EVOSCHEMA: TOWARDS TEXT-TO-SQL ROBUSTNESS AGAINST
SCHEMA EVOLUTION

Tianshu Zhang Kun Qian Siddhartha Sahai
The Ohio State University Adobe Inc. Adobe Inc.
Columbus, OH Seattle, WA Seattle, WA
zhang.11535@osu.edu kunqg@adobe.com siddharthas@adobe.com
Yuan Tian Shaddy Garg Huan Sun
Purdue University Adobe Inc. The Ohio State University
West Lafayette, IN Bangalore Columbus, OH
tian211@purdue.edu shadgarg@adobe.com sun.397@osu.edu
Yunyao Li
Adobe Inc.
San Jose, CA
yunyaol@adobe.com
ABSTRACT ROBUSTNESS AGAINST SCHEMA EVOLUTION. PVLDB, 18(10): 3655 -

Neural text-to-SQL models, which translate natural language ques-
tions (NLQs) into SQL queries given a database schema, have
achieved remarkable performance. However, database schemas
frequently evolve to meet new requirements. Such schema evo-
lution often leads to performance degradation for models trained
on static schemas. Existing work either mainly focuses on simply
paraphrasing some syntactic or semantic mappings among NLQ,
DB and SQL, or lacks a comprehensive and controllable way to
investigate the model robustness issue under the schema evolution,
which is insufficient when facing the increasingly complex and rich
database schema changes in reality, especially in the LLM era.

To address the challenges posed by schema evolution, we present
EvoSchema, a comprehensive benchmark designed to assess and
enhance the robustness of text-to-SQL systems under real-world
schema changes. EvoSchema introduces a novel schema evolution
taxonomy, encompassing ten perturbation types across column-
level and table-level modifications, systematically simulating the
dynamic nature of database schemas. Through EvoSchema, we con-
duct an in-depth evaluation spanning different open-source and
closed-source LLMs, revealing that table-level perturbations have
a significantly greater impact on model performance compared
to column-level changes. Furthermore, EvoSchema inspires the
development of more resilient text-to-SQL systems, in terms of
both model training and database design. The models trained on
EvoSchema’s diverse schema designs can force the model to dis-
tinguish the schema difference for the same questions to avoid
learning spurious patterns, which demonstrate remarkable robust-
ness compared to those trained on unperturbed data on average.
This benchmark offers valuable insights into model behavior and a
path forward for designing systems capable of thriving in dynamic,
real-world environments.

PVLDB Reference Format:
Tianshu Zhang, Kun Qian, Siddhartha Sahai, Yuan Tian, Shaddy Garg,
Huan Sun, and Yunyao Li. EVOSCHEMA: TOWARDS TEXT-TO-SQL

3655

3668, 2025.
doi:10.14778/3748191.3748222

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhangtianshu/EvoSchema.

1 INTRODUCTION

Text-to-SQL parsing aims to translate natural language questions
(NLQs) into SQL queries given a database schema, enabling the
development of natural language interfaces that allow users to
query data and invoke services without requiring programming
skills [18, 27, 29, 32, 33, 36]. Existing neural text-to-SQL models
have achieved remarkable performance on existing benchmarks
[18, 32], which play an important role in empowering different
platforms such as business and marketing platforms [26, 34] and
being integrated into virtual assistants to enable real-time data
query and analysis [4].

However, database schemas are not static; they frequently evolve
to accommodate new use cases and improve efficiency [3, 11]. For
instance, depending on the scenario, a large patient table might be
merged from or split into two tables: a patient information table
and a patient diagnosis table (Figure 1-c), to reduce redundancy, en-
hance data integrity, and optimize performance [14]. Such schema
evolution occurs frequently, which often leads to distribution shifts
[13, 24] such as nomenclature shifts, data granularity shifts, table
and column relation shifts and schema complexity shifts. These
distribution shifts can cause significant performance degradation
when the model trained on old database schema is adapting to new
schema designs.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:10.14778/3748191.3748222

https://doi.org/10.14778/3748191.3748222
https://github.com/zhangtianshu/EvoSchema
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748222
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Q: What was the gender of the first AORTITIS diagnosed patient?

(b) Column-level Schema Evolution
(a) Framework 4 Patient A 4 Patient)
ppemurn WM o | 5o Dotc | Diceros] Akl (s | so- [Bihiey
— olumn-leve!
NL
| DDQL . Add AORTITIS Remove Columns AORTITIS
emove
Gold SQL Rename
Split SELECT Sex FROM Patient WHERE Diagnosis = ‘AORTITIS’ AND Date IS NOT NULL ORDER BY Date ASC LIMIT 1
Merge \ /
s I
(c) Table-level Schema Evolution
Schema
Change (Patient \ f Patient_Info \ 4 Patient_Diagnosis N
eovwvpeut IR < | 5o | Doto | Disgrosis | Eiriniey | bl 1o | So | 5iinday JW[1a] Date | Disgrosis
REree AORTITIS Merge Tables AORTITIS
sQL — Rename .
Change Split . SELECT T1.Sex FROM Patient_Info AS T1
8 Merge USRS INNER JOIN Patient_Diagnosis AS T2 ON T1.Id = T2.Id
WHERE Diagnosis = ‘AORTITIS . S Y
WHERE T2.Diagnosis = ‘AORTITIS
A EHDBNETTILL AND T2.Date IS NOT NULL
ORDER BY Date ASC LIMIT 1 .

(S

ORDER BY T2.Date ASC LIMIT 1 Y,

Figure 1: The left (a) is the overview of the framework to collect EvoSchema dataset. The top right (b) is a column-level schema
evolution example; the bottom right (c) is a table-level schema evolution example.

This challenge highlights a critical issue in model robustness:
how well can a text-to-SQL model adapt to changes in the database
schema? Recent studies introduce evaluation benchmarks designed
to expose robustness issues by perturbing NLQs, databases or SQL
queries [2, 6, 20, 23]. However, these studies have at least one of
the following limitations: 1) mainly focus on the syntactic para-
phrasing or simple semantic mappings among NLQ, DB and SQL
[2, 6]; (2) lack a taxonomy of comprehensive schema evolution
types [23]; (3) only focus on schema evolution that does not lead
to SQL changes [20]. These efforts are insufficient in the face of
increasingly complex and rich database schema changes found in
reality. Meanwhile, while it is natural to consider collecting new
data after schema evolution for retraining a model, repeating the
entire model training life cycle frequently can be costly in terms of
both time and resources.

Under this background, we seek to answer the following two
questions: (1) How sensitive are existing text-to-SQL models to
various types of database schema changes? (2) How can we train
a more robust text-to-SQL model that not only performs well on
existing database schemas but also adapts effectively to schema
changes? Towards this end, we introduce EvoSchema, a new dataset
that covers a wide range of realistic schema design changes by
perturbations on BIRD [18]. As illustrated in Figure 1 and Figure
2, EvoSchema builds upon our newly defined taxonomy, which
encompasses a total of ten types of perturbations over schema,
covering both column-level and table-level changes. Column-level
perturbations include adding, removing, renaming, splitting and
merging columns, while table-level perturbations involve adding,
removing, renaming, splitting, and merging tables. We keep the
NLQs fixed and examine the robustness of a model under different
granularities of schema evolution, and show that existing models
are more easily affected by table-level perturbations than column-
level perturbations.

Moreover, the training set in EvoSchema can be used to enhance
models’ robustness. The models can be trained with the same ques-
tions but coupled with different schema designs to generate the
corresponding SQL queries. This training procedure forces the
model to distinguish the schema difference which can help models
gain a stronger ability to recognize the correct table and column
relation and map them to the questions. Our experimental results
demonstrate that the perturbation training data in EvoSchema can
help train better text-to-SQL models, which are more robust to dif-
ferent schema evolution types on average, especially on table-level
perturbations.

In summary, our main contributions are as follows:

e We formulate a critical schema evolution adaptive text-
to-SQL problem and present a new dataset, EvoSchema to
study this problem. We introduce a comprehensive taxon-
omy of the schema evolution types and build the datasets
based on the taxonomy to get realistic schema designs by
column-level and table-level perturbations on BIRD.

e We conduct thorough and comprehensive assessment of
model robustness against various schema perturbations
spanning different open-source and closed-source LLMs
on our evaluation benchmark, and find that table-level per-
turbations have a significantly greater impact on model
performance compared to column-level changes. Besides,
we introduce two evaluation metrics: Table Match F1 and
Column Match F1, to rigorously evaluate the performance
of text-to-SQL models under schema evolution scenarios
and provide fine-grained insights into model robustness.

e Our constructed training set inspires a new training para-
digm: augmenting the existing training data with different
schema designs, which not only increase the data diver-
sity, but also force the model to distinguish the schema

3656

Q: For patient with albumin level lower than 3.5,

list their ID, sex and diagnosis.

DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)
Original create table laboratory(foreign key(ID) references Patient(ID) integer, ALB real, WBC real..)
g SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
Add DDL: create table patient(ID integer primary key, SEX text, Birthday date, =)
create table laboratory(foreign key(ID) references Patlent(ID) integer, ALB real, =)
Columns SQL: SELECT DISTINCT T1.ID, T1.SEX, T1.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
R DDL: create table patient(ID integer primary key, SEX—text, Birthday-date, ..)
emove create table laboratory(foreign key(ID) references Patient(ID) 1nteger, ALB real, WBC—real, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
Columns T2.ALB < 3.5
Remove DDL: create table patient(ID—integer—primary—key, SEX text, Birthday date, ..)
Coli SQL create table laboratory(foreignkey(ID) referencesPatient(ID)integer, ALB—real, WBC real, ..)
olin SQL: -
DDL: create table patient(integer primary key, text, date, ..)
R
ename create table laboratory(foreign key () references Patient(ID) integer, ALB real, WBC real, ..)
SQL: SELECT DISTINCT T1. Tiko , Tl.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON
Columns
T1. = T2. WHERE T2.ALB < 3.5
li DDL: create table patient(ID integer primary key, SEX text, Birth_Year date, Birth_Month date, Birth_Day date ..)
SP it create table laboratory(foreign key(ID) references Patient(ID) integer, ALB real, WBC real..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, Tl.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
Columns T2.ALB < 3.5
DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)
Add create table laboratory(foreign key(ID) references Patient(ID) integer, ALB real, WBC real, ..)
create table appointment(foreign key(ID) references Patient(ID) integer, Date date, Time text, Doctor text, ..)
Tables create table doctor(ID integer primary key, Name text, Specialty text, License date, Hospital text, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
Remove DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)
Tables SQL: -) * TS ST) i TSRS)
R DDL: create table medical_record(ID integer primary key, SEX text, Birthday date, ..)
ename create table test_result(foreign key(ID) references Medical_record(ID) integer, ALB real, WBC real, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Medical_record AS T1 INNER JOIN Test_result AS T2 ON T1.ID = T2.ID
aes WHERE T2.ALB < 3.5
DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)
. create table LabTestl(foreign key(ID) references Patient(ID) integer, ALB real, ..)
Spllt create table LabTest2(foreign key(ID) references Patient(ID) integer, WBC real, ..)
Tables create table LabTest3(foreign key(ID) references Patient(ID) integer, CRP text, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, Tl.Diagnosis FROM Patient AS T1 INNER JOIN LabTestl AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
Merge DDL: create table Patient_Laboratory(ID integer primary key, SEX text, Birthday date, ALB real, WBC real, ..)
Tables SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient_Laboratory AS T1 WHERE T1.ALB < 3.5

Figure 2: An overview of different perturbation types of EvoSchema. The top is an unperturbed example in BIRD [18]; the middle
is the column-level perturbation; the bottom is the table-level perturbation. “Remove Col in SQL": remove columns that appear
in gold SQL; “Remove Tables": the relevant tables appear in gold SQL are removed. Thus there is no gold SQL for these two cases.
Note we don’t illustrate “Merge Columns” in the figure as this example is not suitable for applying merging column changes.

difference during training. Our approach yields better text-
to-SQL models that achieve up to 33 points gain on different
types of schema perturbation evaluation data, compared to
models trained on unperturbed, original training data.

2 RELATED WORK

Robustness in Text-to-SQL: Existing research on text-to-SQL
robustness is mainly two-fold: robustness evaluation and robust-
ness training. Recent studies introduce evaluation benchmarks de-
signed to expose robustness issues by perturbing NLQs, databases
or SQL queries. However, these studies tend to focus on syntactic

3657

paraphrasing or simple semantic mappings, such as different rep-
resentations of numbers or name abbreviations across NLQ, DB,
and SQL [2, 6]. While some work analyzes schema changes, they
mainly focus on irrelevant column modifications that do not affect
SQL [20] or with limited perturbation types [23]. These efforts are
insufficient in the face of increasingly complex and rich database
schemas found in modern datasets. Though FootballDB [8] tackles
a similar schema design problem for better SQL written, they focus
on reducing multiple foreign key mappings among tables and re-
ducing the JOIN paths in the SQL. Different from theirs, we tackle
the schema evolution problem, which is not only for the schema
design on the existing data, but also needs to consider how new
data and information will change the schema design. Besides, we

approach it through a different angle, where our scheme design
contains 10 column-level and table-level changes. And our provided
schema evolution framework allows us to try different schema de-
sign on multiple databases to get more generalizable findings, while
FootballDB [8] can only support the exploration on a single data-
base. Moreover, the advent of LLMs has mitigated many linguistic
challenges, further emphasizing the need for robust adaptation to
structural changes in database schemas. For robust training, ex-
isting methods employ strategies like decomposing tasks so that
models generate each sub-clause individually before merging them
[9], or using execution-guided decoding to eliminate incorrect sub-
clauses [30]. While these approaches focus on enhancing various
aspects of text-to-SQL robustness, our work specifically addresses
the challenge of schema evolution.

LLMs for Text-to-SQL: Most recently, the LLM-based approaches
for text-to-SQL are mainly two-fold: in-context learning [10, 15, 16,
27, 35] and finetuning [15-17, 38]. The former prompts proprietary
LLMs such as GPT series ! and Claude ? for SQL generation with-
out additional model training, while the latter involves adapting
open-source LLMs to text-to-SQL datasets, tailoring these models
directly to the task through supervised learning. These models are
designed for question understanding, schema comprehension and
SQL generation, which have achieved remarkable performance on
the existing open benchmarks [18, 32]. Liu et al. [19] provides a
comprehensive review of the NL2SQL lifecycle, covering models,
benchmarks, data synthesis, evaluation, and error analysis. While it
identifies schema variation as a challenge, it does not explore it in
depth. Our work focuses specifically on schema evolution robust-
ness by evaluating recent and powerful LLMs (e.g., Code Llama,
Mistral, SQLCoder, LLaMA 3, GPT-3.5, GPT-4) without preprocess-
ing or postprocessing. We introduce EvoSchema, a benchmark with
controlled schema perturbations that guides both evaluation and
structured training data synthesis. In addition to standard execution
accuracy and human evaluation, we propose two fine-grained met-
rics: Table Match F1 and Column Match F1 that directly reflect our
table-level and column-level perturbation taxonomy. Li et al. [15]
evaluates LLMs on unperturbed Spider and BIRD datasets and also
experiments on natural language variation but keep schema and
SQL fixed; in contrast, our work systematically varies the schema
while keeping the natural language fixed.

3 EVOSCHEMA DATASET
3.1 Background

In the dynamic landscape of databases, schemas frequently evolve
to meet new demands, introducing significant challenges for text-
to-SQL models [3, 5]. These schema changes can vary widely, from
minor modifications to complete restructuring, and can significantly
impact the performance of models trained on static schemas. In
realistic scenarios, a database can often contain a large number of
tables, and only several related tables are responsible for a natural
language question (NLQ). In our experiment, we represent the
relevant database schema using Data Definition Language (DDL) 3

!https://platform.openai.com/docs/models
Zhttps://www.anthropic.com/news/claude-3-family

3DDL defines the structure and properties of a database, providing detailed information
necessary for database creation, including column types and primary/foreign keys.

3658

and combine it with the NLQ as input. This input is then used to
prompt the model to generate the corresponding SQL query.

3.2 Rationale for Schema Evolution Types

When a database schema evolves, it can induce distribution shifts
in the data that may impact model performance. We categorize
potential distribution shifts into four types: nomenclature shifts,
data granularity shifts, table and column relation shifts, and schema
complexity shifts. (1) Nomenclature shifts occur when tables and
columns are renamed, which may alter the convention of the es-
tablished terminology within the schema. For example, tables orig-
inally named “Products”, “Customers", and “Orders" might be re-
named to “Ttems", “Clients", and “Purchases", respectively. Such
changes often reflect updates in business terminology or compli-
ance with new standards. A desired model should handle those
nomenclature shifts to adapt to the new terminology. (2) Data gran-
ularity shifts arise from adding or removing columns or tables,
which changes the level of detailedness captured in the database.
For instance, an “Employee"” table with a single “ContactNumber"
field might involve another two separate “WorkContact" and “Per-
sonalContact" fields later. This increases the data granularity to
meet new requirements, necessitating models to adapt to more com-
plex and detailed semantics. (3) Table and column relation shifts
and schema complexity shifts mainly result from restructuring ta-
bles through splitting or merging. This process can highly affect
how each table is related to other tables by which column. Both
the primary keys and foreign keys may change along with the ta-
ble restructure. Besides, the schema complexity may change when
multiple tables merge from or split into one table. A desired model
is expected to be robust to such changes. By categorizing the distri-
bution shifts caused by schema evolution, we can more effectively
understand and evaluate a model’s capacity to adapt to changes in
the underlying database schema.

3.3 Schema Evolution Synthesis Framework

Our study aims to cover comprehensive potential schema evolution
types, which can foster the robustness evaluation of the existing
text-to-SQL models and inspire robust model training. We synthe-
size all the schema evolution types through hybrid strategies, which
will leverage both the heuristic rules to guarantee the data quality
and LLMs to ensure diversity.

