
FSMDTW: A Fast Index-free Subsequence Matching Algorithm
for Dynamic Time Warping

Zemin Chao

Harbin Institute of Technology

Harbin, Heilongjiang, China

chaozm@hit.edu.cn

Qiaoyi Zheng

Harbin Institute of Technology

Harbin, Heilongjiang, China

2022111568@stu.hit.edu.cn

Zhixin Qi

Harbin Institute of Technology

Harbin, Heilongjiang, China

qizhx@hit.edu.cn

Hongzhi Wang

Harbin Institute of Technology

Harbin, Heilongjiang, China

wangzh@hit.edu.cn

ABSTRACT
The subsequence matching problem utilizing dynamic time warp-

ing as the similarity measurement has been recognized as a key

operation in time series analysis for more than two decades. Exist-

ing index-free algorithms depend on DTW lower bounds to discard

the unpromising candidate. However, these approaches typically

cost 𝑂 (𝑚) time for each candidate, where𝑚 is the length of the

query. Consequently, the overhead of computing the DTW lower

bounds occupies a significant portion of the time in subsequence

matching tasks. This paper proposes new algorithms capable of

computing the DTW lower bounds in average 𝑂 (log𝑚) time for

each candidate, substantially alleviating this bottleneck of the sub-

sequence matching problem. In addition, this paper designs novel

DTW lower bounds according to the characteristics of the subse-

quence matching problem, which is more effective without intro-

ducing significant computational overhead. Based on the above

improvements, an efficient subsequence matching algorithm called

FSMDTW is designed. Experiments conducted on both real and

synthetic datasets show that the proposed algorithm is about 2.6

times faster than SOTA on short and medium-length queries and

up to one order of magnitude faster on longer queries.

PVLDB Reference Format:
Zemin Chao, Qiaoyi Zheng, Zhixin Qi, and Hongzhi Wang. FSMDTW: A

Fast Index-free Subsequence Matching Algorithm for Dynamic Time

Warping. PVLDB, 18(10): 3628 - 3640, 2025.

doi:10.14778/3748191.3748220

PVLDB Artifact Availability:
The source code, data, and / or other artifacts have been made available

at https://github.com/QW1k0YA/A-Fast-Index-free-Subsequence-Matching-

Algorithm-for-Dynamic-Time-Warping.

1 INTRODUCTION
Given time series 𝑆 ∈ R𝑛 , a query 𝑄 ∈ R𝑚 , and a threshold 𝜖 > 0,

the subsequence matching problem is to find all subsequences of

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748220

𝑆 that are similar enough to 𝑄 , as depicted in Figure 1. Dynamic

Time Warping (DTW) is known as a superior similarity measure-

ment in many real-world applications [2, 3, 25, 26]. Consequently,

subsequence matching using DTW is considered one of the most

important problems in time series analysis [23, 36], and it is widely

used in disease diagnosis [19], automatic data annotation [10], and

EEG analysis [5].

Figure 1: An illustrative example of the subsequence match-
ing problem, which is to find subsequences (continuous seg-
ments) in time series 𝑆 that are similar to query 𝑄 .

Existing subsequence matching algorithms for DTW can be

categorized into index-based or index-free algorithms. However,

all known index-based algorithms are constrained by either the

length of the query or the maximum extent of uniform scaling

[6, 17, 32, 36], and they also require additional space and time for

indexing time series. Furthermore, time series can only be accessed

once in stream processing, making index-based algorithms unfeasi-

ble in certain applications. Taking these factors into account, this

paper focuses on index-free subsequence matching algorithms us-

ing DTW as the similarity measurement.

DTW is hard to compute because of the need of finding the opti-

mal local alignment between time series. Therefore, DTW lower

bounds [13, 15, 31] are widely utilized to relieve the heavy com-

putational burden. The state-of-the-art algorithm in this field is

UCR-Suite [23] and its variants [9, 27], which is well-known for

its carefully designed cascading filtering strategy to discard can-

didates with the help of DTW lower bounds. However, the DTW

lower bounds between the query series 𝑄 and a candidate (i.e., an

𝑚-length subsequence of the series 𝑆) require 𝑂 (𝑚) time in most

cases, where𝑚 is the length of the query 𝑄 . The overhead of ver-

ifying the DTW lower bounds for 𝑂 (𝑛) candidates has become a

critical bottleneck, especially for large𝑚.

3628

https://doi.org/10.14778/3748191.3748220
https://github.com/QW1k0YA/A-Fast-Index-free-Subsequence-Matching-Algorithm-for-Dynamic-Time-Warping
https://github.com/QW1k0YA/A-Fast-Index-free-Subsequence-Matching-Algorithm-for-Dynamic-Time-Warping
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748220
https://www.acm.org/publications/policies/artifact-review-and-badging-current

This paper addresses the above challenge by designing algo-

rithms that cost only 𝑂 (log𝑚) time for lower bound of each can-

didate. Experiments show that the proposed lower bound can be

several times faster than existing lower bounds even for short series.

Considering𝑚 stands for the length of the query series, which can

be up to tens of thousands, the proposed fast lower bound demon-

strates considerable acceleration for the subsequence matching

problem.

Based on the above improvements, this paper proposes an algo-

rithm for subsequence matching named FSMDTW, which adopts

the cascading filtering strategy and takes advantage of the pro-

posed fast DTW lower bound. In addition, FSMDTW improves the

effectiveness of 𝐿𝐵𝐾𝑒𝑜𝑔ℎ with little extra cost by leveraging the

characteristics of the subsequence matching problem. Furthermore,

FSMDTW promotes the efficiency of 𝐿𝐵Petitjean by computing the

projection vector on demand. Experiments on both real and artifi-

cial datasets demonstrate that the proposed FSMDTW algorithm

is about 2.6 times faster than SOTA for short and medium length

queries. For longer query sequences, FSMDTW outperforms SOTA

by up to one order of magnitude.

The key contributions of this paper are summarized as follows.

1. This paper designs new efficient algorithms to compute DTW

lower bounds for subsequence matching problem. To our knowl-

edge, this is the first algorithm that computes DTW lower bounds

with an average cost of Θ(log𝑚). The proposed algorithm is much

faster than the existing lower bounds that cost 𝑂 (𝑚) time, while

it is still able to discard around 98% candidates. Considering 𝑚

is the length of the query, this brings a significant advantage in

performance of subsequence matching algorithms.

2. A refinement of 𝐿𝐵𝐾𝑒𝑜𝑔ℎ has been proposed, which is named as

𝐿𝐵𝐾𝐸 . 𝐿𝐵𝐾𝐸 takes advantage of a precomputed distance table based

on the information of 𝑄 . 𝐿𝐵𝐾𝐸 is tighter than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ , but can be

computed with little extra burden in the subsequence matching

problem.

3. Based on the above advancements, this paper designs the

FSMDTW algorithm, which addresses the subsequence matching

problem by carefully leveraging the cascading filtering strategy

and caching shared variables. In addition, FSMDTW also improves

the efficiency of 𝐿𝐵Petitjean by computing its projection vector and

envelopes on demand.

4. The experiments carried out on both real and synthetic datasets

show that the proposed FSMDTW algorithm significantly outper-

forms SOTA, especially for long queries. The proposed algorithm

is about 2.6 times faster than the SOTA on short and medium-

length queries and is up to a magnitude faster than SOTA on longer

queries.

2 PROBLEM DEFINITION AND RELATED
WORK

2.1 Definitions Used in This Paper
Definition 1. (Time Series) In this paper, a time series 𝑆 ∈ R𝑛

of length 𝑛 is formalized as a series of 𝑛 real numbers, i.e., 𝑆 =

(𝑠1, 𝑠2, 𝑠3,𝑠𝑛).

Definition 2. (Subsequences of Time series) A subsequence is

defined as any continuous segment within the time series. In partic-

ular, an𝑚-length subsequence starts from the 𝑖th position of series

𝑆 = (𝑠1, 𝑠2, 𝑠3,𝑠𝑛) is denoted as 𝑆 (𝑖) = (𝑠𝑖 , 𝑠𝑖+1, 𝑠𝑖+2,𝑠𝑖+𝑚−1),
where 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1. In this paper, an𝑚-length subsequence of

𝑆 is also referred to as a candidate.

Definition 3. (Dynamic Time Warping) The DTW between two

series 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑚) ∈ R𝑚 and 𝑄 = (𝑞1, 𝑞2, ..., 𝑞𝑚) ∈ R𝑚 is

defined as follows.

𝐷𝑇𝑊 (𝑋,𝑄) =
√︂
(𝑥1 − 𝑞1)2 +𝑀𝐼𝑁 2, (1)

where𝑀𝐼𝑁 is the minimum value among the three options, that are

𝐷𝑇𝑊 (𝑋 ′, 𝑄′), 𝐷𝑇𝑊 (𝑋 ′, 𝑄), and 𝐷𝑇𝑊 (𝑋,𝑄′), 𝑋 ′ = (𝑥2, 𝑥3 ..., 𝑥𝑚)
and 𝑄 ′ = (𝑞2, 𝑞3 ..., 𝑞𝑚). In particular, the distance between an

arbitrary series and an empty series is defined as infinity. The

restriction of the warping path is necessary to prevent pathological

alignments and to ensure that the DTWdistance reflects meaningful

similarities between two series [13, 24, 29, 32]. We employ the

most commonly used Sakoe-Chiba band [26], which constrains the

maximum distortion of an element on the time axis should not

exceed𝑤 ∈ N∗. 1

Finally, some frequently used notations in the rest of the paper

are listed in Table 1.

Table 1: Frequently Used Notations

Symbol Description

𝑆 The long series to be searched 𝑆 = (𝑠1, 𝑠2, .., 𝑠𝑛).
𝑄 The query series 𝑄 = (𝑞1, 𝑞2, ..., 𝑞𝑚).
𝑆 (𝑖) The𝑚-length subsequence of 𝑆 starts at the 𝑖th

position, i.e., 𝑆 (𝑖) = (𝑠𝑖 , 𝑠𝑖+1, 𝑠𝑖+2, . . . , 𝑠𝑖+𝑚−1).
U𝑄 The upper envelope of 𝑄 . U𝑄 = (U𝑄

1
,U𝑄

2
, ...,

U𝑄𝑚), where U
𝑄

𝑖
=𝑚𝑎𝑥{𝑞𝑖−𝑤 , 𝑞𝑖−𝑤+1, ..., 𝑞𝑖+𝑤} .

L𝑄 The lower envelope of 𝑄 . L𝑄 = (L𝑄
1
,L𝑄

2
, ...,,

L𝑄𝑚), where L
𝑄

𝑖
=𝑚𝑖𝑛{𝑞𝑖−𝑤 , 𝑞𝑖−𝑤+1, ..., 𝑞𝑖+𝑤} .

2.2 Problem Definition
The z-normalized form of a subsequence 𝑆 (𝑖) is denoted as 𝑆 (𝑖) and
calculated as follows:

𝑆 (𝑖) = (
𝑆 (𝑖) [1] − 𝜇𝑖

𝜎𝑖
,
𝑆 (𝑖) [2] − 𝜇𝑖

𝜎𝑖
, ...,

𝑆 (𝑖) [𝑚] − 𝜇𝑖
𝜎𝑖

), (2)

where 𝜇𝑖 and 𝜎𝑖 represent the mean and standard deviation of 𝑆 (𝑖) ,
respectively. The importance of z-normalization for real-valued

subsequences has gained considerable acknowledgment in recent

years [2, 3, 18, 21, 24, 32–34, 37]. Following the perspectives of

previous studies, this paper uses 𝐷𝑇𝑊 (𝑆 (𝑖) , 𝑄) to measure the

dissimilarity of candidate subsequence 𝑆 (𝑖) and query 𝑄 . 2

1N∗ represents the set of positive integers.
2
Because𝑄 can be easily z-normalized before query possessing, it is always safe to

assume𝑄 = 𝑄̂ . This paper does not explicitly normalize the query sequence𝑄 for the

sake of brevity.

3629

Definition 4. (Subsequence Matching Problem) Given an input

series 𝑆 ∈ R𝑛 , a query 𝑄 ∈ R𝑚 and a similarity threshold 𝜖 > 0,

the subsequence matching problem is to find the subsequences of

𝑆 that are similar to query 𝑄 , i.e., {𝑆 (𝑖) |𝐷𝑇𝑊 (𝑆 (𝑖) , 𝑄) ≤ 𝜖}.

