Fused Gromov-Wasserstein Alignment for Graph Edit Distance
Computation and Beyond

Jianheng Tang

Technology
jtangbf@connect.ust.hk

Xiaofang Zhou

Xi Zhao

Hong Kong University of Science and Hong Kong University of Science and
Technology

xzhaoca@cse.ust.hk

Lemin Kong
Chinese University of Hong Kong
lkong@se.cuhk.edu.hk

Jia Li*

Hong Kong University of Science and Hong Kong University of Science and

Technology
zxf@cse.ust.hk

ABSTRACT

Graph Edit Distance (GED) is a widely recognized metric for mea-
suring graph similarity, yet its NP-complete nature poses challenges
for fast and accurate computation. This paper introduces FGWAlign,
an Optimal Transport (OT)-based approach for graph alignment
and GED computation. We take the first step to theoretically demon-
strate and that computing GED can be transformed into optimizing
a particular OT variant—the Fused Gromov-Wasserstein distance.
Tailored to the GED problem structure, we further implement three
key enhancements to the standard FGW solver: (1) a random ex-
ploration scheme to better locate the global optimum, (2) a diverse
projection strategy for post-processing the transportation plan to
escape local optima, and (3) a novel extension to accommodate
multi-relational graphs with edge labels. With O(|V||E|) time com-
plexity and O(|V|?) space complexity, where |V| and |E| are the
maximum number of nodes and edges between the two compared
graphs, FGWAlign achieves a superior balance of efficiency, accu-
racy, and scalability. Empirical results show that, compared with
12 representative GED computation methods across different cat-
egories on 4 real-world graph datasets, FGWAlign reduces com-
putation errors by over 80% and achieves 15-60x speedup. It also
demonstrates promising resutls on downstream applications includ-
ing labeled graph alignment and graph-level anomaly detection,
highlighting its versatility. FGWAlign opens up promising avenues
for future applications in graph data management.

PVLDB Reference Format:

Jianheng Tang, Xi Zhao, Lemin Kong, Xiaofang Zhou, and Jia Li. Fused
Gromov-Wasserstein Alignment for Graph Edit Distance Computation and
Beyond. PVLDB, 18(10): 3641 - 3654, 2025.

doi:10.14778/3748191.3748221

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/squareRoot3/FGWAlign.

* Corresponding Author: Jia Li.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:10.14778/3748191.3748221

3641

Technology (Guangzhou)
jialee@hkust-gz.edu.cn

Ir_l}zu_t ‘Graph Pair (g, h) Graph Edit Path
01: add a new node us in g Ab@gl
0,: add an edge (u3,us) in g4 %92
03: add an edge (uy, us) in g, &?‘%
04: relabel node u3 in g3 %94
GED(g, h) =4 ga=h

Node Mapping
TPy =3Py =1,
P;j€ {0,1}
Figure 1: Example of an edit path for graph pair (g, h) with the
corresponding node mappings in bipartite graph matching,.

Transportation Plelln
Lty = 2y =2,
11',',‘2 0

1 INTRODUCTION

As of 2024, the PubChem database holds 119 million chemical com-
pounds and 327 million substances [30], while the AlphaFold data-
base offers over 200 million protein structure predictions [68]. This
surge in structured data has intensified challenges in graph data
management, particularly in similarity search—identifying graphs
resembling a query graph. This process is vital in bioinformatics
for protein retrieval [22, 27, 67], multimedia processing for pat-
tern recognition [45, 72], and software engineering for dependency
analysis [73], to name a few.

Unlike metrics in vector spaces, quantifying graph similarity
presents unique challenges. Traditional approaches include max-
imum common subgraph detection [9, 79], spectral analysis [74],
graph kernel methods [51, 69], and learning-based embeddings [56].
Among these approaches, the Graph Edit Distance (GED) stands out
as a particularly versatile metric. Analogous to string edit distance
[80], GED quantifies the minimum cost required to transform one
graph into another through an edit path—a sequence of elementary
edit operations. These operations comprise adding or deleting an
edge, adding or deleting an isolated node, and relabeling a node or
edge. Each operation is assigned a non-negative cost, and the total

https://doi.org/10.14778/3748191.3748221
https://github.com/squareRoot3/FGWAlign
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748221
https://www.acm.org/publications/policies/artifact-review-and-badging-current

cost of an edit path is the sum of its constituent operation costs.
Figure 1 illustrates an edit path between graphs g and h, comprising
four operations (01,02, 03,04) that transform g into g4, which is
isomorphic to h. Given uniform unit costs for all operations, this
minimal-length path yields GED(g, h) = 4.

GED stands out among graph similarity measures due to several
key advantages: it fully utilizes graph attributes including node
labels and edge types, preserves important metric properties such
as triangle inequality, and enables controllable error tolerance in
similarity search compared to exact matching. However, these ben-
efits come with substantial computational challenges. Computing
exact GED is NP-hard for uniform edit costs [82] and APX-hard for
metric edit costs [36]. Moreover, even approximating GED within
any ratio is GI-hard, as determining whether GED equals zero is
equivalent to solving graph isomorphism [5].

These computational challenges have spawned diverse approaches
for GED computation [5, 21, 61]. The predominant strategy refor-
mulates GED computation as a graph alignment problem [58, 60].
As illustrated in the bottom left of Figure 1, a node mapping be-
tween graphs g and h naturally defines an edit path by identifying
differences between corresponding nodes and edges. While ex-
haustive search guarantees optimality, its exponential complexity
becomes intractable for larger graphs. Heuristic methods incorpo-
rating pruning strategies [1, 49] accelerate the search by prioritizing
promising partial mappings, but require restrictive beam sizes for
practical runtime, often at the cost of solution quality. Alternative
formulations based on quadratic assignment [8, 33] or simplified
linear assignment [8, 18, 31] often sacrifice global graph structure
information, leading to suboptimal results [5].

Recent deep learning approaches have emerged for GED com-
putation, either directly predicting GED values [3, 4, 56] or guid-
ing classical search algorithms [39, 72, 78]. While these methods
offer improved accuracy and efficiency, they require substantial
ground-truth GED data for training. Such training labels must either
come from classical GED computation methods—inheriting their
limitations—or from synthetic graph pairs. The latter often leads
to poor generalization to real-world scenarios, as demonstrated by
TagSim [3], which shows an 11-fold increase in error when moving
from synthetic to real graphs. These limitations underscore the
need for a more general approach to GED computation.

In this paper, we introduce FGWAlign, a novel framework that
models GED computation using the Optimal Transport (OT) theory.
The key insight of our approach, illustrated in Figure 1, is the relax-
ation of one-to-one node mappings into probabilistic transportation
plans, constrained only by non-negativity. This reformulation offers
two fundamental advantages: (1) It transforms the discrete opti-
mization problem into a continuous one, enabling the use of more
efficient optimization algorithms, and (2) It allows for a more com-
prehensive exploration of the solution space, which is particularly
valuable given the highly non-convex nature of the GED objec-
tive. While OT has shown remarkable success in various structure
comparison tasks, including entity matching [16, 52, 65], network
alignment [35, 64, 76], and shape correspondence [47, 54, 63], its
application to GED computation remains unexplored.

We show that the Fused Gromov-Wasserstein (FGW) distance
[66] is well-suited for GED computation due to its ability to jointly

3642

compare node labels/attributes and graph structures, by establish-
ing a theoretical connection between the two. We further introduce
three key enhancements to boost the standard FGW solver: (1) a di-
verse projection strategy that efficiently converts the probabilistic
transport plan back into multiple candidate discrete node align-
ments, increasing diversity and helping escape local optima, (2) a
randomized initialization scheme that improves the likelihood of
finding the global optimum, and (3) an extended formulation that
incorporates edge label modifications, enabling GED computation
for multi-relational graphs.

FGWAlign achieves superior performance, efficiency, and scala-
bility compared to existing GED computation methods. On 4 real-
world datasets, it achieves an over 80% reduction in computation
errors and demonstrates superior performance in similarity ranking
and edit path generation. Regarding efficiency, FGWAlign attains a
15 to 60 times speedup while maintaining comparable performance
with state-of-the-art approaches. With O (|V|?) space and O(|V||E|)
time complexity, FGWAlign computes GED between graphs exceed-
ing 10,000 nodes in under 10 minutes on a single consumer GPU—40
times larger than previous records.

Beyond GED computation, FGWAlign also demonstrates promis-
ing results on diverse downstream applications. In labeled or het-
erogeneous graph alignment tasks across three datasets with 1,000-
10,000 nodes, FGWAlign surpasses state-of-the-art methods in struc-
tural metrics, particularly in edge correctness. For graph-level anom-
aly detection, FGWAlign outperforms both classic methods and
specialized GNN-based approaches on four of six standard TU
datasets. These results highlight FGWAlign’s versatility as a unified
framework for graph comparison tasks, offering an interpretable
yet high-performance alternative to task-specific learning-based
methods without requiring significant modifications to the core
algorithm.

The remainder of this paper is organized as follows: Section 2
presents the preliminaries and prior work on GED computation and
the FGW distance. Section 3 details our proposed FGWAlign method
and its three key improvements. Section 4 establishes the theoreti-
cal connections between GED and FGW through rigorous proofs.
Section 5 reports our experimental findings. Section 6 concludes
with a summary and directions for future work.

2 PRELIMINARIES AND RELATED WORK

2.1 Definition of GED

In line with the framework established by Zeng et al. [82], we
consider undirected simple graphs without self-loops and multi-
edges. A such graph is denoted as g = (V, E, I), where V represents
a finite set of nodes, E C V XV is a set of node pairs,and [: V — >1
is a labeling function for nodes, with 3! being a finite set of node
labels. The adjacency matrix of g is represented as A, with A;; =1
indicating the presence of an edge (v;,v;) € E, and 0 otherwise.

Graph modification operations, denoted as o, consist of (1) adding
or removing an edge, (2) adding or removing an isolated node, and
(3)changing the label of a node. An edit path ¥ is a sequence of
edit operations, P := (0;)]_,, that transforms a graph g into a graph
isomorphic to h:

P(g) = (0, 0---001)(g) = h. (1

Symbols ‘ Description
V9,E9,19 | Node set, edge set, and labeling function of graph g
AY | Adjacency matrix of graph g
[V9],|E9| | Number of nodes and edges in graph g
GED(g, h) | Graph Edit Distance between graphs g and h
fcep (-, P) | Objective function of GED induced by node mapping
P | Permutation matrix representing a node mapping
feew (-,) | Objective function of the FGW distance
7 | Probabilistic matrix representing a transportation plan
(-,+) | Frobenius dot product, (4, B) = 3;; A;;Bi;

Table 1: Frequently used notations in this paper.

