
Effective and Efficient Community Search for Complex Network
Semantics Capture: From Coarse-Grain to Fine-Grain

Shuai Han
Harbin Engineering University

Harbin, China
hshuai@hrbeu.edu.cn

Yushi Tao
Harbin Engineering University

Harbin, China
yushi.tao@hotmail.com

Jingwen Tan
Harbin Engineering University

Harbin, China
ttt19@hrbeu.edu.cn

Huanran Wang*
Harbin Engineering University

Harbin, China
huanran.wang@hrbeu.edu.cn

Wu Yang*
Harbin Engineering University

Harbin, China
yangwu@hrbeu.edu.cn

Yanmei Wang
China Unicom (Heilongjiang)

Company
Harbin, China

wangym36@chinaunicom.cn

ABSTRACT
To analyze the massive social networks for providing personalized
services, community search is widely studied to find the densely
connected subgraph that can reflect the network properties for a
given query. The existing community search methods adopt single
community model to make structural constraints on communities,
which can only describe single interaction mode. Since they fail
to capture the semantics of the network with multiple interaction
modes, they struggle to find the representative communities. To
solve this issue, we design a novel community model called (𝜏, 𝜌)-
camp to flexibly capture complex network semantics in any level of
granularity. We propose the unified support maximized community
search problem to find the communities with the densest network
semantics, which is proven a NP-hard problem. By constructing a
hierarchical index structure, we propose an approximate commu-
nity search algorithm with approximation ratio of 2 and linear time
complexity of the query size. Extensive experiments are conducted
on two public datasets and two crawled datasets. The experimental
results prove the effectiveness and efficiency of our method.
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1 INTRODUCTION
Nowadays, social network has become an essential component in
daily life [40]. To mine valuable information, the massive social
network is always modeled as big graph for analysis. Instead of
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(a) A part of the Bilibili network
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(b) Communities of 3-truss
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(c) Communities of 2,2-biclique
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(d) Combined community

Figure 1: Existing community models fail to capture complex
network semantics.

the big graph, it is more fruitful to focus on smaller but more cohe-
sive subgraphs, called communities, since communities can reflect
important properties of the network such as connectivity and cen-
trality [24, 30]. To provide personalized services like advertising and
recommendation [23, 37], community search is popularly studied
to find a community that contains the query vertices [10, 26].

To find such cohesive communities, researchers adopt the com-
munity models to make structural constrains on communities in
traditional networks [16]. Taking two classical models for example,
𝑘-core requires that each vertex has at least 𝑘 neighbors [3, 27],
and 𝑘-truss restricts that each edge is contained in at least 𝑘 − 2
triangles [1, 15]. In this way, the community cohesion is guaranteed
by vertex degree or stable triangle. Considering the vertex types,
the networks are modeled as heterogeneous information networks
(HINs). The community models are extended to HINs by building
relationships between the same types of vertices based on meta-
paths [11, 18, 43]. Focusing on the bipartite graphs in HINs, some
community models are proposed to make constraints on bipartite
graphs, such as biclique [2, 42], bitruss [25] and (𝛼, 𝛽)-core [33].

So far, the existing community search methods adopt their own
single community model to describe monotonous interaction mode
to find communities [10, 16]. As a result, those methods fail to catch
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the complex interaction semantics of the real-world network with
multiple interaction modes, which we call network semantics. For
example, Figure 1(a) shows a part of the real-life social network,
Bilibili, where square vertices represent videos and circle vertices
represent users. If adopting the community model 𝑘-truss (𝑘 is
set to 3), we obtain two communities shown in Figure 1(b). If we
use the 2,2-biclique model restricting that each vertex in one type
is connected to two vertices in the other type, we achieve the
communities in Figure 1(c). It is obvious that these communities
are scattered, as a result of depending on single interaction mode.
Thus, they can not catch the complex network semantics, then can
not typically reflect the overall properties of the network.

Besides, a strategy may be adopted to try to catch the complex
network semantics. We can utilize two or more community models
to find their respective communities and then simply combine them
together. For instance, we can combine the 3-truss communities
in Figure 1(b) and the 2,2-biclique communities in Figure 1(c) by
the common vertices, and the result is shown in Figure 1(d). Obvi-
ously, only one 3-truss community and one 2,2-biclique community
have common vertices and can be combined together, while the
others are disjoint. Namely, different semantics caught by different
community models are separated in this way. Hence, this strategy
fails to achieve a unified and integral expression of the network
semantics, thus can not reflect the network properties either.

To solve the above issue, we aim to find the communities that can
reflect the network properties. There are two challenges. The first
one is called effectiveness challenge. It depends on the requirement
for the community model that can capture the complex network
semantics to reflect the network properties. The second one is called
efficiency challenge, laying on the demand for efficient search.

For the effectiveness challenge, it is challenging to come up
with a community model that flexibly expresses the complex net-
work semantics. We should first induce the different interaction
modes. In the popular networks like Twitter and TikTok whose
purposes are information dissemination and acquisition besides
friend communication, there are both direct interaction (i.e., interac-
tion with friends) and indirect interaction (i.e., interaction through
browsing the same contents or following the same influencers) se-
mantics. It is desirable to use the closed circulars between vertices
to make restrictions on the two interaction semantics, since the
closed circulars can guarantee the community cohesion. First, for
direct interactions, the triangle is considered as the basic circular to
produce stable restrictions [1, 4]. Then, for indirect interactions, a
user has close relationship with another user if they simultaneously
focus on two or more same contents or influencers, producing the
basic circulars of quadrangle (e.g., two users watch two videos).
Therefore, we adopt the simplest circulars, triangle and quadrangle,
to design the community model to describe the communities with
both direct and indirect interactions. The community model needs
to catch different granularity of network semantics to understand
the evolution mechanism of achieving better representative ability.

For the efficiency challenge, it is difficult to organize the mas-
sive communities with different levels of granularity into a query-
able structure. Based on the community model, different commu-
nities show different granularity on the network semantics. It is
essential to organize the communities from coarse-grained seman-
tics to fine-grained semantics, so as to quickly find the communities

with specific granularity of semantics for users. By exploring the
nested property of the communities, we build a hierarchical index
structure on the communities with different granularity of network
semantics, so as to achieve efficient community search performance.

In this paper, we aim to search the communities with complex
network semantics to reflect the properties of networks. We first
design a novel community model named (𝜏, 𝜌)-camp to effectively
capture the network semantics. (𝜏, 𝜌)-camp induces two types of
interaction modes, i.e., direct interaction and indirect interaction. It
describes the two semantics by the simplest circulars, triangle and
quadrangle, which are also the units to form any convex polygons
in the graph [7]. (𝜏, 𝜌)-camp catches different granularity of seman-
tics by varying the restricted numbers of the two basic circulars
on each edge. We propose the unified support maximized commu-
nity search problem to return the communities with the densest
network semantics to users, which is proven a NP-hard problem.
By building a hierarchical index on communities, we can achieve
search efficiency. The main contributions are summarized as below.

• To find the communities reflecting the properties of the
network, we capture the complex network semantics by
designing a novel community model named (𝜏, 𝜌)-camp.
It organically models both direct and indirect interaction
semantics in any granularity for communities.

• We propose the community search problem to find the
communities with the densest complex network semantics
(a NP-hard problem), or communities with users’ required
semantics. By leveraging the hierarchy characteristics of
the built (𝜏, 𝜌)-camp index, we design a community search
algorithm that adopts the greedy strategy to solve the NP-
hard problem with approximation ratio of 2 in linear time.

• Extensive experiments are conducted on four datasets. The
experimental results prove that our proposed algorithm is
efficient in community search, and the target communities
can effectively reflect the properties of the whole network.

The rest of the paper is organized as follows. The related work
is discussed in Section 2. The terminologies and problem definition
are introduced in Section 3. We propose the index in Section 4, and
the community search method in Section 5. The experiments are
conducted in Section 6. The conclusion is given in Section 7.

2 RELATED WORK
Community search aims to query a cohesive subgraph with both
structure cohesiveness and high weight (significance) [33]. Exist-
ing researches based on different constraint community models
are proposed to find communities on simple graph [29]. These
approaches describe structural cohesion from the perspective of
direct interactions [23, 35, 39]. As a well-known community model,
𝑘-core [5, 41] makes constraints on the vertex degree, i.e., the friend
number of a user. Sun et al. [27] build an index called WC-index for
local exploration of 𝑘-core community in the weighted graph. To
find reliable communities in dynamic graph, Tang et al. [28] design
(𝜃, 𝑘)-core model, and propose a dynamic programming based com-
munity search algorithm by constructingweighted core forest index.
In terms of structural cohesion, the degree constraint of 𝑘-core is
weaker than the triangle support of 𝑘-truss [34], which forms stable
triangles between friends. 𝑘-truss is widely studied and extended to
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different variants, e.g., the triangle-connected model [1], the closest
model [17] and directed D-truss [22], etc. In addition, the densest
clique percolation is also applied to search communities [38], which
restricts that each user is connected to any other user. Moreover,
some indicators are usually introduced to these community models
to further restrict the community cohesion, such as modularity
[20], density [6], conductance, etc. All these community models
only focus on direct interactions between users [8], and can not
achieve a complete expression for the complex network semantics
with both direct and indirect interactions.

Existing researches [8, 11, 43] extend the community models to
heterogeneous information networks (HINs) or labeled networks.
For HINs, the HIC [43] based on meta-paths is proposed to find
the communities that have a dense structure and similar attributes.
Similarly, Fang et al. [11] utilize the meta-path to model the cohe-
siveness of a community with vertices of the same type. For the
labeled network, researchers aim to find two groups with different
labels [2, 8, 25, 32, 33]. On the bipartite graphs, the butterfly motif
(2,2-biclique) is a cohesive structure, which is often used in the
bipartite graph analysis [31]. The framework of bipartite subgraphs
based on the butterfly motif is defined to model the dense regions in
a hierarchical structure [25]. Afterwards, the BPC-Index [2] based
on bicliques is further proposed to search the biclique percolation
communities, which obtains the result in near-optimal time with
well-bounded index space. Based on (𝛼, 𝛽)-core model [33], the bi-
partite hierarchy [32] is proposed to discover the hierarchical struc-
ture of bipartite graphs. Jiang et al. [19] combine metapaths with
the 𝑘-core model to mine star-schema communities by maximizing
the number of shared metapaths. However, the above methods only
concern about the heterogeneous indirect interactions between
different types of vertices, while ignore the direct interactions. As
a result, they struggle to catch the complex network semantics and
can not find communities that reflect the network properties.