2.3 Related Works
2.3.1 The lower bounds for DTW. Dynamic Time Warping (DTW)

has served as one of the most important similarity measurements

in time series data in the past 50 years [26], including online boot

detection [8], sensing time series classification [20], forecasting

the spread of COVID-19 [28], etc. Unfortunately, theoretical result

indicates that the unbounded DTW cannot be exactly computed

in 𝑂 (𝑚2−𝛿) time for any constant 𝛿 > 0 if the Strong Exponential
Time Hypothesis is true [1]. This implies that we are unable to find

any algorithm for bounded DTW with parameter𝑤 that provides

a significantly better time complexity than 𝑂 (𝑤𝑚1−𝛿) because
the bounded DTW is a special case of DTW with Sakoe-Chiba

band (where 𝑤 = 𝑚). Therefore, achieving an algorithm with a

time complexity significantly better than the existing 𝑂 (𝑤𝑚) time

dynamic programming algorithm is nearly impossible.

Most algorithms do not compute DTW directly. Instead, they

avoid computing DTW by utilizing the lower bounds of DTW. Specif-

ically, these lower bounds are less computationally expensive than

DTW and provide approximations that are guaranteed not to ex-

ceed the true DTW score. Consequently, it is no longer necessary

to compute the exact DTW if the lower bounds exceed 𝜖 . In fact,

the DTW lower bound can filter out most of the candidates, so the

computation overhead of the DTW lower bound is important for

the efficiency of subsequence matching algorithms.

DTW lower bounds of 𝑂 (1) time complexity. These lower

bounds including 𝐿𝐵𝐾𝑖𝑚 [14] and 𝐿𝐵𝐾𝑖𝑚𝐹𝐿
3
[23] utilize only con-

stant elements from a series of length𝑚. For example, given series

𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) and 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚), 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 is defined

as :

𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄) =
√︂
(𝑥1 − 𝑞1)2 + (𝑥𝑚 − 𝑞𝑚)2 + 𝑟2

1
+ 𝑟2

2
+ 𝑟2

3
+ 𝑟2

4
,

(3)

where 𝑟1 = min{(𝑥2−𝑞1)2, (𝑥2−𝑞2)2, (𝑥1−𝑞2)2}, 𝑟2 = min{(𝑥𝑚−1−
𝑞𝑚)2, (𝑥𝑚−1 − 𝑞𝑚−1)2, (𝑥𝑚 − 𝑞𝑚−1)2}, 𝑟3 = min{(𝑥1 − 𝑞3)2, (𝑥2 −
𝑞3)2, (𝑥3 − 𝑞3)2, (𝑥3 − 𝑞2)2, (𝑥3 − 𝑞1)2}, 𝑟4 = min{(𝑥𝑚 − 𝑞𝑚−2)2,
(𝑥𝑚−1 −𝑞𝑚−2)2, (𝑥𝑚−2 −𝑞𝑚−2)2, (𝑥𝑚−2 −𝑞𝑚−1)2, (𝑥𝑚−2 −𝑞𝑚)2}.
That is, only the first and the last three elements are utilized from

a series of length𝑚.

However, the effectiveness of these lower bounds is often poor

because they consider only constant number of the elements in

the series. In general, these lower bounds are able to benefit the

subsequence matching algorithms in some cases, but they do not

work well on long time series.

Recently, an algorithm [7] has been proposed to compute DTW

lower bounds in𝑂 (𝑛2) time for the motif discovery problem, where

3𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄) is originally defined as

√︁
(𝑥1 − 𝑞1)2 + (𝑥𝑚 − 𝑞𝑚)2 . Our defini-

tion is consistent with the variant implemented in the UCR-Suite. (https://www.cs.ucr.

edu/~eamonn/UCRsuite.html)

𝑂 (𝑛2) DTW scores between 𝑂 (𝑛) subsequences need to be com-

pared, achieving an average time cost of 𝑂 (1). However, this algo-
rithm is specifically tailored for the DTW-based motif discovery

and cannot be transferred to the subsequence matching problem.

DTW lower bounds of 𝑂 (𝑚) time complexity. The vast major-

ity of DTW lower bounds belongs to this category [13, 16, 29, 31]

because accessing all the elements of an𝑚-length series requires

𝑂 (𝑚) time. The most successful lower bound of 𝑂 (𝑚) time com-

plexity is 𝐿𝐵𝐾𝑒𝑜𝑔ℎ [13], which is applied in most works that involve

𝐷𝑇𝑊 . Given 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑚) and 𝑄 = (𝑞1, 𝑞2, ..., 𝑞𝑚),

𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄) =

⌜⃓⃓⃓⃓⃓⃓⃓
⎷⃓ 𝑚∑︂
𝑖=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(U𝑄
𝑖
− 𝑥𝑖)2, 𝑥𝑖 > U𝑄

𝑖

(L𝑄
𝑖
− 𝑥𝑖)2, 𝑥𝑖 < L𝑄

𝑖

0, L𝑄
𝑖
≤ 𝑥𝑖 ≤ U𝑄

𝑖

, (4)

whereU𝑄
𝑖
=𝑚𝑎𝑥{𝑞𝑖−𝑤 , 𝑞𝑖−𝑤+1, ..., 𝑞𝑖+𝑤},L𝑄𝑖 =𝑚𝑖𝑛{𝑞𝑖−𝑤 , 𝑞𝑖−𝑤+1,

..., 𝑞𝑖+𝑤}, and 𝑤 is the parameter of Sakoe-Chiba band represent-

ing the maximum distance of alignment. Additionally, the series

U𝑄 = (U𝑄
1
,U𝑄

2
, ...,U𝑄𝑚) and L𝑄 = (L𝑄

1
,L𝑄

2
, ...,L𝑄𝑚) are referred as

the upper envelope and the lower envelope of 𝑄 respectively. In

summary, these lower bounds achieve good effectiveness, but they

come with a higher time cost.

This paper introduces efficient algorithms that calculate DTW

lower bounds with an average cost of 𝑂 (log𝑚). To the best of our

knowledge, this is the first algorithm that computes DTW lower

bound with such time complexity, achieving efficiency close to𝑂 (1)
time lower bounds while still maintaining satisfactory effectiveness

with respect to 𝑂 (𝑚) time lower bounds.

2.3.2 Subsequence Matching Algorithms Based on Dynamic Time
Warping. Subsequence matching using DTW is a significant prob-

lem. However, the requirement for z-normalization and the un-

certainty of the query length 𝑚 present challenges for a perfect

index-based algorithm [23]. ULISSE [17] only works when𝑚 falls

within a predefined range determined by the index. KV-match [32]

and the algorithm proposed in [6] limit the scale of z-normalization,

which must be meticulously determined, as an excessively narrow

range can result in missed query results, while a broad normaliza-

tion range can significantly undermine efficiency.

Moreover, these index-based approaches require relatively ex-

pensive prepossessing steps, which involve additional time and

space overhead before queries can be executed. The time to con-

struct these indexes may take several hours, depending on the

configuration. Furthermore, establishing such an index is not prac-

tical in streaming data processing [11, 22], therefore, it is necessary

to investigate index-free subsequence matching algorithms.

This paper focuses on designing an efficient index-free algorithm.

The index-free SOTA solution of the subsequencematching problem

is UCR-Suite [23] and its variant UCR-MON Suite [9], which utilize

𝐿𝐵𝐾𝑖𝑚𝐹𝐿 and 𝐿𝐵𝐾𝑒𝑜𝑔ℎ to discard the candidates.

3 COMPUTING DTW LOWER BOUNDS IN
AVERAGE 𝑂 (log𝑚) TIME

This section introduces a lower bound for DTW named 𝐿𝐵𝑀+,
along with efficient algorithms to compute 𝐿𝐵𝑀+ in subsequence

3630

https://www.cs.ucr.edu/~eamonn/UCRsuite.html
https://www.cs.ucr.edu/~eamonn/UCRsuite.html

matching problem. In this section, we temporally concentrate on

a ℓ-length segment of 𝑆 , denoted as 𝑇 , and compute the lower

bounds between 𝑄 every subsequence in {𝑇(𝑖) }ℓ−𝑚+1𝑖=1
. Section 3.1

formalizes the definition of𝐿𝐵𝑀+ and proves its correctness. Section
3.2 presents the basic idea for computing 𝐿𝐵𝑀+ in average𝑂 (log𝑚)
time. After that, Section 3.3 and 3.4 formally present the efficient

algorithms to compute 𝐿𝐵𝑀+. Finally, Section 3.5 discusses refining

the effectiveness of 𝐿𝐵𝑀+ by selecting the mask vector.

3.1 Definition and Proof of Correctness for the
Proposed DTW Lower bound

3.1.1 Overview of 𝐿𝐵𝑀+. As shown in Figure 2, given any 𝑋 =

(𝑥1, 𝑥2, . . . , 𝑥𝑚) and 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚), a matrix of size𝑚 ×𝑚
can be constructed by taking the elements of 𝑋 and𝑄 as horizontal

and vertical coordinates, respectively. A warping path is defined as

the path in the matrix that starts from (𝑥1, 𝑞1) (bottom left corner)

and ends at (𝑥𝑚, 𝑞𝑚) (top right corner) without crossing gray cells.

According to Definition 3, computing 𝐷𝑇𝑊 (𝑋,𝑄) equals finding
a warping path such that the total costs of the cells that it passed

through is minimized, where the cost of passing through cell (𝑥𝑖 , 𝑞 𝑗)
is defined as (𝑥𝑖 − 𝑞 𝑗)2.

Figure 2: Illustration of a warping path and 𝐿𝐵𝑀+.

The non-gray areas are cut into several bands which are distin-

guished by different colors in Figure 2. Anywarping pathmust cross

every of these bands, paying at least the lowest cost for cells within

that band. Obviously, the smaller the size of a band, the tighter

the lower bound will be. 𝐿𝐵𝑀+ basically uses the 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 lower

bound on the first and last three data elements and adopts 𝐿𝐵𝑀 [7]

as the lower bound for the middle part. Therefore, 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 pro-

vides a tighter lower bound at the beginning and end of a sequence

compared to the general distance lower bound (i.e., vertical bands),

making 𝐿𝐵𝑀+ practically tighter than 𝐿𝐵𝑀 .

3.1.2 Definition of 𝐿𝐵𝑀+. Given query𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚) ∈ R𝑚 ,

an 𝑚-length subsequence 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ R𝑚 , and any

vector𝑀 ∈ {0, 1}𝑚 , 𝐿𝐵𝑀+ is defined as Equation (5):

𝐿𝐵𝑀+ (𝑋,𝑄) =

√︄
[max{√2𝑝2 − 𝑝1 −

√
𝑝1, 0}]2

4

+ 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄)2,
(5)

where

𝑝1 =
∑︂

{𝑖 |4≤𝑖≤𝑚−3,𝑀 [𝑖]=1}
(U𝑄
𝑖
− L𝑄

𝑖
)2, (6)

𝑝2 =
∑︂

{𝑖 |4≤𝑖≤𝑚−3,𝑀 [𝑖]=1}
[(𝑥𝑖 − L𝑄𝑖)

2 + (𝑥𝑖 − U𝑄𝑖)
2] (7)

and U𝑄
𝑖
and L𝑄

𝑖
are the elements in envelopes of𝑄 defined in Table

1.

3.1.3 Proof on Correctness of 𝐿𝐵𝑀+.

Theorem 5. Given any 𝑄 ∈ R𝑚 , 𝑋 ∈ R𝑚 , and𝑀 ∈ {0, 1}𝑚 that
satisfies 𝑝2 ≥ 𝑝1,

𝐿𝐵𝑀+ (𝑋,𝑄) ≤ 𝐷𝑇𝑊 (𝑋,𝑄). (8)

Proof. Given any 𝑋 ∈ R𝑚 and 𝑄 ∈ R𝑚 , summing the minium

costs of each band illustrated in Figure 2 implies,

𝐷𝑇𝑊 (𝑋,𝑄)2 ≥ 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄)2 +
𝑚−3∑︂
𝑖=4

𝑑2𝑖 , (9)

where,

𝑑𝑖 = min

𝑖−𝑤≤ 𝑗≤𝑖+𝑤

{︂(︁
𝑥𝑖 − 𝑞 𝑗

)︁
2

}︂
. (10)

According to [7], ⌜⃓⎷
𝑚−3∑︂
𝑖=4

𝑑2
𝑖
≥
√
2𝑝2 − 𝑝1 −

√
𝑝1

2

(11)

If 𝑝2 ≥ 𝑝1, then
√
2𝑝2 − 𝑝1 −

√
𝑝1 ≥ 0, therefore,

𝑚−3∑︂
𝑖=4

𝑑2𝑖 ≥
[√2𝑝2 − 𝑝1 −

√
𝑝1]2

4

(12)

□

It should be noted that the cost of directly computing 𝐿𝐵𝑀+
defined as Equation (5) is still 𝑂 (𝑚) time for each candidate. To

achieve an average cost of 𝑂 (log𝑚), it is necessary to carefully

design an algorithm that makes use of the characteristics of the

subsequence matching problem.

