION STRATEGIES
4.1 Reduce Subgraph Transmission
4.1.1 Pruning. The WFG-based deadlock detection algorithms typ-

ically prune the LWFG before sending it to the detection node to

reduce network pressure. Typically, a coarse pruning algorithm

determines whether the current LWFG has an outgoing edge point-

ing to or an incoming edge from another node. If such edges do

not exist, nodes will not transmit the local subgraph to the detec-

tion node. We present a more granular pruning approach: A node’s

3688

LWFG 𝐺𝑖 may have multiple subgraphs 𝐺 𝑗
𝑖
. Only if a subgraph has

both outgoing edges pointing to and incoming edges from other nodes
will 𝐺 𝑗

𝑖
be transmitted to the detection node.

Lemma 4.1. When a local graph 𝐺 = (𝑉 , 𝐸) does not have incom-
ing edges pointing from other nodes, i.e., all edges (𝑢, 𝑣) in the global
graph satisfy that 𝑣 ∉ 𝑉 . Then there does not exist a path 𝑃 that
satisfies both 𝑃 ⊆ 𝐶 and 𝑃 ⊆ 𝐺 , where 𝐶 ⊈ 𝐺 .

Proof of 4.1. Suppose there exists such a cycle 𝐶 and graph 𝐺

(where 𝐶 ⊈ 𝐺), and 𝑃 is a common path of part of 𝐶 and 𝐺 . Then,

there must exist an edge (𝑢′, 𝑣 ′) such that 𝑢′ ∈ 𝑉 and 𝑣 ′ ∉ 𝑉 . Since

𝐶 is a cycle, there must exist a path 𝑃 ′ starting from 𝑣 ′ and returning
to 𝑢′. Therefore, there must exist another edge (𝑥,𝑦) ⊆ 𝑃 ′, and
(𝑥,𝑦) ≠ (𝑢′, 𝑣 ′) where 𝑥 ∉ 𝑉 and 𝑦 ∈ 𝑉 . This contradicts the given

condition that all edges (𝑢, 𝑣) in the global graph satisfy that 𝑣 ∉ 𝑉 .

Therefore, no such cycle and graph exist. □

According to Lemma 4.1, when a subgraph has no outgoing edges

pointing to other nodes, no path is part of any global deadlock

cycle. Therefore, the entire subgraph satisfying the aforementioned

condition can be skipped during transmission. It is worth noting

that, in the hierarchical detection algorithm, such subgraphs are

not only subgraphs of a node’s LWFG but can also be subgraphs of

a WFG𝑧𝑜𝑛𝑒 . Therefore, at each level of the hierarchical detection

algorithm, subgraph transfer can be optimized using this method.

2

term
flag

txn_id wait_list

T1 T2 T4True

Figure 8: An example of an adjacency list item in the WFG.

4.1.2 Incremental Updates of the WFG. An adjacency list is typi-

cally used to store the WFG and represent dependencies between

transactions. For example, in a multi-outdegree transaction model,

a transaction can send multiple resource requests simultaneously

and may wait for multiple other transactions to release locks. The

following Figure 8 represents an item in the adjacency list.

The fields txn_id and wait_list indicate that transaction𝑇1is wait-
ing for two other transactions𝑇2 and𝑇4. The hierarchical detection

algorithm runs periodically, assigning each run a 𝑡𝑒𝑟𝑚. The root

node maintains and synchronizes this term to all nodes. Once the

transaction wait list is updated, the new 𝑡𝑒𝑟𝑚 overwrites the old

value, and the 𝑓 𝑙𝑎𝑔 is set to True to indicate that the item has been

updated within the current term. After transmission, the 𝑓 𝑙𝑎𝑔 is re-

set to False again. If the wait list of transaction𝑇𝑖 does not change
within a term, then during the next transmission, it is sufficient

to update the term to 𝑡𝑒𝑟𝑚 + 1 and send (𝑛𝑒𝑤_𝑡𝑒𝑟𝑚, 𝐹𝑎𝑙𝑠𝑒,𝑇𝑖) to
the detection node. This is an incremental method for updating the

WFG. The detection node maintains a cached WFG through this

optimization rather than retrieving the entire subgraph of all nodes

each time. In addition to subgraph pruning, this method further

reduces the size of the transmitted subgraphs.

4.2 Efficient Detection of Multi-outdegree WFG
In the single out-degree transaction model, each transaction waits

on one resource at a time, and the maximum outdegree of the wait-

for graph will be one. One deep traversal is sufficient to determine

whether there is a cycle exists in the WFG. The complexity of a

depth traversal is related to the number of vertices in the graph,

which is 𝑂 (𝑛). The deadlock detection of the multiple outdegree

WFG is more complex. Consider a WFG that contains two cycles:

𝐶1 = (𝑇1,𝑇2,𝑇3,𝑇1) and 𝐶2 = (𝑇2,𝑇3,𝑇4,𝑇2). Among them, (𝑇2,𝑇3)
are the common paths of two cycles. A flag array is used to indicate

whether each node has been visited. When the flags for the cor-

responding vertices 𝑇2 and 𝑇3 are set to True after 𝐶1 is detected,

cycle 𝐶2 will no longer be detected because the flags of 𝑇2 and 𝑇3
are marked as true. To address this issue, we change the flag to

a positive integer, initialize it as abs(𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 − 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒), and
decrement it after each access.