Category Method Time Complexity Space Complexity Guarantee
A*-GED [49] O(IVIIE| - V") o(v]- vl Optimal
Search-based DF-GED [1] O(VIIE| - [VI1) o(IV| + E]) Optimal
A*LSa [11] o((IVI + |EDIV]) oqv|- vy Optimal
Star-LB [82] o(|V]®) oV Approximate
Star-UB [82] o(|v|°) o(|v[?) Approximate
Assignment-based IPFP [33] O((|V] + |E])®) o(([v] + |E])?) Heuristic
RRWM [14] O((IVI+EN?) O((IVI+EN?) Heuristic
Hungarian [59] o(|vP) o([v]?) Heuristic
SimGNN [4] o(|[v]>) o(|V|?) Heuristic
TaGSim [3] oV +|E) o(IV| + E]) Heuristic
Learning-based Noah-A* [78] O(|V|IE| - V") o([v]- vy Optimal
GEDGNN [55] o(v)®) o(|[v?) Heuristic
GEDIOT [13] o(v)®) o([v?) Heuristic
Ours FGWAlign O(|V||E|) o(|[v|?) Approximate

Table 2: An overview of GED computation methods catego-
rized by approach, showing worst-case time/space complex-
ity and quality guarantees.

The cost of an edit path, denoted by ¢(P) = X7_; c(0;), is the
cumulative cost of its constituent edit operations. This leads to the
formal definition of graph edit distance.

DEFINITION 2.1 (GED DEFINED BY EDIT PATH). The graph edit
distance for graph pair (g, h) is the minimum cost among all feasible
edit paths transforming graph g into an isomorphic graph of h:

GED(g, h) := min{c(P) | P(g) ~ h} 2)

Converting GED to Graph Alignment. Since enumerating all
edit paths is infeasible, GED computation is commonly reformulated
as a graph alignment problem [55, 82]. Given graphs g and h where
VI < |V n, we first augment g with [V?| — |V9| isolated
dummy nodes to equalize the node counts. The node mapping
between graphs is then established through a permutation matrix
P € {0,1}"™", where P;; = 1 indicates that nodes u; € VY and
vj € v are matched.

DEFINITION 2.2 (GED INDUCED BY GRAPH ALIGNMENT). The GED
between graphs g and h can be computed as:

1
GED(g,h) = min (C,P) +[|A? - PA"P|;,
n o~ —

—_—

Ce

®)

1

where (C, P) := }; ; Ci; Pi; represents node relabeling costs (C;j being
the cost of relabeling node u; to v;), Py, is the set of permutation
matrices, and || - ||1,1 denotes the entry-wise l; norm.

This formulation transforms GED into an assignment problem
with n! feasible solutions. In the next section, we review existing
methods for GED computation and discuss their limitations.

3643

2.2 Computation of GED

Table 2 provides a comprehensive overview of existing GED com-
putation methods based on their computational characteristics and
solution quality guarantees. It’s important to note that: (1) We con-
sider worst-case time and space complexities for each method to
establish upper bounds on resource requirements; (2) Many algo-
rithms have different variants with varying complexity profiles,
and readers should refer to the original papers for detailed analyses;
(3) We focus exclusively on the maximum node size |V| and edge
size |E| of the graphs being compared, treating all other parameters
as constants for simplified comparison.

2.2.1 Search-based methods. They involve exploring a search tree
that represents all possible node mappings between two graphs,
organized in a prefix-shared format according to a predefined match-
ing order. To avoid exhaustive search, best-first or A* search meth-
ods [11, 49, 59, 85, 86, 88] are used for search space exploration
and unpromising subspace pruning. These methods prioritize ex-
panding partial mappings with the lowest estimated cost. Mappings
exceeding the beam size are pruned. Typical lower bound cost esti-
mations include the Hungarian/Kuhn-Munkres algorithm [2, 59],
the label set heuristic [17, 49], and the anchor-aware estimation
[11].

Due to the significant memory demands of A* search, which re-
quires maintaining all intermediate states, depth-first search meth-
ods [1, 6, 24] have been proposed. DF-GED [1] uses a label set-based
lower bound to prune inefficient paths in the search tree, while
CSI-GED [24] employs a degree-based lower bound to enumerate
edge mappings. However, these lower bounds are often loose, and
while the performance of search-based methods is efficient for small
graphs, it tends to deteriorate significantly on large graphs.

2.2.2 Assignment-based methods. They reformulate GED as a qua-
dratic assignment problem (QAP) [8], which can be addressed us-
ing techniques such as the integer projected fixed point algorithm
[33] or the graduated non-convexity and concavity procedure [42].
However, QAP remains non-convex and computationally expen-
sive, potentially requiring exponential time in the worst case. To
mitigate this complexity, many methods further simplify the qua-
dratic term by considering only the local structure of the graph,
converting it to a linear sum assignment problem [31]. For example,
Zeng et al. [82] approximates assignment costs by comparing only
the 1-hop local star structure of each node, while Justice and Hero
[29] propose a binary linear programming formulation of GED.
While linearization reduces computational complexity, it may over-
simplify the original problem and lead to suboptimal solutions. To
address this, error correction techniques are often applied to refine
the node mapping, typically involving enumerating and adjusting
local node mappings to improve the overall solution quality. Several
recent graph alignment approaches [40, 64] also leverage the ideas
of assignment-based methods, but they focus more on establishing
node correspondences across two attributed graphs rather than
graph-level similarities.

2.2.3 Learning-based methods. They leverage graph neural net-
works (GNNs) to encode graphs and perform GED computation.

These approaches can be broadly categorized into two groups: di-
rect GED estimation and hybrid methods that assist classic algo-
rithms. Direct GED estimation methods aim to learn and predict
GED without relying on traditional search or assignment algo-
rithms. SimGNN [4] employs a Siamese GNN architecture to jointly
learn node embeddings and predict GED. TaGSim [3] introduces
a type-aware framework that estimates GED by considering dif-
ferent graph edit types. Peng et al. [53] propose a GED-specific
loss function that encodes multiple optimum node mappings while
enforcing one-to-one constraints. Ghashing [56] trains a GNN to
generate embeddings and hash codes that preserve GED between
graphs using ground-truth GED results.

On the other hand, hybrid methods integrate learning-based
approaches with classic algorithms to enhance GED computation.
Noah [78] utilizes a graph path network to optimize the search di-
rection of the A* algorithm. Wang et al. [72] incorporate a dynamic
graph embedding network for similarity score prediction within
the path search procedure. MATA* [39] combines learnable node
matching with A" search for GED computation. GEDGNN trains
GNNss to predict both GED values and node matching matrices,
assisting in post-processing of edit paths. While these learning-
based methods typically offer improved efficiency, they often lack
optimality and feasibility guarantees, require substantial training
data, and may struggle with generalization to unseen scenarios.

2.3 Fused Gromov-Wasserstein (FGW) Distance

Optimal transport aims to identify a transportation plan, repre-
sented by the coupling matrix s, that minimizes the cumulative
cost of redistributing “mass” between two discrete probability dis-
tributions. For graphs g and h, we define uniform distributions
p and v over their respective node sets V9 = {u;}", and V"
{v; ;.':1 (including dummy nodes for equal size): y = %Z:’:l Su;»

V= % Z?zl 8y;, where &,,; and §,; are Dirac delta functions, assign-
ing equal probability mass % to each node.

The set of valid transportation plans IT(y, v), denoted as IT,, for
brevity, contains all joint distributions with marginals y and v:

O(pv)={r>0:nl, =7’ 1, =v} 4)

where 7;; represents mass transported from node i to j, and 1, is
an n-dimensional ones vector. The coupling matrix 7 € II, can be
viewed as a probabilistic node matching, generalizing permutation
matrices by relaxing binary constraints to non-negativity.

The coupling matrix 7 € II can be interpreted as a probabilistic
matching between graph nodes. Any permutation matrix P, when
normalized by n (i.e., 5), represents a feasible solution within II.
Essentially, 7 generalizes permutation matrices by relaxing the bi-
nary assignment constraint to non-negativity, thereby significantly
reducing the optimization difficulty.

Wasserstein Distance (WD) measures the distance between prob-
ability distributions y and v:

n
WD(C) := min C,) = min C;imi = min{(C, 5
(€)= min fin(C,) = min JZ ymyj = min(C.7) (5)
where C;; represents the cost of transporting mass from u; to v;. For
graph matching, C corresponds to the node relabeling cost matrix
from Definition 2.2.

3644

Gromov-Wasserstein Distance (GWD) extends classical OT to
compare distributions in different metric spaces, making it partic-
ularly suitable for comparing graph structures.According to the
work of Li et al. [35] by leveraging the l;-norm variant, the GWD
between the adjacency matrices A9 and A* can be calculated as
follows:

GWD(A?, A") := min fowp (A7, A", 7)
rell,
|A?j - Al Py
ik,
= min |AY)|2 + || A" - 2Tr(AIn AR 2T)
rell,

(6)

where ||-||r denotes the Frobenius norm and Tr(-) is the matrix trace.
Higher values of 7;; and 7j; indicate stronger matching between
node pairs (u;,v;) and (u;,v;), with the objective of minimizing
structural differences |A? i AZ,|. For isomorphic graphs with cor-
rect node correspondence, GWD equals zero, indicating perfect
structural alignment.

Fused Gromov-Wasserstein Distance (FGW) [66] combines WD
and GWD to capture both node labels and structural information:

FGW(C, A9, A" a) := min figw (C, A9 A" a,)
ell,
™)

= m}_[n afwn(C,7) + (1 - a) fown (A7, A",)
well,

where a € [0, 1] balances the contribution of WD and GWD. This
unified framework provides a comprehensive approach for compar-
ing labeled or attributed graphs.

Several approaches have leveraged OT for alignment-based tasks
[12]. OTEA [52] extends the TransE embedding framework by
incorporating group-level OT-based losses for supervised entity
alignment. [43] adapts the OT framework to address dangling en-
tity detection during knowledge graph alignment. In the unsuper-
vised domain, SLOTAlign [64] jointly optimizes structure learning
and OT-based alignment, while FGWEA [65] employs the Fused
Gromov-Wasserstein distance to better capture structural similar-
ities between knowledge graphs. Building upon these advances
in OT-based graph alignment, our work is the first to explore and
optimize the FGW framework specifically for GED computation.

3 THE PROPOSED METHOD

This section presents FGWAlign, our novel framework for GED
computation through enhanced FGW optimization. We begin by re-
formulating graph alignment-induced GED computation as an FGW
problem in Section 3.1. To overcome limitations of conventional
FGW solvers, we introduce three innovative strategies: diverse
projection for escaping local optima in Section 3.2, random explo-
ration for finding the global optimum in Section 3.3, and extension
to multi-relational graphs in Section 3.4. Finally, we analyze the
computational complexity of our proposed method in Section 3.5.

3.1 Reformulating GED to FGW

The key insight of our approach is that GED can be reformulated as
an FGW problem through a specific choice of the fusion parameter
ap. This relationship is formalized in the following theorem:

THEOREM 3.1 (GED-FGW OBJECTIVE EQUIVALENCE). For graphs
with equal number of nodes n = |V9| = |V?| and fusion parameter

Input Graph Pair (g, h)

Relabeling Cost Matrix C
V) Uy Uz Uy Vs

J

Uq

Uz

J

Uz

Uy

Adjacency Matrix A9
U Uy Uz Uy Ug

Us

PA"PT

Uy Dy V3 Us Dy Dummy Node

Node/Edge
Mapping

Matched

Unmatched
(Need Edit)

’
i
|

1/’__ \\
GED(g, h) = '.Z.....
(g.h) }I,Ielﬁ{ll : ”CL]PU :+|
Pij€{0,1}, Lj \
1
g h — . 1
FGW(C, 49,4% a) mip :aoz
LT N .