Broad Coverage of Different Schema Evolution Types: We aim
to encapsulate a broad range of schema evolution types, recognizing
their prevalence and impact in real-world scenarios. Specifically, our
schema evolution taxonomy includes both column-level and table-
level perturbations, which are categorized into ten distinct types.
Column-level perturbations comprise five types: adding, removing,
renaming, splitting and merging columns, where modifications
are restricted to the columns within existing tables. Table-level
perturbations encompass five types: adding, removing, renaming,
splitting, and merging tables. These perturbations occur frequently
in practice, underscoring the need for text-to-SQL models that can
robustly handle such changes.

Hybrid Data Synthesis Strategies: To ensure both diversity and
quality in the generation of schema perturbations, we employ a
combination of heuristics and GPT models to synthesize various

(a) Rename Columns

Schema

Table X (Column X1, Datatype X1), (Column X2, Datatype X2), ...
Table Y (Column Y1, Datatype Y1), (Column Y2, Datatype Y2), ...

Schema

Table X (Column X1, Datatype X1), (Column Xz, Datatype X2), ...
Table Y (Column Y1, Datatype Y1), (Column Yz, Datatype Y2), ...

{
{

Instructions:
1. Understand the context ...
2. Paraphrase the selected column ...

Randomly Select Column

Rename Column

(b) Split Tables

Schema:

Table X (Column X1, Datatype X1), (Column X2, Datatype X2), ...
Table Y (Column Y1, Datatype Y1), (Column Yz, Datatype Y2), ...

Instructions:

1. Identify divisible tables ...

2. Generate new table names ...

3. Assign columns from original tables ...

4. Set primary keys based on the original table ...

Split Table

{

Original SQL

Original Table
Table X

New Tables
Table N1

Table N2
Instructions:

1. Understand the schema change ...
2. Edit the original SQL ...

}

(Column X1, Datatype X1)
(Column Xz, Datatype X2)

(Column X1, Datatype X1)

—)
KRid

Human Expert
Verification & Repair

(Column Xz, Datatype X2)

Update SQL Query for Partitioned Tables

Figure 3: This figure shows two examples of our data collection procedure of EvoSchema. The top (a) is a “rename columns" data
collection procedure; the bottom (b) is a “split tables" data collection procedure. The blue box indicates prompting GPT models
for the generation. “</>" means programmatically processing the data.

perturbation types. For each given seed instance in BIRD [18],
consisting of a <NLQ, relevant schema, SQL> triple, we maintain
the natural language question (NLQ) fixed across all perturbation
types, while only modifying the relevant schema. The correspond-
ing SQL query is adjusted as necessary to remain consistent with
the changes in the database schema.

3.4 Seed Dataset Selection

For building Evoschema benchmark, we utilize the BIRD [18] dataset
as the seed data, which is specifically designed for the text-to-SQL
task. Compared to Spider [32], which is commonly used to study
text-to-SQL robustness, BIRD features more intricate, realistic, and
extensive databases, as well as more complex SQL queries that in-
clude keywords often missing in Spider. BIRD consists of NLQs,
corresponding database schemas, and gold SQL queries and en-
compasses a wide range of real-world database scenarios, which
provides a robust foundation for evaluating the performance of
models in translating NLQs into SQLs.

Schema Perturbations: To evaluate the robustness of the text-to-
SQL models, EvoSchema not only includes the BIRD dataset in their
original form but also augmented it with various column-level and
table-level schema perturbations. We ensure that the NLQs remain
fixed, while the schema and SQL queries are adjusted as necessary
to reflect the changes introduced by our perturbations. We follow
the standard train/dev split provided with BIRD, and apply all the
perturbations on both training data and evaluation data. The data
statistics of EvoSchema are in Table 2 and the examples of different
perturbation types are in Figure 2.

3659

3.5 Data Generation

We design a framework to simulate different types of schema per-
turbations in a configurable way. For adding or renaming columns,
both the modified column size and the column position in the tables
are set randomly, and we set the original column size in the table
as the maximum number of columns to be changed. For remov-
ing columns, we can randomly remove important or unimportant
columns from the existing relevant tables. The important columns
are the columns that appear in the gold SQL, which will inevitably
affect the prediction. For adding, removing, or renaming tables, we
randomly add, remove or rename one or multiple tables.

Schema Change: To ensure the diversity and reasonability of the
synthesized schema, we leverage the capabilities of GPT-3.5 and
GPT-4 to synthesize realistic and contextually appropriate columns
or tables, which help effectively produce high-quality synthetic data
that meets our requirements. For adding or renaming columns and
tables, we input the existing relevant tables to GPT-3.5, and let the
model generate the potential tables or columns that fit the context.
For splitting tables or merging tables, since they are more complex
than other perturbations, we use GPT-4 to choose the tables that
can be split or merged and then use the modified tables to replace
the original ones. For adding or renaming columns and tables, we
apply heuristics to filter out the repeated ones in the synthesized
tables or columns. Besides, to ensure the correct relationship among
different tables after modifying the schema, we apply heuristics to
ensure all the foreign keys change along with their referenced table
names and column names. When removing columns or tables, any
foreign keys in other tables that reference the removed columns or
tables will be removed as well.

SQL Change: To ensure the consistency of the <NLQ, relevant
schema, SQL>, after we change the relevant table schema, we re-
vise the gold SQL accordingly. Since the NLQs are the same for
adding or removing columns and tables, and the schema evolution
here doesn’t affect answering the questions, we keep the gold SQL
unchanged for these perturbation types. For renaming columns
or tables, we revise gold SQL if they appear in the gold SQL. For
table splitting or merging, due to the complexity and variation in
the required SQL changes, we use GPT-4 to revise the gold SQL.
This revision is based on the mappings from the original to the
new tables and columns, as well as the necessary adjustments to
the JOIN paths. We manually check the edited gold SQL for the
evaluation benchmark to make sure they are correct.

3.6 Data Collection of Each Perturbation Type

We first define heuristics for different perturbation types, then
combine both GPT models’ generation ability and programming
to collect the data. Finally, we incorporate a human verification
stage to control the data quality. Here are some general heuristics
we should consider to maintain consistency and avoid conflicts
when manipulating data: 1) Preserve Meaning: For renaming, the
new column or table name should reflect the same meaning as
the original name to avoid semantic confusion. 2) Avoid Conflicts:
Ensure that the new column or table name does not conflict with
existing column or table names within the same or other tables in
the database. 3) Update References: Update all references to the
new column or tables in foreign keys in other tables. 4) Revise SQL:
Update all SQL queries referencing the new columns or tables to
work correctly after the renaming. These heuristics aim to ensure
that those perturbations are performed systematically, maintaining
the database’s integrity and compatibility with SQL queries. The
details for each perturbation type are as follows:

Add columns: we input both the table name and all of its col-
umn names and data types to GPT-3.5 and prompt it to generate
multiple column names and their corresponding data types that
are suitable and congenial with reason and common sense given
the current scenario, and prompt GPT-3.5 don’t generate the col-
umn names that have the similar meaning with the existing input
column names. Then we add a heuristic guarantee to filter out the
redundant columns if the generated column names are repeated.
These synthesized columns are then randomly inserted into the
relevant tables. Notably, both the NLQ and the gold SQL remain
unchanged during this process.

Remove columns: We randomly eliminate columns from the
given schema, ensuring that the removed columns do not appear
in the gold SQL query. Again, the NLQ and the gold SQL are kept
fixed during this operation.

Remove columns in gold SQL: In this scenario, we randomly
remove columns from the schema, specifically targeting those ref-
erenced in the gold SQL query. As a result, the gold SQL becomes
invalid. Instead, we use the response “The given column informa-
tion is insufficient to generate an SQL query to answer the question"
as the ground truth.

Rename columns: as Figure 3 (a) shows, we input both the table
name and all of its column names and data types to GPT-3.5. We
randomly select multiple column names and their data types and

3660

prompt GPT-3.5 to generate similar, context-appropriate names.
These synthesized names replace the original column names. In
addition, in order to maintain the correctness of the relationship
among the tables, If the column in one table has been renamed, we
will also rename the foreign keys in other tables if those columns
reference the renamed one. We also revise gold SQL accordingly to
ensure that the revised schema and gold SQL remain aligned with
the unchanged NLQ.

Split columns: Since columns such as name, address, and date are
often stored in more fine-grained formats in real-world databases
(e.g., a full name split into first and last name; a date split into year,
month and day; an address split into state, city and street, etc),
we identify examples in BIRD dev set that involve these attributes
and manually split the corresponding columns into finer-grained
columns for evaluation. As these changes affect the structure of the
gold SQL queries, we manually revise the gold SQL to reflect the
updated schema. For the training set, we similarly select examples in
BIRD train set involving name, address, or date, and use Claude 3.5
to synthesize the corresponding fine-grained columns and update
the gold SQL accordingly.

Merge columns:As the reverse of column splitting, we simulate
more abstract column representations commonly seen in real-world
databases (e.g., combining first and last name into full name; year,
month, and day into date; state, city, and street as address). We
identify relevant examples in the BIRD dev set and manually merge
fine-grained columns, updating the gold SQL accordingly. For train-
ing, we apply the same strategy to the BIRD train set and use Claude
3.5 to synthesize the merged schema and update the gold SQL.