3.2 Basic Idea for Computation 𝐿𝐵𝑀+ Efficiently
in Subsequence Matching Problem

3.2.1 The core idea. The idea for computing 𝐿𝐵𝑀+ efficiently is as

follows. Firstly, 𝐿𝐵𝑀+ is transformed into a series of inner products

with mathematical derivation. Then, the inner products are com-

puted using the Fast Fourier Transform (FFT). Leveraging the fact

that candidate subsequences overlap with each other in the sub-

sequence matching problem, the second step incurs only 𝑂 (𝑙𝑜𝑔𝑚)
per inner product, and the first step only takes a constant time. To

express sequence operations in a more concise way, we introduce

the notations shown in Table 2.

3.2.2 Reducing 𝐿𝐵𝑀+ into Inner Products. Given the candidate

subsequence 𝑇(𝑖) and query 𝑄 , we convert 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄) into
several inner products. According to Equitation (5) and (6), to

calculate 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄), we only need the value of 𝑝1, 𝑝2 and

𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑇 (𝑖) , 𝑄). 𝑝1 depends only on query 𝑄 , thus, its value

can be shared by any 𝑖 ∈ {1, 2, . . . , ℓ −𝑚 + 1}. Therefore, the cost
of obtaining 𝑝1 can be seen as a constant. In addition, 𝐿𝐵𝐾𝑖𝑚𝐹𝐿
costs only𝑂 (1) time. Therefore, the key to compute 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄)
depends on 𝑝2. For the sake of clarity, we define𝑀

′ ∈ {0, 1}𝑚 as

3631

Table 2: The Notations Used in Section 3

Symbol Description

⊕ The element-wise addition between series, i.e.,

𝑋 ⊕ 𝑄 = (𝑥1 + 𝑞1, 𝑥2 + 𝑞2, . . . , 𝑥𝑚 + 𝑞𝑚) for any
𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ R𝑚, 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚) ∈ R𝑚 .

⊖ The element-wise minus between series, i.e.,

𝑋 ⊖ 𝑄 = (𝑥1 − 𝑞1, 𝑥2 − 𝑞2, . . . , 𝑥𝑚 − 𝑞𝑚), 𝑋,𝑄 ∈ R𝑚 .

⊙ The element-wise product between series, i.e.,

𝑋 ⊙ 𝑄 =(𝑥1𝑞1, 𝑥2𝑞2, . . . , 𝑥𝑚𝑞𝑚).
⟨𝑋,𝑄⟩ The inner product between series 𝑋 and 𝑄 .

𝑀′ [𝑖] =
{︃
𝑀 [𝑖], 4 ≤ 𝑖 ≤ 𝑚 − 3
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(13)

By Equation(7), 𝑝2 can be decomposed as

𝑝2 =
∑︂

{ 𝑗 |𝑀 ′ [𝑗]=1}

[︄(︃
𝑡𝑖+𝑗−1 − 𝜇𝑖

𝜎𝑖
− L𝑄

𝑗

)︃
2

+
(︃
𝑡𝑖+𝑗−1 − 𝜇𝑖

𝜎𝑖
− U𝑄

𝑗

)︃
2

]︄
=

∑︂
{ 𝑗 |𝑀 ′ [𝑗]=1}

[2
𝜎2
𝑖

𝑡2𝑖+𝑗−1 −
4𝜇𝑖

𝜎2
𝑖

𝑡𝑖+𝑗−1 −
2

𝜎𝑖
(𝑡𝑖+𝑗−1U𝑄𝑗)

− 2

𝜎𝑖
(𝑡𝑖+𝑗−1L𝑄𝑗) +

2𝜇2
𝑖

𝜎2
𝑖

+ 2𝜇𝑖

𝜎𝑖
(L𝑄
𝑗
+ U𝑄

𝑗
) +

(︂
U𝑄
𝑗

)︂
2

+
(︂
L𝑄
𝑗

)︂
2

],

(14)

where U𝑄 = (U𝑄
1
,U𝑄

2
, ...,U𝑄𝑚), L𝑄 = (L𝑄

1
,L𝑄

2
, ...,L𝑄𝑚) are the en-

velops of𝑄 defined in Table 1, and 𝜇𝑖 , 𝜎𝑖 are the mean and standard

deviation of candidate subsequence 𝑇(𝑖) .
Fortunately, all terms in Equation (18) can be efficiently com-

puted in the subsequence matching problem for 𝑖 ∈ {1, 2, . . . , ℓ −
𝑚 + 1}. Because𝑀′ ∈ {0, 1}𝑚 , summing the terms according to𝑀′,
is equivalent to computing the inner product. For example,∑︂
{ 𝑗 |𝑀 ′ [𝑗]=1}

𝑡𝑖+𝑗−1 =
∑︂

{1≤ 𝑗≤𝑚}
𝑡𝑖+𝑗−1 ∗𝑀′ [𝑗] = ⟨𝑇(𝑖) , 𝑀′⟩,

(15)

where ⟨𝑇(𝑖) , 𝑀′⟩ is the inner product of𝑇(𝑖) ∈ R𝑚 and𝑀′ is defined
in Table 2. Let "⊙" be the element-wise product defined in Table 2,

we have ∑︂
{ 𝑗 |𝑀 ′ [𝑗]=1}

𝑡2𝑖+𝑗−1 = ⟨(𝑇(𝑖) ⊙ 𝑇(𝑖)), 𝑀
′⟩.

(16)

Besides, ∑︂
{ 𝑗 |𝑀 ′ [𝑗]=1}

𝑡𝑖+𝑗−1U
𝑄

𝑗
= ⟨𝑇(𝑖) , (𝑀′ ⊙ U𝑄)⟩.

(17)

Following the same methodology,

∑︁
{ 𝑗 |𝑀 ′ [𝑗]=1}

𝑡𝑖+𝑗−1L
𝑄

𝑗
= ⟨𝑇(𝑖) ,

(𝑀′ ⊙L𝑄)⟩, ∑︁
{ 𝑗 |𝑀 ′ [𝑗]=1}

(︂
L𝑄
𝑗

)︂
2

= ⟨(L𝑄 ⊙L𝑄), 𝑀′⟩ and ∑︁
{ 𝑗 |𝑀 ′ [𝑗]=1}(︂

U𝑄
𝑗

)︂
2

= ⟨(U𝑄 ⊙ U𝑄), 𝑀′⟩ can also be transformed into inner

products between𝑀′,U𝑄 ,L𝑄 and 𝑇(𝑖) .

Consequently, we have

𝑝2 =
2

𝜎2
𝑖

⟨(𝑇(𝑖) ⊙ 𝑇(𝑖)), 𝑀′⟩ −
4𝜇𝑖

𝜎2
𝑖

⟨𝑇(𝑖) , 𝑀′⟩ −
2

𝜎𝑖
⟨𝑇(𝑖) , (𝑀′ ⊙ U𝑄)⟩

− 2

𝜎𝑖
⟨𝑇(𝑖) , (𝑀′ ⊙ L𝑄)⟩ +

2𝜇2
𝑖

𝜎2
𝑖

⟨𝑀′, 𝑀′⟩ + 2𝜇𝑖

𝜎𝑖
⟨(L𝑄 ⊕ U𝑄), 𝑀′⟩

+ ⟨(L𝑄 ⊙ L𝑄), 𝑀′⟩ + ⟨(U𝑄 ⊙ U𝑄), 𝑀′⟩.
(18)

So far, 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄) has been decomposed into calculations of

inner products, as well as other operations with constant time com-

plexity. These inner products can be computed in batches using the

Fourier transform, with the average cost of each inner product be-

ing only logarithmic. Therefore, the average cost of 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄)
can be reduced to 𝑂 (log𝑚) when ℓ = 𝑂 (𝑚).

3.2.3 The Sliding Inner Product Algorithm (SIP). Given any𝑇 = (𝑡1,
𝑡2, 𝑡3, . . . 𝑡ℓ) ∈ Rℓ and query𝑄 ∈ R𝑚 . Let𝑇(𝑖) = (𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑖+𝑚−1)
and < 𝑇(𝑖) , 𝑄 > be the inner product of 𝑇(𝑖) and 𝑄 . Algorithm 1

describes the subroutine to compute {< 𝑇(𝑖) , 𝑄 >}ℓ−𝑚+1
𝑖=1

, the in-

ner products between 𝑄 and every𝑚-length subsequence of 𝑇 , in

𝑂 (ℓ log ℓ) time. The inner products between𝑄 and𝑇(1) , . . . ,𝑇(ℓ−𝑚+1)
can be regarded as the result of a convolution between 𝑄 and 𝑇 .

Therefore, they can be computed with Discrete Fourier Transform

(DFT) and Inverse Discrete Fourier Transform (IDFT) in 𝑂 (ℓ log ℓ)
time [30, 35].

Algorithm 1: SIP(𝑇,𝑋)
Input: 𝑇 ∈ Rℓ , 𝑋 ∈ R𝑚, (ℓ > 𝑚).
Output: The inner product between 𝑋 and 𝑇(𝑖) for

𝑖 ∈ {1, 2, . . . , ℓ −𝑚 + 1}.
1 𝑋𝑝𝑎𝑑 ← pad 𝑋 with ℓ −𝑚 + 1 zeros;
2 𝑋𝑝𝑎𝑑 ← inverse 𝑋𝑝𝑎𝑑 ;

3 𝑇𝐷𝐹𝑇 ← 𝐷𝐹𝑇 (𝑇) ; // Fast Fourier Transform

4 𝑋𝐷𝐹𝑇 ← 𝐷𝐹𝑇 (𝑋𝑝𝑎𝑑) ;
5 COV← 𝐼𝐷𝐹𝑇 (𝑇𝐷𝐹𝑇 ⊙ 𝑋𝐷𝐹𝑇) ;
6 return the real part of COV [𝑚 − 1 : ℓ].

3.3 Computing 𝐿𝐵𝑀+(𝑇 (𝑖) , 𝑄) in Average
𝑂 (log𝑚) Time

Now, we formally present the algorithm for calculating 𝐿𝐵𝑀+ based
on the ideas discussed in Section 3.2.

3.3.1 Algorithm Overview. The pseudocode for computing 𝐿𝐵𝑀+
(𝑇 (𝑖) , 𝑄) is described as Algorithm 2, where " ⊖", "⊙", and "⊕" are the
element-wise operations defined in Table 2. Firstly, Lines (1-5) ini-

tialize the mask vector𝑀 . It should be noted that Algorithm 2 is cor-

rect for any mask vector𝑀 ∈ {0, 1}ℓ , that is, 𝑙𝑏𝑄𝑖 ≤ 𝐷𝑇𝑊 (𝑇 (𝑖) , 𝑄).
However, 𝑀 affects the proximity of 𝑙𝑏𝑄𝑖 to 𝐷𝑇𝑊 (𝑇 (𝑖) , 𝑄). The
selection of𝑀 will be further discussed in Section 3.5.

Then, Lines (6-7) compute the mean value, {𝜇𝑖 }ℓ−𝑚+1𝑖=1
, and the

standard deviation, {𝜎𝑖 }ℓ−𝑚+1𝑖=1
, within every𝑚-length sliding win-

dow of 𝑇 . The corresponding algorithms to compute the moving

3632

average and the moving standard deviation in 𝑂 (ℓ) time are de-

noted asMVStd(𝑇,𝑚) andMVMean(𝑇,𝑚) respectively4. According
to algebraic knowledge, given any series 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡ℓ } ∈ Rℓ ,
the mean, sum, or standard deviation of the𝑚 elements in the slid-

ing window can be obtained from the first-order central moment∑︁𝑘+𝑚−1
𝑖=𝑘

𝑡𝑖 and the second-order central moment

∑︁𝑘+𝑚−1
𝑖=𝑘

(𝑡𝑖)2 of
the elements, where 𝑘 is the starting position of the sliding window.