Multiple detections are necessary for a multi-outdegree dead-

lock detection algorithm, requiring up to 𝑛 − 1 detections in the

worst case, where 𝑛 is the number of vertices in the WFG, resulting

in a computational complexity of 𝑂 (𝑛2). In centralized detection

algorithms, a single detection node faces significant computational

pressure when detecting complex WFGs. In contrast, the hierarchi-

cal detection algorithm partitions the computational cost.

4.3 Deadlock Resolution
4.3.1 Transaction Priority. The unique number represents priority,

and the 𝑀&𝑀 algorithm compares by adding additional private

priority numbers to promptly terminate the transaction with the

lowest priority upon detecting a deadlock. Transaction IDs can be

directly compared in the WFG-based detection algorithm with a

self-increasing field. The smaller the ID, the higher the priority, and

transactions with larger IDs are more likely to be terminated when

deadlocks are detected. This method is simple and suitable for most

scenarios but is inefficient in WFG with multiple outdegrees.

4.3.2 Mixed Transaction Priority. In Section 4.2, we demonstrate

two deadlock cycles with a common path in which vertex set

𝑉𝑐𝑜𝑚 = (𝑇2,𝑇3). When only using transaction ID as the priority,

two transactions need to be terminated to resolve all the deadlocks.

First is the youngest 𝑇4, and then 𝐶1 remains deadlocked. 𝑇3 needs

to be terminated again to break the cycle 𝐶1.

It is obvious that the termination of 𝑇4 is unnecessary, and only

terminating 𝑇3 is enough to free the system from all the deadlock.

We maintain a hash table during each detection to store the number

of occurrences of transactions in multiple deadlock cycles. The

transaction with the highest occurrence frequency will be termi-

nated first, and the system will be restored to an active state at

the minimum cost. The priority is defined as <𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑡𝑥𝑛𝑖𝑑 >.

Transactions with the highest 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 have the highest priority.

If multiple transactions have the same frequency, their transaction

IDs are further compared.

5 PERFORMANCE EVALUATION
In this section, we evaluate HAWK by comparing it with other algo-

rithms with TPC-C and micro benchmark workloads. Specifically,

3689

we first compare the impact of HAWK with several deadlock de-

tection algorithms on throughput and average transaction latency.

Then, we compare the improvement of the fine-grained SCC-cut

algorithm to SCC-cut under the partitioned workload. We then

evaluate the adaptability and shortcomings of HAWK under dy-

namic workloads. Finally, we analyzed the necessity of adopting a

fine-grained SCC-cut algorithm and compared the consumption of

network resources by different algorithms.

5.1 Implementation
Our work is built upon the open-source code provided in the LCL

paper [44], which introduced an efficient deadlock detection frame-

work. We have made adaptive adjustments and extensions to this

framework to support the deadlock detection algorithm we evalu-

ated. Concurrency control is based on the two-phase locking pro-

tocol (2PL), where transactions continuously request locks during

execution and release all acquired locks upon transaction comple-

tion. Each of our transaction threads issued a new transaction as

soon as its previous transaction was finished. The latency of each

transaction was calculated as the time fromwhen it was issued until

it finished. For tree construction and reconstruction, the parameter

𝑑𝑡 was set to 50 ms, resulting in 𝐵 being 32, according to Figure 2.

The 𝛼 was set to 1.

5.2 Experimental Setup
5.2.1 The Testbed. We conducted our experiments on up to 128

machines, all configured identically. Each node consists of two Intel

Xeon Silver 4100 processors, 160 GB of mainmemory. The operating

system on these machines was CentOS 7.4 64-bit. The machines

are connected through a 10 Gbps Ethernet network.

5.2.2 Workloads.

TPC-C Workloads. For the TPC-C workload, we used 128 data-

base nodes, with each node managing 10 warehouses. In the stan-

dard TPC-C operations, transactions access local and remote ware-

houses in a certain proportion, we adjust the proportion to 1:1. In

addition, we added some restrictions to remote warehouse access.

Specifically, we divide the nodes into 16 partitions, and all trans-

actions’ remote warehouse access is either within or outside of

the partition, with a ratio of 8: 2. Only 20% of remote warehouse

access cross partitions, causing most deadlocks to occur within

each partition.