Add tables: We randomly add irrelevant tables to each question,
and these tables are still in the same database as the relevant tables
in BIRD. The original BIRD datasets guarantee that no different
tables in their database can lead to alternative correct SQL answers.
The tables added don’t affect the NLQ and the gold SQL.

Remove tables: In this scenario, we randomly remove tables from
the relevant schema, which are referenced in the gold SQL query. As
aresult, the gold SQL becomes invalid. Instead, we use the response
“The given table information is insufficient to generate an SQL
query to answer the question" as the ground truth.

Rename tables: we input both the table name and all of its col-
umn names and data types to GPT-3.5. We randomly select one
or multiple table names and prompt GPT-3.5 to generate similar,
context-appropriate names. These synthesized names replace the
original table names. In addition, in order to maintain the correct-
ness of the relationship among the tables, we will also rename the
foreign keys in other tables if they reference the renamed table.
Finally, the table names in the gold SQL will also be renamed.

Split tables: as Figure 3 (b) shows, we input both the table name
and all of its column names and data types to GPT-4. We prompt
GPT-4 to identify tables that can be logically divided into two or
more smaller tables. Using GPT-4, we generate new table names and
distribute the columns of the original table among the new tables in
a contextually appropriate manner. The primary key in the original
table will be copied into all the new tables after splitting. The gold
SQL is revised by GPT-4 to reference the newly created tables,
ensuring consistency across all components. We also manually
check the new gold SQL to make sure it’s correct.

Table 1: Statistics of EvoSchema compared with existing benchmarks. “Tab”: tables; “DB”: database; “Col”: columns; “PK”: primary

keys; “FK”: foreign keys.

Schema Evolution

Features of Seed Data (Average)

Perturbation Data Column-level Table-level Affects SQL Multiple DB Seed Data Tab/DB Col/DB Col/Tab PK/DB FK/DB
FootballDB [8] - reduce PK/FK references, reduce JOIN paths v X FIFA World Cup [1] 15 107 7.1 - 16
Dr.Spider [2] Rename X v v Spider [2] 5.1 22.1 5.4 3.7 3.2
ADVETA [23] Add; Rename X v v Spider [2] 5.1 221 5.4 3.7 3.2
MT-TEQL [20] Add; Remove; Shuffle; Rename Split; Merge; Shuffle X v Spider [2] 5.1 22.1 5.4 3.7 3.2
EvoSchema (Ours) | Add; Remove; Rename; Split; Merge Split; Merge; Rename; Add; Remove v v BIRD [18] 7.3 72.5 10.6 6.5 9.3

Merge Tables: We select two or more related tables and combine

them into a single table. GPT-4 is used to generate a suitable name
for the merged table, and the columns from the original tables are
consolidated under this new table. More concretely, the GPT4 is
prompted to 1) copy all the primary key columns of the original
tables to the new tables after merging, but only keep one of them
as the primary key of the new table, and make others as the regular
columns. 2) if the primary key columns in these two original tables
are the same, then just keep one in the new table after merging. 3)
when merging tables, if there are two columns not the primary key
column but with the same names in the original tables, revise their
column names accordingly to make them different when merging
them into the new table. Finally, the gold SQL is updated by GPT-4
accordingly. We also manually check the new gold SQL to make
sure it’s correct.
Quality Control: To ensure high-quality data in EvoSchema, we
leverage advanced language models and rigorous human validation.
Specifically, we use GPT-3.5 to generate synthesized column and
table names and data types (only for columns) when adding or re-
naming are required. We randomly choose 200 generated examples
to do manual review and reveal that GPT-3.5 demonstrates a strong
understanding of the input context, effectively generating names
that meet our requirement. For more complex operations, such
as splitting or merging tables, we utilize the capabilities of more
powerful GPT-4 to handle both schema changes and corresponding
SQL modifications with high accuracy.

To complement these automated processes, we engaged five an-
notators with substantial SQL expertise to carefully review cases
involving complex schema transformations. Annotators validated
and, where necessary, manually corrected the generated gold SQL
queries to ensure correctness and alignment with the modified
schemas. To further enhance reliability, we implemented cross-
validation by assigning complex cases to multiple annotators and
resolving discrepancies through discussion or consensus. This com-
bination of advanced Al tools and meticulous human review en-
sures that EvoSchema maintains a robust and accurate benchmark,
faithfully reflecting real-world schema evolution scenarios.

Cost Analysis: We have 1.5K split-table examples and 1.1K merge-
table examples requiring human verification. Among the split exam-
ples, 1.1K are relatively simple and take approximately 3 minutes
each to verify, while the remaining 0.4K are more complex and
require about 7 minutes each—totaling roughly 100 hours. For the
merge-table examples, 0.8K are simple (3 minutes each) and 0.3K are
complex (7 minutes each), amounting to approximately 75 hours.
Note this manual effort was for curating the evaluation data, not the
training data. Our training data is generated entirely automatically
without any human annotation or manual verification. Our analysis

3661

also indicates that LLM-generated split and merge tables include
around 30% low-quality data, underscoring the need for careful
human validation for these two types.

3.7 Comparison with Existing Benchmarks

EvoSchema, as presented in Table 1, introduces a comprehensive
and unique taxonomy for evaluating models’ behavior under the im-
pact of schema evolution on SQL queries, distinguishing itself from
other benchmarks like Dr.Spider [2], ADVETA [23], MT-TEQL [20]
and FootballDB [8]. Unlike Dr.Spider and ADVETA, which focus
on limited perturbations such as column renaming and additions,
EvoSchema encompasses a broader range of transformations, in-
cluding adding, removing, renaming, splitting and merging at both
the column level and table level. This diversity allows for testing
systems under realistic and dynamic schema evolution scenarios.
Furthermore, while MT-TEQL includes a variety of perturbations,
it only modifies the columns not mentioned in the SQL which
does not consider the impact of schema evolution on SQL directly.
EvoSchema uniquely integrates schema evolution with its effects on
SQL queries, enabling evaluation of models in environments that
closely mimic real-world database evolution challenges. Different
from FootballDB [8] which mainly restructures schema to reduce
foreign key mappings among tables and reduce JOIN paths for SQL,
we define a more configurable, systematical and structured schema
evolution taxonomy. Besides, our provided schema evolution and
synthesis framework allows us to explore the schema change on
multiple databases easily, while FoodballDB is only limited to one
database. Finally, for the seed data selection, compared to Spider,
which is commonly used to study text-to-SQL robustness, BIRD
features more intricate, realistic, and extensive databases, as well as
more complex SQL queries that include keywords often missing in
Spider. These distinctions make EvoSchema particularly well-suited
for studying how systems adapt to evolving schemas, advancing
beyond the simpler or less holistic setups of prior benchmarks.

3.8 Data Statistics

Table 2 provides an overview of the data statistics in EvoSchema,
showcasing the various perturbation types applied to the origi-
nal BIRD dataset. “Column Manipulation" refers to applying the
column-level operations on the columns of the original BIRD data;
“Table Manipulation” refers to applying the table-level operations
on the tables of the original BIRD data. All the perturbed data are
obtained by applying column manipulation or table manipulation
on the original BIRD dataset. “Manipulated Items" shows the size
of the altered columns or the tables. “Manipulated Items/Query"”
refers to the number of columns or tables modified in the schema

Table 2: Data statistics of EvoSchema. “Original” refers to the
original BIRD dataset; “Column Manipulation” refers to ap-
plying the column-level operations on the columns of the
original BIRD data; “Table Manipulation” refers to applying
the table-level operations on the tables of the original BIRD
data. “*”: the evaluation data for calculating execution accu-
racy. We synthesize values to reconstruct the database after
schema evolution, and filter out those not executable by gold
SQL, which results in the smaller size of the evaluation data
for calculating execution accuracy.

Data Statistics

Manipulated Items/Table Manipulated Items/Query

Eval*
V| Min Mean Median Max | Min Mean Median Max

Perturbation Type | Train

Original | 9426 1534 1068 | - - - - |-
‘ ‘ Column Manipulation

Add Columns 9219 1506 846 1 5.7 3 83 1 5.9 4 43
Remove Columns 9426 1534 1076 1 6.2 2 87 1 6.9 3 70
Remove Colin SQL | 9424 1534 - 1 25 2 8 1 25 25 6
Rename Columns 9385 1533 947 1 43 3 46 1 44 3 46
Split Columns 140 37 37 1 2 2 4 1 2 2 4
Merge Columns 148 44 44 2 3 3 4 2 3 3 4

‘ Table Manipulation

Add Tables
Remove Tables
Rename Tables
Split Tables
Merge Tables

1014 - - - - 1 2

1063

o
oW o e
[T

569

for each SQL query, specifically targeting the tables relevant to gen-
erating that query. For “Split Tables," “Manipulated Items/Query”
represents the number of tables each original table is split into. For
“Merge Tables", “Manipulated Items/Query" indicates the number

of tables combined into a single table.