For space limitations, this paper does not list the corresponding

pseudocode, we recommend the readers refer to [24] for details.

Algorithm 2: 𝐿𝐵_𝑄 (𝑄,𝑇)
Input: Query 𝑄 ∈ R𝑚 and ℓ-length series 𝑇 ∈ Rℓ .
Output: The Lower Bound of 𝐷 (𝑄,𝑇(𝑖)), {𝑙𝑏𝑄𝑖 }ℓ−𝑚+1𝑖=1

.
1 U𝑄 ,L𝑄 ← the lower and upper envelopes of 𝑄 ;

2 𝑀 ← {0}𝑚 ; // 𝑀 is initialized with 𝑚 zeros

3 foreach 4 ≤ 𝑖 ≤ 𝑚 − 3 do
4 if Φ(U𝑄

𝑖
) − Φ(L𝑄

𝑖
) ≤ 1

2
then

5 𝑀 [𝑖] ← 1 ;

6 {𝜇𝑖 }ℓ−𝑚+1𝑖=1
← MVMean(T,m) ; // 𝑂 (ℓ) time

7 {𝜎𝑖 }ℓ−𝑚+1𝑖=1
← MVStd(T,m) ; // 𝑂 (ℓ) time

8 UM←𝑀 ⊙ U𝑄 ; LM←𝑀 ⊙ L𝑄 ;

9 UU← U𝑄 ⊙ U𝑄 ; LL← L𝑄 ⊙ L𝑄 ; 𝑇𝑇 ← 𝑇 ⊙ 𝑇 ;

10 {TM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(𝑇,𝑀) ; // Algorithm 1

11 {TTM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(𝑇𝑇,𝑀) ;

12 {TUM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(𝑇,UM) ;

13 {TLM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(𝑇, LM) ;

14 𝐷𝑈𝐿 ← 𝐸𝐷 (U𝑄 ⊙ 𝑀,L𝑄 ⊙ 𝑀) ;
15 𝑐1 ← ⟨UU, 𝑀⟩; 𝑐2 ← ⟨LL, 𝑀⟩ ;
16 𝑐3 ← ⟨U𝑄 , 𝑀⟩; 𝑐4 ← ⟨L𝑄 , 𝑀⟩; 𝑐5 ← ⟨𝑀,𝑀⟩;
17 foreach 1 ≤ 𝑖 ≤ ℓ −𝑚 + 1 do
18 𝐷𝑈𝑋 ←

𝑐1 − 2

𝜎𝑖
[TUM𝑖 − 𝜇𝑖𝑐3] + 1

𝜎2

𝑖

[︁
TTM𝑖 − 2𝜇𝑖TM𝑖 + 𝜇2𝑖 𝑐5

]︁
;

19 𝐷LX←
𝑐2 − 2

𝜎𝑖
[TLM𝑖 − 𝜇𝑖𝑐4] + 1

𝜎2

𝑖

[︁
TTM𝑖 − 2𝜇𝑖TM𝑖 + 𝜇2𝑖 𝑐5

]︁
;

20 𝑙𝑏𝑄𝑖 ← max{ 1
2

[︂√︂
2𝐷𝑈𝑋 + 2𝐷LX − 𝐷2

𝑈𝐿
− 𝐷𝑈𝐿

]︂
, 0} ;

21 if 𝑙𝑏𝑄𝑖 ≤ 𝜖 then
22 𝑙𝑏𝑄𝑖 ←

√︂
(𝑙𝑏𝑄𝑖)2 + 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑄,𝑇 (𝑖))2 ;

23 Set𝑀 ← {1}ℓ and repeat procedure in Lines (8-22) to

compute {𝑙𝑏𝑄 ′
𝑖
}ℓ−𝑚+1
𝑖=1

;

24 foreach 1 ≤ 𝑖 ≤ ℓ −𝑚 + 1 do
25 𝑙𝑏𝑄𝑖 ←𝑚𝑎𝑥{𝑙𝑏𝑄𝑖 , 𝑙𝑏𝑄′𝑖 };
26 return 𝑙𝑏𝑄𝑖 for 𝑖 ∈ {1, 2, 3, ..., ℓ −𝑚 + 1};

Lines (10-13) invoke Algorithm 1 to calculate the inner products.

Finally, Lines (17-22) compute 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄) according to Equation
(5). There is no need to spend extra time on 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑇 (𝑖) , 𝑄) if
𝑙𝑏𝑄𝑖 exceeds the similarity threshold 𝜖 (Lines 24-25). Additionally,

we repeat Lines (8-22) using {1}ℓ as the mask vector to compute

𝑙𝑏𝑄 ′
𝑖
and output𝑚𝑎𝑥{𝑙𝑏𝑄𝑖 , 𝑙𝑏𝑄′𝑖 }.

4
Another variant of MVMean(𝑇,𝑚) is MVSum(𝑇,𝑚) , which computes the moving

sum of the sliding window.

3.3.2 Algorithm Analysis. We now show that when the length of

𝑇 , denoted as ℓ , satisfies ℓ ≥ 2𝑚, the average cost of Algorithm 2 to

compute 𝐿𝐵𝑀+ for each candidate is only 𝑂 (log𝑚).

Theorem 6. The time complexity of Algorithm 2 is 𝑂 (ℓ log ℓ).

Proof. Line (1) computes the envelopes of 𝑄 with monotonic

queue and costs𝑂 (𝑚). Lines (2-5) of algorithm 2 compute the mask

vector𝑀 ∈ R𝑚 by checking the cumulative probability distribution

of the standard normal distributions through a lookup table and

cost 𝑂 (𝑚) time. Then, Lines (6-7) compute the mean and standard

deviation for each candidate and cost𝑂 (ℓ) time. Lines (8-16) invoke

Algorithm 1 to compute a series of inner products, using𝑂 (ℓ log ℓ)
time. Finally, Lines (17-22) iterate at most ℓ −𝑚 + 1 times, with a

constant time cost for each iteration. Therefore, the time complexity

of this part is still𝑂 (ℓ). Finally, Lines (23-25) change themask vector

and repeat the above subroutine. Therefore, the time complexity

of the algorithm remains unchanged under the big 𝑂 notation. In

summary, the time complexity is 𝑂 (ℓ log ℓ). □

Note that 𝑇 is a segment of the time series 𝑆 ∈ R𝑛 , and its

length ℓ can be dynamically determined according to 𝑚. We set

ℓ = ⌈𝐾𝑚⌉, where 𝐾 > 2 is a constant. Algorithm 2 computes

DTW lower bounds for ℓ − 𝑚 + 1 candidates within 𝑂 (ℓ log ℓ)
time. That is, the average time to compute each lower bound is

𝑂 (ℓ log ℓℓ−𝑚+1) = 𝑂 (
⌈𝐾𝑚⌉ log(⌈𝐾𝑚⌉)
⌈ (𝐾−1)𝑚⌉+1) = 𝑂 (log𝑚).

3.4 Computing 𝐿𝐵𝑀+(𝑄,𝑇 (𝑖)) in Average
𝑂 (log𝑚) Time

𝐿𝐵𝑀+ is asymmetric with respect to the input, i.e., 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄) ≠
𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)), as illustrated in Figure 3. To ensure that as many

potential candidates as possible are filtered out, we need to compute

𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)).

Figure 3: Asymmetry of the DTW lower bounds. Given𝑋,𝑄 ∈
R𝑚 , 𝐿𝐵𝑀+ (𝑋,𝑄) computes DTW lower bound according to
𝑋,U𝑄 and L𝑄 (left). 𝐿𝐵𝑀+ (𝑄,𝑋) computes DTW lower bound
according to 𝑄,U𝑋 and L𝑋 (right). Therefore, 𝐿𝐵𝑀+ (𝑋,𝑄) ≠
𝐿𝐵𝑀+ (𝑄,𝑋) in the vast majority of cases.

Therefore, we still need to compute 𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)) for 𝑖 ∈ {1, 2,
. . . , ℓ −𝑚 + 1}. However, directly reusing Algorithm 2 simply by

exchanging 𝑇 and 𝑄 is not feasible for the following reasons: 1)

𝑇 ∈ Rℓ and 𝑄 ∈ R𝑚 are of different lengths. 2) The candidate

subsequences {𝑇(𝑖) }𝑖=ℓ−𝑚+1𝑖=1
need to be normalized whereas𝑄 does

not.

The detailed procedure to compute 𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)) is described
as Algorithm 3. The detailed derivation and proof of correctness

are omitted due to space limitation. Similarly, 𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)) is
transformed into several inner products. These inner products are

calculated using algorithm SIP. Therefore, the time complexity of

3633

this algorithm remains𝑂 (ℓ log ℓ), and the overhead to compute the

DTW lower bound for each candidate is still 𝑂 (log𝑚) by setting

the value of ℓ ≥ 2𝑚.

An important difference between Algorithm 2 and Algorithm 3

is their mask vectors. In Algorithm 2, the mask vector is computed

based on the envelope of 𝑄 , while in Algorithm 3 it is calculated

based on the upper and lower envelopes of 𝑇 . Therefore, there are

significant differences in the length and calculation of the mask

vector between the two algorithms, which will be discussed in

Section 3.5.

Algorithm 3: 𝐿𝐵_𝑇 (𝑄,𝑇)
Input: Query 𝑄 ∈ R𝑚 , series 𝑇 ∈ Rℓ .
Output: The lower bound of 𝐷 (𝑄,𝑇(𝑖)), {𝑙𝑏𝑇𝑖 }ℓ−𝑚+1𝑖=1

.
1 U𝑇 ,L𝑇 ← the lower and upper envelopes of 𝑇 ;

2 𝑀 ← MASK_T(Q,T) ; // Algorithm 4

3 {𝜇𝑖 }ℓ−𝑚+1𝑖=1
←MVMean(T,ℓ) ; {𝜎𝑖 }ℓ−𝑚+1𝑖=1

←MVStd(T,ℓ) ;
4 UM←𝑀 ⊙ U𝑇 ; LM←𝑀 ⊙ L𝑇 ; QQ← 𝑄 ⊙ 𝑄 ;

5 {QM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(𝑀,𝑄) ; // Algorithm 1

6 {QQM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(𝑀,𝑄𝑄) ;

7 {ULQM𝑖 }ℓ−𝑚+1𝑖=1
← SIP(UM ⊕ LM, 𝑄) ;

8 {𝑎𝑖 }ℓ−𝑚+1𝑖=1
←MVSum((UM ⊖ LM) ⊙ (UM ⊖ LM),𝑚) ;

9 {𝑏𝑖 }ℓ−𝑚+1𝑖=1
←MVSum((UM ⊙ UM) ⊕ (LM ⊙ LM),𝑚) ;

10 {𝑐𝑖 }ℓ−𝑚+1𝑖=1
←MVSum(UM ⊕ LM,𝑚) ;

11 {𝑑𝑖 }ℓ−𝑚+1𝑖=1
←MVSum(𝑀 ⊙ 𝑀,𝑚) ;

12 foreach 1 ≤ 𝑖 ≤ ℓ −𝑚 + 1 do
13 𝐷𝑈𝐿 ←

√
𝑎𝑖/𝜎𝑖 ;

14 𝐷𝑈𝐿𝑋 ← 1

𝜎2

𝑖

(𝑏𝑖 − 2𝜇𝑖𝑐𝑖 + 2𝜇2𝑖 𝑑𝑖) −
2

𝜎𝑖
(ULQM𝑖

−2𝜇𝑖QM𝑖) + 2QQM𝑖 ;
15 𝑙𝑏𝑇𝑖 ← max

{︂
1

2

[︂√︂
2𝐷𝑈𝐿𝑋 − 𝐷2

𝑈𝐿
− 𝐷𝑈𝐿

]︂
, 0

}︂
;

16 if 𝑙𝑏𝑇𝑖 ≤ 𝜖 then
17 𝑙𝑏𝑇𝑖 ←

√︂
(𝑙𝑏𝑇𝑖)2 + 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑇 (𝑖) , 𝑄)2 ;

18 return 𝑙𝑏𝑇𝑖 for 𝑖 ∈ {1, 2, 3, ..., ℓ −𝑚 + 1};

3.5 Selecting Mask Vectors
To improve the efficiency of subsequence matching problems, it is

desirable that the value of 𝐿𝐵𝑀+ is as large as possible. The mask

vector 𝑀 does not affect the time complexity or the correctness

of Algorithm 2 and 3. However, 𝑀 influences the value of 𝐿𝐵𝑀+.
Now it is time to explore how to choose 𝑀 according to the data

distribution to ensure the effectiveness of 𝐿𝐵𝑀+.