1 T
5114y = PAPTI],,

Edge Modification Cost c,

>

1
1

-

Objective
Equivalence

Figure 2: Demonstrate of the GED calculation process for example 1 and the connection between GED and FGW.

Algorithm 1: Bregman Proximal Gradient descent for FGW

Algorithm 2: FGWAlign

Input: 1. Adjacency matrices A9, A", relabeling matrix C
2. Initial plan
3. Step size 5, number of iterations N, error bound €
Output: An updated transportation plan =
1 fori=1to N do
Compute the gradient matrix V,,_, figw by eq. (9)
T« arg minnenn {<V”i71fi:GW, Ty + 77KL(7r||Jri’1)},
solved by Sinkhorn algorithm;
if ||7; — mi—1||F < € then
L return r;

2

3

4
5

6 return my

_ 2
% = 530

the GED and FGW objectives are related as:
14 n® P
cr = nfwn(C, =), ce = — fown(A?, A", —),
n 2 n ®)
P
forn(C, A%, A P) = ¢ + ¢ =~ frow(C, A%, A"y,).
[24)) n

The complete proof of this equivalence is provided in Section
4.1. This theoretical relationship enables a practical solution: we
can solve the discrete GED problem by first obtaining a continuous
FGW solution 7 and then scaling it to derive an approximated
discrete solution P = ni.

Figure 2 illustrates the calculation process using the example in
Figure 1. The GED calculation seeks an optimal node mapping P
between input graph pair (g, h) that minimizes two types of costs:
node relabeling costs (encoded in matrix C) and edge modification
costs (derived from adjacency matrices A and A"). As shown in
the example, when nodes u3 and us are mapped to v; and vy re-
spectively, both cost types are incurred due to mismatched node
labels and different structural connections marked with x. The
FGW formulation captures these same aspects through two corre-
sponding terms: node relabeling costs aq Y C;;;; and structural
differences (1 — ag) X, |A?j - Azl|nik7rj1. When setting « ﬁ,
these objectives become equivalent up to a scaling factor, allowing
us to convert an optimal FGW solution 7 into an optimal GED

solution via P ~ nr.

3645

Input: 1. Graph pair g = {V9,E9, 19}, h = {Vh, E", lh}
2. Projection candidates K
3. Exploration patience T
Output: The predicted GED value and corresponding
assignment matrix.
1 Prepare a GED lower bound d; (g, h)
2 7 0,dyp <
3 whiler < T do
4 7o « arg mingem, (M, 7) + X;; mij In 75, Mi; ~ N(0,1)
5 T* — argminﬂenn fFGW(Ag,Ah,C, 79, Qo)
6 Py < argmaxpcp (77, P).
fork =1to K do
P, = argmaxp.p (7" — AZE P, P)
d — foep (A9, A", C, Py)
if d < dyp then
L dus <_dAanest — P10
if dyg = d.g then
L return dyg, Ppes;

10

11

12
13

14 Te—71+1

15 return dyg, Ppes;

We employ the Bregman Proximal Gradient descent (BPG) method
to solve the resulting FGW problem [76], which has shown supe-
rior performance especially on large graphs and proved to have
linear convergence ratio [34]. Algorithm 1 outlines the BPG process,
which iteratively updates 7 using:

Vo fiaw(C, A%, A", o, 7) = a9 C + 4(1 -) A9 A",
i . 9
7r; = arg min {(V,zﬁigw,ﬂ> + nKL(x||x' 1)} . ©)
mell,
The detailed derivation for this gradient form is presented in the ap-
pendix of our GitHub repository. The m-update is solved efficiently
using the Sinkhorn algorithm [15]. We iteratively update 7 until ei-
ther convergence is achieved or the maximum number of iterations
N is reached. The resulting solution z* is typically a continuous

matrix containing more than n non-zero elements. We choose KL
divergence as the regularization term because of its strong con-
vexity, which transforms our non-convex optimization into more
tractable convex subproblems. This regularization enforces that
each iteration’s transport plan 7; doesn’t diverge drastically from
the previous 7;_;, ensuring more stable convergence. Additionally,
it creates an entropy barrier preventing degenerate solutions and
promoting numerically stable transport plans. The Sinkhorn al-
gorithm efficiently solves the KL-regularized subproblem through
an alternating scaling procedure with O(n?) complexity per it-
eration—significantly faster than traditional O(n®log(n)) linear
programming approaches. Its matrix-vector operations are highly
parallelizable for GPU acceleration, and it guarantees convergence
to the unique optimal solution of the regularized subproblem.

3.2 Escaping Local Optimum via Diverse
Projection

The projection from the transportation plan 7* to the assignment
matrix P can be formulated as a maximum linear assignment prob-
lem, expressed as Py = argmaxpcp (7, P). While traditional al-
gorithms such as the Hungarian method or network simplex algo-
rithms [7] can effectively solve this problem, their computational
complexity of at least O(|V|*) renders them inefficient for handling
large graphs. To address this inefficiency, we propose a greedy
approach that reduces the complexity to O(|V|?).

Fast Greedy Assignment. The greedy method operates by ap-
plying a threshold to the elements of 7*. Specifically, we set all
elements below 1/(nlogn) to zero. This step effectively filters out
weak candidates, allowing us to focus on stronger elements. The
remaining non-zero elements are then sorted in descending or-
der. Subsequently, we assign these elements to P, while ensuring
that their corresponding rows and columns remain unassigned. In
cases where rows or columns remain unassigned after this process,
we randomly allocate the remaining zero entries. Although this
approach may not yield the optimal assignment, it is particularly
effective when 7" closely approximates the ideal assignment matrix.
Diverse Projection strategy. Building on the insights from prior
studies [40, 55], we recognize that the objective function for the
GED is highly non-convex. Additionally, the computational cost of
verifying an assignment is relatively low. These properties allow us
to explore multiple assignment configurations, thereby increasing
our chances of escaping local optima. To achieve diverse solutions,
we introduce a diverse projection strategy. For the k-th projection,
we incorporate a penalty term into the assignment process, which
ensures that the new assignment Py differs from the previous k — 1
projections. This is represented as follows:

|

where A is a hyperparameter that governs the degree of diversity
among the projections. For simplicity, we fix A = 1/n. In each
iteration, the fast greedy assignment can be used.

The diverse projection strategy is introduced in lines 7-11 of
Algorithm 2. During each projection, we calculate the current es-
timate of the GED value, denoted as cf and compare it with the
best-known estimate chB.

k-1

(n',Py =2) (P;,P)

i=0

Py = arg max (10)

PeP,

3646

3.3 Random Exploration of Global Optimum

While the diverse projection strategy enhances local search, it may
not suffice to find the global optimum as it only explores the vicinity
of the temporary BPG solution 7*. Moreover, the BPG algorithm
for the FGW solver is sensitive to initialization and may converge
to local optima, potentially limiting the effectiveness of diverse
projection. To conduct a more comprehensive search of the solution
space, we propose a random exploration approach that enhances
the probability of identifying the global optimum.

As indicated in line 4 of Algorithm 2, we introduce an exploration
patience parameter T to govern the number of exploration itera-
tions. In each iteration, we sample a ground cost matrix M from a
Gaussian distribution and use the Sinkhorn distance to derive a fea-
sible initial point 7. If we set T = 1 to discard random exploration,
o will be initialized as the uniform matrix, i.e., mo (i, j) = 1/n%. We
then implement the diverse projection strategy to generate multiple
diverse projections and obtain several candidate mappings. If these
mappings yield a better estimation of the GED upper bound dy;5,
we reset the patience counter 7 to 0.

To accelerate the exploration process, we can precompute a
GED lower bound djg(g, h). If the current best estimation chB
matches the lower bound, we can directly return the result. In our
implementation, we utilize the label set lower bound [11] due to its
computational efficiency. More sophisticated lower bounds could
be employed to better guide the exploration process.

3.4 Extending to Multi-relational Graphs

Many real-world graphs feature edges with multiple types. For
instance, atoms in a molecular graph are connected by three main
types of chemical bonds. Unfortunately, FGW’s fomulation are not
natively support edge type modelling.

A straightforward approach to handling such multi-relational
graphs is to treat each edge type as an independent graph and sum
the cost. However, this method fails to adequately support edge
modification operations. Changing the label of a specific edge type
in this model would require removing an existing edge and adding
a new one, which is suboptimal.

To address this limitation, we propose an approach inspired by
the dummy node concept introduced in Section 2.1. We consider all
unconnected node pairs as a new edge type, allowing us to unify
edge addition or deletion operations into edge type modifications.
Specifically, we can change an edge’s label from its original type
to this new unconnected type (to effectively remove the edge), or
vice versa (to add an edge). Suppose we have R edge types in two
graphs, represented by adjacency matrices {A? }; and {Ai’}{ We
first compute the new adjacency matrices of the unconnected type:
Al = 1y — X1 A and AP = 1,4, — 27_; A" The GWD
term in FGW can then be extended to multi-relational graphs as:
GWD(g, h) = minge, {;’11 %fGWD (A?,A;l,). The division by 2
accounts for each edge type modification operation contributing
twice. This formulation naturally reduces to the case of graphs with
a single edge type.

3.5 Complexity Analysis

The computational complexity of our proposed FGWAlign solver
is primarily governed by the FGW optimization process. The BPG

algorithm, as outlined in Algorithm 1, needs up to N iterations,
where each iteration involves a complexity of O (|V||E|) for gradient
computation and O(|V|?) for Sinkhorn iterations. Here, |V| and |E|
represent the maximum count of nodes and edges in two graphs,
respectively. Additionally, the diverse projection strategy entails K
iterations, each requiring a complexity of O(|V|*) for solving the
linear assignment problem, but can be reduced to O(|V|?) using our
proposed greedy assignment approach. For a single attempt without
random exploration, the total complexity of our FGWAlign solver
is O(N|V||E| + K|V|?) under normal conditions and O(N|V|*r)
for multi-relational graphs. Given that the number of iterations
N and the number of projection candidates K are generally set to
small values, the time complexity for normal large-scale graphs is
O(|V||E]), and the space complexity is O(|V|?).

4 THEORETICAL ANALYSIS

This section establishes the theoretical foundation of FGWAlign
for GED computation. In Section 4.1, we prove the equivalence
between FGW and GED objective functions. Section 4.2 analyzes
the relationship between the optimal transportation plan 7* and
the optimal assignment matrix P*. We first derive an error bound to
quantify how this relationship affects GED estimation, then intro-
duce a novel sparsity regularization term to the FGW formulation
that ensures optimal value equivalence between FGW and GED.