4 TRAINING PARADIGM

In our work, we propose a new training paradigm to enhance the
model’s robustness against different schema evolution. For each
<NLQ, relevant schema, SQL> triple, we fix the NLQ in the training
data, and augment each triple with different schema designs, which
may or may not lead to SQL change. Consequently, we obtain mul-
tiple triples that can be derived from each of the original triples.
We train the model by learning multiple schema designs and SQLs
to the original question mappings, which can improve the model’s
ability to identify the correct relationships among different tables
and columns to the question, and can better distinguish the differ-
ence among different schema designs. Through this procedure, the
model can avoid learning spurious patterns better and therefore
enhance the robustness against different schema evolution types.

5 EXPERIMENT SETUP
5.1 Training and Evaluation Settings

Training Setting: We choose four open-source models: Code
Llama-7B [25], Mistral-7B [12], Llama 3-8B [7] and SQLCoder-7B *
and two closed-source models: GPT-3.5 ° and GPT-4 [22] for our
experiments. For these four open-source models, we explore two
settings: 1) without perturbation types: the model is trained on the
original training data without any perturbation types introduced

“https://huggingface.co/defog/sqlcoder-7b-2
Shttps://openai.com/chatgpt/

3662

during training. 2) with perturbation types: the model is trained
by merging both the original training data and the perturbation
training data. For closed-source models, we only use them for eval-
uation.

Evaluation Setting: For all the closed-source models and the
finetuned open-sourced models, we evaluate them under two set-
tings: 1) without perturbation types: this setting uses the standard,
unaltered original evaluation data to evaluate the model perfor-
mance. 2) with perturbation types: the models are evaluated on data
where different perturbations are introduced. By comparing the
model performance under these two settings, we can assess how
resilient the finetuned models and GPT models are to schema evolu-
tion in NL2SQL. This setup provides a comprehensive evaluation of
model performance in both standard and perturbed environments,
allowing for detailed analysis of robustness and adaptability across
different models and schema evolution types.

5.2 Evaluation Metrics

1) Table Match F1: this score is a metric to measure how well the
model correctly identifies the relevant tables required to generate
a valid SQL query. The F1 score is a harmonic mean of precision
and recall, where the precision is the percentage of tables correctly
predicted out of all tables predicted by the model and the recall is
the percentage of tables correctly predicted out of all the actual
tables that should have been selected. The Table Match F1 score
combines these two metrics to provide a balanced evaluation, which
can assess the ability of text-to-SQL models to correctly identify the
required tables from the database schema to form accurate queries.
A higher Table Match F1 indicates better performance in selecting
the correct tables for the SQL query.

2) Column Match F1: this score is to evaluate how accurately the
model identifies the relevant columns required to generate a valid
SQL query from a natural language input. Like the Table Match F1,
it measures the balance between precision and recall but is applied
specifically to the columns of the database. A higher Column Match
F1 score indicates better performance in selecting the right columns
for the SQL query.

3) Execution Accuracy: this metric measures whether the pre-
dicted SQL query can return the correct results as the gold SQL
when executing against a database.

5.3 Training and Evaluation Details

We choose Code Llama-7B [25], Mistral-7B [12], Llama 3-8B [7] and
SQLCoder-7B # as our open-source base models. We fine-tune these
models with Huggingface transformers library [31]. For the pertur-
bation training, we merge all the perturbation data and randomly
shuffle them as our final training data. We use a learning rate of
2e-5 for training Code Llama, Llama 3 and SQLCoder, and 5e-6 for
training Mistral. Our batch size is 4. We train all the models on 4
A100 80GB GPUs and use a cosine scheduler with a 0.03 warm-up
period for 6 epochs. We employ FSDP [37] to efficiently train the
model. We set the max input length of training as 1024 and the max
output length of inference as 500. For inference, we use vllm [31]
for batch evaluation, and we set the batch size as 16. We do the
inference on an 80G A100 GPU. For closed-source LLMs, we use

Table 3: Evaluation on EvoSchema. “w/”: the model is trained by merging the original data and all the perturbation training
types together; “w/0”: the model is only trained on the original training data. The best performance for each model is in bold,

“_%»,

and red shows a larger gain. “-”:
metrics here.

some of the relevant tables are removed so there should be no gold SQL used to calculate the

. Code Llama Mistral Llama 3 SQLCoder GPT-3.5 GPT-4

Perturbation Type
w/o w/ ‘ w/0 w/ ‘ w/o w/ ‘ w/o w/ ‘
Table Match F1
Original | 89.77 9042 | 89.58 90.62 | 89.96 89.53 | 89.69 90.64 | 87.28 88.98
Add Columns 89.73 90.27 | 89.65 90.03 | 89.08 89.70 | 89.30 90.52 | 86.35 88.12
Remove Columns | 89.82 90.24 | 89.89 90.66 | 90.09 89.82 | 89.81 90.54 | 87.18 88.87
Rename Columns | 85.28 85.07 | 84.32 84.27 | 83.74 8292 | 85.32 8493 | 8173 83.20
Split Columns 83.78 89.19 | 83.78 88.29 | 81.08 85.14 | 86.49 88.29 | 81.44 86.31
Merge Columns 88.65 87.23 | 87.23 89.72 | 88.65 86.17 | 87.23 87.23 | 83.17 89.36
Add Tables 57.88 89.50 | 57.67 89.30 | 55.11 88.51 | 57.44 89.38 | 83.54 85.79
Remove Tables - - - - - - - - - -
Rename Tables 88.84 90.32 | 89.40 90.56 | 87.18 89.14 | 89.40 90.48 | 87.02 88.45
Split Tables 71.99 81.55 | 66.12 80.87 | 71.08 80.12 | 7252 81.92 | 77.52 80.68
Merge Tables 85.29 87.03 | 8339 86.91 | 81.68 86.48 | 84.80 86.35 | 83.04 86.99
MacroAvg | 8310 88.08 | 82.10 88.12 | 81.77 86.75 | 8320 88.03 | 8383 86.68
Column Match F1

Original | 80.66 8164 | 81.10 82.36 | 79.13 7872 | 8152 8197 | 7828 80.78
Add Columns 78.26 80.27 | 79.16 80.18 | 75.79 76.87 | 79.09 80.46 | 75.03 78.58
Remove Columns | 82.67 82.75 | 83.09 84.00 | 81.56 80.69 | 83.20 83.18 | 80.33 82.55
Rename Columns 76.50 76.94 | 7635 76.73 | 72.24 71.07 | 76.84 77.38 73.40 75.90
Split Columns 7122 81.81 | 70.24 80.41 | 67.29 75.04 | 7450 79.92 | 73.59 77.92
Merge Columns 83.19 83.30 | 82.75 83.41 | 8272 83.68 | 82.64 83.31 | 78.13 88.56
Add Tables 63.81 81.14 | 6539 81.09 | 5936 77.96 | 6291 81.23 | 76.45 79.32
Remove Tables - - - - - - - - - -
Rename Tables 79.60 80.91 | 80.32 81.29 | 77.49 77.46 | 80.77 8179 | 77.78 80.04
Split Tables 7530 78.45 | 73.87 78.11 | 73.81 73.95 | 75.83 78.59 | 74.89 77.41
Merge Tables 65.56 67.09 | 64.12 67.46 | 63.50 64.40 | 6557 67.29 | 63.23 68.13
MacroAvg | 7568 79.43 | 7564 79.50 | 7329 75.98 | 7629 79.51 | 7511 78.92

Azure OpenAl API®. We use the 2023-12-01-preview version for
GPT-4, and 2023-07-01-preview version for GPT-3.5.

5.4 Baselines

We add in-context learning [10] and more advanced method: CHESS
[28] as the baselines for comprehensive comparison. In order to
test whether the in-context learning can help address the schema
evolution issue, we randomly select three examples (each example
is an <NLQ, database schema after evolution, gold SQL after schema
evolution> triple) as the demonstration in the prompt to help the
models understand the schema after evolution (Table 4). We also
include CHESS, an advanced method for NL2SQL as a baseline.
We apply the schema selection (SS) and candidate generation (CG)
components developed in their work. For schema selection, we
use advanced gpt-4o model to prune the database schema and
remove the irrelevant tables and the irrelevant columns in the
selected tables, ensuring only the most relevant tables and columns
are passed into the model for SQL generation. To ensure a fair

Chttps://learn.microsoft.com/en-us/azure/ai-services/openai/reference

comparison with our primary fine-tuning approach, we use a fine-
tuned Code Llama model trained without any schema perturbation
data as the SQL generation model. This setup allows us to isolate
and evaluate the effectiveness of a schema selection and pruning
component in addressing schema evolution. The results are shown
in Table 4.

6 RESULTS AND ANALYSIS

6.1 Main Results

As Table 3 and Table 5 show, we train Codellama, Mistral, Llama3
and SQLCoder on the original BIRD training data with and without
different perturbation types, and evaluate the model on the original
BIRD evaluation data and different perturbation types. We observe:
The models trained on different perturbation types are
more robust to the schema variation on average, and demon-
strate high robustness on the table-level schema evolution.
While adding the perturbation data during training leads to a slight
Exec Acc (EX) drop for original non-evolved evaluation data, adding,
removing and renaming column types, it achieves significantly bet-
ter results on splitting columns and table-level perturbation types.