3.5.1 The Impact of Masked Vector on the Effectiveness of 𝐿𝐵𝑀+.
First, consider a simple case where there is only a candidate𝑋 (with-

out considering the impact of sequence normalization) and a query

sequence 𝑄 . Intuitively reviewing Equation (5) ∼ (7), 𝐿𝐵𝑀+ (𝑋,𝑄)
selectively computes the lower bound of DTW only with a subset

of the elements in 𝑋 and𝑄 . The actual role of the mask vector𝑀 is

to mark the index of this subset. That is, 𝐿𝐵𝑀+ (𝑋,𝑄) uses the 𝑖th
elements of 𝑋 ,𝑄 , L𝑄 and U𝑄 (i.e. 𝑥𝑖 , 𝑞𝑖 , L

𝑄

𝑖
and U𝑄

𝑖
) if and only if

𝑀 [𝑖] = 1 or 𝑖 ∈ {1, 2, 3,𝑚−2,𝑚−1,𝑚}. Figure 4 shows the example

where the mask vector𝑀 = 00001001111000000. This means that

only the elements in the brown dashed rectangle of the figure are

used to calculate the DTW lower bound (if we ignore the first three

elements and the last three elements).

Figure 4: Illustration of 𝐿𝐵𝑀+ (𝑋,𝑄). The elements in the
brown dashed boxes are selected to compute 𝐿𝐵𝑀+ (𝑋,𝑄).

A less intuitive fact is that adding more elements to this subset

determined by 𝑀 may undermine the effectiveness of 𝐿𝐵𝑀+, de-
grading 𝐿𝐵𝑀+ to 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 in the worst case. Subsection 3.5.2 will

quantitatively analyze when this occurs. An important observa-

tion is that the elements in series contribute variously to the lower

bound 𝐿𝐵𝑀+ (𝑋,𝑄). For example, elements in the brown dashed

boxes contribute the most significant difference between 𝑋 and 𝑄

in Figure 4. Intuitively, when the selected subset of elements ex-

hibits significant differences, 𝐿𝐵𝑀+ is more likely to yield a better

(larger) DTW lower bound. Consequently, we need a mask vector

to enhance the effectiveness of the DTW lower bound by selecting

elements that are likely to benefit the DTW lower bounds.

3.5.2 Principles for Selecting a Good Mask Vector. Given a candi-

date subsequence 𝑋 ∈ R𝑚 and query 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚), 𝑀 [𝑖]
should be set to 0 if 𝑥𝑖 ∈ [L𝑄𝑖 ,U

𝑄

𝑖
], where L𝑄

𝑖
,U𝑄
𝑖
are the 𝑖th el-

ements in the envelopes of 𝑄 , as defined in Table 1. The specific

derivation process is shown in Theorem 7.

Theorem 7. Given any mask vector 𝑀 ∈ {0, 1}𝑚 where excites
1 ≤ 𝑡 ≤ 𝑚 satisfies that 𝑀 [𝑡] = 1 and 𝑥𝑡 ∈ [L𝑄𝑡 ,U

𝑄
𝑡], inequality

(19) holds true for any 𝑋 and 𝑄 :

𝐿𝐵𝑀+ (𝑋,𝑄) ≤ 𝐿𝐵
′
𝑀+ (𝑋,𝑄), (19)

where 𝐿𝐵
′
𝑀+ (𝑋,𝑄) is computed by using𝑀

′
as the mask vector and

𝑀
′
[𝑖] =

{︃
0, 𝑖 = 𝑡

𝑀 [𝑖], 𝑜𝑡ℎ𝑒𝑟𝑠.
(20)

Proof. Denote 𝛾1 as

𝛾1 =
∑︂

{𝑖 |4≤𝑖≤𝑚−3,𝑀 [𝑖]=1}
[(𝑥𝑖 − L𝑄𝑖)

2 + (𝑥𝑖 −U𝑄𝑖)
2 − (U𝑄

𝑖
− L𝑄

𝑖
)2] .

(21)

If 𝛾1 < 0, then 𝐿𝐵𝑀+ (𝑋,𝑄) = 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄) ≤ 𝐿𝐵
′
𝑀+ (𝑋,𝑄)

and the proof is complete.

Otherwise, we have 𝛾1 ≥ 0. Obviously, L𝑄𝑡 ≤ 𝑥𝑡 ≤ U𝑄𝑡 implies,∑︂
{𝑖 |4≤𝑖≤𝑚−3,𝑀 ′ [𝑖]=1}

[(𝑥𝑖 − L𝑄𝑖)
2 + (𝑥𝑖 −U𝑄𝑖)

2 − (U𝑄
𝑖
− L𝑄

𝑖
)2] ≥ 0.

(22)

3634

Denote 𝑟1 =
√︁
𝐿𝐵𝑀+ (𝑋,𝑄)2 − 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄)2 and

𝑟2 =

√︂
𝐿𝐵
′
𝑀+ (𝑋,𝑄)2 − 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄)2. Inequality (22)means 𝑟2 ≥

0, and 𝛾1 ≥ 0 means 𝑟1 ≥ 0. According to the definition of 𝐿𝐵(𝑋,𝑄)
and𝑀

′
, ⎡⎢⎢⎢⎢⎣2𝑟1 +

√︄ ∑︂
{𝑖 |4≤𝑖≤𝑚−3,𝑀 [𝑖]=1}

(U𝑄
𝑖
− L𝑄

𝑖
)2
⎤⎥⎥⎥⎥⎦
2

−

⎡⎢⎢⎢⎢⎣2𝑟2 +
√︄ ∑︂
{𝑖 |4≤𝑖≤𝑚−3,𝑀 ′ [𝑖]=1}

(U𝑄
𝑖
− L𝑄

𝑖
)2
⎤⎥⎥⎥⎥⎦
2

= 2(𝑥𝑡 − L𝑄𝑡)
2 + 2(𝑥𝑡 − U𝑄𝑡)

2 − (U𝑄𝑡 − L
𝑄
𝑡)

2

≤ (U𝑄𝑡 − L
𝑄
𝑡)

2 .

(23)

Algebra transformation of Equation (23) indicates,

(𝑟1 − 𝑟2)
⎡⎢⎢⎢⎢⎣𝑟1 + 𝑟2 +

√︄ ∑︂
{𝑖 |4≤𝑖≤𝑚−3,𝑀 [𝑖]=1}

(U𝑄
𝑖
− L𝑄

𝑖
)2
⎤⎥⎥⎥⎥⎦ ≤ 0. (24)

Considering 𝑟1 ≥ 0 and 𝑟2 ≥ 0, we have 𝑟2 ≥ 𝑟1 ≥ 0. Conse-

quently, the proof is done by the fact that.

𝐿𝐵∗ (𝑋,𝑄)2 − 𝐿𝐵(𝑋,𝑄)2 = (𝑟2)2 − (𝑟1)2 ≥ 0 (25)

□

As a direct corollary of Theorem 7, in any case where 𝑥𝑖 ∈
[L𝑄
𝑖
,U𝑄
𝑖
] , the value of𝑀 [𝑖] should always be 0. Otherwise, there

will always be a better mask vector𝑀′ that deterministically pro-

duces a DTW lower bound that is equal to or better than the one

obtained with the origin mask vector𝑀 .

3.5.3 Computing mask vector for Algorithm 2. The average time

budget to compute 𝐿𝐵𝑀+ in this section is only𝑂 (𝑙𝑜𝑔𝑚). The prob-
lem is that applying the principle described in Theorem 7 to calcu-

late the mask vector for each candidate costs𝑂 (𝑚) time. Therefore,

we can not individually compute the mask vector for each candi-

date. Consequently, heuristic mask vectors need to be formulated

separately for Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 computes 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄) with {𝑇 (𝑖) }ℓ−𝑚+1𝑖=1
, U𝑄 ,

and L𝑄 . Since it is not possible to compute a separate mask vector

for each candidate, we only use a single mask vector𝑀 ∈ {0, 1}𝑚
shared by the calculation of 𝐿𝐵𝑀+ (𝑇 (𝑖) , 𝑄) for 𝑖 ∈ {1, 2, . . . , ℓ −𝑚 +
1}. Consequently, the value of𝑀 [𝑗] should be good for the majority

of candidates. That is, following the above principle, 𝑀 [𝑗] = 1 if

and only if, for more than half of the candidates, the 𝑗th elements

𝑇 (𝑖) [𝑗] do not fall into the interval [L𝑄
𝑗
,U𝑄

𝑗
] (1 ≤ 𝑗 ≤ 𝑛).

Because subsequences

{︁
𝑇 (𝑖)

}︁ℓ−𝑚+1
𝑖=1

have been z-normalized, i.e.

the elements of {𝑇 (𝑖) }ℓ−𝑚+1𝑖=1
follow some distribution with a mean

of 0 and a standard deviation of 1. Therefore, Algorithm 2 assumes{︁
𝑇 (𝑖) [𝑗]

}︁ℓ−𝑚+1
𝑖=1

subject to the standard normal distribution for

any fixed 𝑗 . Let Φ(𝑋) denote the cumulative distribution function

(CDF) of the standard normal distribution, then Φ(U𝑄
𝑗
) − Φ(L𝑄

𝑗
)

presents the possibility that the elements in

{︁
𝑇 (𝑖) [𝑗]

}︁ℓ−𝑚+1
𝑖=1

fall

into [L𝑄
𝑗
,U𝑄

𝑗
]. Therefore,𝑀 [𝑗] is set to 1 if this possibility is less

than
1

2
in Lines (3-5) of Algorithm 2.

3.5.4 Computing mask vector for Algorithm 3. Algorithm 3 com-

putes 𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)) with 𝑄 , U𝑇̂ (𝑖) and L𝑇̂ (𝑖) , which are the up-

per and lower envelopes of the normalize subsequence 𝑇 (𝑖) . The
Algorithm 3 requires a mask vector 𝑀 ∈ {0, 1}ℓ and computes

𝐿𝐵𝑀+ (𝑄,𝑇 (𝑖)) using (𝑀 [𝑖], 𝑀 [𝑖 + 1], . . . , 𝑀 [𝑖 +𝑚 − 1]) ∈ R𝑚 for

each 1 ≤ 𝑖 ≤ ℓ −𝑚 + 1.
The choice of the mask vector still follows the principle men-

tioned above. In the ideal case we should check if 𝑞 𝑗−𝑖 ∈ [L
𝑇 (𝑖)
𝑗−𝑖 ,

U
𝑇 (𝑖)
𝑗−𝑖] for each 𝑗 −𝑚 < 𝑖 ≤ 𝑗 . We set 𝑀 [𝑗] = 1 if and only if it

is good for computation of 𝐿𝐵𝑀+ of most of the candidates. Un-

fortunately, U𝑇 (𝑖) and L𝑇̂ (𝑖) cannot be precisely computed because

z-normalizing all the candidates {𝑇 (𝑖) }ℓ−𝑚+1𝑖=1
requires 𝑂 (𝑚ℓ) time,

which is unaffordable for our𝑂 (ℓ log ℓ) time budget. Therefore, we

estimate the envelope interval for the 𝑗th element, [L𝑇 (𝑖)
𝑗−𝑖 ,U

𝑇 (𝑖)
𝑗−𝑖],

with [
L𝑇
𝑗
−𝜇 𝑗−⌊𝑚/2⌋
𝜎 𝑗−⌊𝑚/2⌋

,
U𝑇
𝑗
−𝜇 𝑗−⌊𝑚/2⌋
𝜎 𝑗−⌊𝑚/2⌋

]. Algorithm 4 describes the above

heuristic, where an equal-width histogram to estimate the CDF

of 𝑄 (Lines 3-6). 𝑀 [𝑗] is set to 1 if and only if the probability of

{𝑞𝑖 }𝑚𝑖=1 falls into [
L𝑇
𝑖
−𝜇𝑖−⌊𝑚/2⌋
𝜎𝑖−⌊𝑚/2⌋

,
U𝑇
𝑖
−𝜇𝑖−⌊𝑚/2⌋
𝜎𝑖−⌊𝑚/2⌋

] is less than 1

2
.

Algorithm 4:𝑀𝐴𝑆𝐾_𝑇 (𝑄,𝑇)
Input: Query 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚) ∈ R𝑚 and segment

𝑇 = (𝑡1, 𝑡2, . . . , 𝑡ℓ) ∈ Rℓ .
Output: The mask vector𝑀 ∈ {0, 1}ℓ .