The above approaches rely on a single kind of community model
by considering either direct interactions or indirect interactions.
The semantics captured by the existing community models are in-
complete and have huge gaps with the original complex semantics
of the network. Hence, they can not describe the global properties
of the network, which has negative effects on the downstream tasks.
To solve this problem, we propose a novel community model named
(𝜏, 𝜌)-camp, which is a comprehensive expression for complex se-
mantic network. (𝜏, 𝜌)-camp constructs more comprehensive con-
straint model to capture the structural characteristics of complex
interaction. Moreover, we propose an efficient community search
algorithm based on (𝜏, 𝜌)-camp.

3 PROBLEM DEFINITION
In this section, we introduce the relevant concepts, especially define
the (𝜏, 𝜌)-camp community model and give the formal definition
for the community search problem.

For generality, we extract the network to a simple undirected
graph. Let 𝐺 = (𝑉 , 𝐸) be a graph, where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the
set of vertices, 𝑛 is the vertex number, 𝐸 = {𝑒1, . . . , 𝑒𝑚} is the set of
edges,𝑚 is the number of edges, and ∀𝑒𝑘 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 .
∀𝑣𝑖 ∈ 𝑉 , 𝑁𝑒𝑖 (𝑣𝑖 ) = {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸} is the neighbor set, and
𝑑 (𝑣𝑖 ) = |𝑁𝑒𝑖 (𝑣𝑖 ) | is the degree.

Definition 1. Community. Given a graph 𝐺 , 𝐶 is a connected
subgraph in 𝐺 . If the vertices in 𝐶 are densely connected to each
other and sparsely connected to other vertices outside 𝐶 , 𝐶 is called a
community in 𝐺[10].

To design the community model to capture the complex network
semantics, we first decompose the network semantics into two
types from the perspective of users, i.e., the semantics of direct
interaction and indirect interaction. The direct interaction refers
to the friendship between users. At the meantime, users also pay
attention to the indirect interaction in social networks. For exam-
ple, users indirectly interact with others by browsing on the same
videos, or following the same influencers. Inspired by the induction,
we describe the two semantics by the simplest closed circulars,
triangle and quadrangle, to form the community model. Based on
the concept of triangle [30], we utilize the concept of support [16]
to describe the cohesion degree of direct interaction for an edge,
which we rename triangle support.

Definition 2. Triangle Support [16]. In a graph 𝐺 , a triangle
is a cycle of length 3. ∀𝑒 ∈ 𝐸, the triangle support of 𝑒 is the number
of triangles that contain 𝑒 in 𝐺 , denoted by 𝑡𝑠𝑢𝑝 (𝑒,𝐺). The support
of 𝑒 in a subgraph 𝐶 is similarly defined and denoted by 𝑡𝑠𝑢𝑝 (𝑒,𝐶).

To describe the indirect interaction semantics, we concern two
perspectives. From the intuitive perspective, two users are more
probabilistic to fall into one community if they browse or follow
a number of same contents or influencers, while quadrangle (a
circle of length 4) is the basic closed circular of such co-browsing
or co-following relationships. From the theoretical perspective, we
adopt the key idea of relaxation. There will be few triangles in the
case of indirect interaction. So we combine two triangles and break
the constraint of the overlapping edge to relax to a quadrangle to
model the indirect interaction. Moreover, it is proven that triangle
and quadrangle are the basic shapes to form any convex polygons
by relaxation [7]. Then, we present quadrangle support to describe
the cohesion degree of indirect interaction semantics for an edge.

Definition 3. Quadrangle. For any four vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈
𝑉 in the given graph𝐺 , suppose that 𝑣1 is the vertex with the minimal
vertex id. If (𝑣1, 𝑣2) ∈ 𝐸, (𝑣2, 𝑣3) ∈ 𝐸, (𝑣3, 𝑣4) ∈ 𝐸 and (𝑣4, 𝑣1) ∈ 𝐸, we
call (𝑣1, 𝑣2, 𝑣3, 𝑣4) a quadrangle, where the vertex id of 𝑣2 is assumed
to be smaller than that of 𝑣4.

Definition 4. Quadrangle Support. Given a graph 𝐺 , for ∀𝑒 ∈
𝐸, the quadrangle support of 𝑒 is the number of quadrangles that
contain 𝑒 in 𝐺 , denoted by 𝑞𝑠𝑢𝑝 (𝑒,𝐺). The quadrangle support of 𝑒
in a subgraph 𝐶 is similarly defined and denoted by 𝑞𝑠𝑢𝑝 (𝑒,𝐶).

By integrating the two supports, we present the concept of uni-
fied support to represent the unified cohesion degree of a commu-
nity in the aspect of complex network semantics.

Definition 5. Unified Support.Given a community𝐶 = (𝑉𝐶 , 𝐸𝐶 ),
for ∀𝑒 ∈ 𝐸𝐶 , the sum of the triangle support and the quadrangle sup-
port is computed, and the unified support of 𝐶 is the minimum of the
sums, denoted by 𝑢𝑠𝑢𝑝 (𝐶), i.e.,

𝑢𝑠𝑢𝑝 (𝐶) = min
𝑒∈𝐸𝐶

(
𝑡𝑠𝑢𝑝 (𝑒,𝐶) + 𝑞𝑠𝑢𝑝 (𝑒,𝐶)

)
Please note that we treat triangle support and quadrangle support

equally in the above equation, since the two interaction semantics
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are considered of equal importance for community cohesion here.
In future work, the two supports can be also allocated with different
weights in this equation according to different scenarios. Based on
the two supports, we give the definition of (𝜏, 𝜌)-camp community
model, where camp refers to a triangle on top of a quadrangle.

Definition 6. (𝜏, 𝜌)-camp. Given a graph 𝐺 , two positive inte-
gers 𝜏 and 𝜌 , a subgraph 𝐶 = (𝑉𝐶 , 𝐸𝐶 ) ∈ 𝐺 is called a (𝜏, 𝜌)-camp if
(1) ∀𝑒 ∈ 𝐸𝐶 , 𝑡𝑠𝑢𝑝 (𝑒,𝐶) ≥ 𝜏 or 𝑞𝑠𝑢𝑝 (𝑒,𝐶) ≥ 𝜌 ; (2) 𝐶 is maximal, i.e.,
any supergraph𝐶′ ⫌ 𝐶 is not a (𝜏, 𝜌)-camp. The granularities on the
two semantics are expressed by 𝜏 and 𝜌 .

Next, we formally define the Complex-Semantics based Com-
munity Search problem, CSCS for short.

Definition 7. CSCS Problem.Given a graph𝐺 = (𝑉 , 𝐸), a query
vertex set 𝑄 ⊆ 𝑉 , and two positive integers 𝜏, 𝜌 , the CSCS problem is
to find the (𝜏, 𝜌)-camp community𝐶 containing all the query vertices.

By the expression of the CSCS problem, users can request for
communities with personalized semantics by arbitrarily adjusting
the values of 𝜏 and 𝜌 . However, most of the users may be not fa-
miliar with the networks and can not provide the exact values
of 𝜏 and 𝜌 . Consequently, we will provide the users with the co-
hesive communities with the densest network semantics, i.e., the
highest unified support. Then, we propose the Unified-Support
maximized Community Search problem, USCS for short.

Definition 8. USCS Problem.Given a graph𝐺 = (𝑉 , 𝐸), a query
vertex set 𝑄 ⊆ 𝑉 and a positive integer 𝛼 ≤ |𝑉 |, the USCS problem is
to find the (𝜏, 𝜌)-camp community 𝐶𝑄 = (𝑉𝐶 , 𝐸𝐶 ) with the highest
unified support satisfying |𝑉𝐶 | ≥ 𝛼 and 𝑄 ⊆ 𝑉𝐶 .

To analyze the complexity of the USCS problem, we define the
decision problem corresponding to USCS, called USCSD, which we
prove a NP-hard problem in the following.

Definition 9. USCSD Problem. Given a graph 𝐺 = (𝑉 , 𝐸), two
positive integers 𝛼 ≤ |𝑉 | and 𝜇, the USCSD problem is to identify if
there is a (𝜏, 𝜌)-camp community 𝐶 = (𝑉𝐶 , 𝐸𝐶 ) with |𝑉𝐶 | ≤ 𝛼 such
that 𝑢𝑠𝑢𝑝 (𝐶) ≥ 𝜇.

Theorem 1. The USCSD problem is NP-hard.

Proof. We will prove that the USCSD problem is NP-hard by
reducing from the CLIQUE problem [14], which is a classical NP-
complete problem. A CLIQUE instance can be represented by 𝜙 =

(𝐺1, 𝑐), where𝐺1 = (𝑉1, 𝐸1),𝑉1 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑉1 | },𝐸1 = {𝑒1, 𝑒2, . . . ,
𝑒 |𝐸1 | }, and 𝑐 ≤ |𝑉 | is an positive integer. The CLIQUE problem is
to determine if there is a clique of size 𝑐 , i.e., a subset 𝑉 ′ ⊆ 𝑉1 with
|𝑉 ′ | = 𝑐 such that every two vertices in 𝑉 ′ are joined by an edge
in 𝐸1. To build an instance 𝐼 = (𝐺, 𝛼, 𝜇) of the USCSD problem, the
reduction includes the following steps.