Microbenchmark. We created a microbenchmark for a more thor-

ough evaluation of our algorithm in a scenario with a high probabil-

ity of deadlock occurrence. Specifically, we reduce the data scale to

1000 per node. With small amounts of data, workload competition

increases, resulting in more deadlock samples. Each transaction con-

sists of multiple SQL statements, with each SQL statement accessing

multiple records. The workload is generated following an exponen-

tial distribution. Each transaction consists of 10 to 50 randomly

generated SQL statements, with an average of 30 (i.e., 𝜆 = 1/30).
Each write SQL statement randomly acquires exclusive locks on

one to five rows, with an average of 1.2 rows locked per statement

(i.e., 𝜆 = 1/1.2). We use the polling mode to run a physical thread

on multiple transaction queues, with the ratio being 1: 8.

5.2.3 Baselines. We compared the performance of our algorithm

with several baselines, including a centralized algorithm and two

distributed deadlock detection algorithms path-pushing and LCL
[44, 45]. In addition, the baselines also include several variants of

hierarchical algorithms, specifically:

range-cut-n: In the absence of knowledge about workload access

patterns, constructing a hierarchical tree can be challenging. How-

ever, it is possible to partition nodes into several zones based on

partitioning experience and other domain knowledge. Based on

experience, the lengths of deadlock cycles follow an exponential

distribution, with shorter lengths being more prevalent. We com-

pared two fixed partitioning methods by node numbering, which

uniformly partition the nodes into several zones containing 𝑛 nodes.

Specifically, we evaluated 𝑛 = 4 and 8, with most deadlock cycles

length not exceeding 8.

HAWK and HAWK-greedy: Corresponding to basic SCC-cut al-

gorithm and fine-grained greedy SCC-cut algorithm respectively.

5.3 Throughput of TPC-C
We compared system throughput, average latency, and average

deadlock detection timewhen using our proposed algorithms, HAWK

and HAWK-greedy, along with three other deadlock detection algo-

rithms, LCL, path-pushing, and centralized from previous works.

We varied the number of database nodes from 4 to 128. The results

of this experiment for TPC-C are shown in Figure 9.

Figure 9(a) illustrates the scalability of these algorithms. Except

for HAWK-greedy, the scalability of other algorithms gradually

decreases as the number of nodes increases. Only HAWK-greedy

maintains high scalability evenwith 128 nodes, achieving a through-

put of over 120k, which is 4 × that of the centralized algorithm. The

centralized algorithm experiences a decline in throughput when the

number of nodes exceeds 32, indicating that the centralized dead-

lock detection node becomes a system bottleneck, limiting overall

scalability. Figure 9(b) presents the average transaction latency for

each algorithm. HAWK-greedy demonstrates high detection effi-

ciency, minimizing its impact on transaction latency. In contrast,

the detection efficiency of other algorithms decreases as the num-

ber of nodes increases, with the centralized algorithm being the

most affected, reaching a worst-case latency of over 30 ms. Figure

9(c) shows the deadlock detection time for each algorithm. As the

number of nodes increases, the detection time increases for all algo-

rithms. However, HAWK-greedy can keep the detection time within

100 ms, even with 128 nodes. In contrast, other algorithms exhibit

a significant increase in detection time, prolonging the resource

acquisition time for successor transactions in the waiting chain of

the lock request, thereby deteriorating transaction throughput.

5.4 Throughput of Microbenchmark
In this section, we compare five algorithms: HAWK, HAWK-greedy,
centralized, path-pushing, and LCL, similar to the TPC-C experiment.

All SQL queries randomly access resources across all nodes in the

system. We focus on the impact of deadlock detection time on

throughput by adjusting the number of database nodes. Figure

10 shows the average detection time and throughput of different

algorithms under various numbers of nodes. HAWK-greedy reduces

3690

4 8 16 32 64 128
0

30k

60k

90k

120k

Th
ro

ug
hp

ut
 (t

xn
/s

)

Number of nodes

 HAWK-greedy
 HAWK
 path-pushing
 LCL
 centralized

(a) Throughput

4 8 16 32 64 128
0

10

20

30

40

Av
g

La
te

nc
y

(m
s)

Number of nodes

 HAWK-greedy
 HAWK
 path-pushing
 LCL
 centralized

(b) Avg. Lantency

4 8 16 32 64 128
0

400

800

1200

D
et

ec
tio

n
Ti

m
e

(m
s)

Number of nodes

 HAWK-greedy
 HAWK
 path-pushing
 LCL
 centralized

(c) Detection Time

Figure 9: (a) Throughput, (b) Average latency, and (c) Detection Time of five algorithms under TPC-C workload.

4 8 16 32 64 128
0

60

120

180

240

540

600

D
et

ec
tio

n
Ti

m
e

(m
s)

Number of nodes

 HAWK
 HAWK-greedy
 centralized
 path-pushing
 LCL

(a) Detection Time

4 8 16 32 64 128
0

5k

10k

15k

20k

25k

30k

Th
ro

ug
hp

ut
 (t

xn
/s

)

Number of nodes

 HAWK
 HAWK-greedy
 centralized
 path-pushing
 LCL

(b) Throughput

Figure 10: (a) Deadlock Detection Time and (b) Throughput
under various numbers of nodes.

the average detection time by up to 600 ms compared to other

algorithms and increases throughput by up to 3×.
Figure 10(a) shows that the number of nodes 32 is a watershed;

for the number of nodes from 4 to 32, all algorithms maintain low

detection time and similar throughput. As the number of nodes ex-

ceeds 32, the overall transaction throughput decreases accordingly.