1 U𝑇 ,L𝑇 ← the lower and upper envelopes of 𝑇 ;

2 𝑄𝑚𝑎𝑥 , 𝑄𝑚𝑖𝑛 ← the maximum and minimum elements in 𝑄 ;

3 foreach 𝑖 ∈ {1, 2, . . . ,𝑚} do
4 𝐵𝑖𝑛[ℎ(𝑞𝑖)]+ = 1 ; // ℎ(𝑣) = ⌊ (𝑣−𝑄𝑚𝑖𝑛) |𝐵𝑖𝑛 |

𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛 ⌋
5 foreach 𝑖 ∈ {2, 3, . . . , |𝐵𝑖𝑛 |} do
6 𝐵𝑖𝑛[𝑖] ← 𝐵𝑖𝑛[𝑖 − 1] + 𝐵𝑖𝑛[𝑖] ;
7 𝑀 ← {0}ℓ ; // 𝑀 is initialized with ℓ zeros

8 foreach 4 ≤ 𝑖 ≤ ℓ − 3 do
9 𝑡 ← 𝑖 − ⌊𝑚/2⌋ ;

10 if ⌊𝑚/2⌋ + 1 ≤ 𝑖 ≤ ℓ −𝑚 + 1 + ⌊𝑚/2⌋ then

11 𝑢 ←
U𝑇(𝑖)−𝜇𝑡
𝜎𝑡

;𝑙 ←
L𝑇(𝑖)−𝜇𝑡
𝜎𝑡

;

12 else if 𝑖 ≤ ⌊𝑚/2⌋ then

13 𝑢 ←
U𝑇(𝑖)−𝜇1
𝜎1

;𝑙 ←
L𝑇(𝑖)−𝜇1
𝜎1

;

14 else

15 𝑢 ←
U𝑇(𝑖)−𝜇ℓ−𝑚+1
𝜎ℓ−𝑚+1

;𝑙 ←
L𝑇(𝑖)−𝜇ℓ−𝑚+1
𝜎ℓ−𝑚+1

;

16 if 𝐵𝑖𝑛[ℎ (𝑢)]−𝐵𝑖𝑛[ℎ (𝑙)]
𝑚 ≤ 1

2
then

17 𝑀 [𝑖] ← 1 ;

18 return𝑀 ;

3635

4 FSMDTW: A FAST SUBSEQUENCE
MATCHING ALGORITHM

This section introduces the proposed FSMDTW (Fast Subsequence
Matching algorithm for Dynamic Time Warping) approach. FS-
MDTW discards most of the candidates through 𝐿𝐵𝑀+, resulting
in a significant improvement over previous work. To further im-

prove the efficiency of subsequence matching problems, we need to

optimize the existing DTW lower bound function from the aspects

of runtime efficiency or lower bound effect. Therefore, FSMDTW

also includes two important optimizations for the existing DTW

lower bound. The first one is to improve the effectiveness of the

𝐿𝐵𝐾𝑒𝑜𝑔ℎ by reprocessing query 𝑄 . Moreover, the implementation

of 𝐿𝐵Petitjean is also improved by computing the projection vector

and its envelope on the fly, ultimately improving the efficiency of

FSMDTW.

4.1 Overview of FSMDTW
TheAlgorithm 5 describes the pseudocode of FSMDTW. FSMDTW
firstly divides series 𝑆 ∈ R𝑛 into segments and then solves the prob-

lem for each segment separately. To avoid missing subsequences

located at the junction between two segments, these segments must

overlap each other by a length of𝑚 − 1. As shown in Figure 5, the

series 𝑆 is cut into 𝑝 = ⌈ 𝑛
ℓ−𝑚+1 ⌉ segments, which are denoted as

{𝑇 (𝑖) }𝑝
𝑖=1

.

Figure 5: FSMDTW divides 𝑆 into overlapping segments of
length ℓ , where ℓ

𝑚 ≥ 2 and ℓ = 2
𝑖 for some 𝑖 ∈ N∗.

The length of each segment is set to ℓ , where ℓ ≥ 2𝑚 to ensure

that the average cost of the proposed lower bound is still 𝑂 (log𝑚).
Besides, the value of ℓ is set to some power of 2 such that the Fast

Fourier Transform can efficiently perform the divide-and-conquer

strategy on 𝑇 (𝑖) .
After that, FSMDTW solve subsequence matching on each ℓ-

length segment by checking ℓ − 𝑚 + 1 subsequences of length

𝑚. FSMDTW avoids calculating DTW by cascading utilization of

lower bounds. Specifically, lower bounds with cheaper overhead are

first computed, and candidates whose lower bound is greater than

threshold 𝜖 are discarded. FSMDTW firstly computes 𝐿𝐵𝑀+ with
Algorithm 2 and Algorithm 3 Line (7-9). If the DTW lower bound

is greater than 𝜖 , the candidate can be safely discarded, thereby not

necessary to compute the consequent lower bounds and DTW. In

fact, the proposed 𝐿𝐵𝑀+ pruned about 98% of the candidates in our

experiments.

Then, the surviving candidates are further checked using lower

bounds whose time complexity are 𝑂 (𝑚) in Lines (14-17). Based

on the characteristics of the subsequence matching problem, we

designed a tighter lower bound than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ , called 𝐿𝐵𝐾𝐸 , which

Algorithm 5: 𝐹𝑆𝑀𝐷𝑇𝑊 (𝑆,𝑄, 𝜖)
Input: Time series 𝑆 ∈ R𝑛 , query 𝑄 ∈ R𝑚 and

threshold 𝜖 > 0.
Output: {𝑆 (𝑖) |𝐷𝑇𝑊 (𝑆𝑖 , 𝑄̂) ≤ 𝜖}.

1 𝑄 ← 𝑄̂ ; A← ∅ ; // normalize 𝑄 if necessary

2 ℓ ← {2𝑖 }, where 4𝑚 < ℓ ≤ 8𝑚 and 𝑖 ∈ {1, 2, . . . , ⌈log
2
(𝑛)⌉} ;

3 𝑝 ← ⌈ 𝑛
ℓ−𝑚+1 ⌉; 𝑞 ← ℓ −𝑚 + 1 ;

4 DT←MakeBin(Q) ; // see Section 4.2

5 foreach 𝑡 ∈ {1, 2, ..., 𝑝} do
6 𝑇 (𝑡) ← (𝑠𝑡𝑞+1, 𝑠𝑡𝑞+2, . . . , 𝑠𝑡𝑞+ℓ) ; // the 𝑡th segment

7 {𝑙𝑏𝑖 }𝑞𝑖=1← LB_Q(𝑄,𝑇 (𝑡)) ; // Algorithm 2

8 if |{𝑖 |𝑙𝑏𝑖 ≤ 𝜖}| ≥ log ℓ then
9 {𝑙𝑏𝑇𝑖 }𝑞𝑖=1← LB_T(𝑄,𝑇 (𝑡)) ; // Algorithm 3

10 foreach 1 ≤ 𝑖 ≤ 𝑞 do
11 𝑙𝑏𝑖 ← max{𝑙𝑏𝑖 , 𝑙𝑏𝑇𝑖 } ;
12 foreach 𝑖 ∈ {1, 2, ..., 𝑞} do
13 if 𝜖 ≥ 𝑙𝑏𝑖 then
14 if 𝜖 ≥ 𝐿𝐵KE (𝑆𝑖+𝑡𝑞−1, 𝑄) then
15 𝑙𝑏𝐾𝑒𝑜𝑔ℎ ← 𝐿𝐵Keogh (𝑄, 𝑆𝑖+𝑡𝑞−1) ;
16 if 𝜖 ≥ 𝑙𝑏𝐾𝑒𝑜𝑔ℎ then
17 Δ← 𝐿𝐵Petitjean (𝑄, 𝑆𝑖+𝑡𝑞−1) ;
18 if 𝜖 ≥ Δ AND 𝜖 ≥ 𝐷𝑇𝑊 (𝑄, 𝑆𝑖+𝑡𝑞−1)

then
19 A← A ∪ {𝑆𝑖+𝑡𝑞−1} ;
20 return A;

will be discussed in Section 4.2. In addition, we further compute the

𝐿𝐵Petitjean and improve its efficiency by computing the elements on

the fly in Section 4.3.

Finally, only if a candidate passes all the tests of above lower

bounds, the DTW distance will be calculated in the last step, and

the existing result set will be updated.

4.2 Enhancing 𝐿𝐵𝐾𝑒𝑜𝑔ℎ
𝐿𝐵𝐾𝐸 is a tighter lower bound than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ , and can be efficiently

approximated in subsequence matching. Given series 𝑋 = (𝑥1, 𝑥2,
. . . , 𝑥𝑚) ∈ R𝑚 and 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚) ∈ R𝑚 , the procedure to

compute 𝐿𝐵𝐾𝐸 (𝑋,𝑄) is described as Algorithm 6. Firstly, we dis-

crete the range (𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥) into 𝐵 equal-length intervals {𝐼1, 𝐼2,
. . . , 𝐼𝐵} with 𝐻 (𝑣) = ⌊ 𝐵 (𝑣−𝑄𝑚𝑖𝑛)

𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛 + 1⌋, where 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥

are the minimum and maximum values of 𝑄 , respectively. Then, a

distance look-up table 𝐷𝑇 ∈ R𝐵∗𝑚 is defined as,

𝐷𝑇 [𝑘] [𝑖] = min

𝑖−𝑤≤ 𝑗≤𝑖+𝑤,𝑡 ∈𝐼𝑘

{︂(︁
𝑡 − 𝑞 𝑗

)︁
2

}︂
, (26)

where 𝐷𝑇 [𝑘] [𝑖] stores the minimum distance between 𝑞 𝑗 and any

𝑥𝑖 that satisfies 𝐻 (𝑥𝑖) = 𝑘 .
Clearly, the value of 𝐷𝑇 is only related to 𝑄 . Since 𝑄 remains

constant throughout the subsequence matching problem, 𝐷𝑇 can

be shared by all candidates and the time cost of establishing 𝐷𝑇 is

negligible. The process of calculating 𝐿𝐵𝐾𝐸 is shown in Algorithm

6. Lines (3-7) of Algorithm 6 is exactly computing 𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄).
The main difference lies in the utilization of the look-up table 𝐷𝑇 to

3636

enhance the effectiveness of the lower bound. Therefore, in practice

𝐿𝐵𝐾𝐸 is always "tighter" than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ .

Algorithm 6: 𝐿𝐵𝐾𝐸 (𝑋,𝑄)
Input: 𝑋 = (𝑥1, . . . , 𝑥𝑚) ∈ R𝑚 , 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚) ∈ R𝑚
Output: lower bound of 𝐿𝐵𝐾𝐸 (𝑋,𝑄).

1 dist← 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 (𝑋,𝑄)2 ;
// 𝐷𝑇 can be shared if 𝑄 does not change

2 Compute 𝐷𝑇 ∈ R𝐵∗𝑚 with Equation (26) ;

3 foreach 4 ≤ 𝑖 ≤ 𝑚 − 3 do
4 if 𝑥𝑖 ≥ U𝑄

𝑖
then

5 dist← dist + (𝑥𝑖 − U𝑄𝑖)
2
;

6 else if 𝑥𝑖 ≤ L𝑄
𝑖
then

7 dist← dist + (𝑥𝑖 − L𝑄𝑖)
2
;

8 else
9 dist← dist + 𝐷𝑇 [𝐻 (𝑥𝑖)] [𝑖] ;

10 return
√
dist;

4.3 Accelerating 𝐿𝐵Petitjean
𝐿𝐵Petitjean is the tightest known DTW lower bound of 𝑂 (𝑚) time

complexity, but it ismuch slower than𝐿𝐵𝐾𝑒𝑜𝑔ℎ . Therefore,𝐿𝐵Petitjean
is the last DTW lower bound to check in FSMDTW. 𝐿𝐵Petitjean is de-

fined based on 𝐿𝐵𝐾𝑒𝑜𝑔ℎ and 𝐿𝐵𝑘𝑖𝑚𝐹𝐿 , which have been calculated

in FSMDTW previously. Therefore, we only need to compute the

remaining part of 𝐿𝐵Petitjean (𝑋,𝑄).
The original implementation of 𝐿𝐵Petitjean abandons the calcula-

tion immediately once the cumulative lower bound exceeds 𝜖 [31].

However, it still needs to fully compute the projection vector 𝑃

and its upper and lower envelopes U𝑃 and L𝑃 for each candidate

subsequence.