(1) Let 𝐺 = 𝐺1; (2) Let 𝛼 = 𝑐; (3) Let 𝜇 = (𝑐 − 2)2.
Obviously, the reduction can be completed within polynomial

time. Then, we need to show the correctness of the reduction. That
is, the CLIQUE instance 𝜙 has a clique of size 𝑐 if and only if the
USCSD instance 𝐼 has a (𝜏, 𝜌)-camp community with size not ex-
ceeding 𝛼 and 𝑢𝑠𝑢𝑝 (𝐶) ≥ 𝜇.
⇒ If𝜙 has a clique of size 𝑐 , we can find a (𝜏, 𝜌)-camp community

with size no larger than 𝛼 such that 𝑢𝑠𝑢𝑝 (𝐶) ≥ 𝜇. For each (𝑢, 𝑣)

in the clique, we can find that it is contained in 𝜏 = 𝑐 − 2 triangles,
and 𝜌 = A2

𝑐−2 quadrangles. Hence, if 𝜙 has a clique of size 𝑐 , then
the clique is a (𝜏, 𝜌)-camp community 𝐶 with size no larger than 𝛼

that satisfies 𝑢𝑠𝑢𝑝 (𝐶) ≥ 𝜇.
⇐ If 𝐼 has a (𝜏, 𝜌)-camp community𝐶 with size no larger than 𝛼

and 𝑢𝑠𝑢𝑝 (𝐶) ≥ 𝜇, we can find a clique of size 𝑐 . In the community,
the unified support of each edge (𝑢, 𝑣) is no less than 𝜇 = (𝑐 − 2)2.
Namely, besides 𝑢 and 𝑣 , as long as we repeatedly select twice from
the other vertices, therewill be a triangle or quadrangle. Particularly,
if the two selected vertices are the same, a triangle is formed with
𝑢 and 𝑣 . There are 𝑐 − 2 cases that the two selected vertices are the
same. Namely, each of the other 𝑐 − 2 vertices is connected to 𝑢 and
𝑣 . Thus, the community is a clique of size 𝑐 .

Hence, we have proven the USCSD problem is NP-Hard. □

4 (𝜏, 𝜌)-CAMP INDEX
To efficiently solve the proposed community search problem, we
design and construct an index for (𝜏, 𝜌)-camp communities in this
section. Based on the index, we can quickly find the required (𝜏, 𝜌)-
camp communities for users.

4.1 Evolution Tree
As the basis of index construction, we first present a new structure
named evolution tree. It can help to order the network semantics
from coarse-grain to fine-grain, so as to capture the evolution trend
of the network semantics. We first define the concept of evolution
for (𝜏, 𝜌)-camp community model, then build the evolution tree.

Definition 10. Evolution. For a (𝜏, 𝜌)-camp, the evolution refers
to a further strengthening of its constraints. Specifically, its possible
evolution directions are either (𝜏 + 1, 𝜌)-camp that makes striker con-
straints on triangle support from the perspective of direct interaction
semantics, or (𝜏, 𝜌 + 1)-camp with striker constraints on quadrangle
support from the perspective of indirect interaction semantics.

1𝑇1Q

1T2Q 2T1Q

1T3Q 2T2Q 3T1Q

2T3Q1T4Q 3T2Q 4T1Q
… … … …

Figure 2: The evolution tree.

As shown in Figure 2, the most relaxed version of (𝜏, 𝜌)-camp is
(1, 1)-camp, denoted as 1𝑇 1𝑄 for short, where ’𝑇 ’ refers to triangle
support and ’𝑄 ’ represents quadrangle support. By making striker
restrictions for 1𝑇 1𝑄 , it evolves into 2𝑇 1𝑄 or 1𝑇 2𝑄 . Similarly, 2𝑇 1𝑄
can evolve into 3𝑇1𝑄 and 2𝑇2𝑄 , and 1𝑇2𝑄 grows into 2𝑇2𝑄 and
1𝑇3𝑄 . We repeatedly execute the above steps and generate the
evolution tree shown in Figure 2. As the level increases, the network
semantics gets more fine-grained on the aspect of either direct or
indirect interaction semantics. We can achieve any granularity
combination of the two semantics by using the evolution tree.

Following the evolution tree, the (𝜏, 𝜌)-camp community is proven
to have the nested property in Theorem 2. Based on this property,
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(a) The (𝜏, 𝜌 )-camp communities
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(b) The constructed index

Figure 3: An illustration of the (𝜏, 𝜌)-camp index.

we can get the (𝜏, 𝜌)-camp communities by recursive decomposi-
tion and build index on them for efficient community search.

Theorem 2. Given a (𝜏, 𝜌)-camp community𝐶 = (𝑉𝐶 , 𝐸𝐶 ), where
𝜏 > 0, 𝜌 > 0, let 𝐶′ = (𝑉𝐶′ , 𝐸𝐶′ ) be a (𝜏 + 1, 𝜌)-camp or (𝜏, 𝜌 + 1)-
camp community evolving from 𝐶 . Then, we have 𝑉𝐶′ ⊆ 𝑉𝐶 and
𝐸𝐶′ ⊆ 𝐸𝐶 , i.e., 𝐶′ is nested within 𝐶 .

proof sketch. By enumerating the cases of (𝜏 +1, 𝜌)-camp and
(𝜏, 𝜌+1)-camp, it is proven 𝐸𝐶′ ⊆ 𝐸𝐶 and𝑉𝐶′ ⊆ 𝑉𝐶 by using stricter
constraints on either triangle support or quadrangle support. □

Theorem 3. The diameter of a (𝜏, 𝜌)-camp community 𝐶 with
𝑚𝐶 edges is bounded by 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝐶 ≤ max{ 2(𝑚𝐶−1)

𝜏 ,
2(𝑚𝐶−1)

𝜌+2 }.

proof sketch. Similar to the proof of the diameter upper bound
on 𝑘-truss [4], we compute the diameter upper bound for a (𝜏,∞)-
camp, 2(𝑚𝐶−1)

𝜏 , and for a (∞, 𝜌)-camp community, 2(𝑚𝐶−1)
𝜌+2 . □

4.2 Index Model
This subsection introduces the index model for (𝜏, 𝜌)-camp com-
munities, called 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 , for efficient community search.

Following the evolution tree, the given graph 𝐺 can be decom-
posed into nested (𝜏, 𝜌)-camp communities with different values
of 𝜏 and 𝜌 , based on which 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 is built. Specifically, 𝑇𝑄𝐼𝑛𝑑𝑒𝑥
consists of two parts, i.e., an index tree and a map, denoted as:

𝑇𝑄𝐼𝑛𝑑𝑒𝑥 = (𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒,𝑀𝑎𝑝,𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙)
𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 = (𝑟𝑜𝑜𝑡,𝑇𝑄𝐶𝑜𝑚, 𝑅)
𝑀𝑎𝑝 = {⟨𝑣,𝐶𝑆𝑒𝑡⟩ |∀𝐶 ∈ 𝐶𝑆𝑒𝑡 , 𝐶 is a leaf containing 𝑣}.

In 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 , 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 is an index tree built on multiple (𝜏, 𝜌)-
camp communities. Specifically, 𝑟𝑜𝑜𝑡 is the root node of 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 ,
i.e., the graph𝐺 . The other nodes in 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 represent the (𝜏, 𝜌)-
camp communities, storing in the community set 𝑇𝑄𝐶𝑜𝑚. Follow-
ing the evolution tree, the communities can be decomposed into
smaller nested communities with stricter restrictions, i.e., bigger
value of 𝜏 or 𝜌 . 𝑅 stores the nested relationships between the com-
munities. When the communities reach the maximal level𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙

or can not be decomposed further, they are the leaves of 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 .
Obviously, for a (𝜏, 𝜌)-camp community, its level is 𝜏 + 𝜌 . Each
vertex is mapped to the leaf communities that contain it, and𝑀𝑎𝑝

stores the mappings. Next, we give an illustration of 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 .

Example 1. As shown in Figure 3(a), given a graph 𝐺 with ver-
tices {1, 2, 3, 4, 5, 6, 7, 8}, it is a native (1,1)-camp community. Then, it
can be decomposed into two (1,2)-camp communities {1, 2, 3, 4, 5} and

𝑨𝟏𝑨𝟐 𝑩𝟏 𝑩𝟐

𝑬𝑪

Figure 4: An illustration for the proof of Lemma 1.

{6, 7, 8}, or decomposed into one (2,1)-camp community {1, 2, 3, 4, 5, 6, 8}.
Furthermore, the (1,2)-camp community {6, 7, 8} is also (1,3)-camp.
The (1,2)-camp community {1, 2, 3, 4, 5} is also (2,2)-camp, and can
evolve into (1,3)-camp community {2, 3, 4, 5}. Let𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙 = 4. The
nested relationships form the index tree in Figure 3(b), and the vertices
are mapped to the leaf communities that contain them. E.g., the vertex
6 is mapped to (1,3)-camp {6, 7, 8} and (3,1)-camp {1, 2, 3, 4, 5, 6, 8}.

Lemma 1. Given a (𝜏, 𝜌)-camp community 𝐶 = (𝑉𝐶 , 𝐸𝐶 ), there
are two paths to generate the (𝜏+1, 𝜌+1)-camp communities along the
evolution tree, i.e., 𝑝𝑎𝑡ℎ1: 𝜏𝑇 𝜌𝑄 → (𝜏 + 1)𝑇𝜌𝑄 → (𝜏 + 1)𝑇 (𝜌 + 1)𝑄 ,
or 𝑝𝑎𝑡ℎ2: 𝜏𝑇 𝜌𝑄 → 𝜏𝑇 (𝜌 + 1)𝑄 → (𝜏 + 1)𝑇 (𝜌 + 1)𝑄 . The generated
(𝜏 + 1, 𝜌 + 1)-camp communities along the two paths are the same.

Proof. Let 𝐴1 be the set of edges whose triangle supports are
𝜏 in 𝐶 . When first making stricter constraints on triangle support
(i.e., (𝜏 + 1)𝑇𝜌𝑄), 𝐴1 should be deleted. Due to the deletion of 𝐴1,
some edges’ supports change and may also be deleted. Similarly,
some other edges continue to be deleted due to the deletion of the
affected edges. This procedure continues until there are no more
edges to be deleted. The set of all the deleted edges is denoted as
𝐴2. Obviously, 𝐴1 ⊆ 𝐴2. 𝐵1 and 𝐵2 are similarly defined when first
making stricter constraints on quadrangle support (i.e., 𝜏𝑇 (𝜌 +1)𝑄).
As shown in Figure 4, 𝐴1 and 𝐴2 may intersect with 𝐵1 and 𝐵2.