4.1 Objective Function Equivalence

PrROOF OF THEOREM 3.1. Given that the entries of A9 and A" are
binary (0 or 1), and P is a permutation matrix, A? i (PA"PT), 1
takes values in {—1, 0, 1}. Consequently, |Afj - (PAhPT),-j| = |Agj -
(PAhPT)ij|2. We have the edge modification cost:

1 1
Ce = 5||149 —PAhPTHm — 5”Ag —PAhPTH%
1
= S AL + | A"} - 2Tx(APAPT)) (11)
= |E9| + |E"| - Tr(A9PA"PT),
where || - ||r denotes the Frobenius norm and Tr(-) is the matrix

trace. On the other front,
P P;; Py
AI Al =) = A AR P22
fGWD(n) i%:l | ij kl| n n

h
A7, a5l 2 hpT 12
=27+Z -~ STr(ATPA"PT) (12)
i,k

Ji.l

2
== (|E9| +|E" - Tr(AgPAhPT)) .
n

Therefore, we establish that ¢, = "72 fowp (A9, Al %), which derives
the objective equivalence between GED and FGW:

1
faen(C, A9, A, P) = (C, P*) + S 114 - P APy,

P n? P
n(C, =) + — fown (A%, A",)
n 2
n P (13)
— (a0 + (1=) fown (A%, A", =)
Qo n

n
a_ofFGW(C’ A9, A", o, P /1)

This completes the proof. O

4.2 Optimal Value Equivalence and Error Bound
Although the objective functions of FGW and GED can be equiv-
alent, the optimal solution of FGW may not correspond to that
of GED. This discrepancy arises from differences in their feasible
sets. Specifically, after scaling the transportation plan 7 by n, FGW
optimizes over doubly stochastic matrices (D,), which constitute
the convex hull of permutation matrices (Py).

In this section, we bridge the gap between D, and P, by intro-
ducing a novel sparsity regularization term to the FGW formulation,
promoting sparse solutions. Based on this analysis, we then derive
an error bound for GED estimation using FGWAlign. For simpliciy,
we define fFGw(D) = ;—OprW(C,Ag,Ah, a9, D/n), where D € D is
in the set of the doubly stochastic matrix (i.e., the space of nr). we
first analyze the Lipschitz property of this function, which plays a
crucial role in the subsequent proof.

LEMMA 4.1 (LIPSHCITZ PROPERTY). ﬁ:GW(D) is L-Lipschitz on the
set of doubly stochastic matrices D,,, where L = ||C||p + n?.

Proor. The gradient of fFGw is given by

Vfiow(D) = C+| >’ |l - AL I’Dy
it ik

Since |A?j - Azll < 1and Z{’l Dj; = n, we have ||(¥;, |A?j -

A 2D ;)i llF < n®. Hence, ||V frow (D) ||F < ||Cl|F +n? for D € Dy,

By the mean value theorem, we complete the proof. O

Then, we introduce a lemma from Liu et al. [38], which estab-
lishes an upper bound for dist(P,P,). This upper bound will serve
as the penalty term in our analysis.

LEMMA 4.2 (ERROR BOUND FOR PERMUTATION MATRICES [38]).
For any doubly stochastic matrices D € D,, we have the error bound

dist(D,P,) < 3vn (n—||D]|%). (14)

With Lemma 4.1 and 4.2, we are now ready to prove the following
exact penalty theorem, which establishes the connection between
the optimum value of frgw and GED(g, h).

THEOREM 4.3 (OPTIMAL VALUE EQUIVALENCE). When A > 34/nL,

GED(g.h) = min fuen (P) = min fiaw(D) + A(n — | DII7).

PRrROOF. Let P* be the optimal solution to GED. Note that P* € P,
then we have n — || P* ||12D = 0. Thus,

GED(g, h) = foen(P*) = fraw (P') = min frgw (D) +A(n~IDI[7).

For the other direction, as ﬁ:(;w is Lipschitz continuous on D, with
Lipschitz constant L, we have:
YDy, Dy, frow(D2) = frow(D1) < L||D2 — DillF,

=VD;, min frew(D2) — figw(D1) < L min [|D; — Dy||F,
DyePy, Dy€Py

=VD;, GED(g, h) < frgw(D;) + Ldist(Dy, P,,).

By Lemma 4.2, as A > 3+/nL,
A
An = ||P||2) = —=dist(P,P,) > Ldist(Dy, P,
(n—IPllx) 3\/ﬁ() (D1,Py)
GED(g,h) < min fiaw(D) + A(n = [|D|}).

This completes the proof. O

Theorem 4.3 establishes an equivalence between discrete opti-
mization over permutation matrices and continuous optimization
over doubly stochastic matrices through an exact penalty formula-
tion. However, the required large penalty term A poses numerical
stability and computational challenges. Therefore, instead of us-
ing this penalty term, FGWAlign employs diverse projection and
random exploration strategies to search for multiple candidate so-
lutions and increase the likelihood of finding the global optimum.
This proof leads to the following error bound for GED estimation:

COROLLARY 4.4 (ERROR BOUND FOR GED ESTIMATION). Let D*
be the optimal solution to FGW, and P be its corresponding projected
permutation matrix. The difference between the optimal GED value
fcep (P*) and the estimated GED value fGED(ﬁ) is bounded by:

|feen (P) — foen (PH)| < frow (D) + Ldist(D*, P) — frgw (D)
< (lIC|lF + n®)dist(D*, P).

This bound achieves tightness only when dist(D*, P)issmall, ie.,
D* is close to a permutation matrix. Such a condition typically holds
for graph pairs that exhibit unique optimal solutions. For general
graphs, establishing a non-trivial bound remains fundamentally
challenging due to the NP hardness of GED computation.

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets and GED Pair Collection. Following prior studies
[3, 4, 55], we evaluate on 5 graph datasets summarized in Table 3:

e AIDS [11, 87] comprises 42,869 antivirus screen chemical com-
pounds. Nodes represent 29 types of atoms (labeled with elements
like C, N, O, Cu), and edges represent three types of covalent
bonds. We use the same test pairs as [3], consisting of 20 refer-
ence graphs paired with 800 query graphs.

AIDS700 [4, 55] samples 700 graphs in AIDS with no more than
10 nodes each, with node and edge labels removed. Following
[55], we split the dataset into 6:2:2 for training, validation, and
testing. For each test graph, 100 query graphs are randomly
sampled from the training set, resulting in 140 X 100 test pairs.
Linux [4, 73] collects 1,000 program dependence graphs derived
from Linux kernel functions. Each graph corresponds to a func-
tion, with nodes representing statements and edges denoting
dependencies. Test pairs are generated similarly to the AIDS
dataset, forming 200 X 100 test pairs. Ground-truth GED values
in AIDS, AIDS700, and Linux are computed using exact search.
IMDB [3, 77] consists of 1,500 relatively large unlabeled graphs,
where nodes represent actors or actresses and edges represent
co-starring relationships. For graphs <10 nodes, exact GED is
computed. For larger graphs, following [55], we generate 100
synthetic variants per test graph.

3648

e Synthetic: Our approach to generating synthetic graphs is more
diverse than previous studies [55, 78]. We combine power-law,
Erdés-Rényi, Barabasi-Albert, and Gaussian random partition
graphs. Node counts are uniformly sampled from {2 }s< <14,
resulting in graphs with up to 16,384 nodes. We generate 100
graphs for each node count, totaling 1,000 graphs. The average
edge count is maintained between 5 and 20 times the node count.
For each graph g, we create two test pairs: (g, g1) and (g, g2). g1 is
derived by removing p% of nodes and their connected edges from
g, while g5 is created by adding p% new edges and altering p% of
node labels in g. The ground-truth GED values are the number of
operations performed. We set p to 25, allowing for GED values
up to 40,000 between large graph pairs. This presents a more
challenging scenario compared to previous synthetic datasets,
which typically limited edit operations to no more than 20.

5.1.2 Competitors and Implementation Details. We compare our
proposed FGWAlign with a comprehensive set of state-of-the-art
GED solvers in three categories. All experiments are conducted on
a high-performance Linux server with an AMD EPYC 7763 64-Core
CPU and an NVIDIA RTX 4090 GPU. We implement FGWALign in
Python 3.10 with PyTorch 2.0.1 and CUDA 11.7 for GPU acceleration
(synthetic dataset only). We provide a brief overview of all baselines
and implementation details below:

e Search-based solvers: We include three approximate beam-
search-based solvers: A*-Hungarian [59], A*-Star [88], and A*-
LSa [11]. Each solver utilizes a different heuristic to estimate the
lower bound: the Hungarian algorithm [2], the star distance [82],
and the label set heuristic, respectively. The implementations of
these solvers are sourced from the Noah-GED repository! and
the pygmtools library? [71]. The beam size for these algorithms is
set to the maximum value from the set {1, 5, 10, 50, 100, 500, 1000}
that does not exceed a one-day runtime limit for each dataset. For
example, the beam size for A*-LSa is set to 100 for the AIDS700
and Linux datasets, 5 for IMDB, and 1 for the Synthetic dataset.
Assignment-based algorithms: We include IPFP [33], an inte-
ger projected fixed point method for graph alignment; RRWM
[14], a reweighted random walk method for graph matching;
SM [32], a spectral method for correspondence problems using
pairwise constraints; and VJ [17, 28], a shortest augmenting path
algorithm for linear assignment. We use the implementations in
the pygmtools library with default hyperparameters.
Learning-based methods: We consider five graph neural net-
works: two that directly predict GED values (SimGNN [4] and
TaGSim [3]), and three that generate edit paths to compute GED
(GEDGNN-m [55], Noah [78], and GEDHOT [13]). For all models,
we utilize their publicly available source code and employ default
configurations for both training and evaluation processes.
FGWAlign: We evaluate five variants of FGW-based alignment:
FGWAligng,) uses maximum candidates K = 10 in diverse pro-
jection and maximum patience T = 20; FGWAlign,.] considers
edge relations with the same parameters (K = 10, T = 20);
FGWAligng,s: uses K = 10 but reduced patience T = 1. For these
three variants, we use step size = 0.1 and maximum 200 epochs

Lhttps://github.com/pkumod/Noah-GED/blob/main/src/ged.py
https://pygmtools.readthedocs.io/en/latest/api/_autosummary/pygmtools.classic_
solvers.html

https://github.com/pkumod/Noah-GED/blob/main/src/ged.py
https://pygmtools.readthedocs.io/en/latest/api/_autosummary/pygmtools.classic_solvers.html
https://pygmtools.readthedocs.io/en/latest/api/_autosummary/pygmtools.classic_solvers.html

Dataset | #Graphs | #Test Pairs ‘ avg. |V| ‘ avg. |E| ‘ max. |V| ‘ max. |E| ‘ 201 ‘ [Zel ‘ avg. dg; ‘ max. dgt

AIDS | 42,689 16,000 25.6 275 222 247 66 | 3 10.4 20
AIDS700 | 700 14,000 8.9 8.8 10 14 29 | 1 9.0 22
Linux 1,000 20,000 7.6 6.9 10 13 1 1 47 16
IMDB 1,500 30,000 13.0 65.9 89 1,467 1 1 7.1 36
Synthetic | 1,000 | 2000 | 3274 | 23211 | 16384 | 245264 | 5 | 1 | 7144 | 90,998

Table 3: Statistics of the datasets, including the number of graphs (#Graphs) and test pairs (#Test Pairs), average and maximum
numbers of nodes (avg. |V|, max. |V|) and edges (avg. |E|, max. |E|), sizes of node label set (|Z,]) and edge type set (|1Z.|), as well as
the average and maximum ground-truth GED values (avg. d;; and max. dg;).