This paper improves the efficiency of 𝐿𝐵Petitjean according to the

following observations: Firstly, the projection vector 𝑃 and its en-

velopes (L𝑃 and U𝑃) are utilized element by element in 𝐿𝐵Petitjean.

Furthermore, 𝑃 , L𝑃 , and U𝑃 can be calculated element by element

without incurring additional overhead. Therefore, we compute

𝐿𝐵Petitjean efficiently by computing 𝑃 , U𝑃 and L𝑃 element by ele-

ment on demand, which avoids computing most envelopes, thereby

significantly speeding up 𝐿𝐵Petitjean.

5 EXPERIMENTS
5.1 Experiment Setup
Hardware. All experiments are carried out on a server with 64GB

RAM, an Intel CORE i5-12500 CPU and 3TB SSD storage.

Algorithms The state-of-the-art index-free algorithm are UCR-

Suite [23] and its variant UCR-MON Suite[4]. We obtained the

C/C++ code for these algorithms from their official website
5
. UCR-

Suite was originally designed to search for only the top-1 candidate

for a given query. We have slightly modified it to adapt to the 𝜖

5
https://www.cs.ucr.edu/~eamonn/UCRsuite.html and https://github.com/MonashTS/

UCR-Monash

ranged subsequence matching problem. Our algorithm, FSMDTW,

is also implemented in C/C++ and available online
6
.

Datasets.This paper employs both synthetic and real-world datasets,

which are described in Table 3.

5.2 The Tightness and Efficiency of the
Proposed Lower Bound

This subsection evaluates 𝐿𝐵𝑀+ against the other DTW lower

bounds in terms of both efficiency and effectiveness. The effec-

tiveness of DTW lower bounds is measured by Tightness of Lower
Bound (TLB) [12], which is defined as the average ratio between

the estimated lower bound and the exact DTW value. A higher TLB

value indicates that the lower bound is more effective, as it allows

for the elimination of a greater number of candidates.

5.2.1 Effectiveness of lower bounds. Figure 6(a) reports the average
effectiveness on the five datasets mentioned in Section 5 of different

DTW lower bounds as𝑚 changes. 𝐿𝐵_𝑄 and 𝐿𝐵_𝑇 represent the

lower bounds computed by Algorithm 2 and Algorithm 3, respec-

tively. The effectiveness of the proposed lower bound is measured

as𝑚𝑎𝑥{𝐿𝐵_𝑄, 𝐿𝐵_𝑇, 𝐿𝐵_𝐹 }, where 𝐿𝐵_𝐹 is a special case of 𝐿𝐵𝑀+
where all elements of the mask vector is set to 1.

64 128 256 512 1024 2048 4096 8192 16384
0.0

0.2

0.4

0.6

0.8

1.0

 max{LB_Q,LB_T,LB_F} LB_Petitjean

 LB_KimFL LB_Keogh LB_KE

 A
v
e
ra

g
e
 E

ff
e
c
ti
v
e
n
e
s
s

m

(a) Effectiveness vs. m

64 128 256 512 1024 2048 4096 8192 16384

100

101

102

103

104

 max{LB_Q,LB_T,LB_F} LB_Petitjean

 LB_KimFL LB_Keogh LB_KE

T
im

e
 t
o
 C

o
m

p
u
te

L
o
w

e
r

B
o
u
n
d
s
 (

s
)

m

(b) Efficiency vs. m

Figure 6: The effectiveness (measured by 𝑇𝐿𝐵) and efficiency
(normalized by setting the cost of 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 as 1) of DTW lower
bounds with respect to query length𝑚, without considering
the impact of early stopping techniques.

The experimental results indicate that the effectiveness of𝐿𝐵𝐾𝑖𝑚𝐹𝐿
decreases rapidly with increasing query length𝑚, while the effec-

tiveness of other lower bounds decrease slowly. This rapid decline

in effectiveness of 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 is attributed to its consideration of only

six pairs of elements, which hinders its ability to reflect the dissimi-

larity between longer series. In contrast, all other lower bounds are

less affected by the query length𝑚 because they potentially utilize

every element of the series in their computation.

5.2.2 Efficiency of lower bounds. Figure 6 (b) illustrates the effi-

ciency of different DTW lower bounds as𝑚 changes. Experiments

indicate that the time overhead of these DTW lower bounds are

consistent with their theoretical time complexity. As𝑚 increases,

we observe that 1) the cost of 𝐿𝐵𝐾𝑒𝑜𝑔ℎ and 𝐿𝐵Petitjean increases

6
https://github.com/QW1k0YA/A-Fast-Index-free-Subsequence-Matching-

Algorithm-for-Dynamic-Time-Warping

3637

https://www.cs.ucr.edu/~eamonn/UCRsuite.html
https://github.com/MonashTS/UCR-Monash
https://github.com/MonashTS/UCR-Monash
https://github.com/QW1k0YA/A-Fast-Index-free-Subsequence-Matching-Algorithm-for-Dynamic-Time-Warping
https://github.com/QW1k0YA/A-Fast-Index-free-Subsequence-Matching-Algorithm-for-Dynamic-Time-Warping

Table 3: Datasets Used in the Experiments

Dataset Length Description of Dataset

RW 1 × 109 An artificial dataset where the difference of adjacent points follows the standard normal distribution.

ECG 7
1.7 × 109 An electrocardiograms dataset collected from 15 humans with a sampling frequency of 1KHz.

EEG 8
2.4 × 109 An electroencephalogram dataset collected from 22 humans, sampled at a frequency of 256Hz.

DNA 9
1.7 × 1010 A DNA dataset consists of nucleotide sequences derived from various species.

TEMP 10
1.9 × 109 A dataset contains monthly average temperature data for China from January 1901 to December 2023.

linearly with𝑚; 2) the cost of 𝐿𝐵𝐾𝑖𝑚𝐹𝐿 remains stable; 3) the over-

head of𝑚𝑎𝑥{𝐿𝐵_𝑇, 𝐿𝐵_𝑄, 𝐿𝐵_𝐹 } increases very slowly, reflecting

its 𝑂 (log𝑚) time complexity.

Although 𝐿𝐵𝑀+ is less effective than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ , it significantly
outperforms in terms of efficiency. For example, when𝑚 = 1024,

the proposed method is nearly 20 times faster than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ . When

𝑚 = 16384, our method is more than two orders of magnitude faster

than 𝐿𝐵𝐾𝑒𝑜𝑔ℎ , and the speed advantage continues to increase with

the length of the sequence. In addition, 𝐿𝐵𝐾𝐸 is always tighter than

𝐿𝐵𝐾𝑒𝑜𝑔ℎ . The calculation of 𝐿𝐵𝐾𝐸 is slightly slower than that of

𝐿𝐵𝐾𝑒𝑜𝑔ℎ , but the difference is almost negligible.

5.3 The Efficiency of FSMDTW on Short and
Medium Length Queries

Now, we compare the proposed FSMDTW algorithm with UCR-

Suite in terms of efficiency. The reasonable distance threshold 𝜖

varies with the length of the query and the datasets. Therefore,

we determine the threshold 𝜖 based on selectivity, which is the

ratio between the size of result and the total number of potential

candidates. For example, if the selectivity of the query is set to

10
−8
, then 𝜖 is adjusted to ensure that the number of results is

10
−8 × (𝑛 −𝑚 + 1).
The selectivity of the queries is set to 10

−9
, 10
−8
, 10
−7

and

10
−6
. The limit of the warping path,𝑤 , is set to ⌈0.01𝑚⌉, ⌈0.02𝑚⌉,

and ⌈0.05𝑚⌉ respectively. Five query series are selected for each

combination of the parameters. Figure 7 reports the average runtime

of the subsequence matching algorithms in different datasets.

The results show that FSMDTW consistently outperforms UCR-

Suite and UCR-MON Suite in all datasets. Across the five datasets

included in the experiments, the proposed approach demonstrates

an average speedup of 2.01 ∼ 3.22 times compared to the UCR-

MON Suite and is 3.32 ∼ 4.24 times faster than the UCR-Suite.

This advantage can be attributed to the lower bound proposed in

this paper. It discards around 98% of the candidates on average

in the experiments, thus significantly reducing the time cost in

the computation process of the lower bound function compared to

existing works.

In addition, the experimental results show that our advantage

over UCR-Suite and UCR-MON Suite increases with increasing

query length𝑚. The reason is that, as the increase of𝑚, the speed ad-

vantage of the fast lower bound method proposed in this paper over

the existing DTW lower bounds continuously increases. Therefore,

the advantage of FSMDTW is more significant for longer queries.

Additionally, the space complexity of FSMDTW is𝑂 (ℓ log ℓ), where
ℓ is the length of the sequence segment (recalling Algorithm 5). In

all experiments presented in this paper, the maximum memory

usage never exceeds 20MB. Therefore, we do not report the detailed

space usage of the Algorithms.

5.4 The Scalability for Longer Queries
This subsection evaluates the performance of the subsequence

matching algorithms against longer query series. The selectivity

of queries is set to 10
−8
. Table 4 reports the execution time of the

algorithms on different datasets.

Table 4: Time taken to perform subsequence matching (s)

Dataset

𝑚 Algorithm RW EEG DNA ECG TEMP

2
11

UCR 329.5 10514.3 1537.8 68.5 178.3

UCR-MON 201.1 4153.9 1234.5 40.7 113.1

FSMDTW 17.5 1664.4 415.2 27.4 67.8

2
12

UCR 802.3 5492.9 1659.7 97.8 355.6

UCR-MON 505.2 4250.6 1034.4 62.6 231.4

FSMDTW 24.8 2665.9 313.1 29.6 66.1

2
13

UCR 1370.1 72448.6 2859.1 80.3 384.3

UCR-MON 812.5 43507.5 1728.1 51.6 252.4

FSMDTW 20.3 21403.3 371.1 30.2 35.8

2
14

UCR 3506.5 190570.7 12724.5 232.5 337.6

UCR-MON 2079.2 87014.9 8750.8 133.9 214.1

FSMDTW 30.4 42806.5 379.5 36.5 44.4

The experimental results show that the proposed FSMDTW is

significantly faster than the other competitors on longer queries.

The average speedup is 20.4 when query length reaches 2
14
. This

significant advantage can be attributed to the proposed DTW lower

bounds, which only cost 𝑂 (log𝑚) time. Our algorithm performs

better on the random walk dataset than on the other datasets. The

reason is likely to be that the randomwalk dataset ismore consistent

with the assumptions we made about the distribution during the

calculation of mask vectors. Therefore, 𝐿𝐵𝑀+ filters out most of the

candidates on this dataset, which results in FSMDTW achieving

better performance.

7
https://physionet.org/content/butqdb/1.0.0/

8
https://physionet.org/content/chbmit/1.0.0

9
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/,the DNA sequence is con-

verted into a numerical time series by assigning values to nucleotides: ‘A’ (+2), ‘G’ (+1),

‘C’ (-1), and ‘T’ (-2).

10
https://www.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf

3638

https://physionet.org/content/butqdb/1.0.0/
https://physionet.org/content/chbmit/1.0.0
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/
https://www.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf

 UCR-Suite

(a) RW

 UCR-Suite

(b) EEG

 UCR-Suite

(c) DNA

 UCR-Suite

(d) ECG

 UCR-Suite

(e) TEMP

Figure 7: Average time taken by subsequence matching algorithms on different datasets.

Furthermore, it can be observed that the time overhead does

not necessarily increase monotonically with the query length𝑚.

This is because a significant portion of the time is spent calculating

the DTW lower bounds. Consequently, the filtering efficiency of

candidates plays a crucial role in the overhead of subsequence

matching. As the length of the query sequence increases, variations

in filtering efficiency may lead to a decrease in the overall time

consumption of the algorithm.

5.5 Influence of Selecting Mask Vectors
This section investigates the impact of mask vector selection strat-

egy on the effectiveness of lower bounds, and the result is shown

in Figure 8. We tested three different strategies as the baseline. The

random strategy generates a mask vector by setting each element of

the mask vector𝑀 to follow an independent binomial distribution

with the same probability to be either 1 or 0. The all-one strategy

simply configures the mask vector with all elements set to 1. The

heuristic strategy refers to the strategy we used to set the mask

vectors. Finally, "heuristic + all one" represents the maximum of

lower bounds generated with the mask vector generated by all one

and the heuristic strategy.