From 4 to 16 nodes, path-pushing exhibits optimal performance

in both average detection time and throughput. However, as the

length of deadlock cycles increases, the efficiency of path-pushing
decreases when the number of nodes exceeds 32. Besides, results

show that LCL’s detection time and throughput are slightly inferior

to path-pushing. The algorithm centralized, due to the individual

detection nodes becoming bottlenecks, exhibits an average dead-

lock detection time exceeding 600 ms. Due to the inability to par-

tition DZs effectively, the gap between HAWK and HAWK-greedy
widens as the number of system nodes increases. HAWK-greedy
demonstrates its advantage when the number of nodes exceeds 32,

outperforming all other algorithms. With 128 nodes, the average

detection time of the other algorithms exceeds 120 milliseconds,

while HAWK-greedy remains stable.

Figure 10(b) shows the throughput of the microbenchmark, cor-

responding to the transaction details described in Section 5.2.2. The

overall trend in system throughput is inversely proportional to

the average deadlock detection time. Due to decreased detection

efficiency and the impact of distributed transactions, throughput

does not scale linearly with the number of nodes. In addition to

deadlock detection time, the number of deadlocks also influences

system throughput. HAWK-greedy improves throughput by up to 3

× compared to the centralized and by up to 1.8 × compared to LCL.

4 8 16 32 64 128
0

60

120

180

240

540

600

D
et

ec
tio

n
Ti

m
e

(m
s)

Workload Partition Size

 HAWK
 HAWK-greedy
 centralized
 path-pushing
 LCL
 range-cut-4
 range-cut-8

(a) Detection Time

4 8 16 32 64 128
0

6

12

18

of

 D
et

ec
tio

n
Zo

ne

Workload Partition Size

 HAWK-greedy
 HAWK

- 30

0

30

60 HAWK-greedy
 HAWK

M
ax

 Z
on

e
Si

ze

(b) # of Zones and Max Zone

Figure 11: (a) Detection time and (b) The cutting results
of HAWK and HAWK-greedy, where the bar chart corre-
sponds to the left y-axis and the line chart corresponds to
the right y-axis under different workload partition sizes.

5.5 The Impact on Workload Partition Size
Next, we evaluate the impact of different workload partition sizes

on the average deadlock detection time with a fixed configuration

of 128 nodes. By partitioning the workload, we adjust the scope of

transaction access to resources, thereby controlling the maximum

length of generated distributed deadlock cycles. We primarily tested

two proposed algorithms, HAWK and HAWK-greedy, alongside five
baselines: centralized, path-pushing, LCL, range-cut-4, and range-
cut-8.

Figure 11(a) shows the average detection time. The performance

of the centralized deadlock detection algorithm is notably poor,

with an average detection time exceeding 500 ms even though the

workload partition size is 4. Due to the partitioning workloads and

partitioning detection zones, all algorithms except for the central-
ized exhibit a trend similar to that shown in Figure 10(a).

In this experiment, a three-level hierarchical treewas constructed,

with 𝐿0 as the root, 𝐿1 as the partitioned detection zones, and 𝐿2
corresponding to each database node. The range-cut-4 and range-
cut-8 can quickly detect deadlocks at level 𝐿1 when the workload

partition size is 4 and 8 because the detection zones precisely match

the workload partitions. However, when the workload partition

size increases to 16, due to mismatches between detection zones

and workload partitions, the performance of range-cut-4 is slightly
lower than range-cut-8, increasing deadlocks undetectable at the

level 𝐿1, with most deadlocks only detectable at the root level of

the hierarchical tree. When the partition size exceeds 16, almost

3691

0 1 2 3 4 5 6 7 8 9 10
0

8k

16k

24k

32k

Th
ro

ug
hp

ut
 (t

xn
/s

)

Time (mins)

 HAWK HAWK-greedy
 range-cut-4 range-cut-8

(a) Performance Over Time

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00

%
 C

ro
ss

-z
on

e
Tx

ns

Time (mins)

 HAWK-greedy range-cut-4 range-cut-8

(b) Percentage of Cross-zone Deadlocks

1 2 3 4 5 6 7 8 9 100

5

10

15

of

 D
et

ec
tio

n
Zo

ne

Time (mins)

 HAWK HAWK-greedy

(c) Number of Zones

Figure 12: The performance of deadlock detection algorithms
where the workloads change over time.

every detection zone in range-cut-4 and range-cut-8 fails to perform
adequately.