3663

By comparing these four models’ performance with and without the
perturbation data, we observe that for splitting columns, the model
trained with perturbation data can achieve up to 5.4 points gain for
table match F1, 10.6 points gain column match F1 and 24 points gain
for EX; for adding tables, the model trained with perturbation data
can achieve up to 33 points gain for table match F1, 18 points gain
for column match F1 and 19 points for EX; for splitting tables, the
model trained with perturbation data can achieve up to 14 points
gain for table match F1, 4.2 points gain for column match F1 and
12 points for EX; for merging tables, the model trained on pertur-
bation data can achieve up to 4.8 points gain on table match F1
and 3 points gain for column match F1. We hypothesize that this is
because the perturbation augmented data is particularly beneficial
for handling substantial schema changes, but may introduce minor

Table 4: Human Evaluation on EvoSchema. “ZS” refers to zero-
shot, which prompts models without any examples. “ICL”
refers to in-context learning, which prompts models with
three demonstration examples. “w/0” means fine-tuning
model without perturbation training data; “w/” means fine-
tuning model with perturbation training data. Bold color
indicates the best performance among each row.

Human Evaluation on EvoSchema

Perturbation Tvpe GPT-4 Code Llama CHESSssi+cG
PElzs 1L wio wi

Original 62 58 65 64 63
Add Columns 59 55 62 61 66
Remove Columns | 65 61 66 63 64
Rename Columns | 57 56 57 57 62
Split Columns 46 59 41 62 49
Merge Columns 68 66 70 70 66
Add Tables 56 55 46 62 57
Remove Tables - - - - -
Rename Tables 58 60 64 61 61
Split Tables 57 53 48 60 53
Merge Tables 55 57 54 58 53
MacroAvg | 58 58 57 62 59

Table 5: Execution Accuracy on EvoSchema. “w/”: the model
is trained with all the perturbation types; “w/0”: the model
is only trained on the original training data.

Exec Acc on EvoSchema

Code Llama
w/o W/

Mistral Llama 3 GPT-35 GPT-4

‘ w/o w/ ‘ w/o

SQLCoder

Perturbation Type w/ ‘ wo wl ‘

Original | 58 | 59 58| 55 51| 58 58| 44

Add Columns
Remove Columns
Rename Columns
Split Columns
Merge Columns

57
59
54
41
70

56 56
58
54
54

70

52
56
49
38
73

49 55
60
56
43

66

57
58
55
67
82

43
45
43
41
61

Add Tables 40 58 37 40 57 44
Remove Tables - - - - - - - - -

Rename Tables 56 56 | 52 56 55 43
Split Tables 38 48 | 40 43 49 40
Merge Tables 43 46 | 42 47 46 37

MacroAvg 52 56 49 51 52 58 44

3664

noise in simpler schema changes where the model trained with-
out perturbation data has already maximally learned the patterns.
To better understand the slight performance gap under simpler
column-level perturbations, we conducted error analysis and case
studies to compare models trained with and without perturbed
data. We observed two types of errors that lead to this phenome-
non: (1) Spurious or missing conditions in the WHERE clause. For
instance, given the question "What is the element with the atom
ID of TR004_7 in molecule that is not carcinogenic?", the model
trained with perturbation (“w/") misses the condition T2.label = ’-’
in WHERE clause, while the “w/0" model includes it correctly. How-
ever, in another case, ’How many transactions were paid in CZK on
the morning of 2012/8/26?’, the “w/" model introduces an unneces-
sary WHERE condition: T1.Transaction]D BETWEEN 1 AND 1000,
which is not part of the gold SQL. (2) Incorrect column selection in
SELECT or WHERE clauses. For example, for the question "Among
the patients followed at the outpatient clinic, how many of them
have a normal level of alkaliphophatase?”, the “w/" model predicts
T1.Description instead of T1.Admission in WHERE clause, while the
“w/0" model selects the correct column. Similarly, in the question
"Which group does superhero A-Bomb belong to?", the “w/" model
selects T2.team_affiliation instead of the correct T2.race. These ex-
amples suggest that while training with perturbed data can improve
general robustness, especially beneficial for handling substantial
schema changes, it may also introduce minor noise that misleads
in condition or column selection under simpler perturbations.
Closed-source models are robust to different scheme evo-
lution types in general. As table 3 and 5 show, we compare the
model performance on GPT models and four open-source mod-
els trained with and without perturbation types. We observe that:
the GPT models’ performance are relatively stable across different
perturbation types compared to the original non-evolved test set.
In contrast, fine-tuned open-source models without perturbation
training data exhibit significant performance drops—particularly
on split columns, add tables, split tables, and merge tables—which
introduce larger schema changes. We hypothesize that the stabil-
ity and robustness of closed-source models stems from broader
pretraining exposure and stronger internal schema reasoning capa-
bilities, while the open-source models trained without perturbation
types are more sensitive due to limited training on diverse schema
variations. This motivates the need to fine-tune open-source mod-
els with perturbation training data to improve their generalization
under schema evolution. We notice that comparing the model perfor-
mance on the open-source LLMs and closed-source LLMs, the models
trained with perturbation data have better performance than GPT
models on both column-level and table-level perturbation evaluation
data. This indicates that our models trained with perturbation data
are more robust than GPT models.
Table-level perturbation has a larger impact than column-
level perturbation on the model performance. As Table 3 and
5 show, comparing with the performance on the original evaluation
data: adding tables and splitting tables will lead to a significant table
match F1 drop; adding tables, splitting tables and merging tables
will lead to a significant column match F1 drop. This phenomenon
indicates that adding tables or splitting tables easily confuses the
models in choosing the correct tables to generate the SQL query. For
merging tables, even though the model can correctly choose tables,

it’s a bit hard for the model to pick up the correct columns when
the columns from different tables go into the same table. While for
the column-level performance, there are limited differences with
the performance on the original data except for splitting columns.
Reducing table schema complexity is beneficial for model
performance. Compare the model performance on column-level
perturbation evaluation and the original evaluation data, adding
columns results in a decrease in column match F1, whereas remov-
ing columns leads to an increase in column match F1. It indicates
simpler table schema is beneficial for models to select columns,
as removing columns simplifies the table schema while adding
columns makes the table schema more complex.

6.2 Comparison of Different Baselines

As EvoSchema has a large scale of the test set and we need to call
GPT-4 and GPT-40 API for in-context learning and CHESS respec-
tively, to save the cost, we randomly select 200 examples for the
raw BIRD test set and also from each perturbation type to com-
pare different baselines. We compare GPT-4 zero-shot prompting,
GPT-4 3-shot in-context learning, CodeLLama trained with and
without perturbation training data and CHESS (with schema selec-
tion (SS) and candidate generation (CG)) on our downsampled test
set. Since we found that Exec Acc can still make mistakes when
different SQL queries produce the same results sometimes even
they don’t align with the NLQ, or sometimes both the gold SQL
and wrong predicted SQL return the empty which may mislead
the evaluation, we use human evaluation here for more precise
evaluation. As Table 4 shows, compared to GPT-4 zero-shot (ZS),
in-context learning (ICL) shows a significant advantage only on
the split columns perturbation, while performing slightly better or
worse on other types. This suggests that ICL is not consistently
effective for handling schema evolution. We hypothesize this is
because the demonstration examples in ICL cannot cover the full
range of schema and SQL changes; thus, for examples that differ
significantly from the demonstrations, ICL offers limited benefit.
However, for split columns, where changes commonly involve pat-
terns like name, address, or date splits, the demonstrations gener-
alize better—making ICL more effective in this case. For CHESS,
we use GPT-40—a powerful closed-source model—for schema selec-
tion and pruning, and Code Llama without perturbation training
(CodeLlama w/o) as the SQL generation model. CHESS achieves
the best performance on add columns and rename columns, and
significantly outperforms CodeLlama w/o on split columns, add
tables, and on average. This highlights the importance of accurate
schema selection and pruning in improving SQL generation. How-
ever, we also observe that errors at the pruning stage can propagate,
leading to degraded performance. Specifically, in merge columns
and merge tables cases, CHESS tends to over-prune, omitting rele-
vant schema information and resulting in worse performance than
CodeLlama w/o. Finally, we found that fine-tuning CodeLlama with
perturbation training data is still needed, since this method gets
the best performance among all the baselines on average across all
types of evaluation data, and performs significantly better than oth-
ers on ‘split columns’, ‘add tables’, ‘split tables’ and ‘merge tables’
types. We applied McNemar’s Test [21] to measure the statistical
significance of performance differences between our method and

3665

Table 6: Perturbation type ablation on EvoSchema. The base
model is Code Llama. “both": the model is trained with
both column-level perturbation and table-level perturbation
types; “w/o table-p": the model is trained without table-level
perturbation types; “w/o column-p": the model is trained
without column-level perturbation types.