Along 𝑝𝑎𝑡ℎ1, we first delete 𝐴2 from the edge set 𝐸𝐶 of the
community𝐶 at the step of (𝜏 + 1)𝑇𝜌𝑄 . When deleting𝐴2, a subset
of 𝐵2 is deleted, i.e.,𝐴2 ∩𝐵2. At the second step of (𝜏 + 1)𝑇 (𝜌 + 1)𝑄 ,
we delete 𝐵2 −𝐴2 from the remained edge set 𝐸 −𝐴2, so we finally
get the edge set 𝐸 −𝐴2 ∪ 𝐵2 for the (𝜏 + 1, 𝜌 + 1)-camp community
along 𝑝𝑎𝑡ℎ1. Similarly, it is proven that we also get 𝐸 − 𝐵2 ∪𝐴2 for
the (𝜏 + 1, 𝜌 + 1)-camp along 𝑝𝑎𝑡ℎ2. Hence, Lemma 1 is proven. □

Based on Lemma 1, we can obtain the following theorem.

Theorem 4. Based on the evolution tree, the given graph 𝐺 is
inputted and follows several paths, e.g.,
𝑝𝑎𝑡ℎ1 : 1𝑇 1𝑄 → · · · → (𝜏 − 1)𝑇𝜌𝑄 → 𝜏𝑇 𝜌𝑄 ,
𝑝𝑎𝑡ℎ2 : 1𝑇 1𝑄 → · · · → 𝜏𝑇 (𝜌 − 1)𝑄 → 𝜏𝑇 𝜌𝑄 , . . . ,
to get the (𝜏, 𝜌)-camp communities. Then, for all the possible paths,
the obtained communities are the same.

Proof. In each step, if making stricter restrictions on triangle
support, ’𝑇 ’ is used to represent this step, otherwise ’𝑄 ’ is used. In
this way, each path is translated to a sequence of ’𝑇 ’s and ’𝑄 ’s whose
numbers are 𝜏 and 𝜌 , respectively. In Lemma 1, we have proved that
𝑇𝑄 = 𝑄𝑇 if starting from a same community, so 𝑇𝑄𝑇𝑄 = 𝑇𝑇𝑄𝑄 .

For each path, i.e., a sequence composed of ’𝑇 ’s and ’𝑄 ’s, we find
the position of 𝑄𝑇 , and exchange them. This operation is repeated
until there is no 𝑄𝑇 . At this time, we transform the sequence to,

𝑇 · · ·𝑇︸ ︷︷ ︸
𝜏

𝑄 · · ·𝑄︸  ︷︷  ︸
𝜌
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Hence, the obtained (𝜏, 𝜌)-camp communities along all the possible
paths are the same. □

4.3 Index Construction
After introducing the (𝜏, 𝜌)-camp index model, we propose the
index construction algorithm. Based on the nested property, the
algorithm obtains the nested communities following the evolution
tree. Specifically, this algorithm mainly contains three steps. In the
first step, it computes the triangle support and quadrangle support
for each edge. In the second step, it decomposes the graph along
the evolution tree to achieve all the (𝜏, 𝜌)-camp communities no
exceeding the maximal level. In the third step, it builds the index
upon the communities. Next, we introduce the algorithm in details.

4.3.1 Algorithm description. The formal description of the index
construction algorithm is shown in Algorithm 1. The input is the
graph 𝐺 and the maximal level of the index tree𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙 , and the
output is the built index 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 . The root of the index tree is set
as the biggest community, i.e., the graph 𝐺 (line 1). In the first step
of computing the triangle support and quadrangle support, we find
the neighbors for each vertex (line 2-3). For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸,
its triangle support is the size of the intersection of 𝑁𝑒𝑖 (𝑢) and
𝑁𝑒𝑖 (𝑣) (line 5). To count the quadrangle support, we enumerate
each neighbor of 𝑢, denoted as 𝑣 ′, and accumulate the size of the
intersection of 𝑁𝑒𝑖 (𝑣) and 𝑁𝑒𝑖 (𝑣 ′) (line 6-8).

In the second step, we first push the biggest community, 𝐺 , into
the queue of communities to be decomposed (line 9). When the
queue is not empty, we pop a (𝜏, 𝜌)-camp community𝐶 = (𝑉𝐶 , 𝐸𝐶 )
from the queue for decomposition along two evolution directions
explained as below. When improving triangle support, we find the
edges that do not satisfy the constraints of (𝜏+1, 𝜌)-camp.We delete
these edges, and the triangles and quadrangles containing the edges
will disappear. Then, the triangle/quadrangle supports of other
edges in those triangles/quadrangles will decrease. As such, some
of those affected edges should also be deleted. The above procedure
is repeatedly executed until there is no edge to delete (line 14-19).
When improving quadrangle support, we similarly delete the edges
whose triangle supports are less than 𝜏 and quadrangle supports
are less than 𝜌 +1 (line 20-25). The sets of remained edge for the two
cases are denoted as 𝐸1, 𝐸2. The connected algorithm is processed
on 𝐸1 and 𝐸2 to get the new (𝜏 + 1, 𝜌)-camp and (𝜏, 𝜌 + 1)-camp
communities, each of which is pushed into the queue if lower than
𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙 (line 26). The loop is executed until the queue is empty.

In the third step, the communities and their relationships form
the index tree, and the vertices aremapped to their leaf communities
(line 27 ). Finally, the built index 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 is outputted (line 28).

Please notice that for a (𝜏, 𝜌)-camp community with 𝜏 > 1 and
𝜌 > 1, it can be either evolved from its parent (𝜏 − 1, 𝜌)-camp
community or (𝜏, 𝜌 − 1)-camp community. Hence, we only need to
generate this (𝜏, 𝜌)-camp community from either of its two parents.
We store the community ids of the community nodes in the index
tree in memory for efficient search. The edges of the communities
are stored on disk. Next, we illustrate the index construction steps.

Example 2. To continue with Example 1, the graph 𝐺 contains
vertices {1, 2, 3, 4, 5, 6, 7, 8} as shown on the top of Figure 3(a). Along
the evolution tree, we first delete the edges in𝐺 whose triangle supports
are less than 1 and quadrangle supports are less than 1, and obtain

Algorithm 1: (𝜏, 𝜌)-camp index construction algorithm
Input: The graph 𝐺 = (𝑉 , 𝐸), the maximal level𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙 .
Output: The index 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 = (𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒, 𝑀𝑎𝑝).

1 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒.𝑟𝑜𝑜𝑡 ← 𝐺

/* Step 1. compute the two supports */

2 for 𝑣𝑖 ∈ 𝑉 do
3 𝑁𝑒𝑖 (𝑣𝑖 ) ← {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 𝑜𝑟 (𝑣 𝑗 , 𝑣𝑖 ) ∈ 𝐸}
4 for 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do
5 𝑡𝑠𝑢𝑝 (𝑒,𝐺) ← |𝑁𝑒𝑖 (𝑢) ∩ 𝑁𝑒𝑖 (𝑣) |
6 𝑞𝑠𝑢𝑝 (𝑒,𝐺) ← 0
7 for 𝑣 ′ ∈ 𝑁𝑒𝑖 (𝑢) do
8 𝑞𝑠𝑢𝑝 (𝑒,𝐺) ← 𝑞𝑠𝑢𝑝 (𝑒,𝐺) + |𝑁𝑒𝑖 (𝑣) ∩ 𝑁𝑒𝑖 (𝑣 ′) | − 1

/* Step 2. generate (𝜏, 𝜌)-camp communities */

9 𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝐺)
10 while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do
11 𝐶 = (𝑉𝐶 , 𝐸𝐶 ) ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
12 𝜏 ← 𝐶.𝑡𝑟𝑢𝑠𝑠𝑙𝑒𝑣𝑒𝑙, 𝜌 ← 𝐶.𝑞𝑢𝑎𝑑𝑙𝑒𝑣𝑒𝑙

13 𝐸1 ← 𝐸𝐶 , 𝐸2 ← 𝐸𝐶

14 while ∃𝑒 ∈ 𝐸1, 𝑡𝑠𝑢𝑝 (𝑒) < 𝜏 + 1 and 𝑞𝑠𝑢𝑝 (𝑒) < 𝜌 do
15 remove 𝑒 from 𝐸1
16 for each edge in a same triangle with 𝑒 do
17 𝑡𝑠𝑢𝑝 (𝑒′, 𝐸1) ← 𝑡𝑠𝑢𝑝 (𝑒′, 𝐸1) − 1
18 for each edge in a same quadrangle with 𝑒 do
19 𝑞𝑠𝑢𝑝 (𝑒′, 𝐸1) ← 𝑞𝑠𝑢𝑝 (𝑒′, 𝐸1) − 1

20 while ∃𝑒 ∈ 𝐸2, 𝑞𝑠𝑢𝑝 (𝑒) < 𝜌 + 1 and 𝑡𝑠𝑢𝑝 (𝑒) < 𝜏 do
21 remove 𝑒 from 𝐸2
22 for each edge in a same triangle with 𝑒 do
23 𝑡𝑠𝑢𝑝 (𝑒′, 𝐸2) ← 𝑡𝑠𝑢𝑝 (𝑒′, 𝐸2) − 1
24 for each edge in a same quadrangle with 𝑒 do
25 𝑞𝑠𝑢𝑝 (𝑒′, 𝐸2) ← 𝑞𝑠𝑢𝑝 (𝑒′, 𝐸2) − 1

26 get connected subgraphs from 𝐸1, 𝐸2, and push the
subgraphs lower than𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙 into 𝑞𝑢𝑒𝑢𝑒

/* Step 3. build (𝜏, 𝜌)-camp index */

27 build 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 and𝑀𝑎𝑝

28 return 𝑇𝑄𝐼𝑛𝑑𝑒𝑥

the (1,1)-camp community which is also 𝐺 . To obtain (1,2)-camp
communities, the edges whose quadrangle supports are less than 2 and
triangle supports are less than 1 are recursively deleted. The deleted
edges are (5,6) and (3,8), and two subgraphs are built by the remained
edges, which are (1,2)-camp communities {1,2,3,4,5} and {6,7,8}. Also, to
obtain (2,1)-camp communities, the edges whose triangle supports are
less than 2 and quadrangle supports are less than 1 are deleted, which
are (6,7) and (7,8). We can get the (2,1)-camp community {1,2,3,4,5,6,8}.
It continues until reaching the maximal level. Finally, we can build the
index tree andmap the vertices to their leaf communities in Figure 3(b).