Dataset ‘ Method ‘ Computation Quality Similarity Ranking Edit Path Accuracy];ﬂiciency
Acc. Fea. RMSE MAE P T p@10 p@20 R P Fy Time(s/100p)
A*-Hungarian | 0.621 0.990 1.038 0.574 | 0901 0.831 0.889 0.906 | 0.764 0.741 0.752 98.982
A*-Star | 0.202 1.000 2.890 2315 | 0.734 0.619 0.764 0.749 | 0.617 0.526 0.565 119.317
A*-LSa | 0.497 1.000 2.071 1.341 | 0.794 0.724 0.754 0.876 | 0.770 0.664 0.703 107.499
IPFP | 0.075 1.000 7.837 6.694 | 0477 0373 0.554 0.592 | 0.602 0.363 0.445 11.069
RRWM | 0.232 1.000 4982 3.685 | 0.752 0.626 0.820 0.806 | 0.639 0.499 0.553 140.703
Spectral | 0.042 1.000 7.489 6.690 | 0.446 0.349 0.529 0.578 | 0.604 0.357 0.442 0.426
VJ | 0.020 1.000 8.243 7.569 | 0466 0.365 0.483 0.570 | 0.557 0.311 0.393 0.175

AIDS700
SimGNN | 0.338 0.676 1.137 0914 | 0.832 0.693 0.624 0.720 - - - 0.376
TaGSim | 0.366 0.662 1.105 0.841 | 0.850 0.715 0.646 0.746 - - - 0.152
GEDGNN-m | 0.433 1.000 2.403 1.528 | 0.796 0.692 0.843 0.843 | 0.722 0.652 0.681 52.002
Noah | 0.177 1.000 3.251 2.605 | 0.669 0.552 0.626 0.698 | 0.598 0.488 0.532 186.152
GEDHOT | 0.712 1.000 - 0.440 | 0923 0.864 0.951 0.935 | 0.809 0.786 0.796 112.161
FGWLibSolver | 0.211 1.000 2.283 2930 | 0.744 0.625 0.710 0.746 | 0.598 0.508 0.546 1.925
FGWAIignlight 0.397 1.000 2.437 1.614 | 0.747 0.640 0.792 0.794 | 0.657 0.572 0.607 0.352
FGWAlignge | 0.609 1.000 1.190 0.662 | 0.884 0.807 0.896 0.891 | 0.721 0.685 0.701 1.718
FGWAligng, | 0.951 1.000 0.278 0.058 | 0.988 0.978 0.991 0.990 | 0.921 0.919 0.920 49.809
A*-Hungarian | 0.868 1.000 0.819 0.272 | 0.905 0.868 0.920 0.928 | 0.890 0.857 0.869 76.571
A*-Star | 0.440 1.000 2.315 1.593 | 0.843 0.765 0920 0.938 | 0.792 0.670 0.716 66.574
A*-LSa | 0.497 1.000 2.071 1.341 | 0.794 0.724 0.754 0.876 | 0.770 0.664 0.703 107.499
IPFP | 0.007 1.000 6.774 6364 | 0.623 0.544 0.637 0.746 | 0.774 0.339 0.459 9.037
RRWM | 0.038 1.000 6.501 5.867 | 0.658 0.570 0.530 0.684 | 0.715 0.353 0.456 5.499
Spectral | 0.071 1.000 6.405 5.666 | 0.524 0.445 0.668 0.664 | 0.769 0.398 0.502 0.379
Linux V]| 0211 1.000 3367 2.668 | 0.744 0.667 0.736 0.813 | 0.749 0.531 0.607 0.135
SimGNN | 0.596 0.800 0.621 0.456 | 0.933 0.844 0.891 0.920 - - - 0.378
TaGSim | 0.668 0.828 0.546 0.391 | 0924 0.837 0.816 0.878 - - - 0.267
GEDGNN-m | 0.922 1.000 0.782 0.201 | 0.964 0.944 0.971 0.978 | 0.920 0.903 0.910 21.270
Noah | 0.616 1.000 1.877 1.062 | 0.796 0.726 0.808 0.879 | 0.826 0.738 0.770 55.841
GEDHOT | 0.984 1.000 - 0.033 | 0.994 0990 0.992 099 | 0.928 0.924 0.926 47.523
FGWLibSolver | 0.453 1.000 1376 2.017 | 0.853 0.775 0.842 0.864 | 0.738 0.624 0.666 4.714
FGWAlignyigp | 0.606 1.000 1.997 1.163 | 0.858 0.788 0.934 0.922 | 0.843 0.734 0.774 0.304
FGWAligng,e: | 0.804 1.000 0.974 0.419 | 0936 0.897 0.964 0.959 | 0.882 0.831 0.850 1.352
FGWAligng, | 0.997 1.000 0.104 0.005 | 0.999 0.998 0.998 0.999 | 0.930 0.930 0.930 19.945
A*-Hungarian | 0.554 1.000 58311 20.122 | 0.595 0.565 0.739 0.729 | 0.741 0.612 0.628 6.227
A*-Star | 0.705 1.000 17.347 5.963 | 0.807 0.771 0.871 0.868 | 0.725 0.598 0.620 109.630
A*-LSa | 0.600 1.000 43.815 15.684 | 0.631 0.605 0.743 0.738 | 0.758 0.597 0.618 70.419
IPFP | 0.872 1.000 3.322 0.741 | 0949 0932 0975 0.970 | 0.952 0.908 0.920 14.893
RRWM | 0.872 1.000 9.794 2425 | 0939 0916 0.957 0.957 | 0.944 0.874 0.886 4.576
Spectral | 0.736 1.000 18.829 7.156 | 0.842 0.804 0.868 0.870 | 0.885 0.746 0.765 0.466
IMDB V]| 0490 1.000 92422 37.078 | 0.484 0.470 0.596 0.632 | 0.758 0.553 0.572 0.766
SimGNN | 0.178 0.423 3.820 2.579 | 0.349 0326 0.620 0.656 - - - 0.379
TaGSim | 0.195 0.497 5540 3.333 | 0501 0.462 0.648 0.681 - - - 0.149
GEDGNN-m | 0.741 0.999 11.149 4.209 | 0.875 0.838 0.930 0.920 | 0.851 0.735 0.759 116.428
Noah | 0.573 1.000 45.627 14.029 | 0.644 0.614 0.765 0.771 | 0.770 0.612 0.637 64.958
GEDHOT | 0.950 1.000 - 0.254 | 0983 0972 0995 0.993 | 0.946 0.927 0.933 170.412
FGWLibSolver | 0.825 1.000 1.081 3.533 | 0.887 0.856 0.972 0.948 | 0.887 0.834¢ 0.850 3.194
FGWAlignyigne | 0.951 1.000 4270 0.658 | 0.959 0.949 0.972 0971 | 0.923 0.904 0.908 0.270
FGWAligng,e | 0.968 1.000 2.627 0.319 | 0977 0969 0986 0.986 | 0.920 0.912 0.912 1.747
FGWAligng, | 0.996 1.000 0.370 0.022 | 0.997 0.995 0.999 0.998 | 0.926 0.926 0.926 16.105

Table 4: Performance comparison of GED computation methods on AIDS700, Linux, and IMDB datasets in terms of computation
quality, similarity ranking performance, edit path quality, and computational efficiency. Best results are bolded.

3649

AIDS700

IMDB

FGWAIig

et

FGWAligghGW Slignps - E

Aty | RRW YgPF&r‘n”or
o ibSoly
0w o8 RS Alignise o5 O
Spectral GEDGNN;m,
W atignan AR pewA Noth
= SGWAlighase A*-Hun, EEW Align o b
Zos ;f Bt o] eligne 06 PUBTIRE. @ &
5 A*LSa A*-LSa I °
8 GEDGNN-m| LibSolver * Af.Sta *
S GW Alig
2w o
S RRWM
. pibsolver R | 1w)
§ IPEP Spectral
Vi Spectral & RRYM
o W D] W 1o 0" 03 v o 0" 03 3
Time (s/100p) Time (s/100p) Time (s/100p)

Figure 3: Comparison of computational efficiency and accu-
racy for various GED computation methods across AIDS700,
Linux, and IMDB. The x-axis shows computation time (per
100 pairs) on a logarithmic scale, while the y-axis is accuracy.

for graphs under 100 nodes, and f = 0.01 with maximum 1000
epochs for larger graphs. FGWAlignjigp; is a speed-optimized
variant with K = 1, T = 1, and maximum 20 epochs. We also
compare a standard FGW solver (named as FGWLibSolver) from
the Python Optimal Transport library [19].

5.1.3 Evaluation Metrics. In line with prior works [4, 55, 78], we
employ a comprehensive set of metrics across four categories to
thoroughly assess our model’s performance versus baselines:

o GED Computation Quality. We evaluate the computation qual-
ity of GED using four metrics: accuracy (Acc.), feasibility (Fea.),
Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). Accuracy is the proportion of test pairs that satisfy
dprea = dgr, where dy,0q and dy; are the predicted and ground-
truth GED values, respectively. Feasibility is the proportion of
test pairs where dyreq > dgr. MAE is the average of |dyreq — dg:l,
and RMSE is the square root of the average of |dp,eq — dgt|2 across
all test pairs.

e Similarity Ranking Performance. For each test graph g, we
randomly select 100 graphs to construct test pairs. These pairs
are ranked based on their predicted or real GED to g. We evalu-
ate the predicted rankings using Spearman’s Rank Correlation
Coefficient (p), Kendall’s Rank Correlation Coefficient (7), and
precision at the top 10 and top 20 (p@10 and p@20).

o Edit Path Quality. We compare generated edit paths with ground
truth using recall (R), precision (P), and F1-score (F;).

o Computational Efficiency. For the real-world datasets, we
record the average processing time per 100 graph pair compar-
isons. On the synthetic dataset, we measure the average compu-
tation time and peak memory usage per graph pair comparison.

5.2 Main Results

In Table 4 and Figure 3, we present the comparison beteen our
propoased FGWAlign and 12 GED computation methods on AIDS700,
Linux, and IMDB datasets. The results are analyzed as follows:

GED Computation Quality. FGWAligng, achieves the highest
accuracy across all three datasets, with rates of 95.1%, 99.7%, and
99.6% for AIDS700, Linux, and IMDB respectively. This represents
an 5-fold to 10-fold decrease in error rates compared to previous
state-of-the-art methods. Additionally, FGWAligng, demonstrates
the lowest RMSE and MAE across all datasets, underscoring its su-
perior precision in GED estimation. The MAE values are decreased

3650

to 0.058, 0.005, and 0.022 on the three datasets respectively. In terms
of feasibility, since FGWAlign can generate edit paths based on
the assignment matrix, it serves as an upper bound for GED and
guarantees 100% feasibility.

Time Efficiency. As demonstrated in Table 4, FGWAligng,s ex-
hibits superior computational efficiency, processing 100 graph pairs
within 3 seconds across all datasets. While Spectral and V] methods
demonstrate faster processing times, their accuracy falls signifi-
cantly short. SimGNN and TaGSim offer faster computation but they
only predict GED values without generating edit paths, providing
incomplete solutions lacking feasibility guarantees. Moreover, their
reported efficiency metrics exclude the necessary training time.
Compared to state-of-the-art learning-based methods that generate
edit paths, FGWAligng,s achieves a 15-60x speedup while maintain-
ing comparable accuracy. Figure 3 illustrates that FGWAligny,s’s
accuracy-time trade-off curve decisively outperforms other meth-
ods, validating the effectiveness of our algorithmic improvements
in optimizing both accuracy and computational efficiency.