RW EEG DNA ECG TEMP
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 E

ff
e
c
ti
v
e
n
e
s
s

DataSet

 all one random heuristic heuristic+all one

Figure 8: The effectiveness of 𝐿𝐵𝑀+ under different strategies.

The results show that the random strategy is essentially always

the worst, as it does not leverage any knowledge and blindly masks

elements compared to the all-one vector. Inmost cases, mask vectors

based on heuristic methods outperform the all-one mask vector

because they selectively ignore elements that may worsen the result.

Finally, the method that combines the all-one mask vector with

the heuristic mask vector has the best lower bound effectiveness.

This demonstrates the rationality of the approach adopted in this

paper, which involves using different mask vectors multiple times

to compute 𝐿𝐵𝑀+.

5.6 Ablation Study
We conducted ablation experiments on the three main optimiza-

tions proposed in this paper, namely, the optimized algorithms for

𝐿𝐵𝑀+, 𝐿𝐵𝐾𝐸 , and the acceleration of 𝐿𝐵Petitjean. The results are

shown in Table 5. We set 𝑤 = ⌈0.05𝑚⌉ and 𝑚 = 256 and report

the execution time of the algorithm after removing or replacing

certain modules. The experimental results show that the improve-

ments proposed in this paper contribute to the performance of

the proposed 𝐹𝑆𝑀𝐷𝑇𝑊 Algorithm. However, the degree of perfor-

mance improvement varies across different datasets, which may be

attributed to data distribution differences.

Table 5: Ablation Study on Removing Different Modules

Dataset

Runtime (s) RW EEG DNA ECG TEMP

Remove 𝐿𝐵𝑀+ 63.1 652.6 680.7 100.9 503.0

Replace 𝐿𝐵𝐾𝐸
34.6 339.9 516.2 94.4 210.9

with 𝐿𝐵Keogh

Remove acceleration

25.7 332.6 516.2 82.3 189.2

of 𝐿𝐵Petitjean

FSMDTW 24.0 225.6 514.9 82.3 182.5

6 CONCLUSION
The subsequence matching problem based on DTW plays a key

role in time series analysis. This paper designs the first algorithm

capable of generating DTW lower bounds in averageΘ(log𝑚) time,

demonstrating a substantial improvement in efficiency over the

existing approaches. By meticulously integrating this fast lower

bound, enhancing the pruning power of 𝐿𝐵𝐾𝑒𝑜𝑔ℎ and accelerating

the computation of 𝐿𝐵Petitjean, this paper proposes the FSMDTW

algorithm for the subsequence matching problem. Experimental

results demonstrate that FSMDTW significantly outperforms the

state-of-the-art algorithm, particularly for long queries, with an

improvement of up to an order of magnitude.

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of

China (NSFC) (62232005, 62202126). We also appreciate the support

from China Mobile Group Heilongjiang Co. Ltd. on our research,

the research is jointly completed by both parties.

3639

REFERENCES
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. Tight

hardness results for LCS and other sequence similarity measures. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science. IEEE, 59–78.

[2] Sara Alaee, Kaveh Kamgar, and Eamonn Keogh. 2020. Matrix profile XXII: exact

discovery of time series motifs under DTW. In 2020 IEEE International Conference
on Data Mining (ICDM). IEEE, 900–905.

[3] Sara Alaee, Ryan Mercer, Kaveh Kamgar, and Eamonn Keogh. 2021. Time se-

ries motifs discovery under DTW allows more robust discovery of conserved

structure. Data Mining and Knowledge Discovery 35 (2021), 863–910.

[4] Sam Anzaroot and Andrew McCallum. 2013. UMass Citation Field Extraction
Dataset. Retrieved May 27, 2019 from http://www.iesl.cs.umass.edu/data/data-

umasscitationfield

[5] Ardalan, Aarabi, , , Kamran, Kazemi, , , Reinhard, Grebe, , , and Hamid. 2009.

Detection of EEG transients in neonates and older children using a system based

on dynamic time-warping template matching and spatial dipole clustering -

ScienceDirect. NeuroImage 48, 1 (2009), 50–62.
[6] Zemin Chao, Hong Gao, Yinan An, and Jianzhong Li. 2022. The inherent time

complexity and an efficient algorithm for subsequence matching problem. Pro-
ceedings of the VLDB Endowment 15, 7 (2022), 1453–1465.

[7] Zemin Chao, Hong Gao, Dongjing Miao, Jianzhong Li, and Hongzhi Wang. 2025.

An Amortized O(1) Lower Bound for Dynamic Time Warping in Motif Discovery.

IEEE Transactions on Knowledge and Data Engineering 37, 5 (2025), 2239–2252.

https://doi.org/10.1109/TKDE.2025.3544751

[8] Nikan Chavoshi, Hossein Hamooni, and Abdullah Mueen. 2016. Debot: Twitter

bot detection via warped correlation.. In Icdm, Vol. 18. 28–65.

[9] Matthieu Herrmann and Geoffrey I Webb. 2021. Early abandoning and pruning

for elastic distances including dynamic timewarping. DataMining and Knowledge
Discovery 35, 6 (2021), 2577–2601.

[10] J. Jing, J. Dauwels, T. Rakthanmanon, E. Keogh, and M. B. Westover. 2016. Rapid

annotation of interictal epileptiform discharges via template matching under

Dynamic Time Warping. Journal of Neuroscience Methods 274 (2016), 179–190.
[11] Rong Kang, Chen Wang, Peng Wang, Yuting Ding, and Jianmin Wang. 2018.

Matching Consecutive Subpatterns over Streaming Time Series. In Web and Big
Data, Yi Cai, Yoshiharu Ishikawa, and Jianliang Xu (Eds.). Springer International

Publishing, Cham, 90–105.

[12] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.

2001. Dimensionality reduction for fast similarity search in large time series

databases. Knowledge and information Systems 3 (2001), 263–286.
[13] Eamonn Keogh and Chotirat Ann Ratanamahatana. 2005. Exact indexing of

dynamic time warping. Knowledge and information systems 7 (2005), 358–386.
[14] Sang-Wook Kim, Sanghyun Park, and Wesley W Chu. 2001. An index-based ap-

proach for similarity search supporting time warping in large sequence databases.

In Proceedings 17th international conference on data engineering. IEEE, 607–614.
[15] Daniel Lemire. 2009. Faster retrieval with a two-pass dynamic-time-warping

lower bound. Pattern Recognition 42, 9 (2009), 2169–2180. https://doi.org/10.

1016/j.patcog.2008.11.030

[16] Daniel Lemire. 2009. Faster retrieval with a two-pass dynamic-time-warping

lower bound. Pattern recognition 42, 9 (2009), 2169–2180.

[17] Michele Linardi and Themis Palpanas. 2018. Scalable, variable-length similarity

search in data series: The ULISSE approach. Proceedings of the VLDB Endowment
11, 13 (2018), 2236–2248.

[18] Frank Madrid, Shima Imani, Ryan Mercer, Zachary Zimmerman, Nader Shakibay,

and Eamonn Keogh. 2019. Matrix profile xx: Finding and visualizing time series

motifs of all lengths using the matrix profile. In 2019 IEEE International Conference
on Big Knowledge (ICBK). IEEE, 175–182.

[19] Ricards Marcinkevics, Steven Kelk, Carlo Galuzzi, and Berthold Stegemann. 2019.

Discovery of Important Subsequences in Electrocardiogram Beats Using the

Nearest Neighbour Algorithm. (2019).

[20] Victor Maus, Gilberto Câmara, Ricardo Cartaxo, Alber Sanchez, Fernando M

Ramos, and Gilberto R De Queiroz. 2016. A time-weighted dynamic time warping

method for land-use and land-cover mapping. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 9, 8 (2016), 3729–3739.

[21] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon West-

over. 2009. Exact discovery of time series motifs. In Proceedings of the 2009 SIAM
international conference on data mining. SIAM, 473–484.

[22] Vit Niennattrakul, Dechawut Wanichsan, and Chotirat Ann Ratanamahatana.

2010. Accurate subsequence matching on data stream under time warping dis-

tance. In New Frontiers in Applied Data Mining: PAKDD 2009 International Work-
shops, Bangkok, Thailand, April 27-30, 2009. Revised Selected Papers 13. Springer,
156–167.

[23] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,

Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Search-

ing andmining trillions of time series subsequences under dynamic time warping.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. 262–270.

[24] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,

Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2013. Ad-

dressing big data time series: Mining trillions of time series subsequences under

dynamic time warping. ACM Transactions on Knowledge Discovery from Data
(TKDD) 7, 3 (2013), 1–31.

[25] Chotirat Ann Ratanamahatana and Eamonn Keogh. 2005. Three myths about

dynamic time warping data mining. In Proceedings of the 2005 SIAM international
conference on data mining. SIAM, 506–510.

[26] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algorithm opti-

mization for spoken word recognition. IEEE transactions on acoustics, speech,
and signal processing 26, 1 (1978), 43–49.

[27] Diego F Silva, Rafael Giusti, Eamonn Keogh, and Gustavo EAPA Batista. 2018.

Speeding up similarity search under dynamic time warping by pruning unpromis-

ing alignments. Data Mining and Knowledge Discovery 32 (2018), 988–1016.

[28] Johannes Stübinger and Lucas Schneider. 2020. Epidemiology of coronavirus

COVID-19: Forecasting the future incidence in different countries. In Healthcare,
Vol. 8. MDPI, 99.

[29] Chang Wei Tan, François Petitjean, and Geoffrey I Webb. 2019. Elastic bands

across the path: A new framework and method to lower bound DTW. In Proceed-
ings of the 2019 SIAM International Conference on Data Mining. SIAM, 522–530.

[30] Charles Van Loan. 1992. Computational frameworks for the fast Fourier transform.

SIAM.

[31] Geoffrey I. Webb and François Petitjean. 2021. Tight lower bounds for dynamic

time warping. Pattern Recognition 115 (2021), 107895. https://doi.org/10.1016/j.

patcog.2021.107895

[32] Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, and Jianmin Wang.

2019. Kv-match: A subsequence matching approach supporting normalization

and time warping. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 866–877.

[33] Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. 2017. Matrix

profile VI: Meaningful multidimensional motif discovery. In 2017 IEEE interna-
tional conference on data mining (ICDM). IEEE, 565–574.

[34] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei

Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn

Keogh. 2016. Matrix profile I: all pairs similarity joins for time series: a unifying

view that includes motifs, discords and shapelets. In 2016 IEEE 16th international
conference on data mining (ICDM). Ieee, 1317–1322.

[35] Sheng Zhong and Abdullah Mueen. 2024. MASS: distance profile of a query over

a time series. Data Mining and Knowledge Discovery (2024), 1–27.

[36] Yunyue Zhu andDennis Shasha. 2003. Warping indexeswith envelope transforms

for query by humming. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data. 181–192.

[37] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael

Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. 2016.

Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred

million barrier for time series motifs and joins. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 739–748.

3640

http://www.iesl.cs.umass.edu/data/data-umasscitationfield
http://www.iesl.cs.umass.edu/data/data-umasscitationfield
https://doi.org/10.1109/TKDE.2025.3544751
https://doi.org/10.1016/j.patcog.2008.11.030
https://doi.org/10.1016/j.patcog.2008.11.030
https://doi.org/10.1016/j.patcog.2021.107895
https://doi.org/10.1016/j.patcog.2021.107895

	Abstract
	1 Introduction
	2 Problem Definition and Related Work
	2.1 Definitions Used in This Paper
	2.2 Problem Definition
	2.3 Related Works

	3 Computing DTW Lower Bounds in Average O(m) Time
	3.1 Definition and Proof of Correctness for the Proposed DTW Lower bound
	3.2 Basic Idea for Computation LBM+ Efficiently in Subsequence Matching Problem
	3.3 Computing LBM+(T=TTTT(i),Q) in Average O(m) Time
	3.4 Computing LBM+(Q,T=TTTT(i)) in Average O(m) Time
	3.5 Selecting Mask Vectors

	4 FSMDTW: A Fast Subsequence Matching Algorithm
	4.1 Overview of FSMDTW
	4.2 Enhancing LBKeogh
	4.3 Accelerating LBPetitjean

	5 Experiments
	5.1 Experiment Setup
	5.2 The Tightness and Efficiency of the Proposed Lower Bound
	5.3 The Efficiency of FSMDTW on Short and Medium Length Queries
	5.4 The Scalability for Longer Queries
	5.5 Influence of Selecting Mask Vectors
	5.6 Ablation Study

	6 Conclusion
	References