Perturbation Type Ablation

Perturbation Type Table Match F1 Column Match F1
P both w/o table-p w/o column-p ‘ both w/o table-p w/o column-p

Original [9073 90.80 007) 90.04(0s9) | 81.09 82.15(106) 8049 (0.60)
Add Columns 90.86 90.80 (-0.06) 89.75 (-1.11) 79.63 80.81 (+1.18) 77.29 (-2.34)
Remove Columns | 90.72 90.83 (+0.11) 90.48 (-0.24) 83.28 83.85 (+0.57) 82.61 (-0.67)
Rename Columns | 85.35 85.38 (+0.03) 84.57 (-0.78) 76.49 77.53 (+1.04) 75.17 (-1.32)
Add Tables 88.95 58.94 (-30.01) 88.57 (-0.38) 79.87 64.11 (-15.76) 79.33 (-0.54)
Remove Tables - - - - - -
Rename Tables 90.54 90.77 (+0.23) 89.29 (-1.25) 81.13 81.51 (+0.38) 79.33 (-1.80)
Split Tables 80.71 73.28 (-7.43) 79.05 (-1.66) 77.41 75.95 (-1.46) 76.30 (-1.11)
Merge Tables 88.72 87.87 (-0.85) 86.83 (-1.89) 68.40 68.26 (-0.14) 67.08 (-1.32)

Table 7: Out of Scope Effect on EvoSchema. The base model is
Code Llama. “w/0": the model is trained without perturbation
types; “w/": the model is trained on the original data and all
the perturbation types; “+ OOS": the model is trained on the
original data, perturbation types and two out-of-scope (0OOS)
perturbation types; “+ OOS FP": The model trained with two
OOS perturbation types makes an incorrect prediction on the
original data and in-scope perturbation data; “+ OOS TP": The
model trained with two OOS perturbation types makes the
correct prediction on the two OOS perturbation data; “Tab":
the model refuses to predict SQL due to the lack of table
information; “Col": the model refuses to predict SQL due to
the lack of column information.

Out of Scope Effect

Table Match F1
w/ +00S

Column Match F1
w/ +00S

' +O00SFP +00S TP
Perturbation Type | Tab | Col | Tab | Col

w/o ‘ w/o

Original | 8077 9042 8298 (744 | 80.66 81.64 7543 ¢e2n) | 7.11] 065 | - |

Add Columns 89.73 90.27 86.07 (-4.20) | 78.26 80.27 77.00 (-327) | 4.25 | 0.40

Remove Columns 89.82 90.24 82.24 (8.00) | 82.67 82.75 75.90 (-6.85) | 7.56 | 0.72 -
Remove Col in SQL - - - - - - 5.02 - 84.03
Rename Columns 85.28 85.07 80.20 (-487) | 76.50 76.94 73.04 (-390) | 4.44 | 0.20 -
Add Tables 57.88 89.50 88.78 (072) | 63.81 81.14 80.71(-037) | 0.33 | 0.07 -

Remove Tables - - - - - -- - 1.62 | 83.86
Rename Tables 88.84 9032 86.36 (3.96) | 79.60 80.91 78.06 (-285 | 3.52 | 0.39 -

Split Tables 7199 8155 81.07 (-04s) | 7530 78.45 78.02(-043) | 0.26 | 0.07

Merge Tables 85.29 87.03 82.18 (515 | 65.56 67.09 63.59 (-350) | 4.65 | 0.35

each baseline. We computed p-values using the statsmodels pack-
age, considering differences statistically significant when p < 0.05,
which indicates that the improvement is unlikely due to random
chance. Using this test, we observed our method achieved statis-
tically significant improvements over three key baselines: GPT-4
in-context learning, fine-tuning without perturbed data, and CHESS
(all with p < 0.05).

6.3 Influence of Perturbation Types

We explore the effect of the column-level perturbation types and
table-level perturbation types. As Table 6 shows, we train the model
with both column-level and table-level perturbation types, and
compare it with the model trained without column-level pertur-
bation types and without table-level perturbation types. From our

experiments, we found that without training on table-level per-
turbations, the model performance can be slightly better than the
model trained with both column-level and table-level perturbation
types on column-level perturbation types, while can lead to a sig-
nificant performance drop on the table-level perturbation types.
This indicates that the table-level perturbation data has a limited
effect on the column-level perturbation types while having a huge
impact on the table-level perturbation types. When looking at the
model trained only on table-level perturbation types, we found
that the model performance on both column-level and table-level
perturbation types dropped. This indicates that the column-level
perturbation types can still benefit the training.

Table 8: Irrelevant tables effect. “w/”: the model is trained
with all the perturbation types; “w/0”: the model is only
trained on the original training data; “w/o+": the model is
only trained on the original training data, but for the input
table schema, we also add irrelevant tables.

Add Irrelevant Tables Effect

. Table Match F1 Column Match F1

Perturbation Type

w/o w/o+ w/ ‘ w/o w/o+ w/
Original | 89.77 8765 90.42 | 80.66 79.24 81.64
Add Columns 89.73 86.35 90.27 | 78.26 7531 80.27
Remove Columns | 89.82 87.30 90.24 | 82.67 80.74 82.75
Rename Columns | 85.28 81.90 85.07 | 76.50 73.28 76.94
Add Tables 57.88 88.01 89.50 | 63.81 79.51 81.14
Remove Tables - - - - - -
Rename Tables 88.84 86.84 90.32 | 79.60 78.47 80.91
Split Tables 71.99 67.27 8155 | 7530 7039 78.45
Merge Tables 85.29 83.56 87.03 | 65.56 63.59 67.09

6.4 Influence of Out-of-scope Types

We evaluate both in-scope and out-of-scope scenarios. In in-scope
settings, schema changes may or may not alter the gold SQL. Out-of-
scope cases involve two special perturbations: (1) Removing columns
used in the gold SQL, and (2) Removing tables used in the gold SQL.
In both cases, the schema lacks critical information, and the model
is expected to abstain from generating a query.

To assess their impact, we train a model on a combined dataset
that includes both out-of-scope and in-scope perturbation types,
along with the original training data. We compare this model to
others trained only on the original or in-scope data. As shown in
Table 7, incorporating out-of-scope types results in performance
degradation across both original and in-scope evaluation sets.

Error analysis reveals that the model trained with out-of-scope
data tends to make more conservative predictions, sometimes ab-
staining even when the gold SQL is valid. Further analysis shows
that the false positive (FP) rate closely matches the performance
drop between models with and without out-of-scope training, con-
firming that increased conservatism is the main cause. Additionally,
for the out-of-scope perturbations, the TP is only around 84%, which
indicates that the model still has a 16% chance to make a prediction
even when there should not be an SQL.

6.5 Influence of Irrelevant Tables

We observed that the model trained with perturbation types demon-
strates significant robustness to table-level perturbations, such as
adding and splitting tables. Upon analyzing the errors, we found

3666

that models trained without perturbation types tend to predict SQL
queries that join all available tables, even when some tables are
irrelevant to the NLQs and SQLs. We hypothesize that this occurs
because during training without perturbations, the model only sees
relevant table schemas, causing it to learn spurious patterns that
always try to join all the input tables.

To explore whether simply adding irrelevant tables could yield
similar performance to models trained with perturbation data, we
conducted an experiment where we trained CodeLlama on BIRD. As
shown in Table 8, adding irrelevant tables led to similar performance
on "Add Tables" perturbation type. but it caused a performance
drop on other perturbation types. This suggests that combining all
perturbation data is necessary to train a more robust model.

Table 9: Intra-database Effect. This experiment emphasizes
that the training and evaluation occur within the same data-
base, instead of across databases.

Intra-database Effect

Table Match F1 ~ Column Match F1

Perturbation Type

w/o w/ ‘ w/o w/

Original | 87.24 8743 | 79.54 80.89
Add Columns 87.14 87.43 | 76.36 78.92
Remove Columns | 87.29 87.27 | 81.14 81.29
Rename Columns | 85.71 86.43 | 77.45 79.09
Add Tables 61.13 83.95 | 66.11 78.57
Remove Tables - - - -

Rename Tables 86.33 86.67 | 79.44 79.96
Split Tables 71.82 78.52 | 75.09 77.42
Merge Tables 85.11 87.44 | 71.43 74.72

6.6 Influence of Intra-DB and Cross-DB

We hypothesize that a model trained on the same databases may
not only learn schema evolution patterns but also become familiar
with specific table and column names. To test this, we split the
BIRD training data into train/test sets to ensure that each database
in the test set also appears in the training set. We use Code Llama
as the base model. The results in Table 9 show that, for most pertur-
bation types, the model’s performance improves more compared
to the cross-database scenario in Section 6.1, which verifies our
hypothesis.

7 CONCLUSION

In conclusion, we formulate the critical challenge of schema evo-
lution in adaptive text-to-SQL systems and introduce EvoSchema,
a comprehensive, diverse and unique benchmark designed specifi-
cally to study and address this problem. We developed a structured
taxonomy of schema evolution types, enabling the synthesis of real-
istic schema designs through column-level and table-level perturba-
tions. Using this taxonomy, we construct an evaluation benchmark
to rigorously assess model robustness under schema changes and
also introduce a novel training paradigm that augments existing
<NLQ, relevant schema, SQL> triples with diverse schema designs
for training to improve robustness against schema evolution.

ACKNOWLEDGMENTS

The authors would like to thank colleagues from the OSU NLP
group for their insightful discussions and constructive suggestions
and all anonymous reviewers for their thoughtful comments.