Workload-driven detection zone partitioning is not always the

best approach for every scenario. HAWK performs worse than

range-cut at 64 and 128 nodes. In Figure 11(b), we present the

number of zones and themaximum zone size obtained by algorithms

HAWK and HAWK-greedy for different partition sizes. Although

HAWK consistently maintains a low number of zones, its maximum

zone size reaches 66 at 128 nodes. This implies that the efficiency

within this zone is comparable to centralized detection with 64

nodes. Even if there are relatively short deadlock cycles within the

zone, their detection may be delayed significantly.

5.6 Adaptability
Next, we examine the adaptability of HAWK to a time-varying

workload. We use the same configuration as in Section 5.4, with the

only difference being that the workload changes every minute and

the experiment runs for 10 minutes. The cost of cutting SCC in a

PAG with 128 nodes will not exceed 10 ms, and the variation is not

significant. Therefore, we did not display it separately. The time for

calculating the deadlock ratio to reconstruct the hierarchical tree is

5 seconds, and we set 𝛼 as 1. As shown in Figure 12(a) we observe

that once the workload changes, both HAWK and HAWK-greedy ex-

perience a noticeable performance degradation, while range-cut-n
remains stable. The reason is that workload-driven DZ partitioning

fails to adapt to the new workload during sampling. Among the

algorithms, HAWK-greedy maintains the best throughput perfor-

mance, followed closely by range-cut-8, while range-cut-4 detects
fewer deadlocks within zones compared to range-cut-8, though its

performance is slightly inferior. Surprisingly, HAWK exhibits the

worst performance.

We calculated the proportion of deadlocks detected across DZs,

defined as the percentage of deadlocks that remain undetected

within a single DZ (at level 𝐿1). Figure 12(b) presents the results,

with HAWK excluded as it does not require secondary detection.

Regardless of workload variations, HAWK-greedy consistently iden-

tifies the optimal PAG cutting, maintaining the proportion of dead-

locks across zones below 17%. In contrast, range-cut-n fails to detect
most deadlocks within DZs, resulting in over 82% deadlocks occur-

ring across DZs.

Figure 12(c) illustrates the number of detection zones for HAWK
and HAWK-greedy. HAWK-greedy consistently subdivides the PAG

more finely, ensuring that the burden of detecting deadlock nodes

within each DZ is not too heavy. In contrast, HAWK produces fewer

DZs in the PAG partitioning, leading to larger DZs. This results in

reduced throughput performance for HAWK.

5.7 Comprehensive Dive into Greedy SCC-Cut
The previous experiment provided an overview of why HAWK per-

forms worse than HAWK-greedy in scenarios with a large number

of nodes (exceeding 32 nodes in our experiment), despite both be-

ing workload-driven PAG graph cutting algorithms. This section

delves deeper to further clarify the advantages of HAWK-greedy
and highlight the differences between it and other methods, e.g.,

centralized and fully distributed algorithm path-pushing and LCL.
First, we compare HAWK and HAWK-greedy to highlight the

necessity of using HAWK-greedy for partitioning the graph PAG.

We ran the workload for 5 minutes without partitioning it with 128

nodes. The results are shown in Figure 13(a). The longest deadlock

cycle had a length of 252, while the shortest was 3. The majority of

deadlock cycle lengths are concentrated between 0 and 64, with 75%

of them falling within 0-32 and 14% within 32-64. Only 11% exceed

64. Intuitively, most deadlocks (length less than 32) can be detected

quickly. Although the proportion of deadlocks with a length ex-

ceeding 64 is low, it may lead to larger DZs, resulting in reduced

detection efficiency for these DZs. Figure 13(b) shows the detection

zone partitioning results of HAWK and HAWK-greedy. Although
the detected longest deadlock cycles length is approximately the

same, the maximum detection zone size of HAWK is much larger

than that of HAWK-greedy. Figure 14 provides detailed results of

the detection zone partitioning for HAWK and HAWK-greedy.
Then, we analyze HAWK-greedy compared with three traditional

deadlock detection algorithms from the perspectives of deadlock

cycle length and network utilization. In Figure 13(c), we measured

the detection times for deadlocks of varying lengths within the de-

tected deadlock results. Among these algorithms, centralized takes

the longest time to detect deadlocks, even for very short cycles.

The path-pushing and LCL are fully distributed algorithms, and

their detection efficiency is independent of the number of nodes,

only being related to the length of the deadlock cycle. In other

words, the longer the cycle, the longer the detection time. As the

3692

18
1

15
6

82
71

59
44

34 28
17 18

8 9 9 1 3 3 4 2 1 0 1 1 0 1 0 0 0 0 0 1 0 1

0 32 64 96 128 160 192 224 256
0

40

80

120

160

200

N
um

be
r o

f D
ea

dl
oc

ks

Deadlock Cycle Length

(a)

4 8 16 32 64 128
0

30

60

90

120

of

 Z
on

es
 /

C
yc

le
 S

iz
e

Number of nodes

 HAWK-greedy-max-cycle
 HAWK-greedy-max-zone
 HAWK-max-cycle
 HAWK-max-zone

(b)

4 8 16 32 64 128
0

60

120

180

240

600

D
et

ec
tio

n
Ti

m
e

(m
s)

Deadlock Cycle Length

 HAWK
 HAWK-greedy
 centralized
 path-pushing
 LCL

(c)

4 8 16 32 64 128
0%

25%

50%

75%

100%

N
et

w
or

k

Number of nodes

 LCL
 path-pushing
 HAWK-greedy
 HAWK
 centralized

(d)

Figure 13: Algorithms HAWK-greedy compared with other algorithms in terms of detection zone partitioning, deadlock cycle
length, and network utilization.