By using the built index, 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 , we can figure out the target
communities to satisfy users’ personalized requirements for com-
munities with specific network semantics by inputting the query
vertices and the values of 𝜏 , 𝜌 , helping to solve the CSCS problem.
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4.3.2 Complexity analysis. We analyze the time complexity and
space complexity of the index construction algorithm.

Theorem 5. The time complexity of the (𝜏, 𝜌)-camp index con-
struction algorithm is 𝑂 (𝑚), where𝑚 is the number of edges in 𝐺 .

Proof. We first analyze the time cost of the first step in Algo-
rithm 1, which mainly depends on the enumeration of triangles
and quadrangles. To compute the triangle support for each edge
𝑒 = (𝑢, 𝑣) ∈ 𝐸, it costsmin{𝑑 (𝑢), 𝑑 (𝑣)} time to enumerate the trian-
gles containing 𝑒 . To compute the quadrangle support for 𝑒 , it costs∑

𝑣′∈𝑁𝑒𝑖 (𝑢 ) min{𝑑 (𝑣), 𝑑 (𝑣 ′)} time to enumerate the quadrangles
containing 𝑒 . To sum up, the time cost of the first step is,∑︁

(𝑢,𝑣) ∈𝐸

(
min{𝑑 (𝑢), 𝑑 (𝑣)} +

∑︁
𝑣′∈𝑁𝑒𝑖 (𝑢 )

min{𝑑 (𝑣), 𝑑 (𝑣 ′)}
)

where 𝑑 (𝑢) is the degree of 𝑢. The extremum of the vertex degree
is a constant [13], thus the first step spends 𝑂 (𝑚) time.

In the second step, there are𝑘 times of decomposition to generate
the 𝑘-th level. Then, the deleted edges, triangles and quadrangles
will be deleted at most 𝑘 times, where 𝑘 ≤ 𝑙 and 𝑙 is the extremum
of𝑀𝑎𝑥𝑙𝑒𝑣𝑒𝑙 , i.e., the maximum of the possible levels in 𝐼𝑛𝑑𝑒𝑥𝑇𝑟𝑒𝑒 . 𝑙
is smaller than the summation of the maximal triangle support and
the maximal quadrangle support. So, 𝑙 depends on the degree and
is a constant. Since enumerating all the triangles and quadrangles
costs 𝑂 (𝑚) time, the second step spends 𝑂 (𝑙𝑚) = 𝑂 (𝑚) time.

Then, we analyze the third step. There are 2(1+2+3+· · ·+𝑙−1) =
𝑂 (𝑙2) branches in the evolution tree. Please note that the diameter
of a (𝜏, 𝜌)-camp 𝐶 is 𝑂 (𝑚𝐶

𝑘
), where 𝑘 = min{𝜏, 𝜌}, and𝑚𝐶 is the

number of edges in 𝐶 . Thus, if a (𝜏, 𝜌)-camp community evolves
into several (𝜏 + 1, 𝜌)-camp or (𝜏, 𝜌 + 1)-camp communities, the
number of the obtained connected communities can be considered
as a constant. Hence, there are totally 𝑂 (𝑙2) relationships between
communities in the index tree. Each vertex is mapped to at most 𝑙
leaf communities, so the mapping costs 𝑂 (𝑙𝑛) = 𝑂 (𝑛) time, where
𝑛 ≤ 𝑚 + 1 is the number of vertices in the connected graph 𝐺 .

In summary, the time complexity of the index construction algo-
rithm is 𝑂 (𝑚), where𝑚 is the number of edges in 𝐺 . □

Theorem 6. The space complexity of the (𝜏, 𝜌)-camp index con-
struction algorithm is 𝑂 (𝑚), where𝑚 is the edge number of 𝐺 .

Proof. The space cost of the first step mainly lies on the storing
of the neighbors. Since the degree is a constant, the first step occu-
pies 𝑂 (𝑛) space, where 𝑛 is the vertex number in 𝐺 . In the second
step, the enumeration of all the triangles and quadrangles is 𝑂 (𝑚).
The space cost of the queue is 𝑂 (𝑙𝑚). Then, the second steps occu-
pies 𝑂 (𝑙𝑚) = 𝑂 (𝑚) space. In the third step, the number of all the
(𝜏, 𝜌)-camp communities in the index tree is 1+2+3+· · ·+𝑙 = 𝑂 (𝑙2),
so storing their ids costs𝑂 (𝑙2) space. Because there are totally 2(2+
3 + · · · + 𝑙 − 1) = 𝑂 (𝑙2) relationships between communities, it costs
𝑂 (𝑙2) space to store the relationships. Since each vertex is mapped
to at most 𝑙 leaf communities, it costs 𝑂 (𝑙𝑛) space to store the
mappings. Thus, the third step occupies 𝑂 (𝑙𝑛 + 𝑙2) = 𝑂 (𝑛) space.

Hence, the index construction algorithm costs 𝑂 (𝑚) space. □

5 COMMUNITY SEARCH METHOD
In this section, we present the community search algorithm to
return the target communities to users.We first solve the basic CSCS

problem. Then, we optimize the index structure, and present the
Unified-Support maximized Community Search Algorithm,
USCSA for short, to solve the USCS problem.

5.1 Basic Community Search
Based on the index 𝑇𝑄𝐼𝑛𝑑𝑒𝑥 , we can find the target communities
to satisfy users’ personalized requirements for communities with
specific network semantics, so as to solve the CSCS problem. Given
the values of 𝜏 , 𝜌 and a query 𝑞, we find the ancestor (𝜏, 𝜌)-camp
community 𝐶′𝑣 for the mapped communities of the query vertices.
The target community should be the intersection of all the {𝐶′𝑣}.

It can be seen that if all the𝐶′𝑣 corresponding to the query vertices
are the same, this community is the target community. Otherwise,
the target community is empty, and can not satisfy user’s personal-
ized requirement. Moreover, most users are not capable to know
the exact values of 𝜏 and 𝜌 since they do not have the background
knowledge. Thus, we present the USCS problem which is defined
in Section 3. It aims to find the most cohesive community with
maximized unified network semantics for the given query, while
the user do not need to provide the values of 𝜏 and 𝜌 in prior.

5.2 Optimized Community Search
To return the communities that can reflect the network properties
to users, we find the communities with the maximized unified
network semantics. We first introduce the basic idea to solve the
USCS problem, then propose the community search algorithm.

5.2.1 Basic idea. In order to efficiently solve the NP-hard USCS
problem, we intend to leverage the hierarchy characteristics of the
(𝜏, 𝜌)-camp index, and design an approximation algorithm to solve
the USCS problem in linear time.

We adopt the key idea of greedy strategy to design the approxi-
mation algorithm. For each current (𝜏, 𝜌)-camp community, we can
generate new communities along two evolution directions, which
have different unified supports. To address the USCS problem, we
only want to find the communities with the densest network seman-
tics, i.e., maximized unified support, for the query vertices. Hence,
we adopt the greedy strategy that compares the unified supports of
the communities along the two directions, and choose the direction
with higher unified support in each step. As such, we can always
achieve the most cohesive communities in the current step. The
generated communities in different levels form the optimized evo-
lution paths, which compose of a subtree in the index tree. In the
subtree, the communities are regarded to have the approximately
maximized unified supports for their vertices in the current levels.

5.2.2 Community search algorithm. Based on the basic idea, we
propose the optimized index construction algorithm to get the
optimized index. The input of the algorithm is the graph 𝐺 . The
output is the optimized index denoted as 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 , and it includes
two parts, i.e., the optimized subtree denoted by 𝑜𝑝𝑡𝑇𝑟𝑒𝑒 , and the
map denoted by 𝑜𝑝𝑡𝑀𝑎𝑝 , which stores the mappings from the
vertices to their leaf communities in 𝑜𝑝𝑡𝑇𝑟𝑒𝑒 .

𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 = (𝑜𝑝𝑡𝑇𝑟𝑒𝑒, 𝑜𝑝𝑡𝑀𝑎𝑝)
𝑜𝑝𝑡𝑇𝑟𝑒𝑒 = (𝑟𝑜𝑜𝑡, 𝑜𝑝𝑡𝐶𝑜𝑚, 𝑜𝑝𝑡𝑅)
𝑜𝑝𝑡𝑀𝑎𝑝 = {⟨𝑣, 𝑜𝑝𝑡𝐶⟩ | 𝑣 ∈ 𝑜𝑝𝑡𝐶 , ∀𝐶′ ∈ {𝐶𝑖 |𝑣 ∈ 𝐶𝑖 ,𝐶𝑖 ∈

𝑜𝑝𝑡𝐶𝑜𝑚}, 𝑜𝑝𝑡𝐶.𝑙𝑒𝑣𝑒𝑙 ≥ 𝐶′ .𝑙𝑒𝑣𝑒𝑙}.
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Algorithm 2: Optimized index construction algorithm
Input: The graph 𝐺 = (𝑉 , 𝐸).
Output: The optimized index 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 .