Similarity Ranking. FGWAligng,; demonstrates near-optimal per-
formance in ranking graph similarities, achieving the highest scores
across all four metrics in three datasets. For instance, FGWAligng,j
achieves a p@10 of 0.991 on the AIDS700 dataset, significantly out-
performing the best baseline score of 0.889. These results showcase
that FGWAlign is exceptionally effective in preserving the relative
similarities between graphs, an essential aspect for various graph
analysis tasks including retrieval, clustering, and classification.

Edit Path Accuracy. FGWAligng, achieves the highest precision
and F1-scores across all datasets, with a particularly significant
improvement on the AIDS700 dataset—where its score rises from
0.752 (the previous second-best) to 0.920. These results demon-
strate FGWAligng,;’s ability to generate high-quality edit paths
that precisely capture the optimal edit operations between graphs.

Impact of Dataset Characteristics on Performance. The experi-
mental results reveal significant patterns in how graph proper-
ties influence method performance across datasets. On AIDS700,
with smaller graphs (avg. |V| = 8.9) but complex node labeling
(IZo| = 29), traditional search-based methods like A*-Hungarian
achieve moderate accuracy, while assignment-based methods have
poor performance on this dataset. The Linux dataset, featuring un-
labeled simple graphs with low average GED values (avg.dg; = 4.7),
shows improved performance across most methods, but assignment-
based methods still perform poorly. Notably, on the IMDB dataset
with larger, denser graphs (avg.|E| = 65.9), assignment-based meth-
ods perform surprisingly well (both IPFP and RRWM achieve 87.2%
accuracy), while learning-based methods like SimGNN and TaGSim
struggle significantly (17.8% and 19.5% accuracy). This suggests that
dense, unlabeled graphs particularly challenge embedding-based
learning approaches. Interestingly, assignment-based methods ex-
cel in edit path quality on IMDB (IPFP achieves the highest recall
at 95.2%), but FGWAligng, still maintains superior overall perfor-
mance with 99.6% accuracy and minimal error (MAE = 0.022). The
consistent excellence of FGWAlign across datasets with varying
structural complexities demonstrates its robust adaptability to dif-
ferent graph characteristics, effectively balancing structural and
feature similarities in various settings.

—B— FGWAlignfast —©- FGWAligns,st w/o Greedy Assign -6- RRWM —A— IPFP =+ A*-Hungarian
> 1.0 5 x
A 4 14
800 ‘,’ 2
=] 0.8 X /p 12
g i .3 X ~2
5% / 206 el P 2 0
El { g0 - N 2, i
153 1 =1 (5} 7 = B
S 400 I 3 Z2 / g 2
& ! 204 k| @ 5?2 il
g / €| S A =L
E , ;
E 200 / 02{Q Ne & 27
» N s k;
0| a—-Ets oo 003 Rrrgr-0 0 e oo
210 211 212 213 214 26 27 28 29 210 211 212 213 214

26 27 s 20 21 212 513 14
Node Size

2
Node Size

25 26 27 28 29 210 211 212 213 214

2

Node Size Node Size

Figure 4: Scalability comparison between FGWAligny,s (with and without fast greedy assignment) and three baseline methods
(RRWM, IPFP, and A*-Hungarian) on the synthetic dataset with increasing graph sizes.

—6— AIDS700 ~&- Linux -A- IMDB
s T ee——o—o . -u-t-ad &
m Bty ~EL z s,
E 2 i:J DSOA\\A R g 08 =
2 PE—g—p—g = Loi-A 3 e
2o 2
0 =
1 2 5 10 20 1 2 5 10 20
“la &
a0\ z
S LN 2z
e Q2
g E
. =
1 2 5 10 20
T

Figure 5: Impact of projection candidates K for FGWAligng,
and exploration patience T for FGWAligng;.

5.3 Scalability Evaluation

To evaluate the scalability of our proposed FGWAlign with in-
creasing graph scale, we conduct experiments on our synthetic
dataset with graph sizes ranging from 2° to 2! nodes. We compare
FGWAligng,: against three baseline methods: RRWM, IPFP, and A*-
Hungarian in terms of computation time, accuracy, the relative error
between predicted GED and ground truth GED (|dreq — dg:|/|dy:),
and peak memory usage. We also evaluate a specific variant of
FGWAligng, without greedy assignment, which instead uses linear
assignment and the network simplex algorithm as a replacement.
Results in Figure 4 show FGWAligng,: ’s time and memory scale
quadratically with node size, matching theoretical complexity. The
variant without greedy assignment shows increased time costs for
graphs over 5,000 nodes, while maintaining similar performance
metrics, confirming our greedy assignment strategy’s effectiveness.
In contrast, A*-Hungarian’s computation requirements surge be-
tween 64-128 nodes and fails at 256 nodes due to time constraints.
RRWM and IPFP cannot process graphs beyond 512 nodes within
48 hours. For accuracy, FGWAligng,s; maintains >0.8 accuracy with
near-zero relative error for graphs under 2,048 nodes. Even with
16,384-node graphs (40x larger than previous works [55]), FG-
WAlign achieves >30% accuracy. Baseline methods struggle with
scale: A*-Hungarian fails at just 32 nodes, while RRWM and IPFP
show significant accuracy degradation as graph size increases, high-
lighting FGWAlign’s superior scalability and efficiency.
FGWAlign faces scalability issues when handling million-scale
graphs, primarily due to its quadratic complexity. In such cases,
memory requirements would scale to an infeasible ~50TB. To tackle

3651

this limitation, two promising directions can be explored: (1) adapt-
ing FGWAlign to operate within divide-and-conquer entity align-
ment frameworks [75, 81], which partition large graphs into man-
ageable subgraphs; and (2) restricting the coupling matrix 7 to a
sparse format (e.g., considering only top-k candidates per node)
and leveraging techniques such as masked Optimal Transport [23],
which could drastically reduce computational overhead.

5.4 Ablation Study

We evaluate three key enhancements in FGWAlign compared to
the original FGW solver: diverse projection, random exploration,
and multi-relational extension.

Impact of projection candidates K. Varying K from 1 to 20 in
FGWAligng,, Figure 5 (top) shows monotonic quality improve-
ments across all datasets with increasing K, particularly for IMDB
and Linux where MAE decreases from 0.469 to 0.308 and 0.620 to
0.408, respectively. The computational overhead remains modest
(only 15% additional time for K = 10), demonstrating the efficiency
of K-best projection.

Impact of exploration patience T. Figure 5 shows significant
quality improvements as T increases from 1 to 20, with IMDB show-
ing 67% RMSE reduction when T increases from 1 to 2. However,
this comes with substantial computational costs (30x longer for
AIDS, 10x for Linux/IMDB). We recommend balancing large K with
appropriate T for optimal quality-efficiency trade-offs.
Effectiveness of edge type modeling. Using the full AIDS dataset
with three relation types, Figure 6 shows FGWAlign,, significantly
outperforms competitors, including the state-of-the-art TaGSim.
FGWAlign,.] reduces RMSE from 3.135 to 1.207 (61.5% decrease)
compared to TaGSim, while improving p@20 from 0.322 to 0.700.
Compared to FGWAligng,; (which treats all edge types as equiva-
lent), FGWAlign,| achieves substantial improvements (RMSE: 1.645
— 1.207, p@20: 0.494 — 0.700) with only 60% more computation
time, showing its effectiveness in capturing edge type nuances.

5.5 Downstream Applications of FGWAlign

Labeled Graph Alignment. We extend our method beyond GED
computation to address graph alignment problems with node and
edge labels. Following the same experimental protocol as the cur-
rent state-of-the-art GABoost approach [40], we evaluate FGWAlign
on three graph alignment datasets comprising a total of 12 graph
pairs with 1,000-10,000 nodes. For brevity, we direct readers to the

[7] A*-Beam RS Hungarian M vi E== SimGNN T TaGSim XX1 FGWAlignsy) FGWALignye
25 1.0 o 1.0 10 30
21.35%(g5 21366 0.857 o7 241
20 7 08 08 058 = -
m 15 / 0.6 0.6 < 06
@ / (=% 000 53 E\l@
2 10 ’ 9.183 04 04 S04
X ’ . 022002330229 " 020102140211 o
3.135 - . :
1.645 1 207 o H 0.049 0.059
) / (X1 Fe= 00 00 [N %022 0.022

Figure 6: Performance comparison of various GED computation methods on the full AIDS dataset with multi- relatlonal graphs.
The rightmost plot shows the computation time for FGWAligng,; and FGWAlign,.|.

Dataset ‘ Douban [83] ‘ Movies [40] ‘Megadiﬂ" changes [40] Dataset ‘PROTEINS ENZYMES AIDS BZR DD NCI1
Metric ‘ACC MAP EC ICS‘ACC MAP EC ICS‘ACC MAP EC ICS PK-OCSVM [46, 50] | 50.49+4.92 53.67+266 50.79+430 46.85+531 48.30+3.98 49.90:1.18
FINAL [53] 424 550 68 365| 661 29 490 514| 02 09 28 238 PK-iF [37, 50] 60.70+255 51.30+201 51.84:287 55.32:6.18 71.32:241 50.58+138
REGAL [25] 56 195 08 44| 108 214 24 25| 507 605 685 69.1 WL-OCSVM [46, 62] | 51.35+435 55.24+266 50.12+3.43 50.56+5.87 47.99+409 50.63+1.22
. ! ! : : : : ! } ’ ' : ! WL-F 37, 62] 61364254 51.6043.81 61.132071 52.46+330 70.31+1.09 50.74+1.70
WALign [20] 66.5 594 15.6 59.3| 63.9 63.4 43.6 45.7| 48.6 20.4 55.0 55.6
NAME [26] 357 61.6 7.7 41.8| 925 91.2 72.9 76.3| 49.3 51.0 71.6 72.2 OCGIN [84] 70.89+2.44 5875598 78.16+3.05 65.91x147 72.27:1.83 71.98x121
GTCAlign [70] | 60.8 68.4 14.1 76.2| 82.7 829 62.8 65.8| 57.9 633 81.4 82.1 GLocalKD [44] 77.30+5.15 61.39+881 93.27+4.19 69.42+7.78 80.12+5.24 68.48+239
SLOTAlign [64]| 51.5 61.3 13.0 62.3| 90.5 91.6 67.4 70.5| 50.3 33.8 72.1 72.9 OCGTL [57] 76.51x155 62.06+336 99.40+057 63.94:8.89 79.48x202 73.44x0.97
+GABoost [40] | 79.8 97.3 17.3 93.3|96.5 94.1 71.7 75.1|61.0 76.7 88.1 89.0 SIGNET [41] 75.22+391 62.96+4.22 97.27+1.17 81.44+9.23 72.72+3.91 74.89+207
FGWAlign 75.9 97.8 183 98.9| 96.4 94.3 73.0 76.5| 60.3 76.2 959 94.0 FGWAlign ‘77.9711.09 7111607 99.81x0.07 70.01+272 82.09:247 71.21:1.42
+GABoost 84.2 98.6 18.4 99.4|96.5 94.1 71.7 75.1| 60.4 75.8 96.3 96.7

Table 5: Performance comparison of different graph align-
ment methods in terms of Accuracy (ACC), Mean Average Pre-
cision (MAP), Edge Correctness (EC), and Induced Conserved
Structure (ICS). The reported values are scaled to [0, 100].

appendix in our GitHub repository® or the GABoost paper [40] for
comprehensive implementation details.