4

8

16

32

64

128

0 32 64 96 128

N
um

be
r o

f n
od

es

 HAWK-greedy-max-zone
 HAWK-greedy-zones
 HAWK-max-zone
 HAWK-zones

Figure 14: The deadlock detection zone decomposition dia-
grams for both HAWK and HAWK-greedy.

length of deadlock cycles affects the size of the largest detection

zones, HAWK ’s efficiency decreases significantly when the num-

ber of nodes exceeds 32. In this experiment, only HAWK-greedy
is unaffected by both the number of nodes and the length of the

deadlock cycle. In Figure 13(d), we measured the network usage of

the node with the highest network occupancy rate. path-pushing
and LCL always maintain low occupancy because they do not re-

quire the construction of WFG. HAWK and Centralized, because
a single detection node is responsible for deadlock detection of a

large range of nodes, resulting in high network occupancy when

transmitting sub-WFGs. Although the HAWK-greedy has a higher

network occupancy than distributed algorithms, it is much better

than HAWK due to the finer granularity of DZ partitioning.

6 RELATED WORK
Due to the use of lock managers [46, 47] to manage distributed

resources, distributed deadlocks are inevitably generated, causing

significant harm to distributed applications. Many studies address

deadlock detection in distributed systems [11, 13–15, 32, 39, 41].

Knapp [25] categorizes these works into four categories: path-
pushing, edge-chasing, diffusing computation, and global state detec-
tion. In path-pushing [35, 42], the local waiting-for graph (LWFG)

of the current node is pushed through the system along the edges

pointing to other nodes, eventually reaching the initiator node,

where the complete WFG can be constructed and checked for dead-

lock cycles. If termination occurs before reaching the initiator dur-

ing the push phase, it indicates the absence of deadlock among the

nodes. Edge-chasing [15] is a probe-based algorithmwhere a special-

ized probe message is transmitted along the reverse side of an edge.

Upon the probe’s return to the initiator node, it identifies the exis-

tence of a deadlocked cycle.Diffusing computation [10, 16, 19, 26, 31],

used primarily in the k-out-of-n model, sends messages to succes-

sor nodes and detects knots or cycles through returned messages.

Global state detection algorithms aim to capture a consistent snap-

shot of the wait-for graph (WFG) and identify deadlocks within this

snapshot to prevent inconsistencies that could result in detecting

phantom deadlocks. The AND model [7, 8, 18] and resource alloca-

tion graph (RAG) [34]/wait-for graph (WFG) are commonly used to

model waiting relationships between transactions, with deadlock

detection identifying cycles in the graph to determine deadlocks.

TiDB [24] uses a centralized detection algorithm where, after

a transaction times out, it sends a detection request to the detec-

tion node. The detection node collects the WFGs from all nodes

to form a global WFG, which is then used to detect and resolve

deadlocks. CockroachDB’s [42] transaction coordinator maintains

a wait queue, regularly collecting and merging the wait relations of

all transactions. The wait queue ultimately maintains a complete

WFG for deadlock detection. LCL [44, 45] has two processes, Pro-
liferation and Spread, to ensure values 𝐿𝐶𝐿𝑉 and < 𝑃𝑢𝐴𝑃, 𝑃𝑢𝐼𝐷 >

are propagated to every node in the graph. By propagating and

comparing these two values, deadlock cycles and the transactions

that should be aborted within them can be identified. The LCL

algorithm is an edge-chasing algorithm.

7 CONCLUSION
In this paper, we presented HAWK, a novel workload-driven hier-

archical deadlock detection algorithm that enforces efficiency and

adaptability. By transforming the problem of partitioning detection

zones in the hierarchical detection into a graph-cutting problem on

the PAG, HAWK can organize the hierarchical tree before the WFG

is formed. In addition, a fine-grained greedy SCC-cut method for

cutting complex workloads is used to better partition the PAG into

multiple appropriately sized detection zones, making HAWK more

efficient in detection. Tree reconstruction ensures adaptability to

workload changes, maintaining detection adaptability. Experimen-

tal results show that HAWK is superior at detecting deadlock in

large-scale systems compared to other algorithms.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful comments

and feedback. This work was supported in part by the National

Natural Science Foundation of China under Grant No. U22B2020.