1 𝑜𝑝𝑡𝑇𝑟𝑒𝑒.𝑟𝑜𝑜𝑡 ← 𝐺

/* Step 1. compute the two supports */

2 compute the neighbor set 𝑁𝑒𝑖 (𝑣) for each node 𝑣 ∈ 𝑉
3 compute 𝑡𝑠𝑢𝑝 (𝑒) and 𝑞𝑠𝑢𝑝 (𝑒) for each edge 𝑒 ∈ 𝐸
/* Step 2. get optimized (𝜏, 𝜌)-camps */

4 𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝐺)
5 while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do
6 𝐶 = (𝑉𝐶 , 𝐸𝐶 ) ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
7 𝜏 ← 𝐶.𝑡𝑟𝑢𝑠𝑠𝑙𝑒𝑣𝑒𝑙, 𝜌 ← 𝐶.𝑞𝑢𝑎𝑑𝑙𝑒𝑣𝑒𝑙

8 𝐸1 ← 𝐸𝐶 , 𝐸2 ← 𝐸𝐶

9 while ∃𝑒 ∈ 𝐸1, 𝑡𝑠𝑢𝑝 (𝑒) < 𝜏 + 1 and 𝑞𝑠𝑢𝑝 (𝑒) < 𝜌 do
10 remove 𝑒 from 𝐸1
11 update the two supports for the affected edges
12 while ∃𝑒 ∈ 𝐸2, 𝑞𝑠𝑢𝑝 (𝑒) < 𝜌 + 1 and 𝑡𝑠𝑢𝑝 (𝑒) < 𝜏 do
13 remove 𝑒 from 𝐸2
14 update the two supports for the affected edges
15 if 𝑢𝑠𝑢𝑝 (𝐸1) ≥ 𝑢𝑠𝑢𝑝 (𝐸2) then
16 get connected subgraphs from 𝐸1, push into 𝑞𝑢𝑒𝑢𝑒
17 else
18 get connected subgraphs from 𝐸2, push into 𝑞𝑢𝑒𝑢𝑒

/* Step 3. build (𝜏, 𝜌)-camp index */

19 build 𝑜𝑝𝑡𝑇𝑟𝑒𝑒 and 𝑜𝑝𝑡𝑀𝑎𝑝

20 return 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥

The description of the optimized index construction algorithm is
shown in Algorithm 2. Similarly, the algorithm includes three steps.
The root of 𝑜𝑝𝑡𝑇𝑟𝑒𝑒 is set as the graph 𝐺 (line 1). The first step
computes the triangle supports and quadrangle supports for the
edges in𝐺 (line 2-3), which is the samewithAlgorithm 1. The second
step is to generate the optimized communities. The graph 𝐺 is first
put into the queue of communities to be decomposed (line 4). When
decomposing a (𝜏, 𝜌)-camp community popped from the queue, we
generate both the (𝜏, 𝜌 + 1)-camp communities and (𝜏 + 1, 𝜌)-camp
communities in two evolution directions (line 6-14). We determine
the better evolution direction by comparing their unified supports,
then only store and put the communities of the better direction into
the queue (line 15-18). The loop from line 5 to line 18 is continuously
executed till the queue is empty. In the third step, we build 𝑜𝑝𝑡𝑇𝑟𝑒𝑒 ,
and map each vertex to its highest community by 𝑜𝑝𝑡𝑀𝑎𝑝(line 19).
Finally, the optimized index 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 is returned (line 20).

Based on the constructed optimized index, we propose the com-
munity search algorithm to return the target communities with
the highest cohesion degree to users. The Unified-Support maxi-
mized Community Search Algorithm, called USCSA for short,
is described in Algorithm 3.

Algorithm 3 is an approximation algorithm to solve the NP-hard
USCS problem. Its input is the optimized index 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 and the
query set 𝑄 , and the output is the target community with the ap-
proximate maximized unified support. For each query vertex 𝑣 , the

Algorithm 3: Unified-support maximized community
search algorithm, 𝑈𝑆𝐶𝑆𝐴

Input: The optimized index 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 , the query set 𝑄 .
Output: The target community 𝐶 .

1 for 𝑣 ∈ 𝑄 do
2 find its mapped optimized community 𝐶𝑣 by 𝑜𝑝𝑡𝑀𝑎𝑝

3 𝑜𝑝𝑡𝐶 ← the highest common ancestor community of the
communities in {𝐶𝑣 |𝑣 ∈ 𝑄}

4 return 𝑜𝑝𝑡𝐶

algorithm first finds its mapped optimized community𝐶𝑣 according
to the optimized map (line 1-2). Then, the target community 𝑜𝑝𝑡𝐶
is the highest common ancestor community of all the 𝐶𝑣 in the
optimized tree (line 3), and is returned to the user (line 4).

5.2.3 Algorithm analysis. In this part, we analyze the approxima-
tion ratio and time complexity of the 𝑈𝑆𝐶𝑆𝐴 algorithm.

Theorem 7. 𝑜𝑝𝑡𝐶 is an approximate solution for the USCS problem
with the approximation ratio of 2.

Proof. For a given query set 𝑄 , let 𝐴 = 𝑜𝑝𝑡𝐶 be the optimal
approximate solution, which is a (𝜏𝐴, 𝜌𝐴)-camp community with
the unified support of 𝜇𝐴 . Let 𝐷∗ be the optimal solution, which
is a (𝜏∗, 𝜌∗)-camp community with the unified support of 𝜇∗. Let
𝐷 be the highest ancestor optimized community of 𝐴 such that
𝐷∗ ⊆ 𝐷 , called a feasible approximate solution. It is assumed that
𝐷 is a (𝜏𝐷 , 𝜌𝐷 )-camp community with the unified support of 𝜇𝐷 .

First, because 𝐷 is an ancestor of 𝐴, i.e., 𝐴 ⊆ 𝐷 , and

𝜇𝐷 = min
𝑒∈𝐷
(𝑡𝑠𝑢𝑝 (𝑒) + 𝑞𝑠𝑢𝑝 (𝑒)), 𝜇𝐴 = min

𝑒∈𝐴
(𝑡𝑠𝑢𝑝 (𝑒) + 𝑞𝑠𝑢𝑝 (𝑒)),

we have 𝜇𝐷 ≤ 𝜇𝐴 .
Then, let 𝐶 be the child optimized community of 𝐷 in the next

level.𝐶 is either a (𝜏𝐷 +1, 𝜌𝐷 )-camp or a (𝜏𝐷 , 𝜌𝐷 +1)-camp commu-
nity. We first assume𝐶 is a (𝜏𝐷 + 1, 𝜌𝐷 )-camp community. Because
𝐷∗ ⊆ 𝐷 , the edges in 𝐷∗ satisfy either triangle support no less than
𝜏𝐷 or quadrangle support no less than 𝜌𝐷 . Because 𝐷∗ ⊈ 𝐶 , then
∃𝑒 ∈ 𝐷∗ such that 𝑡𝑠𝑢𝑝 (𝑒) = 𝜏𝐷 and 𝑞𝑠𝑢𝑝 (𝑒) < 𝜌𝐷 . Therefore, we
have

𝜇∗ = min
𝑒∈𝐷∗
(𝑡𝑠𝑢𝑝 (𝑒) + 𝑞𝑠𝑢𝑝 (𝑒)) < 𝜏𝐷 + 𝜌𝐷 .

It is also proven for the case that𝐶 is a (𝜏𝐷 , 𝜌𝐷+1)-camp community.
In terms of the feasible approximate solution 𝐷 , it is obvious that
𝜏𝐷 ≤ 𝜇𝐷 and 𝜌𝐷 ≤ 𝜇𝐷 . Then, we have

𝜇∗ < 𝜏𝐷 + 𝜌𝐷 ≤ 2𝜇𝐷 ≤ 2𝜇𝐴, and
𝜇∗

𝜇𝐴
≤ 2.

Hence, we get the approximation ratio 𝛾 = 2. □

5.2.4 Time complexity. If there is only one query vertex, the time
complexity of the 𝑈𝑆𝐶𝑆𝐴 algorithm is 𝑂 (1) by directly finding the
mapped community of the query vertex. Otherwise, we should fur-
ther find the highest common ancestor community for the mapped
communities of the query vertices in 𝑜𝑝𝑡𝐼𝑛𝑑𝑒𝑥 . Recall that the num-
ber of levels in the index tree is a constant. The time complexity of
the𝑈𝑆𝐶𝑆𝐴 algorithm is 𝑂 ( |𝑄 |), linear of the size of the query set.
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6 EXPERIMENTS
6.1 Experimental Setup
Datasets. The experiments adopt four datasets. DBLP [18] and
Youtube [36] are public, while Weibo and Bilibili are collected by
our crawler and desensitized. The details of the datasets are shown
in Table 1. There are both direct and indirect interactions in the four
datasets. In DBLP, there are direct interactions of colleague between
authors, and indirect interaction through cooperating papers. In
Youtube, besides the direct friendships, users also have indirect
interaction through focusing on influencers. With respect to Bilibili
andWeibo, users have indirect interaction through browsing videos
or following influencers besides direct friend relationships.

Table 1: The dataset description.

Dataset HIN Users Contents U-U U-C 𝑑𝑢 𝑑𝑐

DBLP Yes 785,204 1,141,266 283,298 3,042,798 754 114
Youtube No 513,278 0 2,987,624 0 28,754 0
Bilibili Yes 4,854,514 26,531 1,058,376 8,679,490 3,370 9,796
Weibo Yes 1,142,478 1,936,763 163,620 4,023,313 4,378 49,473

Competitors. To compare with 𝑈𝑆𝐶𝑆𝐴, four state-of-the-art com-
munity search methods are adopted, whose details are as below.

•𝐶𝑆𝑅𝑇 𝐼 [34]: It designs a 𝑘-truss index and introduces a relaxed
level of communities obtained by community detection methods.

•𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 [27]: As a traditional search method, it builds an
index through a local exploration of 𝑘-core community.

• 𝐶𝑆𝑆𝐻 [18]: It is a meta-path based community search method
over large star-schema heterogeneous networks.

• 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 [21]: It finds the butterfly motif (i.e., 2,2-bicliques)
based communities with restrictions on edges in bipartite graphs,
and achieves a high degree of parallelism to speed up searching.

•𝑇 𝐼𝑃 [25]: It is a peeling algorithm to find communities by using
butterfly motif to measure vertex participations in bipartite graphs.