Results in Table 5 demonstrate that FGWAlign surpasses all com-

pared methods in structural metrics across three datasets, particu-
larly in edge correctness and induced conserved structure. When en-
hanced with GABoost’s post-processing step, FGWAlign+GABoost
achieves superior performance across all metrics on the Douban
dataset. These results highlight FGWAlign’s versatility in handling
both GED computation and node alignment effectively without
requiring significant modifications.
Graph-level Anomaly Detection. To demonstrate FGWAlign’s
applicability beyond graph matching, we apply it to graph-level
anomaly detection—identifying test graphs that do not belong to
any class in the training set. Our approach computes GED between
test and training graphs, assigning higher anomaly scores to test
graphs whose closest match in the training set has a larger GED.
To reduce computational overhead, we employ the pivot algorithm
[10] to select 20 representative candidate graphs among all train-
ing graphs for each test graph before applying FGWAlign. The
implementation details can be found in our appendix.

We adhere to the same experimental protocol as the state-of-the-
art learning-based method SIGNET [41], evaluating performance
across six TU datasets [48] via 5-fold cross-validation. For com-
parison, we include four classic methods (PK-OCSVM, PK-iF, WL-
OCSVM, WL-iF) and four GNN-based approaches (OCGIN, GLo-
calKD, OCGTL, SIGNET) alongside FGWAlign Table 6 presents the
Receiver Operating Characteristic Area Under the Curve (ROC-
AUC) metrics, which are calculated based on anomaly scores and

3https://github.com/squareRoot3/FGWAlign/blob/main/appendix.pdf

3652

Table 6: Graph-level anomaly detection performance in terms
of ROC-AUC (in percent, mean =+ std). The best results are
highlighted with bold.

corresponding labels [84]. FGWAlign achieves state-of-the-art per-
formance on four of the six datasets (PROTEINS, ENZYMES, AIDS,
and DD), with particularly notable improvements on ENZYMES
(8.15% higher than the next best method) and competitive perfor-
mance on BZR and NCI1. These results validate that FGWAlign
effectively generalizes to anomaly detection tasks. Despite its en-
hanced interpretability, it outperforms specialized deep learning
methods, underscoring its practical utility.

6 CONCLUSION

This paper approaches the four-decade-old NP-complete problem
of GED computation from a novel perspective. We propose FG-
WALlign, a framework that reformulates GED computation within
the optimal transport paradigm by leveraging the Fused Gromov-
Wasserstein distance. Through three key enhancements—including
a diverse projection strategy, a random exploration scheme, and a
multi-relational extension—FGWAlign achieves superior computa-
tion quality, efficiency, and scalability compared to existing methods.
We further validate FGWAlign’s effectiveness in two downstream
applications: graph alignment and graph-level anomaly detection.
These results underscore how FGWAlign, by enabling more accu-
rate GED-based similarity estimation, unlocks potential for broader
applications in graph data menagement.

ACKNOWLEDGMENTS

The research work described in this paper was supported by Guang-
dong S&T Program C019 and Hong Kong Research Grants Council
(grant# 16202722, T22-607/24-N, T43-513/23N-1). It was partially
conducted in JC STEM Lab of Data Science Foundations funded by
The Hong Kong Jockey Club Charities Trust.

https://github.com/squareRoot3/FGWAlign/blob/main/appendix.pdf

REFERENCES

(1]

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau.
2015. An exact graph edit distance algorithm for solving pattern recognition
problems. In 4th International Conference on Pattern Recognition Applications and
Methods 2015.

HA Almohamad and Salih O Duffuaa. 1993. A linear programming approach
for the weighted graph matching problem. IEEE Transactions on pattern analysis
and machine intelligence 15, 5 (1993), 522-525.

Jiyang Bai and Peixiang Zhao. 2022. TaGSim: type-aware graph similarity learn-
ing and computation. Proceedings of the VLDB Endowment 15, 2 (2022).
Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.
2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the twelfth ACM international conference on web search and data
mining. 384-392.

David B Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and
Luc Brun. 2020. Comparing heuristics for graph edit distance computation. The
VLDB journal 29, 1 (2020), 419458

David B Blumenthal and Johann Gamper. 2017. Exact computation of graph edit
distance for uniform and non-uniform metric edit costs. In International Workshop
on Graph-Based Representations in Pattern Recognition. Springer, 211-221.
Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich.
2011. Displacement interpolation using Lagrangian mass transport. In Proceedings
of the 2011 SIGGRAPH Asia conference. 1-12.

Sebastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit
Gaitizére, and Mario Vento. 2017. Graph edit distance as a quadratic assign-
ment problem. Pattern Recognition Letters 87 (2017), 38—46.

Horst Bunke and Kim Shearer. 1998. A graph distance metric based on the
maximal common subgraph. Pattern recognition letters 19, 3-4 (1998), 255-259.
B. Bustos, G. Navarro, and E. Chavez. 2001. Pivot selection techniques for
proximity searching in metric spaces. In SCCC 2001. 21st International Conference
of the Chilean Computer Science Society. 33-40. https://doi.org/10.1109/SCCC.
2001.972629

Lijun Chang, Xing Feng, Xuemin Lin, Lu Qin, Wenjie Zhang, and Dian Ouyang.
2020. Speeding up GED verification for graph similarity search. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, 793-804.
Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu.
2020. Graph optimal transport for cross-domain alignment. In International
Conference on Machine Learning. PMLR, 1542-1553.

Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, and Qin Zhang. 2025.
Computing Approximate Graph Edit Distance via Optimal Transport. Proceedings
of the ACM on Management of Data 3, 1 (2025), 1-26.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. 2010. Reweighted random walks
for graph matching. In European conference on Computer vision. Springer, 492—
505.

Marco Cuturi. 2013. Sinkhorn Distances: Lightspeed Computation of Optimal
Transport. In Advances in Neural Information Processing Systems, C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.), Vol. 26. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2013/file/
af21d0c97db2e27e13572cbf59eb343d-Paper.pdf

Qijie Ding, Daokun Zhang, and Jie Yin. 2022. Conflict-aware pseudo labeling via
optimal transport for entity alignment. In 2022 IEEE International Conference on
Data Mining (ICDM). IEEE, 915-920.

Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. 2011. Speeding up graph
edit distance computation through fast bipartite matching. In Graph-Based Repre-
sentations in Pattern Recognition: 8th IAPR-TC-15 International Workshop, GbRPR
2011, Miinster, Germany, May 18-20, 2011. Proceedings 8. Springer, 102-111.
Andreas Fischer, Ching Y Suen, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. 2015. Approximation of graph edit distance based on Hausdorff matching.
Pattern Recognition 48, 2 (2015), 331-343.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie
Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras,
Nemo Fournier, et al. 2021. Pot: Python optimal transport. Journal of Machine
Learning Research 22, 78 (2021), 1-8.

Ji Gao, Xiao Huang, and Jundong Li. 2021. Unsupervised graph alignment with
wasserstein distance discriminator. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 426—435.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. 2010. A survey of graph
edit distance. Pattern Analysis and applications 13 (2010), 113-129.

Carlos Garcia-Hernandez, Alberto Fernandez, and Francesc Serratosa. 2019.
Ligand-based virtual screening using graph edit distance as molecular similarity
measure. Journal of chemical information and modeling 59, 4 (2019), 1410-1421.
Johannes Gasteiger, Marten Lienen, and Stephan Glinnemann. 2021. Scalable
optimal transport in high dimensions for graph distances, embedding alignment,
and more. In International Conference on Machine Learning. PMLR, 5616-5627.
Karam Gouda and Mosab Hassaan. 2016. CSI_GED: An efficient approach for
graph edit similarity computation. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). IEEE, 265-276.

3653

[25]

[26]

[27

[29]

(30]

[31

[33

[34

[35

[40]

[41]

[42

[43]

[44

[46

[47]

(48

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal:
Representation learning-based graph alignment. In Proceedings of the 27th ACM
international conference on information and knowledge management. 117-126.
Thanh Trung Huynh, Chi Thang Duong, Thanh Tam Nguyen, Vinh Tong Van, Ab-
dul Sattar, Hongzhi Yin, and Quoc Viet Hung Nguyen. 2021. Network alignment
with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering
35, 2 (2021), 1881-1894.

Rashid Ibragimov, Maximilian Malek, Jiong Guo, and Jan Baumbach. 2013.
Gedevo: an evolutionary graph edit distance algorithm for biological network
alignment. In German conference on bioinformatics 2013. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Roy Jonker and Ton Volgenant. 1988. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. In DGOR/NSOR: Papers of the 16th
Annual Meeting of DGOR in Cooperation with NSOR/Vortrige der 16. Jahrestagung
der DGOR zusammen mit der NSOR. Springer, 622-622.

Derek Justice and Alfred Hero. 2006. A binary linear programming formulation
of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 28, 8 (2006), 1200-1214.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Sigian He,
Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. 2023. Pub-
Chem 2023 update. Nucleic acids research 51, D1 (2023), D1373-D1380.

Nils M Kriege, Pierre-Louis Giscard, Franka Bause, and Richard C Wilson. 2019.
Computing optimal assignments in linear time for approximate graph matching.
In 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 349-358.
Marius Leordeanu and Martial Hebert. 2005. A spectral technique for corre-
spondence problems using pairwise constraints. In International Conference on
Computer Vision. IEEE, 1482-1489.

Marius Leordeanu, Martial Hebert, and Rahul Sukthankar. 2009. An integer
projected fixed point method for graph matching and map inference. Advances
in neural information processing systems 22 (2009).

Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So,
and Jose Blanchet. 2022. Fast and Provably Convergent Algorithms for Gromov-
Wasserstein in Graph Data. arXiv:2205.08115 [cs.LG] https://arxiv.org/abs/2205.
08115

Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So,
and Jose Blanchet. 2023. A Convergent Single-Loop Algorithm for Relaxation of
Gromov-Wasserstein in Graph Data. In The Eleventh International Conference on
Learning Representations. https://openreview.net/forum?id=0jxPyVWmiiF
Chih-Long Lin. 1994. Hardness of approximating graph transformation problem.
In International Symposium on Algorithms and Computation. Springer, 74-82.
Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413-422.

Junbin Liu, Ya Liu, Wing-Kin Ma, Mingjie Shao, and Anthony Man-Cho So. 2024.
Extreme Point Pursuit - Part I: A Framework for Constant Modulus Optimization.
arXiv:2403.06506 [eess.SP]

Junfeng Liu, Min Zhou, Shuai Ma, and Lujia Pan. 2023. MATA*: Combining
Learnable Node Matching with A* Algorithm for Approximate Graph Edit Dis-
tance Computation. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management. 1503-1512.