Peng Cai is the corresponding author.

3693

REFERENCES
[1] 2025. Postgres. https://www.postgresql.org/

[2] 2025. TPC-C Benchmark. https://www.tpc.org/tpcc/results/tpcc_results5.asp

[3] David F Bacon, Nathan Bales, Nico Bruno, Brian F Cooper, Adam Dickinson,

Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,

et al. 2017. Spanner: Becoming a SQL system. In Proceedings of the 2017 ACM
International Conference on Management of Data. 331–343.

[4] Dushan Z. Badal. 1986. The distributed deadlock detection algorithm. ACM
Transactions on Computer Systems (TOCS) 4, 4 (1986), 320–337.

[5] Francesca Baldini, Faizan M Tariq, Sangjae Bae, and David Isele. 2024. Don’t Get

Stuck: A Deadlock Recovery Approach. arXiv preprint arXiv:2408.10167 (2024).

[6] Roberto Baldoni and Silvio Salza. 1997. Deadlock detection in multidatabase

systems: a performance analysis. DIstributed Systems Engineering 4, 4 (1997),

244.

[7] Valmir C Barbosa and Mario RF Benevides. 1998. A graph-theoretic characteri-

zation of AND-OR deadlocks. In UFRJ Technical Report COPPE-ES-472/98, Rio de
Janeiro, Brazil. Citeseer.

[8] Valmir Carneiro Barbosa, Alan Diêgo A Carneiro, Fábio Protti, and Uéverton S

Souza. 2016. Deadlock models in distributed computation: foundations, design,

and computational complexity. In Proceedings of the 31st annual ACM symposium
on applied computing. 538–541.

[9] Philip A Bernstein, Vassos Hadzilacos, Nathan Goodman, et al. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley Reading.

[10] Azzedine Boukerche and Carl Tropper. 1998. A distributed graph algorithm

for the detection of local cycles and knots. IEEE Transactions on Parallel and
Distributed Systems 9, 8 (1998), 748–757.

[11] Gabriel Bracha and Sam Toueg. 1984. A distributed algorithm for generalized

deadlock detection. In Proceedings of the third annual ACM symposium on Princi-
ples of distributed computing. 285–301.

[12] Wilson Chan. 2010. Method and system for deadlock detection in a distributed

environment.

[13] KM Chandy, J Misra, L Haas, and TEXAS UNIV AT AUSTIN DEPT OF COM-

PUTER SCIENCES. 1982. A Distributed Deadlock Detection Algorithm and Its

Correctness Proof. submitted to the Communications of the ACM (1982).

[14] K Mani Chandy and Jayadev Misra. 1982. A distributed algorithm for detecting

resource deadlocks in distributed systems. In Proceedings of the first ACM SIGACT-
SIGOPS symposium on Principles of distributed computing. 157–164.

[15] K Mani Chandy, Jayadev Misra, and Laura M Haas. 1983. Distributed deadlock

detection. ACM Transactions on Computer Systems (TOCS) 1, 2 (1983), 144–156.
[16] Alok N. Choudhary, Walter H. Kohler, John A. Stankovic, and Don Towsley. 1989.

A modified priority based probe algorithm for distributed deadlock detection

and resolution. IEEE Transactions on Software Engineering 15, 1 (1989), 10–17.

[17] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden.

2010. Schism: a workload-driven approach to database replication and partition-

ing. (2010).

[18] JR González De Mendívil, Federico Fariña, JR Garitagotia, Carlos F Alastruey,

and Jose M. Bernabeu-Auban. 1999. A distributed deadlock resolution algorithm

for the AND model. IEEE transactions on parallel and distributed systems 10, 5
(1999), 433–447.

[19] EdsgerWDijkstra and Carel S Scholten. 1980. Termination detection for diffusing

computations. Inform. Process. Lett. 11, 1 (1980), 1–4.
[20] Harold N Gabow. 1999. Path-based depth-first search for strong and biconnected

components; CU-CS-890-99. (1999).

[21] Tarek Helmy. 2024. An Improved Deadlock Detection and Resolution Algorithm

for Distributed Computing Systems. (2024).

[22] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Parti-

tioning Advisor for Cloud Databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data.

[23] Gary S. Ho and CV Ramamoorthy. 1982. Protocols for deadlock detection in

distributed database systems. IEEE Transactions on Software Engineering 6 (1982),

554–557.

[24] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP

database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.
[25] Edgar Knapp. 1987. Deadlock detection in distributed databases. ACMComputing

Surveys (CSUR) 19, 4 (1987), 303–328.

[26] Ajay D. Kshemkalyani and Mukesh Singhal. 1994. Efficient detection and res-

olution of generalized distributed deadlocks. IEEE Transactions on Software
Engineering 20, 1 (1994), 43–54.

[27] Soojung Lee. 2004. Fast, centralized detection and resolution of distributed

deadlocks in the generalized model. IEEE Transactions on Software Engineering
30, 9 (2004), 561–573.