• 𝐻𝐶𝐵𝑈 [32]: It discovers the bipartite hierarchy and build index
for efficient community search based on (𝛼, 𝛽)-core.

In𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 , we set the edge weight as 1. In 𝐶𝑆𝑆𝐻 , we use its
default parameters, e.g., the maximal length of meta-paths is 4.
Please notice that the public code of 𝐶𝑆𝑆𝐻 consumes much time
and memory, so we rewrite its code.
Queries. To evaluate the community search performance on each
dataset, by varying the query size (i.e., the query vertex number)
of 1, 2, 3, 4 and 5, we randomly generate 100 queries, respectively.
By varying the data size from 20%, 40%, 60%, 80% and 100% of the
datasets, we also randomly generate 100 queries, respectively.
Hardware setting. The experiments are run on two servers with
an Intel Xeon Gold 5320 processor of 2.20GHz. The processor has
52 cores (26 cores per socket, 2 sockets) and a 78 MiB L3 cache. The
server has a 1.7TB disk and 768GB DDR4 DRAM. The OS is 64-bit
Ubuntu 22.04.4. The programs are compiled using g++ 11.4.0.

6.2 Index Construction Performance
In this experiment, we compare the preprocessing performance on
index construction of 𝑈𝑆𝐶𝑆𝐴 and the baselines. On the datasets,
the index construction time costs and index sizes are shown in
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Figure 5: The preprocessing performance on index building.

Fig 5(a) and (b), respectively. Please notice that 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 does not
construct index before searching, so we do not compare it here.

As shown in Figure 5(a), the index building time costs of𝑈𝑆𝐶𝑆𝐴

and 𝐶𝑆𝑅𝑇 𝐼 are higher than other methods. Taking Youtube dataset
as an example,𝐶𝑆𝑅𝑇 𝐼 spends 1.29× 105s, which is 15.02, 28.23, and
40.57 times of that of𝑈𝑆𝐶𝑆𝐴,𝐶𝑆𝑆𝐻 and𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 .𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 has
short index building time since it only counts the neighbors.𝐶𝑆𝑅𝑇 𝐼
needs to generate the basic communities by community detection,
which consumes expensive time costs. 𝑈𝑆𝐶𝑆𝐴 builds hierarchical
index on the (𝜏, 𝜌)-camp communities, so it costs long time.

Then, Figure 5(b) shows the occupied spaces of the built indexes
of the community searchmethods. It is found that the index of𝐶𝑆𝑆𝐻
is the largest in most cases. For example, 𝐶𝑆𝑆𝐻 occupies 1088 MB
for index on Weibo dataset, which is 9.30, 7.61 1.91, 2.30 and 18.03
times of 𝐶𝑆𝑅𝑇 𝐼 ,𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 , 𝑈𝑆𝐶𝑆𝐴, 𝐻𝐶𝐵𝑈 and 𝑇 𝐼𝑃 . 𝐶𝑆𝑆𝐻 needs
to store many multi-hop neighbors along the meta-paths, then its
relationship explosion spends expensive space costs.

Although sacrificing the preprocessing time for building index
and the space for index storage, 𝑈𝑆𝐶𝑆𝐴 will achieve efficient com-
munity search, which will be proved in the later experiment.

6.3 Community Search Efficiency
In this subsection, we evaluate the community search efficiency on
different datasets. By varying the data size and the query size, i.e.
the number of vertices in the query, we evaluate their effects on
search efficiency for different methods in this experiment.

6.3.1 Varying the data size. We randomly select 20%, 40%, 60%, 80%
data from each dataset. The query size is set as 1 in default. By
varying the data size from 20% to 100%, the average community
search time on each dataset is shown from Figure 6(a) to (d).

It is seen that 𝑈𝑆𝐶𝑆𝐴 performs fastest and 𝐶𝑆𝑅𝑇 𝐼 is the sec-
ond fastest, while 𝐶𝑆𝑆𝐻 and𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 are quite slow. Taking 60%
Weibo dataset for example,𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 spends 4.15×102s, 3.82 times
of 𝑇 𝐼𝑃 , 5.81 times of 𝐶𝑆𝑆𝐻 , 62.97 times of 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 , six orders
of magnitude slower than 𝐶𝑆𝑅𝑇 𝐼 and 𝐻𝐶𝐵𝑈 , and eight orders of
magnitude slower than𝑈𝑆𝐶𝑆𝐴. By loading the built index intomem-
ory, 𝑈𝑆𝐶𝑆𝐴, 𝐶𝑆𝑅𝑇 𝐼 and 𝐻𝐶𝐵𝑈 achieve efficient searching. Since
𝑈𝑆𝐶𝑆𝐴 only needs to find the mapped community for the query ver-
tex,𝑈𝑆𝐶𝑆𝐴 performs faster than𝐶𝑆𝑅𝑇 𝐼 and𝐻𝐶𝐵𝑈 .𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 has
to repeatedly invoke the connected component algorithm for each
deleted vertex. 𝐶𝑆𝑆𝐻 searches the neighbors of the query vertex
based on meta-path layer by layer, which are too massive to tra-
verse. 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 and 𝑇 𝐼𝑃 are slower than 𝑈𝑆𝐶𝑆𝐴 and 𝐶𝑆𝑅𝑇 𝐼 since
𝑅𝐸𝐶𝐸𝐼𝑃𝑇 builds no index and 𝑇 𝐼𝑃 builds light index. 𝑅𝐸𝐶𝐸𝐼𝑃𝑇
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(h) Weibo, query size

Figure 6: The experimental results of community search time costs.

achieves a high degree of parallelism and dramatic reduction in
synchronizations, so it performs better than𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 and 𝐶𝑆𝑆𝐻 ,
especially on the larger datasets. 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 ,𝐻𝐶𝐵𝑈 and𝑇 𝐼𝑃 can not
process Youtube with only one vertex type.

Please note that many communities found by𝐶𝑆𝑆𝐻 for different
queries are the same, since the explosive relationships generated
by meta-paths break the boundaries of normal communities.

6.3.2 Varying the query size. We randomly generate 100 queries
for the query set size of 1, 2, 3, 4 and 5 on different datasets, respec-
tively. We use 100% data in default. By varying the query size, the
community search time results are shown from Figure 6(e) to (h).

On four datasets,𝑈𝑆𝐶𝑆𝐴 obtains the shortest community search
time for different query sizes. For example, when processing queries
in the size of 2 on Youtube dataset,𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 spends the longest
time of 1.24 × 103s and 𝐶𝑆𝑆𝐻 costs 1.23 × 103s, while 𝐶𝑆𝑅𝑇 𝐼 and
𝑈𝑆𝐶𝑆𝐴 spends 3.66×10−2s and 3.57×10−5s, respectively. It should
be noted that the meta-path based 𝐶𝑆𝑆𝐻 spends not only long
search time but also a great deal of memory, especially for queries
with more than one vertices, since its enumeration space is massive.

As the query size increases from 1 to 2, the time cost of 𝑈𝑆𝐶𝑆𝐴

increases shapely. The reason is analyzed as follows. When there is
only one query vertex,𝑈𝑆𝐶𝑆𝐴 just needs to return the mapped com-
munity of the vertex, which is𝑂 (1) time. For more vertices,𝑈𝑆𝐶𝑆𝐴

searches upwards for the highest common ancestor community of
the mapped communities, linear time of the query size.

Proved by the two experiments, 𝐶𝑆𝑅𝑇 𝐼 achieves efficient com-
munity search performance based on the built index. Therefore, it
deserves to consume the preprocessing time and space for index.

6.4 Community Search Effectiveness
This experiment is to prove the effectiveness of our proposed
𝑈𝑆𝐶𝑆𝐴 algorithm. Since the four datasets have no answers of real
communities, which is common in real-world scenarios, we do
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Figure 7: The experimental results of support ratio.

not adopt the metrics such as precision and recall to evaluate the
effectiveness of community search. Instead, we first measure the co-
hesion degree of communities, and then evaluate the representative
ability, which is the motivation for the proposal of community.

6.4.1 Cohesion evaluation. We adopt four metrics to measure the
community cohesion. The first metric is support ratio, i.e., the aver-
age of ratio between the internal support and the external support
of each edge, to evaluate community compactness in terms of the
network semantics. The second metric is degree ratio that measures
the degree comparison between inside and outside of the commu-
nity [12]. Higher degree ratio means the community fully covers
the vertices and their neighbors within the community, reserving
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Table 2: The experimental results of degree ratio, local modularity and conductance.

Dataset Degree ratio Local Modularity Conductance
WC REC TIP HCBU CSRTI CSSH USCSA WC REC TIP HCBU CSRTI CSSH USCSA WC REC TIP HCBU CSRTI CSSH USCSA

DBLP 1.09 1.51 1.86 1.89 3.79 2.71 4.65 0.067 0.044 0.113 0.037 0.215 0.022 0.277 0.892 0.875 0.773 0.944 0.673 0.958 0.517
Youtube 0.72 —— —— —— 5.04 2.58 4.68 0.107 —— —— —— 0.265 0.761 0.157 0.810 —— —— —— 0.607 0.136 0.537
Bilibili 1.82 2.28 2.14 3.70 1.73 1.53 4.95 0.116 0.171 0.246 0.131 0.305 0.254 0.384 0.805 0.646 0.529 0.784 0.570 0.609 0.421
Weibo 0.54 0.75 2.45 3.37 2.53 2.69 1.31 0.041 0.064 0.063 0.114 0.346 0.214 0.228 0.924 0.842 0.903 0.818 0.517 0.654 0.597
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Figure 8: The representative ability of different vertices.

both direct and indirect interactions. The third is local modularity
that measures the internal cohesion of community, normalized by
the network size. Finally, we adopt conductance to measure the
connection sparsity between the community with outside. Smaller
conductance means the captured interaction semantics is more
complete with clearer community boundary. The above metrics can
measure if the community can maintain the network semantics,
which is the basis to reflect the network properties.