Wei Liu, Wei Zhang, Haiyan Zhao, and Zhi Jin. 2024. GABoost: Graph Alignment
Boosting via Local Optimum Escape. Proc. ACM Manag. Data 2, 4, Article 199
(Sept. 2024), 26 pages. https://doi.org/10.1145/3677135

Yixin Liu, Kaize Ding, Qinghua Lu, Fuyi Li, Leo Yu Zhang, and Shirui Pan. 2023.
Towards self-interpretable graph-level anomaly detection. In Advances in Neural
Information Processing Systems, Vol. 36.

Zhi-Yong Liu and Hong Qiao. 2014. GNCCP—Graduated NonConvexity and Con-
cavity Procedure. IEEE Transactions on Pattern Analysis and Machine Intelligence
36, 6 (2014), 1258-1267. https://doi.org/10.1109/TPAMI.2013.223

Shengxuan Luo and Sheng Yu. 2022. An Accurate Unsupervised Method for Joint
Entity Alignment and Dangling Entity Detection. In Findings of the Association
for Computational Linguistics: ACL 2022, Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin,
Ireland, 2330-2339. https://doi.org/10.18653/v1/2022.findings-acl.183
Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. 2022. Deep
graph-level anomaly detection by glocal knowledge distillation. In Proceedings
of the Fifteenth ACM International Conference on Web Search and Data Mining.
704-714.

Paul Maergner, Vinaychandran Pondenkandath, Michele Alberti, Marcus Liwicki,
Kaspar Riesen, Rolf Ingold, and Andreas Fischer. 2019. Combining graph edit
distance and triplet networks for offline signature verification. Pattern Recognition
Letters 125 (2019), 527-533

Larry M Manevitz and Malik Yousef. 2001. One-class SVMs for document classi-
fication. Journal of machine Learning research 2, Dec (2001), 139-154.

Facundo Mémoli. 2009. Spectral Gromov-Wasserstein distances for shape match-
ing. In 2009 IEEE 12th International Conference on Computer Vision Workshops,
ICCV Workshops. IEEE, 256—-263.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. TUDataset: A collection of benchmark datasets for
learning with graphs. In ICML Workshop.

https://doi.org/10.1109/SCCC.2001.972629
https://doi.org/10.1109/SCCC.2001.972629
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://arxiv.org/abs/2205.08115
https://arxiv.org/abs/2205.08115
https://arxiv.org/abs/2205.08115
https://openreview.net/forum?id=0jxPyVWmiiF
https://arxiv.org/abs/2403.06506
https://doi.org/10.1145/3677135
https://doi.org/10.1109/TPAMI.2013.223
https://doi.org/10.18653/v1/2022.findings-acl.183

[49

[50]

[51

[52]

[54

[55

[56]

[57]

[58

[59]

[60]

(61

[62]

[63

[64

[65]

[66]

(67

[68

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. 2006. Fast suboptimal algo-
rithms for the computation of graph edit distance. In Structural, Syntactic, and
Statistical Pattern Recognition: Joint IAPR International Workshops, SSPR 2006 and
SPR 2006, Hong Kong, China, August 17-19, 2006. Proceedings. Springer, 163-172.
Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting.
2016. Propagation kernels: efficient graph kernels from propagated information.
Machine Learning 102 (2016), 209-245.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching node embeddings for graph similarity. In Proceedings of the AAAI
conference on Artificial Intelligence, Vol. 31.

Shichao Pei, Lu Yu, and Xiangliang Zhang. 2019. Improving cross-lingual entity
alignment via optimal transport. In IJCAL

Yun Peng, Byron Choi, and Jianliang Xu. 2021. Graph Edit Distance Learning
via Modeling Optimum Matchings with Constraints.. In IJCAL 1534-1540.
Gabriel Peyré, Marco Cuturi, and Justin Solomon. 2016. Gromov-Wasserstein
averaging of kernel and distance matrices. In International Conference on Machine
Learning. PMLR, 2664-2672.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong
Cheng. 2023. Computing Graph Edit Distance via Neural Graph Matching.
Proceedings of the VLDB Endowment 16, 8 (2023), 1817-1829.

Zongyue Qin, Yunsheng Bai, and Yizhou Sun. 2020. GHashing: Semantic graph
hashing for approximate similarity search in graph databases. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2062-2072.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. 2022. Raising the Bar
in Graph-level Anomaly Detection. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22. 2196-2203.

Kaspar Riesen and Horst Bunke. 2009. Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image and Vision computing 27, 7
(2009), 950-959.

Kaspar Riesen, Stefan Fankhauser, and Horst Bunke. 2007. Speeding Up Graph
Edit Distance Computation with a Bipartite Heuristic.. In Mining and Learning
with Graphs. 21-24.

Kaspar Riesen, Michel Neuhaus, and Horst Bunke. 2007. Bipartite graph matching
for computing the edit distance of graphs. In Graph-Based Representations in
Pattern Recognition: 6th IAPR-TC-15 International Workshop, GbRPR 2007, Alicante,
Spain, June 11-13, 2007. Proceedings 6. Springer, 1-12.

Alberto Sanfeliu and King-Sun Fu. 1983. A distance measure between attributed
relational graphs for pattern recognition. IEEE transactions on systems, man, and
cybernetics 3 (1983), 353-362.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

Justin Solomon, Gabriel Peyré, Vladimir G Kim, and Suvrit Sra. 2016. Entropic
metric alignment for correspondence problems. ACM Transactions on Graphics
(ToG) 35, 4 (2016), 1-13.

Jianheng Tang, Weiqi Zhang, Jiajin Li, Kangfei Zhao, Fugee Tsung, and Jia Li. 2023.
Robust Attributed Graph Alignment via Joint Structure Learning and Optimal
Transport. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
1638-1651. https://doi.org/10.1109/ICDE55515.2023.00129

Jianheng Tang, Kangfei Zhao, and Jia Li. [n.d.]. A Fused Gromov-Wasserstein
Framework for Unsupervised Knowledge Graph Entity Alignment. In Findings
of the Association for Computational Linguistics: ACL 2023. 3320-3334. https:
//doi.org/10.18653/v1/2023 findings-acl.205

Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. 2019. Opti-
mal transport for structured data with application on graphs. In International
Conference on Machine Learning. PMLR, 6275-6284.

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita,
Jeongjae Lee, Cameron LM Gilchrist, Johannes S6ding, and Martin Steinegger.
2023. Fast and accurate protein structure search with Foldseek. Nature Biotech-
nology (2023), 1-4.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy
Natassia, Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata
Laydon, et al. 2022. AlphaFold Protein Structure Database: massively expanding

3654

[69

[70]

71

3
5,

[77

[78

[79]

[80]

[82

(83

(84

(85]

[88

the structural coverage of protein-sequence space with high-accuracy models.
Nucleic acids research 50, D1 (2022), D439-D444.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M
Borgwardt. 2010. Graph kernels. The Journal of Machine Learning Research 11
(2010), 1201-1242.

Chenxu Wang, Peijing Jiang, Xiangliang Zhang, Pinghui Wang, Tao Qin, and
Xiaohong Guan. 2023. GTCAlign: Global Topology Consistency-based Graph
Alignment. IEEE Transactions on Knowledge and Data Engineering (2023).
Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang,
Qi Liu, Longxuan Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang,
and Junchi Yan. 2024. Pygmtools: A Python Graph Matching Toolkit. Journal of
Machine Learning Research 25, 33 (2024), 1-7. https://jmlr.org/papers/v25/23-
0572.html

Runzhong Wang, Tiangi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang.
2021. Combinatorial learning of graph edit distance via dynamic embedding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 5241-5250.

Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. 2012.
An efficient graph indexing method. In 2012 IEEE 28th International Conference
on Data Engineering. IEEE, 210-221.

Richard C Wilson and Ping Zhu. 2008. A study of graph spectra for comparing
graphs and trees. Pattern Recognition 41, 9 (2008), 2833-2841.

Kexuan Xin, Zequn Sun, Wen Hua, Wei Hu, Jianfeng Qu, and Xiaofang Zhou.
2022. Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning
and Embedding. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. 2240-2249.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. 2019.
Gromov-wasserstein learning for graph matching and node embedding. In Inter-
national conference on machine learning. PMLR, 6932-6941.

Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining. 1365-1374.

Lei Yang and Lei Zou. 2021. Noah: Neural-optimized A Search Algorithm for
Graph Edit Distance Computation. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE). IEEE, 576-587.

Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. 2012. Efficient subgraph
similarity search on large probabilistic graph databases. Proc. VLDB Endow. 5, 9
(May 2012), 800-811. https://doi.org/10.14778/2311906.2311908

Li Yujian and Liu Bo. 2007. A normalized Levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence 29, 6 (2007), 1091-1095.
Weixin Zeng, Xiang Zhao, Xinyi Li, Jiuyang Tang, and Wei Wang. 2022. On
entity alignment at scale. The VLDB Journal (2022), 1-25.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu
Zhou. 2009. Comparing stars: On approximating graph edit distance. Proceedings
of the VLDB Endowment 2, 1 (2009), 25-36.

Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment.
In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 1345-1354.

Lingxiao Zhao and Leman Akoglu. 2021. On using classification datasets to
evaluate graph outlier detection: Peculiar observations and new insights. Big
Data (2021).

Xiang Zhao, Chuan Xiao, Xuemin Lin, Qing Liu, and Wenjie Zhang. 2013. A
partition-based approach to structure similarity search. Proceedings of the VLDB
Endowment 7, 3 (2013), 169-180.

Xiang Zhao, Chuan Xiao, Xuemin Lin, and Wei Wang. 2012. Efficient graph
similarity joins with edit distance constraints. In 2012 IEEE 28th international
conference on data engineering. IEEE, 834-845.

Xiang Zhao, Chuan Xiao, Xuemin Lin, Wenjie Zhang, and Yang Wang. 2018.
Efficient structure similarity searches: a partition-based approach. The VLDB
Journal 27, 1 (2018), 53-78.

Weiguo Zheng, Lei Zou, Xiang Lian, Dong Wang, and Dongyan Zhao. 2014.
Efficient graph similarity search over large graph databases. IEEE Transactions
on Knowledge and Data Engineering 27, 4 (2014), 964-978.

https://doi.org/10.1109/ICDE55515.2023.00129
https://doi.org/10.18653/v1/2023.findings-acl.205
https://doi.org/10.18653/v1/2023.findings-acl.205
https://jmlr.org/papers/v25/23-0572.html
https://jmlr.org/papers/v25/23-0572.html
https://doi.org/10.14778/2311906.2311908

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Definition of GED
	2.2 Computation of GED
	2.3 Fused Gromov-Wasserstein (FGW) Distance

	3 The Proposed Method
	3.1 Reformulating GED to FGW
	3.2 Escaping Local Optimum via Diverse Projection
	3.3 Random Exploration of Global Optimum
	3.4 Extending to Multi-relational Graphs
	3.5 Complexity Analysis

	4 Theoretical Analysis
	4.1 Objective Function Equivalence
	4.2 Optimal Value Equivalence and Error Bound

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Scalability Evaluation
	5.4 Ablation Study
	5.5 Downstream Applications of FGWAlign

	6 Conclusion
	Acknowledgments
	References