[28] Eric Lehman, F Thomson Leighton, and Albert R Meyer. 2015. Mathematics for
Computer Science,. 317–327 pages.

[29] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,

Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al.

2021. Greenplum: a hybrid database for transactional and analytical workloads.

In Proceedings of the 2021 International Conference on Management of Data. 2530–
2542.

[30] Daniel A Menasce and Richard R Muntz. 1979. Locking and deadlock detection

in distributed databases. IEEE Transactions on Software Engineering 3 (1979),

195–202.

[31] Jayadev Misra and K. Mani Chandy. 1982. A distributed graph algorithm: Knot

detection. ACM Transactions on Programming Languages and Systems (TOPLAS)
4, 4 (1982), 678–686.

[32] Don P Mitchell and Michael J Merritt. 1984. A distributed algorithm for deadlock

detection and resolution. In Proceedings of the third annual ACM symposium on
Principles of distributed computing. 282–284.

[33] MySQL. 2024. https://www.mysql.com.

[34] Qinqin Ni, Weizhen Sun, and SenMa. 2009. Deadlock detection based on resource

allocation graph. In 2009 Fifth International Conference on Information Assurance
and Security, Vol. 2. IEEE, 135–138.

[35] Ron Obermarck. 1982. Distributed deadlock detection algorithm. ACM Transac-
tions on Database Systems (TODS) 7, 2 (1982), 187–208.

[36] M Tamer Özsu, Patrick Valduriez, et al. 1999. Principles of distributed database
systems. Vol. 2. Springer.

[37] Abdul Quamar, K Ashwin Kumar, and Amol Deshpande. 2013. SWORD: scalable

workload-aware data placement for transactional workloads. In Proceedings of
the 16th international conference on extending database technology. 430–441.

[38] Ahmed Elajeli Rgibi, Abdusamea Ibrahim Omer, Amany Khalifa Alarbish, and

Amal Apojila Osha. 2024. EXPLORINGDEADLOCKDETECTIONALGORITHMS

IN CONCURRENT PROGRAMMING: A COMPARATIVE ANALYSIS AND EVAL-

UATION. Scientific Journal of Applied Sciences of Sabratha University (2024),

106–117.

[39] Pooja Sapra, Suresh Kumar, and RK Rathy. 2013. Deadlock detection and recovery

in distributed databases. International Journal of Computer Applications 73, 1
(2013).

[40] Micha Sharir. 1981. A strong-connectivity algorithm and its applications in data

flow analysis. Computers & Mathematics with Applications 7, 1 (1981), 67–72.
[41] Selvaraj Srinivasan and Ramasamy Rajaram. 2011. A decentralized deadlock

detection and resolution algorithm for generalized model in distributed systems.

Distributed and Parallel Databases 29 (2011), 261–276.
[42] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.

Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 1493–1509.

[43] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM
journal on computing 1, 2 (1972), 146–160.

[44] Zhenkun Yang, Chen Qian, Xuwang Teng, Fanyu Kong, Fusheng Han, and

Quanqing Xu. 2023. LCL: A Lock Chain Length-based Distributed Algorithm for

Deadlock Detection and Resolution. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE). IEEE, 151–163.

[45] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,

Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao,Wenhui Shi, Huafeng Xi, et al. 2022.

OceanBase: a 707 million tpmC distributed relational database OceanBasesystem.

Proceedings of the VLDB Endowment 15, 12 (2022), 3385–3397.
[46] Dong Young Yoon, Mosharaf Chowdhury, and BarzanMozafari. 2018. Distributed

lock management with RDMA: decentralization without starvation. In Proceed-
ings of the 2018 International Conference on Management of Data. 1571–1586.

[47] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and

Xin Jin. 2020. Netlock: Fast, centralized lock management using programmable

switches. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication. 126–138.

3694

https://www.postgresql.org/
https://www.tpc.org/tpcc/results/tpcc_results5.asp
https://www.mysql.com

	Abstract
	1 Introduction
	2 Motivation
	2.1 Wait-for Graph
	2.2 The Price of Centralized Algorithm
	2.3 Basic Hierarchical Deadlock Detection
	2.4 Challenges of Hierarchical Detection

	3 Efficient deadlock detection
	3.1 Workflow
	3.2 Workload Modeling
	3.3 Cut PAG based on SCC-cut Algorithm
	3.4 A Fine-grained SCC-cut Algorithm
	3.5 Tree Construction and Reconstruction
	3.6 Correctness

	4 Optimization Strategies
	4.1 Reduce Subgraph Transmission
	4.2 Efficient Detection of Multi-outdegree WFG
	4.3 Deadlock Resolution

	5 Performance Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Throughput of TPC-C
	5.4 Throughput of Microbenchmark
	5.5 The Impact on Workload Partition Size
	5.6 Adaptability
	5.7 Comprehensive Dive into Greedy SCC-Cut

	6 Related Work
	7 Conclusion
	References