First, the experimental results of the support ratio are shown in
Figure 7.We show the average internal support and average external
support by different colors in the histogramwhose vertical axis is in
the left, and show the support ratio by the line chart whose vertical
axis is in the right. It is seen that𝑈𝑆𝐶𝑆𝐴 always has larger internal
supports and smaller external supports, and its support ratio is
the highest on the four datasets. For instance, 𝑈𝑆𝐶𝑆𝐴 has average
internal supports of 429.84, and average external supports of 83.32
on DBLP dataset. The support ratio of 𝑈𝑆𝐶𝑆𝐴 is 67.74, which is
83.63, 40.21, 20.16, 8.26, 1.37 and 1.27 times of that of𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 ,𝑇 𝐼𝑃 ,
𝑅𝐸𝐶𝐸𝐼𝑃𝑇 , 𝐶𝑆𝑅𝑇 𝐼 , 𝐶𝑆𝑆𝐻 and 𝐻𝐶𝐵𝑈 , respectively. It indicates that
𝑈𝑆𝐶𝑆𝐴 fully captures the direct and indirect interaction semantics.
𝐶𝑆𝑆𝐻 performs poorly on the crawled Bilibili and Weibo datasets.
It is because the two networks are star-schema networks, and the
meta-paths further extend the sizes of the star clusters in most cases,
rather than forming compact closed circulars just like𝑈𝑆𝐶𝑆𝐴 does.
𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 and 𝐶𝑆𝑅𝑇 𝐼 only focus on the direct interaction, while
𝑅𝐸𝐶𝐸𝐼𝑃𝑇 , 𝐻𝐶𝐵𝑈 and 𝑇 𝐼𝑃 consider indirect interaction. It is seen
that 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 with stricter edge-level constraints outperforms𝑇 𝐼𝑃
and 𝐻𝐶𝐵𝑈 with vertex-level constraints on different datasets.

Second, with respect to the three other measurements, the re-
sults are shown in Table 2. Please note that the metrics of 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 ,
𝐻𝐶𝐵𝑈 and 𝑇 𝐼𝑃 on Youtube dataset are none since they are only
suitable for bipartite graphs. 𝑈𝑆𝐶𝑆𝐴 has the best performance on
the DBLP dataset and Bilibili dataset. For the Youtube dataset, it
is seen from Table 2 that 𝑈𝑆𝐶𝑆𝐴 achieves the second highest de-
gree ratio (lower than 𝐶𝑆𝑅𝑇 𝐼 ), the medium modularity (lower than
𝐶𝑆𝑅𝑇 𝐼 and 𝐶𝑆𝑆𝐻 ) and the second best conductance (𝐶𝑆𝑆𝐻 is the
best). Since the degree ratio of𝑈𝑆𝐶𝑆𝐴 is close to the highest one of
𝐶𝑆𝑅𝑇 𝐼 , the inside relationships within the communities of𝑈𝑆𝐶𝑆𝐴

are much denser than outside. However, the modularity of 𝑈𝑆𝐶𝑆𝐴

becomes lower than not only𝐶𝑆𝑅𝑇 𝐼 but also𝐶𝑆𝑆𝐻 . It indicates that
the sizes of the communities obtained by 𝑈𝑆𝐶𝑆𝐴 are smaller than
𝐶𝑆𝑅𝑇 𝐼 and𝐶𝑆𝑆𝐻 , thus the modularity of𝑈𝑆𝐶𝑆𝐴 is underestimated
when normalized by the network size. On the contrary, the com-
munity sizes of 𝐶𝑆𝑆𝐻 are so large that the obtained communities
are almost the same for different queries without any uniqueness,
leading to high modularity and small conductance. Since modular-
ity is the optimization goal of𝐶𝑆𝑅𝑇 𝐼 in the detection phase,𝐶𝑆𝑅𝑇 𝐼
achieves higher modularity than 𝑈𝑆𝐶𝑆𝐴. But its bigger conduc-
tance indicates that the community boundaries of 𝐶𝑆𝑅𝑇 𝐼 are not
clear, thus the obtained communities can not maintain complete
complex network semantics. To sum up, 𝑈𝑆𝐶𝑆𝐴 can capture both
direct and indirect interaction semantics and have a more complete
expression of the network semantics on the Youtube dataset.

For the Weibo dataset, 𝑈𝑆𝐶𝑆𝐴 has a medium degree ratio, sec-
ond largest modularity and the best conductance. By analyzing the
communities of 𝑈𝑆𝐶𝑆𝐴, the degree ratios of the content vertices
are the highest, but those of the user vertices are low. The reason is
as below. Besides the interested topics, users also focus on various
popular topics in the hotspot list everyday on Weibo, thus the de-
gree ratios of user vertices are low. Even though, 𝑈𝑆𝐶𝑆𝐴 performs
well in modularity and conductance, i.e., It can find the interest
communities with cohesion guarantee and clear boundaries.

In summary,𝑈𝑆𝐶𝑆𝐴 achieves effectiveness in community search-
ing on different datasets.𝑈𝑆𝐶𝑆𝐴 can deeply mine the complex net-
work semantics by using the (𝜏, 𝜌)-camp community model, and
effectively search the cohesive communities.

6.4.2 Representative ability evaluation. This experiment evaluates
the ability of the communities to represent the centrality property
and connectivity property of the network. We adopt the between-
ness centrality, closeness centrality and diameter [18] as the metrics
to evaluate the properties. Betweenness centrality reflects the bridge
role of a vertex based on the shortest paths. Closeness centrality is
a measure of how central a vertex is within a network. Diameter
is the longest shortest distance between a vertex with others. We
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Figure 9: The representative ability of different methods (’B’: Bilibili, ’W’: Weibo, and "between" is short for betweenness).

compute the metric value of each vertex in the community, as well
as the metric value of this vertex in the network, and compute the
ratio between them. To distinguish the roles of different vertices,
the user vertices are decomposed into 4 buckets by partitioning the
degree range in average, and it is similar for the content vertices.

At first, we analyze the roles of the vertices in different buckets.
Taking Bilibili and Weibo datasets for example, Figure 8 shows the
distribution of the three metrics on the 8 buckets by the box plot,
where U1 is the first user bucket and C1 is the first content bucket,
etc. In the box plot, the box represents the interquartile range (IQR),
i.e., the range between lower quartile and upper quartile, and the
middle line represents the medium. From U1 to U4 or from C1
to C4, it is seen that the mediums of the betweenness centrality
and closeness centrality increase, and the distributions are more
concentrated. It indicates that as the degree becomes larger, the
vertex is more central and connects more pairs of vertices. In terms
of diameter, the medium becomes smaller and the distribution is
also more concentrated, consistent with that of closeness centrality.
In summary, the vertices with bigger degrees are more probabilistic
to play more important roles in community formation.

Afterwards, to evaluate the ability of the communities to rep-
resent the whole network, we take the U1, U2 buckets on Bilibili
dataset and C1, C3 buckets on Weibo dataset for illustration, as well
as analyze the whole Bilibili dataset and Weibo dataset. The three
metric ratios are compared for different competitors, and the box
plots are shown in Figure 9. In each subfigure, the horizontal line of
𝑦 = 1 is drawn. The closer the ratio is to 1, the better representative
ability the method has. Moreover, smaller IQR size means that the
metric distribution of vertices in the community is more similar
with the metric distribution of those vertices in the network.

First, in terms of WC-index, the IQRs on betweenness centrality
ratio and closeness centrality ratio are under the line of 𝑦 = 1 for
the whole Bilibili dataset and Weibo dataset (Figure 9(g)∼(i) and
(p)∼(r)), while the IQRs on diameter are beyond 𝑦 = 1. It means that
𝑊𝐶-𝑖𝑛𝑑𝑒𝑥 stretches the distance between vertices since it aims to
find the star-schema communities based on 𝑘-core. Second, with
respect to 𝑅𝐸𝐶𝐸𝐼𝑃𝑇 ,𝑇 𝐼𝑃 and 𝐻𝐶𝐵𝑈 , the relative positions of IQRs
and the line of 𝑦 = 1 always vary on the three metric ratios in dif-
ferent buckets, and the IQR sizes also fluctuate. It indicates that the
methods particularly designed for bipartite graphs can not maintain
stable representative performance for different types of vertices.

Third, the IQRs of𝐶𝑆𝑅𝑇 𝐼 are always large on different metric ratios,
i.e., its representative performance for different queries are quite
different. Namely, the performance of 𝐶𝑆𝑅𝑇 𝐼 heavily relies on the
queries. Forth, the IQR sizes of 𝐶𝑆𝑆𝐻 also fluctuate in different
buckets. Since the meta-paths connect almost each pair of vertices,
the relationship explosion confuses the network semantics. Finally,
the IQRs of 𝑈𝑆𝐶𝑆𝐴 are relatively close to the line of 𝑦 = 1 on the
three metric ratios. Besides, the IQR sizes of 𝑈𝑆𝐶𝑆𝐴 are the small-
est among all the methods in most cases, which means the metric
distribution of vertices in the community are close to the metric
distribution of those vertices in the network. Therefore, 𝑈𝑆𝐶𝑆𝐴

achieves good overall representative performance.
In summary, through fully capturing the complex network se-

mantics by maximizing the unified network semantics based on the
(𝜏, 𝜌)-camp model, 𝑈𝑆𝐶𝑆𝐴 can effectively find the communities
that can reflect important properties of the network.

7 CONCLUSION
In this paper, we have studied the community search problem with
the goal of finding the communities with the densest network se-
mantics to reflect important network properties. We first design a
novel community model named (𝜏, 𝜌)-camp to capture both direct
interaction semantics and indirect interaction semantics in any
level of granularity. By exploring the nested property of the com-
munities, a hierarchical index is constructed on the communities for
efficient community search. Based on the greedy strategy, we solve
the proposed NP-hard community search problem by designing
an approximate community search algorithm named 𝑈𝑆𝐶𝑆𝐴, with
approximation ratio of 2 and linear time complexity. The experi-
mental results prove that𝑈𝑆𝐶𝑆𝐴 achieves search efficiency and the
obtained communities truly reflect the network properties.
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