REFERENCES

(1]
(2]

(3

=

(6

=

[10]

[11

[12

[13]

[14]

[15

[16]

[17

[18

[19

Andre Becklas. 2018. FIFA World Cup: All the results from World Cups. Kaggle
(2018). https://www.kaggle.com/datasets/abecklas/fifa-world-cup

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexan-
der Hanbo Li, Wuwei Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve
Ash, William Yang Wang, Zhiguo Wang, Vittorio Castelli, Patrick Ng, and
Bing Xiang. 2023. Dr.Spider: A Diagnostic Evaluation Benchmark towards
Text-to-SQL Robustness. In The Eleventh International Conference on Learning
Representations. https://openreview.net/forum?id=We5bmZZU9cy

Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens Weber.
2015. Understanding database schema evolution: A case study. Science of
Computer Programming 97 (2015), 113-121.

Daiga Deksne and Raivis Skadins. 2022. Virtual Assistant for Querying Databases
in Natural Language. In Proceedings of the Future Technologies Conference.
Springer, 555-564.

Julien Delplanque, Anne Etien, Nicolas Anquetil, and Olivier Auverlot. 2018. Re-
lational Database Schema Evolution: An Industrial Case Study. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
635-644. https://doi.org/10.1109/ICSME.2018.00073

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-Grounded Pretraining
for Text-to-SQL. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics. https://doi.org/10.
18653/v1/2021.naacl-main.105

Abhimanyu Dubey and et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

Jonathan Fiirst, Catherine Kosten, Farhad Nooralahzadeh, Yi Zhang, and Kurt
Stockinger. 2025. Evaluating the Data Model Robustness of Text-to-SQL Systems
Based on Real User Queries. In EDBT. 158-170. https://doi.org/10.48786/edbt.
2025.13

Chang Gao, Bowen Li, Wenxuan Zhang, Wai Lam, Binhua Li, Fei Huang, Luo
Si, and Yongbin Li. 2022. Towards Generalizable and Robust Text-to-SQL
Parsing. In Findings of the Association for Computational Linguistics: EMNLP
2022, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2113-2125.
https://doi.org/10.18653/v1/2022.findings-emnlp.155

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proceedings of the VLDB Endowment 17, 5 (2024), 1132—
1145.

Andrea Hillenbrand and Uta Storl. 2021. Managing Schema Migration in
NoSQL Databases: Advisor Heuristics vs. Self-adaptive Schema Migration Strate-
gies. In International Conference on Model-Driven Engineering and Software
Development. Springer, 230-253.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL] https:
//arxiv.org/abs/2310.06825

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International conference on machine learning. PMLR, 5637-5664.
Kunal Kumar and S. K. Azad. 2017. Database normalization design pattern.
In 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical,
Computer and Electronics (UPCON). 318-322. https://doi.org/10.1109/UPCON.
2017.8251067

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready? arXiv preprint
arXiv:2406.01265 (2024).

Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. 2024. LLM for Data Management.
Proceedings of the VLDB Endowment 17, 12 (2024), 4213-4216.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. Codes: Towards build-
ing open-source language models for text-to-sql. Proceedings of the ACM on
Management of Data 2, 3 (2024), 1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems 36 (2024).

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju
Fan, Guoliang Li, Nan Tang, and Yuyu Luo. 2024. A Survey of NL2SQL with
Large Language Models: Where are we, and where are we going? arXiv preprint
arXiv:2408.05109 (2024).

3667

[20

[21]

[22

(23]

[24

[25

[26]

[27

[28

[29]

[30

(31]

(33]

[34

[36

(37]

Pingchuan Ma and Shuai Wang. 2021. MT-teql: evaluating and augmenting neural
NLIDB on real-world linguistic and schema variations. Proc. VLDB Endow. 15,
3 (nov 2021), 569-582. https://doi.org/10.14778/3494124.3494139

Quinn McNemar. 1947. Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika 12, 2 (1947), 153-157.
OpenAl 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.
org/abs/2303.08774

Xinyu Pi, Bing Wang, Yan Gao, Jiagi Guo, Zhoujun Li, and Jian-Guang Lou. 2022.
Towards Robustness of Text-to-SQL Models Against Natural and Realistic Ad-
versarial Table Perturbation. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Com-
putational Linguistics, Dublin, Ireland, 2007-2022. https://doi.org/10.18653/v1/
2022.acl-long.142

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. 2009. Dataset Shift in Machine Learning. The MIT Press.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models for
Code. arXiv:2308.12950 [cs.CL] https://arxiv.org/abs/2308.12950

Yewei Song, Saad Ezzini, Xunzhu Tang, Cedric Lothritz, Jacques Klein, Tegawendé
Bissyandé, Andrey Boytsov, Ulrick Ble, and Anne Goujon. 2024. Enhancing
Text-to-SQL Translation for Financial System Design. In Proceedings of the
46th International Conference on Software Engineering: Software Engineering
in Practice. 252-262.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. 2023.
Exploring Chain of Thought Style Prompting for Text-to-SQL. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 5376-5393. https://doi.org/10.18653/v1/2023.emnlp-
main.327

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and
Amin Saberi. 2024. CHESS: Contextual Harnessing for Efficient SQL Synthesis.
arXiv:2405.16755 [cs.LG] https://arxiv.org/abs/2405.16755

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7567-7578. https://doi.org/10.18653/v1/2020.acl-main.677

Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao,
Oleksandr Polozov, and Rishabh Singh. 2018. Robust Text-to-SQL Generation
with Execution-Guided Decoding. arXiv:1807.03100 [cs.CL] https://arxiv.org/
abs/1807.03100

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jer-
nite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. arXiv:1910.03771 [cs.CL]
https://arxiv.org/abs/1910.03771

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association
for Computational Linguistics, Brussels, Belgium, 3911-3921. https://doi.org/10.
18653/v1/D18-1425

Bin Zhang, Yuxiao Ye, Guoging Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold
Liu, Rui Zhao, Ziyue Li, and Hangyu Mao. 2024. Benchmarking the Text-
to-SQL Capability of Large Language Models: A Comprehensive Evaluation.
arXiv:2403.02951 [cs.CL] https://arxiv.org/abs/2403.02951

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang
Lou, and Jinshu Lin. 2024. FinSQL: Model-Agnostic LLMs-based Text-to-SQL
Framework for Financial Analysis. arXiv preprint arXiv:2401.10506 (2024).
Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. 2023.
ACT-SQL: In-Context Learning for Text-to-SQL with Automatically-Generated
Chain-of-Thought. In The 2023 Conference on Empirical Methods in Natural
Language Processing. https://openreview.net/forum?id=oeZiXoCHgq
Tianshu Zhang, Changchang Liu, Wei-Han Lee, Yu Su, and Huan Sun. 2023.
Federated Learning for Semantic Parsing: Task Formulation, Evaluation Setup,
New Algorithms. arXiv:2305.17221 [cs.CL] https://arxiv.org/abs/2305.17221
Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can

https://www.kaggle.com/datasets/abecklas/fifa-world-cup
https://openreview.net/forum?id=Wc5bmZZU9cy
https://doi.org/10.1109/ICSME.2018.00073
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48786/edbt.2025.13
https://doi.org/10.48786/edbt.2025.13
https://doi.org/10.18653/v1/2022.findings-emnlp.155
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.1109/UPCON.2017.8251067
https://doi.org/10.1109/UPCON.2017.8251067
https://doi.org/10.14778/3494124.3494139
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/1807.03100
https://arxiv.org/abs/1807.03100
https://arxiv.org/abs/1807.03100
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://openreview.net/forum?id=oeZiXoCHgq
https://arxiv.org/abs/2305.17221
https://arxiv.org/abs/2305.17221

Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit [38] Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du, Junjie Wang, Weiming Ren,

Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded Stephen W Huang, Jie Fu, Xiang Yue, and Wenhu Chen. 2024. StructLM: Towards

Data Parallel. arXiv:2304.11277 [cs.DC] https://arxiv.org/abs/2304.11277 Building Generalist Models for Structured Knowledge Grounding. arXiv preprint
arXiv:2402.16671 (2024).

3668

https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277

	Abstract
	1 introduction
	2 Related Work
	3 EvoSchema Dataset
	3.1 Background
	3.2 Rationale for Schema Evolution Types
	3.3 Schema Evolution Synthesis Framework
	3.4 Seed Dataset Selection
	3.5 Data Generation
	3.6 Data Collection of Each Perturbation Type
	3.7 Comparison with Existing Benchmarks
	3.8 Data Statistics

	4 Training Paradigm
	5 Experiment Setup
	5.1 Training and Evaluation Settings
	5.2 Evaluation Metrics
	5.3 Training and Evaluation Details
	5.4 Baselines

	6 Results and Analysis
	6.1 Main Results
	6.2 Comparison of Different Baselines
	6.3 Influence of Perturbation Types
	6.4 Influence of Out-of-scope Types
	6.5 Influence of Irrelevant Tables
	6.6 Influence of Intra-DB and Cross-DB

	7 Conclusion
	Acknowledgments
	References

